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Let S be an analytic space over € and let X

be a family of curves over S. Let ye denote the

nth symmetric product of X over S and let Ys denote
the family of Jacoblans over S. Suppose we are given a

%
map f : x &gt; § and let u : f£ Q&amp; + ol be the

S S %- (n)
S/S x3 /3

map induced by f. We define the analytic subspace Z% (u)

(n) n-r+1
of xq to be given by the vanishing of Au.

We study two cases:

(1) S = Spec (€) and f is the classical map defined

by integrating holomorphic differentials. We let Gy, (X)
denote Z¥(u) in this situation.

(2) S = Tg, the Teichmuller space, X is the universal
family of Teichmliller surfaces of g, and f is the natural
relativization over Tg of the map in case (1). We let

M- denote Z¥(u) in this situation.

Put 1 = (r+l)(n-r) - rg. We show that 0: - 32, if

nonempty, is smooth of pure dimension 3g - 3 + T + 1.
From this result, we may conclude that for a generic curve

X the analytic space G(X) - G2 (xX), if nonempty, is smooth
of pure dimension tT + 1.

Variational formulas due to Schiffer and Spencer and
Rauch are employed in the study of 7.

Thesis supervisor: Steven L. Kleiman
Title: Associate Professor of Mathematics



3

Dedication

In better words than I could say it:

I hear my father; I need never fear.

I hear my mother; I shall never be lonely, or want

for love.

When I am hungry it is they who provide for me; when

I am in dismay, it is they who £111 me with comfort.

When I am astonished or bewildered, it is they who

nake the weak ground firm beneath my soul: it is in them

that I put my trust.

When I am sick it is they who send for the doctor;

when I am well and happy, it is in their eyes that I know

best that I am loved; and it is towards the shining of

their smiles that I 1ift up my heart and in their laughter

that I know my best delight.

I hear my father and my mother and they are my giants,

my king and my queen, beside whom there are no others so

wise or worthy or honorable or brave or beautiful in this

world.

T need never fear: nor ever shall I lack for loving

kindness

from "A Death in the Family,"

by James Agee
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Introduction

Let X be a complete, nonsingular curve of genus g

over an algebraically closed field K. Let x(n) denote

the nth symmetric product of X. Let G,. denote the

subvariety of x (1) of all divisors D such that

dim |D| &gt; r. (In the literature, e.g. [16], Gy, is

more often used to denote the subvariety of the Jacobian

of X of all linear systems of degree n and projective

dimension at least r.)

Put tT equal to (r+l)(n-r) - rg. Brill and

Noether [U4] asserted that if tT were nonnegative and

X were a generic curve, then ay. would have dimension T + r.

The recent work of Kleiman and Laksov [14, 15] and Kempf [12]

shows that for X any curve, if 1 &gt; 0, then G. has

dimension at least tT + r. We will show, in the case

K =C, that if X is a generic curve, then at - che

if nonempty, has dimension tT + 1.

We work in the category of analytic spaces over C

Ne do this because we want to consider the Teichmiiller

space, an analytic, but not algebraic, variety ([L71).

Let Y be an analytic space over € and let E

and F be locally free Oy-modules of rank g and nn

respectively. Suppose we are given a map u : BE &gt; F.
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In Chapter I, we define the analytic space 7" (u) to be
n-r+l

given by the vanishing of the map A uu. Then we study
:

the infitesimal structure of ZT (u).

Let S be an analytic space over €C and let X

be a family of curves of genus g over S. Let 2%

denote the ni symmetric product of X over S (cf. [11])

and let Ys denote the family of Jacobians over S.

Suppose we are given a map f[ : pi &gt; Let

¥% 3

‘ 2 &gt; ot (n) be the map induced by fT.
S/S Xq 3

. r (n) .

study the analytic space Z (u) &lt; 75 in the

3. We

following

two situations:

(i) SS = Spec (€) and f 1s the classical map

defined by integrating holomorphic differentials. We let

G7, (X) denote ZY (u) in this situation. A C-valued

point of Gy, (X) is a divisor D of degree n and

projective dimension at least r.

(ii) 8S = Tis the Teichmliller space, X is the

universal family of Teichmilller surfaces of genus g,

and ff dis the natural relativization over Tg of the

map in case (i). We let 7° denote ZY (u) in this

situation.
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In Chapter I, we show how To compute the dimension

of the tangent space at a point D of G(X). This is

done by seeing when a tangent vector to x(n) at D is

a tangent vector to Gy. (X) at D. (Severi appears to

employ a similar argument in [25], pp. 388-9, with his

"Linearmantels™.)

In Chapter 11, we describe a variation of structure

of Riemann surfaces due to Schiffer and Spencer [23].

We derive variational formulas similar to those in

.23], but much closer in form to those in Rauch [22].

We then state a result due to C. Patt [21].

In the second section of Chapter II, we review the

work of Meis [20], and give his examples of Riemann

surfaces.

In Chapter TIT, we use Patt's Theorem and the

variational formulas to help to analyze the structure

of Do. Our main result is

Theorem: Suppose ¥ ed - n°. Then the dimension of

the tangent space to Hl at y is 3g - 3 + 7 —_

From this result, we can conclude that if X is4&amp;4
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genericoRiemann surface, then G(X) - G(X), if

nonempty, is smooth of pure dimension -1 +

We then use Mels's examples and perform computations

which show that if +t &gt; 0, then the analytic space He

(resp. 3) has a component of dimension

33. = 3+ 1+ 2 (resp. 3g - 3 + 1 + 3).

In Chapter IV, we discuss some open questions.

In particular, we discuss the moduli of curves with

"extra-special" (i.e. tT &lt; 0) divisors on them.
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Chapter 1

The Analytic Space of Special Divisors

and its Infinitesimal Structure

We will work in the category of analytic spaces

over (L. We take the Séminaire Cartan, 1960-61, as

our foundational reference. In particular, we allow

the structure sheaf of an analytic space to contain

nilpotents. We work in this category because we will

want to consider the Teichmifiller space, an analytic,

hut not algebraic, variety [71].

Let S be an analytic space over C. Denote by

((an/S)) the category of analytic spaces over S.

Let Y De an analytic space over 8S and let E and

F' be locally free Oy-modules of rank g and n respectively.

Suppose we are given a map u : E &gt; F. Define the

functor ZY (u) : ((an/s))P + ((Sets)) by

Ne

or (uw) (T) = {g ¢ [por %Hom (T,Y) A gu = 0}.

wish to show that this functor is represented by an
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analytic subspace of 7

Definition 1 [7]: Let S be an analytic space and

let G : ((an/s))0 + ((Sets)) be a functor. We say that

G is of a local nature if for every T the presheaf

U » G(U), where U runs through the open sets of T, is

a shegf

Remark: This is the analog to the notion of a Zariski

sheaf in the category of contravariant functors from

((Schemes)) to ((Sets)).

Lemma 1: Let (8;) be a covering of an analytic space S

by open sets. Let GG : ((an/S))0 +&gt; ((Sets)) be a functor.

Then G 1s representable iff G is of a local nature

and for every i, the functor G/S, : ((an/s,))° + ((Sets))

is representable.

Proof: [7], Corollary 5.7 of Expose 7. oo

Our functor 75 (uw) 1s clearly of a local nature

dence, by the lemma, 1ts representability is a local

question.

Let y be a point of Y.

locally free of rank g and n respectively, the map u
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is given locally at y by an n x g matrix [£5] of

functions regular at y. The functor 7¥ (u) is then

locally represented by the analytic subspace defined by

the vanishing of the minors of order n - r + 1 of the

matrix [£5] Thus we have

Proposition 1: 7z¥(u) is represented by an analytic

subspace of YY. §}

He will use ZY (ua) to also denote this analytic

subspace.

Put p = rank (u ® k(y)). Locally at y, both E

and PF split off a direct summand of rank pp, and u

maps one summand isomorphically onto the other. The map

that u induces on the other two summands is given by

an (n-p) x (g-p) matrix [ey of functions regular

at y. The analytic space Z%(u) is also defined locally

at y by the vanishing of the minors of order (n - r +

of the matrix [esd (cf. [141).

p)

Proposition 2: Assume rr &gt; 0. Then the points of

ABET) are singular points of 7Y (un).

Proof: Suppose y ¢ 77 Then we have p &lt;n -

By construction, the e

Ve

ke above vanish at yy, hence are
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in the maximal ideal m of Oy y- The analytic space

z"(u) 1s defined locally at y by the vanishing of

the minors of order (n —- r + 1 - p) of the matrix Ley]

and, since p &lt;n - r, all these minors are of order at

least 2, hence are in me. Thus y cannot be a smooth

point of ZY (u). 1

We want now to study the infinitesimal structure

of 75 (uw). Let &amp; denote a tangent vector to Y at

We will also use §&amp; to denote the comorphism, which is

@ -homomorphism of local rings

y

a

] Cleese”).

We are interested in seeing when §&amp; 1s a tangent vector

to z¥(u) at y. By definition, this will be true if

A&amp;E u = 0.

Proposition 3: £&amp; is a tangent vector to ZZ (u) at

iff the minors of order n - r + 1 of the matrix

RACITON are all zero.

y

Proof: It 1s easy to see that the map

oy the matrix [ECE]. Thus we have

*

Eu 1s given

AE us=20
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iff the minors of order n - 1 + 1 of [E( fsc) all
vanish. §

We now assume that Y is smooth of dimension

wer L. Let y e Y and let Gys+--,0, De local

parameters on Y at y. Let Sg in € be given by

rd
-

- A Y } J — S A 2, y . a 10Lays

m

Then, by Taylor's Theorem, we have

z
ra

"

m Isp
=f,(y) +e &amp; 5, =).

1% g=7 * 90,

The vanishing of the minors of order n - r + 1 of

the matrix [Ef )] gives rise to linear équations in

the Sg These equations must be satisfied for §&amp; to

be a tangent vector to 7 (uw) at y. If we view

SqsereaB as being unknowns, then the dimension of the

solution space of this system of equations is the

dimension of the tangent space to 7" (uw) at vy.

If vy e 7z¥ (1) - gti uy, we will want to use the

following lemma.
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Lemma 2: Let A be a commutative ring (with unit).

Let M = [ay] be an m xX n matrix over A. Suppose

a minor uu of order r 1s a unit, and that every

minor of order r + 1 containing up vanishes. Then

every minor of order r + 1 vanishes.

Proof: The following proof owes its

D. Eisenbud.

brevity Eo

Without loss of generality, we may assume that

is the leading (i.e. upper left) minor of order r. Since

1 is a unit, we may perform column operations using

che first r columns to change M to the matrix

"r+1.1 J.

8m,1

1

&gt; @®»

“nd]|-

a
m.nr

J

where N is an (m-r) x (n-r) matrix.

Then, by row operations using the first r rows, we

may change M' to the matrix
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0

Th

J iy

Now, no minor containing uy 1s affected by performing

these row and column operations. Hence, the minors of

order r + 1 of M" which contain uy are all zero.

Thus N 1s the zero matrix.

But this implies that every column of M is

linear combination of the first r columns of M. Hence,

every minor of order r + 1 of M is zero. 1

Suppose now that y e zZ'(u) - 77). Then the

matrix [£5 has rank n - r. We may thus assume

that the leading minor of order n - r of [£5015 call

it wu, 1s nonzero. Let u' denote the leading minor

of order n - r of [e(f,0]. Then u' = yu + ce for

some c¢ ee. Since uy is nonzero, u' does not lie

in the maximal ideal of Crel/(?), hence is a unit.

We then have, by Proposition 3 and lemma 2, that §&amp; is

a tangent vector to 7%(u) at y iff the minors of

order n - r + 1 of [E(f,,)] which contain 2 all

vanish. Obviously, there are r - (g - n + r) such
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minors. If the equations in the Sy given by the

vanishing of these minors are linearly independent

(over § ), then the dimension of the tangent space to

75 (uw) at y 1s m~r + (g -n + r). We could then

conclude that y 1s a smooth point of ZY (u) by virtue

of the following proposition.

Proposition 4: Either ZY (u) is empty, or each component

has codimension at most »r - (g =n +r) in Y.

Proof: This is proved in [13] for Y a scheme. With

the obvious modifications, the proof is valid for Y an

analytic space. i
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2

In this section, we describe the two situations to

which we will apply the theory in §1.

Situation 1: A Riemann Surface

Let X be a compact Riemann surface of genus

g &gt; 0. Choose a point P eg X and denote by m, (X,P)

the fundamental group formed by the homotopy classes

of closed curves from P. The group my (X,P) can be

generated by 2g generators VysevrsVgs8ys-0058, which

satisfy the single relation

-1.-1 -1.-1 _

(16171 64 oY lV 3 = 1 27

Such an ordered system of generators is called a

canonical homotopy basis.

We will also use the symbols \CERREEN °F 81500058,

0 denote the classes of these elements in Hy (X,2).

These classes form a canonical homology basis, meaning

that the matrix of the intersection palring on X with

respect to this basis is
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J —a!

7 of

where I denotes the g X g identity and O the

g x g zero matrix ([27]1, [8]1).

Let dZys.-.,dz, be a basis of the holomorphic

differentials on X. Choose a canonical homology basis

g
(v6.35 and put

A
A,

 deg.
vy. J

by. f deg.
5

1,J = 1,...,8.

One calls the g X 2g matrix La; 4.04] the period matrix

of X. The 2g columns of this matrix generate a maximal

lattice subgroup hg of C8 and the complex analytic

torus Ce/y is the Jacobian variety J of X ([8], §8).

Fix a point Pq €e X. Consider the mapping

W { &gt; J given by

Wi / —_
,

1 1 de

P

i

,..«,) dr.) mod periods.
7 g
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Denote by x (1) the nb symmetric product of X.

Given a divisor D of degree n on X, we will use D

to also denote the point of x (1) representing this

divisor. For any n, we may extend ¢ to a map

ro x (1) + J as follows. If D is the divisor

a

z Ps then
f=

n Ps n sy
*MD) = (x f dZyseees Y J dr.) mod periods.

i=1 P, i=1 P, &amp;

Jf

$% 5

u - falls ql be the map induced by F
J y(n)

Since x(n) and J are smooth of dimension n and

* 5

Zz respectively, the sheaves ff a1 and 2) are
X

locally free O (n) modules of rank g and n
Y

hus, we may consider the analytic subspace zt

{we will dencte by

cu)

|
1 £),

respectively.

J

|

or just Gy, if the reference to X dis clear, the

analytic space 7X (uw) arising in this situation.
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Proposition 5: D € Gp. &lt;=&gt; dim |D| &gt; r.

Proof: Let M denote the matrix of wu evaluated at

D. Then it is shown in [9] (also in [18] and [5]) that

the rank of M is n - dim |[D|. But De G_

rank of M is at most n - r, hence D € GT &lt;=&gt; dim |[D| &gt; r. 1

Thus, the definition of G,. is consistent with the

~lassical one (cf. the Introduction). In the next

section, we will write out the matrix M explicitly.

Put 1 equal to (r+l)(n-r) - rg. We know by [14]

that if 1 1s at least zero, then Gr is nonempty.

Hence, by Proposition 4, every component of Gy. has

dimension at least n - r(g - n +r) = 1 + r. Brill and

Noether [4] asserted that for a generic curve X, 1f 1

is nonnegative, then Gr (X) has dimension equal to T + r

To prove something true for a generic Riemann surface,

one is led to consider the following situation.

Situation 2: The Universal Family of Teichmllller Surfaces

We first give a definition of a Teichmilller surface.

our definition is from [1] (also see [21], [22]).

If P and Q are points of X, then we know

shat mq (X,P) and my (X,Q) are isomorphic. Furthermore,
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we can associate a unique isomorphism with every arc ©

te 4 ‘ : 0 :

from P to Q: it is the isomorphism T which trans-

forms the homotopy class of a closed curve CC from P

into the homotopy class of os Leo. Choose a canonical

homotopy basis for my (X,P) and denote it by (T,A).

Let (r',a) be a canonical basis for my (X,Q) We

shall say that (T,A) and (T ,A) are equivalent iff

(rT ,A") = To (1,7) for some 03; i.e. each generator in

(I',A) 1s transformed by T° into the corresponding

generator in (T' ,A). The conditions for an equivalence

relation are obviously satisfied.

Suppose now that ¢ 1s a topological mapping of

onto another surface x. Then any canonical basis

(r,A) on X is transformed into a canonical basis

$(T',A) on x formed by the images of the generators.

We shall say that ¢ maps (X,(T,A)) onto (x ,(T ,A))

iff (T,A) is equivalent to (I ,A).Finally, if ¢

is a conformal mapping, we say that ¢ maps (X,(T,A))

conformally onto (x ,(T ,A)), and the two pairs are

said to be conformally equivalent. Again, the conditions

for an equivalence relation are trivially fulfilled.

A

definition 2: A Teichmfiller surface 1s a class of
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conformally equivalent pairs (X,(T',A)).

Theorem 1: There exists an analytic space Io

family V of Teichmllller surfaces of genus g over

Lo which is universal in the following sense: for every

family X of Teichmilller surfaces of genus g over an

and a

analytic space 8S, there exists a unique map ¢ : S -» Ts

such that X is isomorphic (as a family of Teichmiiller

surfaces) to the pullback via &amp; of V/T,.

Proof: [7], Theorem 3.1 of Expose 7 and Expose 17. §

Ty is called the Teichmilller space (for Teichmilller

surfaces of genus g). The Teichmiiller space is a smooth,

irreducible, and simply connected analytic space [7].

We will now relativize the map ¥ of situation 1

over the Teichmliller space and obtain a map from the

universal family of Teichmillller surfaces to the family

of Jacobians, as is done in [19].

Let h : V »&gt; Tor denote the structural morphism.

By well-known topological facts, since Te is simply
1

connected, the fiber bundle R hgZz 1s trivial. Thus,

there are sections of this bundle which give rise to

cycles Y;(8),8,(s), i=1,...,2, which form a
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canonical homology basis of Hy (V ,Z2), 8 € Ta [19]

re . 1
Consider the sheaf “yr

 a

pi sf FE

. 0 1 Ca 0 1 _

dim H Vso, ® k(s)) = dim H (Vgsty ) = g.

1

Hence, tym is a vector bundle of rank g over T .
—

and we have

DV oo

4 fo
. ~ 0 1

Ja

*

Choose holomorphic sections az,» 1 = 1,00.,8,

Sf hae0s such that fdr: (s)18 is a basis for
%* v/T, i i=1

0 1
g (Vgs8y Ss € To (ef. [18]1). Put

0
Lo

(s) = [ d *

Ys (8s) = (9)

Ty
a) (s) = [ dz.(s)
Lj te C5. (s) i

i,j = Leese ge

for each 8s &amp;
»
-

the matrix [a;5(s), by (s)] is
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the period matrix of Vy- Recall that the columns of

this matrix generate a maximal lattice subgroup of Ce.

Let Y be the quotient of Tg x CC® by this family of

lattices. The induced projection 9 ~ Ty gives a

complex analytic family of complex tori, the fiber Ys

being the Jacobian variety of the Teichmliller surface

V., [19].
Since our concern will only be local, we assume that

*

there exist sections of V -» Tee Let Py(s) be such a

section. As in [19], define a map ¢ : V'/= 9 by

For

PF }

v(s,P) = (s, [ az; (s),- / ar”(s)) mod periods
* % g

P.(s) P.(s)

D

"pe Vg.

Denote by vin) the nth symmetric product of V
g

over T, (cf. [11]). Extend ¢ to a map ff : vin) &gt;
g

as follows. If s eT, and De (vi) is the divisor
or

n

 &gt;, P. on
i=] =

VV “ron

n Py % n Py %

*(s,D) = (s, Zz J 7 dg (8)s.nss nS dz (s)) mod periods
i=] _% j=1 _% &amp;

P.(s) P.(s)
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*
Prat,» ol be the map induced by f3/T (n)g Vi / Ty

g

Since S and vin) are smooth over Ty of relative
g

dimension g and n respectively, the sheaves
*

£ ol and Qt are locally free of rank g and3/T (n)2 Vo 7 /TT g
g

respectively. Thus, we may consider the analytic

subspace 7Y (uw) c vi) of 81. We will denote by
2

-

Juri
 ar

r

Jn

the analytic space 75 (1) which arises in this situation.
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§3,

We return to situation 1 of the preceding section.

We will compute the matrix of the map cu, where §g

1s a tangent vector at a point of x(n) As in [18],

we will first direct our attention to a point nP on

(0)

«et Pe X and let tt be a local parameter on

X at P. Consider the divisor nP. Let Cyseeenty

be n copies of t. Then the elementary symmetric

functions of the Ess denoted Op (Eyseeist doen,

0 (Eqsennst ), form a system of local parameters on

"at the point nP [2].

To understand the map u, we need to study the

space of holomorphic 1-forms on x(n) We have

Proposition 6: The space of holomorphic 1-forms on

is naturally isomorphic to the space of holomorphic

1-forms on x(n) Both these spaces are isomorphic to

A

the space of holomorphic symmetric 1-forms on the

Cartesian product x"

proof: [18] (we give the correspondence below), 1
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We will identify the space of holomorphic symmetric

l-forms on XU with the space of holomorphic l1-forms

on x(n)

We now make explicit the correspondence between

nro0lomorphic 1-forms on X and holomorphic symmetric

1-forms on XO. Let dr be a holomorphic 1-form on

X, and write

x

dc 5 a,trdt.
=0

‘ut

™~

FW &gt; tydt, +... + &gt; j = 25.dt, J 0,1, 3

'hen we have

Proposition 7: The symmetric l-form dz on x" which

corresponds to dg may be written

0

“roof:

dc x
J == 0

[ £3]

a9Ty

(also see [5], lemma 2). B&amp;
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Now, we can express dg in terms of

10-4...,d0_ by using the following identities [187]:

J &lt;0 7 Op Ty I (-1)%r = do
+1

‘By convention, 0, = 0 a1d ao 0 if K  ~~ n)

Inverting these identities, and writing out only the

linear terms, we obtain

k
(-1) (do, , 4 - 0,doy - 0,40, 4 I

 I} nigher order terms

0.404)

Thus we get

4 ac = a,d0q + aq (-do, + o,do,) +

a.,»do - ¢ do, - 0.do + higher order terms)

Now suppose AZ. .,dL, is a basis for the

holomorphic Abelian differentials on X. Write
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2 2

dg, = I a, ,trdt kK = 1,...,g
g=g Xo

and put &amp; equal to XZ a s*
: 0o=n XK-%

Recall that the map f : X®) = J 1s given by

Let

f

 Pp
n n Ti n Py

L254 Py) = (x f ACqseees rf aL.) mod
= i=1 P, i=1 P,

9C,
00.

J
be given by

periods

. n 9,
dg, = I +— do.

k . 00.i=1 J J

Then we have

Proposition 8: The Jacobian matrix of f, i.e. the

matrix of the map u, locally at nP is

290.
J

J = lye...

k=1,...,8

Proof: This readily follows from the definitions

(cf. [5], lemma 2 and [9] p. 80 f£f.).
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It is easily seen from (¥) that

(%%) we )Oo
-172

: b-1, fr q
ah

SL (=1)CH a
a = {~1)
00,

J

'— rrp order terms

Thus we have

oC &gt;
k _ J=-1

go ok) = (1) "ey, 4,
3

Hence,

M

the matrix of u

(1971 (5-

GIOTTO Vel

evaluated at nP dis just

= lyesasynt

k=1,...,g.

j

This matrix has rank n - dim |nP| by Proposition 5.

Now let §&amp; denote a tangent vector to x (1) at

nP and let s,in C ve given by £(0,) = s.e, § = an 1

Then we have, as in §&amp;i1

2°
rt — 0 Ckls (nP).

]

: € x Se 36,00Ck (np) + Zl
IT, _

) = 00- (35 |
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ne sees from (¥¥*¥) that

2
dC +L 2

Jo Se (nP) = (-1)° "ay 5,0 18g
[RE

Or Q 1 -

To sum up, we have shown the following

Proposition 9: Let P e€ X and let +t be a local

parameter on X at P. Let dZys---245, be a

basis for the holomorphic differentials on X and

write ag, = ¢, dT. Let §&amp; be a tangent vector to

at nP and let 8, in C be given by

g(o,) = S.€, j=1,...,n, Where Gys-++50, are

(nn)

local parameters on x(n) at nP. Then the matrix

[ory]
E57)

90 |
the matrix of

vs 2
C Jy is

-1)97 (3-1) (p Sond (Ghee) |Sh op) +e SRT$a F

J 1. 4 c..nny k = 1.... +

Now consider a divisor of degree n of the form

= + eww . iD m4P. + m4P 4 The obvious map
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(my) X (mg) Lo (n)
fs

X X

is a local analytic isomorphism [18]. Thus, a local

calculation on x(n) can be performed instead on

(m,) (my)
K X ..., XX » using d sets of elementary symmetric

functions as local parameters. Also, the tangent space

cO y(n) at D 1s isomorphic to the direct sum of

(my)
che tangent spaces to X at m. Py, J =1,..

(m,)
et Ty Xx J sg be the map defined in

*

situation 1 of §2. Let wu, : £507 &gt; 2 be the
x J

map induced by Ly- Locally, the map f is the one

induced by the Ly and the map u is the one induced

by the Uys using the fact that

(m,) (m.)
x 1x xg 4 4 y(n) is a local analytic

isomorphism.

Thus, the matrix of wu locally at D is obtained

by "stacking" the matrices of the u, locally at

mF, Since a tangent vector £&amp; to x(n) at D is

determined by tangent vectors TO
. J

(mn) at m.P
 , RN 7
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the matrix of eu is also obtained by "stacking" the

matrices of the Eu, Thus, by using Proposition 9

and the above discussion, one can write the matrix of

= for any D. Let M' denote the matrix of 2% a.

In the simple case when all ms = 1, 1d.e.

D = Pq ¥ suns °F Pl with all points distinct, it is

easy to be very explicit. Let ts denote a local

arameter on X at P. and write d = ¢.,. db...Pp 3 Sic 51 3
the matrix M' 1s just

vt 0, (Py) + e800, (Po)]
J = 1l,...,0n

k=1,...,

Then

We can simplify M' somewhat, for any divisor D.

Put i equal to dim 1h (x,0,(D)). One calls i the

index of specialty of D and D is a special divisor

if i is positive. With our notation, the Riemann-Roch

Theorem is n - dim |D| = g - i. Assume that i is

positive, and choose a basis of the holomorphic differentials

such that ACp_g+12° 2%, vanish on D. Thus, the last

i columns of the matrix of u evaluated at D (we have

denoted this matrix by M) are identically zero.
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+
Assume D € a - Go 1. Then dim ID| = r and

M has rank n - r. By performing row permutations, if

necessary, we may arrange to have the leading minor

of order n - r of M be nonzero. (this involves

slightly altering the form of M from that specified

sarlier). Call this minor uw. Let wu' denote the

leading minor of order n - r of M', the matrix

of eh. Recall that since uy 1s nonzero, 0 is a

anit in Crlel/ (£2). Hence, by lemma 2, to have that

every minor of order n - r + 1 of M' 1s zero, it

is sufficient that the minors of order n -

containing u' all vanish.

Now, the last i columns of M' will have "pure"

Fer

s-terms, i.e. elements of the maximal ideal of

Crel/(e9). This 1s because, by our choice of a

pasis of differentials, the last i columns of M were

identically zero. Thus, in computing a minor of

order n - r + 1 containing u', any e's in the

first n - r columns will be "cancelled" by the c

in the last column of the minor of order n - r + 1

Therefore, we have established
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Lemma 3: For purposes of computing the minors of order

n -r + 1 containing u', we may replace the first

1 — r columns of M' by the first n - r columns

of M

Denote by An the matrix obtained by replacing

the first n - r columns of M' by the first n - r

columns of M.

To illustrate this, we again turn to the case

when D consists of n distinct points. Then

we have

bq (Py) - 41 per (Pq) r

I columns
Pe =

ALM

rr TOWS-

ber. 1 Bp) te dnp nor Fry)
?

£5.0. P.395 x¢ 5)

( bot] 1 {Ban deol rn oo AB in] J = 1,....1

| k = g=-3i+1.....2

bh. (BY) boner (Pp)
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Now, for any D, there are r*(g -n +r) = r-i

minors of order n -r + 1 of ApM which contain u.

The vanishing of each of these minors gives a linear

equation in 815-58, One might expect that in a

generic situation these 1-r equations would be

independent. In Chapter III, we will consider the

ceneric case by analyzing situation 2 of the preceding

section. To see what the functions Fix of 81 are in

situation 2, we will use variational formulas similar to

those first derived by Schiffer and Spencer [23], and

later refined by Rauch [22] to the form in which we use

them. We derive these formulas in the next chapter.
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Chapter II

I'he Analytic Theory

§1. Variation of Structure of Teichmiiller Surfaces

We describe a variation of structure of Teichmiiller

surfaces due to Schiffer and Spencer [23]. We then

derive variational formulas similar to those found

in [22], [21] and [23]. For generalities on Riemann

surface theory, we recommend [27], and for more on

Teichmllller surfaces and the variational formulas, we

recommend [22] and the references given there.

Let X De a compact Riemann surface of genus

g &gt; 0. Let T = (Yyseeesvg) and A = (815.0.58,)

be a canonical homotopy basis as in I - §2. Let I

be the simply connected surface obtained by the canonical

dissection of X determined by TI and A (cf. [27]).

Let dl denote the boundary of II. We have

g
MM = I yy +8 + yo 4 8°

1=1

Let o and B be Abelian integrals on X. (For

2 good classical treatment of Abelian integrals, see
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Bliss [3], Chapter V.) Suppose that ao and dB have

at most poles in the interior of 1 and are analytic

on 9. (So, in particular, da has no residues.)

Then

)

g
adB = I (J adB + J adB + [ adB + [ adB)

i=1 vy; S. 1 ~

5 (J Ca” ~ ao )dBR +
i=1 \

© (a —-— on )dB)

where a is the value of ao on Ys (resp. on 5. in

the second integral) and o is the value of ao on

v7 (resp. on 57h). But, since da has no residues,

the value of ao on vi differs from the value of a ob

Ys by the period of doa around Ss and the value of

2 on §, differs from the value of a on 571 by the
a

period of da around vYy.. Hence we have

Cl
g

J adB = 3% (Jf da J dB - f da Sf dB)

dT i=1 vy 8s 8, Ys

{cf. [3], Theorem 37.1).
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We will derive several expressions from (1).

Let tz be an Abelian integral of the first kind. Let

a. i=1,...,8, denote the T-periods of dg; that is,

Let we X and

3

let

N JZ)

3

denote the (normalized) elementary integral of the second

kind with pole of order v + 1 at w and zero T-periods.

In (1), put ao =r and dB = dr, 0 Then, applying the
2

Residue Theorem to the left side of (1), we get

\ A
t—

~

Now

py y (Z)¥) a. J dT vVF) (ar) = 2Ti gos J Ss Ww,

let

 WwW1, )

be the (normalized) elementary integral of the third kind
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with residues =-1 at x and +1 at y and zero

[-periods. In (1), putting o = and Bg = Noor and

using the Residue Theorem, we obtain

\ 3 J Z(W)
g on_. (=z)

JAX) = St TF a. J — dz
j=1 J J

N.B.: By abuse of notation, we will use the letters

t, X, ¥, W to represent local parameters at the points

as well as the points themselves.

Differentiating (3) a total of (vy+ ) times with

resvect to w yields

v+2
g 3 n., (z)

Sn = gy Bay
Jj=1 5, ow 7

(3 )

Remark: The expansion of v

Y TA)
edd? 7 is of the form

LZ) 1 J,
4 \

{ z - WwW) Lo (Zz x) + rezuylar Cerms

so differentiation of Nyy (2) with respect

makes sense. For example,

0) ~ 77  nw

Or
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2
; ace 2) = 1 + regular terms
“dwaoz 2OWI Z (z - w)

‘ef. [23], g4.1).

Again in (1), put a = Ty, v2) and dB = Anyy (2)

1se

I,

the Residue Theorem, and get

a qVT1

o vl! 3 TL
T

Wo. 1)

3 eo * — ge {

Finally, putting «o Ty, 0(2) and dB dry ,-1(2)s
and applying the Residue Theorem, we obtain

)
5 V Te oY) d== (v= L Tyv-1)5t

Suppose Ww occurs with multiplicity m in a

1

special divisor D. Then the values Cy (Ww), ce

m=-1
EL) eu) would be entries in the Ls column of

the matrix M of I - 3. What we are interested in is

how these values change as Teichmfiller surface X is

deformed. We will now define a new Teichmiiller surface

*
K by using a variation due to Schiffer and Spencer [23].
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Let Q be in the interior of II and assume Q

is not a zero of dg and Q # w. Let +t be a local

parameter at Q and let D be a disk around Q,

lying in the domain of t, completely contained in the

interior of II and containing neither w nor any

zero of dg. Let B be a Jordan curve contained in D,

out not containing Q. Let

B

denote the interior of the region enclosed by PB. Then

3 1s topologically and conformally equivalent to the

unit disk (Riemann Mapping Theorem).

A new Jordan curve 8" can be defined in

replacing © by £ where * is given by

Wl } L
™

(ct)=t+
2

~

2

op

J

Hh c 1s sufficiently small.

The mapping defined by (7) will carry an annulus

about BB onto an annulus about 8", both annuli contained

in D. By taking c¢ small enough, the annulus about RB

will contain 8” and the annulus about 8" will contain

3. Let
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*
B

*
denote the interior of the region enclosed by B

We now define the new Teichmllller surface x

D was chosen so that it would not intersect any of the

curves of T' or A (recall that D was contained

in the interior of II), these same curves will be used

as a canonical homotopy basis on x.

As

Now delete the disk B from X. This leaves a

surface with boundary (namely 8). Adjoin to this

surface the closed disk 5 in such a manner that each

nholint ty on B 1s identified with the point

¥ c * —F

5g = (tg + ty on B . On the complement of B ,

the surfaces X and x have the same points and the

same conformal structure.

3UCLL

Es =
¥

be the integral of the

chat

i *

Pug = a, 7 1b  -» Ww @

first kind orl £

ke

*

Let Tory be the normalized elementary integral
#

of the second kind on X with pole of order v + 1

at w. Then we have, as in [2],
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g *
EVEL) oy u Si x a. [ at. , (2).

j=1 J &amp;, "2

ur

A

opjective now is to compute

VEL)oy=FOOL)oy (vd ) (w)

Put xy = X - B, Suppose X,¥ € xy and define the

integral of the third kind Nyy on x with the same

normalization on x as vy on X. On xq slit along

an arc from x to y, a determination of uy is an

analytic function. If a determination of ny is also

chosen on the same slit region, it will be a single-valued

analytic function as well. The difference Ang (2) =
*

n..(z) -~ n__(z), for these determinations, will be a
Xy Xy

single-valued analytic function which can be continued

along the slit remaining single-valued. The singularities

3t x and y will cancel out, hence An, (2) is a

single-valued analytic function on ye By contour

integration, we have

 3 ¥ \

FL
So An (ua)
JT xy

J
Ju n,..(u)du
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where z, W € Aq

But, upon applying (1), we see that

. J :

. An, (u) 3 n,lalau J

Hence we have

AT WwW) — Ang (2) = Sh J (ny (0) - Nyy (0) n, (udu

Now, by our choice of c¢, we have that B is con-

tained in the union of B* and an annulus about 8"

Hence, we may view Nyy as- being a function on B

(by restriction), as well as on B. Thus, we can make

¥

sense of the expression Ney (ED as well as the expression
* * *

Nyy ( (t)). In the term (ny (u) - Ney (UD) which measures

the variation of the integral of the third kind as the

*

surface changes, we clearly want to view Nyy as a
%

function on X . Hence, in replacing the dummy variable u

by the variable of integration t, we must replace the
* *

in the argument of Nyy by t (t), obtaining

Il

CY ) An (0) = dng (2) = SE Jy (8 (6))=ny (6))5gn,, (6)at
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On the shher hand, since Ney is analytic on

the union of B and an annulus about 8", and

B is contained in this union, ey (8) as well as

Nyy (8) is analytic on B. Hence, by Cauchy's

Theorem, the two integrals

/

3

* 0

Ty (Blagn,, (Blab 1nd
J

/ Nyy (B)5% n,.(that

ooth vanish. Thus, we

in (9'), yielding

may {PE tace “ Et)
4

Oy
*x

Tey (8)

ho J J An
) * * ¥ 3

yt) ~ an, (z) = gr I (Nyy (© (£))-n,, (5% n_ (t)dat

This is the basic formula for comput.ng

periods of integrals (ef. [21]).

he ve1.“Jaclion

of

Now we can consider n points Ryseee5Q 5 disjoint

disks Dys-v.5D with curves ByseeesBy
% ¥

respectively; and Bisse 5B, defined by

GC. .) = i. j =
j 5) ty TE, J = lLyeauwnd

where Cs is a local parameter at Qs The variation

from all the disks will be defined by adding the
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integrals on the right side of (10) for each of the B8..
J

Ne proceed in the case j = 1. We have

x * _ * Cc *

—_ (t)) - Nyy (8) = ny(t + T) ~ Nyy (F)

£ dnt (5) + 0(c?)
at xy :

Thus, from (10), we get

. ) An Sw) — A
X

J :

7

Differentiating with respect to w yields

La ) J =

So An, (w) 21 ot ot xy © ows Nay (PAP

_

Now, the right side of (11') is obviously O(c),

so the left side is also O(c). Hence, it can be seen

that we may replace Nay by Tey in the integral on

the right side of (11) and retain the 0(c?). Thus we

1d JE
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5 1 c 9d 0( AT ( ne n Nn t ©(12) xy ) Xy ) 2ml ! t oT xy £I5E ur © )d

r

JiQC 7

3y (3'), we may write

’

q
== 5)

g vt?
ar VFL) = Lr a. [Ra. An_ (z)dz.

j=1 J 8; dw “dz

In (12), interchange y and w and differentiate

wtl)-times with respect to w and once with respect

co 7, obtaining

V+ +
2 2am, (2) Lo dV (8) 8% (6) 5
reall, @ ow gir § Reng LB an 4 Ole?)
yw’ 1a, 2mi g © sw’ lot 0zdt

(1h)

Now, replacing w by C and  PF
o Oy  WwW in 4) and

putting Vv = 0, we obtain

WW) To glx)

Then, by differentiating

3
SE N. (t) -

(v+l) times with respect to w,

we see That
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JVte (t) aVtl————— 1} To eneemata VF lo. XW VED) Te, ow).

Again in (4), replace w by t and x by =z, put

v = 0 and then differentiate with respect to z, getting

J 0
523€ Nzy(t) T= 35% Tg, 0(2)

Remark: In the derivation of (4), we needed that x

was in the interior of II, while =z here is on oI.

However, since the functions in (4) are continuous in

x as long as x is distinct from w (cf. the earlier

Remark in this section), the equality (4) is also valid

for x on the boundary of I.

Now, by substituting the above equalities into (14),

and

\

then substituting into (13), we see that

J+ g Vr, o (0) BT. (z)dzdt ny = = Boag Sg fT 55
(2m1i)” j=1 B 85% -

JvQO

But, (2) with v = 0 is just
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D6)= Foals ar (2)= i

EL gong 5 t,0

—~ &lt;TC:

sg VL (w) ,
+1 1 Cc £.0 . * OlaeV ny = A IE ert eas + oe?)

Now, by (5). we ave

GVH
TFT Ts. o(W) = vl!
Iw

oT
W,V toL ( ) 3

S30 finally we obta.

\¢
vi “J (w) = vl JE t)g! s

ST 3 tt 3% wv )C (t)dt + O(c )

\ppLying the Residue Theorem, we see chat

Ac
vil 7 tur) = vlc ST Twp (QTR) + 0(c?).

Notation: 9
Write Tor v (Q) for FE To ou (@)

If we perform this variation at n o01nts,

Ng ce esl then we obtain

(LJ
(V+1) n i 1

srt =v 3 ery (0087 (@) + oe?)
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where c = max jc,|
1 &lt;rin

We will wans Co use the following theorem, due to

Patt [21 »

Theorem 2: One may choose 38 = 3 points Use 05Q3, 5

on X such that, if Gy is the variation parameter at

QO &gt; then a neighborhood of the origin in the

Cis+t+5C3, 3 space describes a complex-analytic

structure for a neighborhood of X in the Teichmliller

space. Moreover, the set of collections of 32 - 3 points

with this property is open in x38-3

Proof: The first assertion follows from Theorems 2 and

of. [21]. Although Patt does not state the second

L

assertion, his proofs demonstrate it, as was noted by

Farkas [5], p. 885. §
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82. Meis's Work

In [20], Meis demonstrates the existence of special

divisors for the case r = 1. He does this by considering

Che universal space of special divisors M2 over the

Teichmllller space and explicitly exhibiting a special

fiber of dimension tT + 1 in the case in which n is

the minimum integer such that = &gt; 0. He may then

conclude that a component of the universal space of

special divisors has dimension 3g - 3 + 1 + 1, and

that this component maps surjectively down to the

(irreducible) Teichmiiller space. Hence, he shows that

for an arbitrary Riemann surface X, the subspace at

of x (1) is nonempty of dimension at least T + 1 if

n 1s any integer such that +1 &gt; 0. His methods also

show that for a generic suface, G1 has a component

of dimension tT + 1 if n is the minimum integer such

that Tt &gt; 0.

We present Meis's examples below, and Will make use

of them in the next chapter. Suppose g 1s given and

that r = 1. Then the minimum n such that = &gt; 0 is

Z +

/
c.

S

if

if

2

2

a2ven =&gt; TT 0 0=

odd =&gt;

 —~
J
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So, the =r = 1 case breaks up naturally into even and

odd genus subcases. Mels gives one class of even genus

surfaces and one of odd genus surfaces.

Even genus case

ry ff

Suppose g = 2m and consider the Riemann surface

the algebraic function

TT1 (2-1) (x-2) (2-3) (x=) (x-5)"(x-6)™,

This surface has m + 1 sheets and ramification points

of order m over the points x = 1,2,3,4,5,6. By the

Riemann~-Hurwitz formula, the surface has genus 2m.

Mels shows that the following form a basis for the

nolomorphic differentials:

1 — K

1 Credm =

(x=) (x5) (2-6) Lax
k

xdg, K sla

k= 1,...,m

One can easily compute the order of vanishing of

the differentials at the ramification points and at the

points over x = 0 and x = © (and these are the only

points where the differentials might vanish). To do this
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notice that a local parameter at the point x = J,

: +1
for j=1,...,6, is m 7x - J , a local parameter

at the points over x = 0 1s x, and a local parameter

at the points over X = © 18 =, Then express the

3% as r;at, where t 1s a local parameter, and

see what the order of vanishing of Ty is at t = 0.

Meis gets the following table for the order of vanishing

of the differentials at the point(s) over the given

value of Xx:

1g,

AC) 4m

for k =

 6 0 ew
m-k m-k m-k k-1 k-1 k-1

| mk m-k m-KkK K— T=| J 0

aad Lin.

Jdd genus case

Supppose g = 2m + 1 and consider the Riemann

surrace of the algebraic function:

n+2
I (x - i)

5 i=1
y 2m+2

I (x = 3)

j=m+3
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his surface has 3 sheets, and ramification points of

order 2 over XxX = 1.,2,...,2mt2 and over x =

Thus, g = $i. 1 -3=2m+ 1. Meis shows that

a basis for the holomorphic differentials is given

#7 tay
5 2m+2
I(x-J)

J =m+3

A  Kg =
a a 9 w ,m+  -—

= yacATi m+ Kk k = Logo oealle

by:

Melis gets the following table for the order of vanishing

of the differentials:

m+3 0 or

~~
~~ k &lt; m+tl dg, | 1 wm | 3(m+1-k)

1 K  Zz~ m AC) tmnt] | sil we] 3(mt1-k)=2

For examples of special divisors with

minimum so that tT &gt; 0, Meils takes:

rr =

gl

J
- even: the gre points over 0

x
= odd the gr3 ramification points over

A | ed ee. amt? (note m+? = g*3,

aad
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In Chapter III, we will combine the deformation

theory of I and II - 1, and then will use Meis's

cxamples for some explicit computations.
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Chapter 111

Determination of the Dimension of the Tangent Space

to the Universal Analytic Space of Special Divisors

A

We return to situation 2 of I - 2. Recall that

we let To denote the Teichmililler space for Teichmilller

surfaces of genus g and we let V denote the universal

family of Teichmliller surfaces of genus g over Tye

Let X be a compact Riemann surface of genus g &gt; 1

Let {v,58,¥5 be a canonical homotopy basis and let

g ,
r(dg tag be a basis nf the holomorphic differentials.

2 ] 7

Ak = | dc, J.Kk = 1l,...,8.

Let P be a point of X and let © be a local

parameter on XX at P. Write

D0

Jd —

£

- A

Loa t do.
20.=0 kL
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Fix a point Py different from P. Choose a

noint (Qqs.-+5Q3, 3) from the open subset of x38-3

in Patt's Theorem such that all the Oy are different

from P and Py and such that none of the Qn is a

zero of any ag, Perform the variation described in

IT - 1, taking the disk about each Q sufficiently

small so that no two disks intersect and no disk

contains P, Pos or any zero of any az, . Let Ch be

the variation parameter at Qo m=1,...,38-3, as in

IT - 1. (Note: the choice of the point (Qse-05Q3,_3)

will be further modified later.)

Let Sy € Ty be the module point of X (i.e.

Us, = X). By definition of the variation in II - 1,

there exists a complex-analytic neighborhood TU of

in Te such that, for all s' e U, the curves

(v558535, are a canonical homotopy basis on Vand the

points Py and P are on Vio and tt 1s a local

parameter on Vi at P. Choose holomorphic sections

1
_ 1

XK = 1,...,8, of hell such that

. ! § yy

dey (8 ) boy
Kr

3! o J

J.k = l,...,.8
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(cf. I - 2 and [19], §2).

Proposition 10: With notation as in II - 1 and above,
*

if we define Ay g by

17 rat tlaBy, a

kK 9 k.4

“hen we have

¥,2 TC

T 3-5 ; + Oe?)
Zo Cmte,a(9)5(9p)"J.

Proof: The variational formula (specifically equation (15)

of II - 1 with n = 3g - 3) shows that this equality

holds in a complex-analytic neighborhood of (845P) on

V. This is the main import of the variational formula. 1}

% i

order to study the map u : f 2 mp -&gt; 2 0)
Ye Vp st

g g

of I - 2, we proceed in a similar manner to I - 3.

We first consider the divisor nP on X. Let Cisenenty

be n copies of tt and let Oise +50, denote the

n elementary symmetric functions in Bioeeent,

In
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Proposition 11: Local parameters on vi) at (s4,nP)
£

re given by 0.
|

y © © © 3 35-3207" J

Proof: By Patt's Theorem, local parameters on Ty at

5, are given by CpsersC3y 3 By [2], local parameters

(n) :
on X at nP are given by Opseees0,- By the

definition of the variation in II - 1, local para-

neters on wi, at nP, for s' € U, are also given
£

by Ouseees0, Thus, local parameters on vin) at
£

(8q&gt;nF) are given by c 12°23 95 oO ®e o 0]g 3 12 * 9 v

The following proposition relativizes Proposition

to our present situation. It is proved by making the

obvious modifications in the proof cited for

Proposition 6. As in I - 3, we will make precise the

correspondence in the proposition after we have stated it.

Proposition 12: The space of relative holomorphic

1-forms on vie) over To and the space of relative
o

holomorphic 1-forms on V over To are naturally

isomorphic. Both spaces are isomorphic to the space



50

of relative symmetric holomorphic 1-forms on Vin , the

product over To of n copiles of V, over To i

Similarly to I - 3, we will identify the space

of relative symmetric holomorphic 1-forms on Vip over
£

Tr with the space of relative holomorphic 1-forms
1

—

on vim) over T
7

We will now make explicit the correspondence

petween relative holomorphic 1l-forms on V over T_

and relative symmetric holomorphic 1-forms on Vip
x

~ %

over To Let ag, denote the relative symmetric

holomorphic l1l-form on Vin over T corresponding to
|=

ad M
!
oy Recall from TI - 3

ad. | +

thac

-r) GCbo, n i =0,1,2,...

Proposition 13: We may write

x

AS
K

—
5 *a T

rq KL 8
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Proof: Equality holds in a complex-analytic neighbor-

hood of (sgsPs---5P) on Vi by Proposition 7 and

Proposition 10. §

NOW as in 1 - 3, we use the identities

J
K

- 0gt Tr + (-1)%t_ = ao
[v w+

*

Thus, writing out a1 oq and using the above identities
3

in terms of do-,...,do_, we may write
~ 3%

to write ac,

oa sm
T¥ «© Q 3g-3 ! '

1
Th

L
A

oe
i

vy

(du l-
 ~~  Ad ws -— ) )]

+ 7
J

— 1

where 0(c?,c?)
and the c¢

m

denotes higher order terms in the a,

Now, by the definition of the map f , gtal,ip SI

in 1 - 2 1% is =asy To see lial | is Ziven at

(sq.nr, or {
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Po~y ooo~y
f(sy,nP) = (54, ! dg, (s4)s.0 ns ! dz, (54)) mod periods

P .
*

where the integrals [ dz, (s4) are evaluated by
Po

recalling that Eiseeest are Just copies

neEB k
Let To.

J
be given by

~¥

: otk do.
* 2 -1g, I

'hen we nave

Proposition 14:
*¥ 1 1

The map wu : f om + £2 (n)
&amp; Vp yp

g g

i3 ga ven locally at (5q,nP) by the matrix

ng!

500.
LJ

] Lgeosal

K = 1,....2.

Proof: This follows easily from the definitions of fT

and
Th“x
00.

J
(Compare with [5] and tgTau 1)
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Jote that

[ ~%ac i

35, SI

is just the matrix M of

3 = laswssll

K = 1,...,8

-

i

Now let &amp; be a tangent vector to vn) at
£

1)

—-

+r J et 170 J
mn

in MA be given by

-_

-\GC ) = ss. J
—

a q +d

eda) =be. m=1, 5 32-3.

Then, using Taylor's Theorem as in 1 - , we have

3 %* ny

90 . 90
(84,0P) + 3 ry€ Xx 8 “lk

= %1 90,90, (s4,nP0° )
J

: 2k

&gt; D.. ATW
- m 9C_0J0,

m=1 m 1

i (s4,nP)
io

We now use (#) to compute the partial derivatives
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~%

9,
of the functions No

J
with respect to Og and with

respect to c.- (We remind the reader that the functions

5 and Cm vanish at (sgsnP).) We obtain

XHz .
kK = (1)

00 35 (Sg&gt;nF) (~1) Ap, j+e-1
L 7]

and

27%
 tk | 2,(Q)
de 00, (84,0P) Tp, 3-1 %n Cy (Cp)

Substituting these expressions ffor the partial

derivatives into (1) gives us

Proposition 15:

np ~%
£(oky hk

90. 30.
. J

fp

n

(sy&gt;nP) +e I (-1)%s a, .
0=1 L7k,j+2-1

38-3 1 1

LobpTp 5o1(Qp)T, (9).m=1
A

Now on to the general case. Consider a divisor D

on X of the form D = m- Po + ... + maPq- Assume D is
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in Gy, (X) and choose a basis {dg Io 4 of the holomorphic

lifferentials on X such that the last 1 = dim HT (X,04(D))

&gt;f them vanish on D.

In performing the variation in II - 1, choose a

. 35-3
pola (Qs 5,8 ) from the open set X in

1 38-3

Patt's Theorem so that each Un is different from

PosPyseeesPys and any other zero of any ag, - Take the

disk about each &gt; sufficiently small so that no two

disks intersect and such that no disk contains PysPqis-

or any other zero of any az, -

Let i
(m.)

: Vir Jos Ne be the map defined in I - 2

5 ’ 3

#1 re
. oo L9 &gt; ius S/T (m.) be the map induced by

° Vpn
g 8g

: (mq) (mg) (n)
[he obvious map V X eee Xo V + V is a local

Ty Ts IT. To To
analytic isomorphism by an argument analogous to that in

[18]. Let £&amp; be a tangent vector to vin) at (s4,D)
g

(ms)let &amp;. be the tangent vector to V
J Px

CD ry --- oJ
} inNnauced JY Se JL } byt ess hen, Dy
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#
the same reasoning as in I - 3, the matrix of £&amp; u is

%*

obtained by "stacking" the matrices of the E&amp; Us for

J baosssBe
%*

Let 97' denote the matrix of &amp; u. By our choice

of basis of the holomorphic differentials on X, the last

L rolumns of M, the matrix
k

55, (54,0)|
 dt

F are identically

zero, hence the last i columns of ‘y7' contain "pure"

e terms (i.e. members of the maximal ideal of £lel/(e2)).

Thus, as in lemma 3, we have

Lemma 4: For purposes of computing the minors of order

n-1r +1 of 9M', we may replace the first n = r columns

YY" by the first n - r columns of M. W

Let YL denote the resulting matrix,

m has a particularly nice form in the case that

P. + ... + P_, with all points distinct. Let tyD

be a local parameter at P, and write az, = ¢, = kt;

Then we have
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I, - [bs 1 (P))  se! (py + E30 (02) (a)eENS.0. + I bt Q Jz, (Q

J
ory

ke  &gt; uk | — PEE ¢

kK = 1,...,p-ilk = g = 1 +
Ln

1 9I

Going back to the general case, reeall that, by

Proposition 1, &amp; will be a tangent vector to Ar at

(s45D) iff the minors of order n - r + 1 of the

matrix ar, all vanish, Assume D = my Py + 20s * mF 4

is in Gr (X) - aT (x). Then the matrix M has rank

precisely n - r. Hence, by permuting the rows of W™

if necessary, we end up with a matrix whose leading minor

of order n - r, which we will denote by uu, is nonzero.

We will continue to denote this matrix by M, although

its form may differ slightly from that specified earlier.

Perform the same row permutations as above on the

matrix mm, and denote the resulting matrix also by m.

Then uy is also the leading minor of order n - r. of .,

so we may apply Lemma 2. Thus, for all the minors of

order n - r + 1 of “NL to vanish, it is sufficient that

every minor of order n - r + 1 which contains u

vanishes. The vanishing of each of these minors gives
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lise to a linear equation in the S and the b_.

Let denote the minor or order n - vr
Jok

of “YU obtained by adjoining to u the first

n -r elements of the n - r + jth row of “YY and

the first n - r elements and the n - r + jh element

of the n - r + xh column of “In, (thus Jj runs from

through r and k runs from 1 through 1). The

equation My ry = 0 is of the form

1

-»
- Ty

where Ey Kk is a linear equation in the S 4 and the
&gt;

op with coefficients in €.

We will now view the 8 and the b as being

unknowns (as in I - 1). Thus, Es i is an equation in
9 3

3g = 3 + n unknowns, By the discussion after

Proposition 1, the dimension of the tangent space

Te .qr at (s4,D) 1:

o
+ i Aaauad (the number of Ey Which are

35

linearly independent).

CO
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Consider the coefficient of b in E . This
I Jk

coefficient will be a linear combination of certain of
! t

the Te, , om) Ei (Oy That is, the coefficient of b_
9

will be a certain quadratic differential (the above

linear combination of certain of the dtp az,)
J.v

evaluated at the point py» It should be noted that,

by the symmetry of the matrix YY in the b,, this

quadratic differential does not depend on m, but only

on J and k. The coefficient of by is the value

of this quadratic differential at Qy5 the coefficient

of b, the value at Qos ete. Put

1s
7h

equal to the above linear combination of certain of the

aT 5 ag, . Then oa, 1s a (not necessarily finite)
To “3 JX

quadratic differential.

Notation: Choose a local parameter u, on X at Un
. _ 2 . .

and write Ospo= g(u_)du_. Then we will write

py
ny Ym
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For g(0)

Hence, by the above discussion, a, ,(Q_), the value
J.XK m

of the quadratic differential at Qs is the coefficient

of b, in Es Ke

Our aim now is to show that, in certain situations,

by suitably choosing the point (QyseeesQ3, 3) we may

conclude that the E, yy are linearly independent. By

elementary linear algebra, to conclude that the E, I
9

are linearly independent, it is sufficient to show that

the matrix of coefficients

=
&gt; 'y L(Q)]

J = lyeees?

K = 1yeee,d

Mm = 1, eeegald

is nonsingular

Lemma 5: Assume that the Gs ko for Jj = l,...,v and

lieeesl, are linearly independent. Then we may choose

a point (Qpse0esQ3, 3) from the open set in x38=3 4p

Patt's Theorem such that each Qn 1s different from P,

and the zeros of dTy500.,d2, and such that the above
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matrix A is nonsingular.

Proof: The lemma will follow readily from the following

Sublemma: Let ByseeasBy be n linearly independent

quadratic differentials on X. Let U be an open set

contained in Xx. Then we may choose a point

(PyseeesP)) € U such that each P, 1s different from

3 finite set of points of X and such that the matrix

2 "y1
J Som

-— 1
vv

veo ogll
!
Ee

K = 1,00e41s

is nonsingular

Proof: By induction on n. If n=1, then By is a

non-trivial quadratic differential. Hence, Bq is non-

zero and finite on a dense open set of X. So, given any

open set in X, there exists a point in that set satisfying

the requirements of the sublemma.

Now suppose U is an open set contained in x1

Let V be the projection of U onto x=1 Then

V is open and, by induction, we may choose a point

(PaseeesP 1) e V such that each P_ is different
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Prom a finite set of points of X and such that the

leading subdeterminant of order n = 1 of the determinant

3
4

r
 FP y

1

&gt;} + \
n=1"

2
"

|8,(P)) ce. By (P_)) 8

is nonzero. Expanding the full determinant by the last

column, we obtain a non-trivial linear combination of

BiseeesB By the linear independerce of these quadratic

differentials, this sum is a non-trivial quadratic

differential, hence is nonzero and finite on an open

dense set W contained in X. Since U is open in oh

and W is dense in X, we may choose a point in the

intersection of U and T(PpseeesP 101} x W which

satisfies the requirements of our sublemma.

Now, since the set of points in x38-3 in Patt's

Theorem is open, it is easy to see that we may choose a

point (Qp5.0.503, 3) in this set such that each

1s different from Py and the zeros of Ais .e..,dg,
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and so that Q150 eesQny make the matrix A nonsingular

This completes the proof of the lemma. bk

fe then have

Proposition 16: Suppose D is in GI (X) - eT (x).

Then, if all the oy I are linearly independent, the
3

. r .

dimension of the tangent space to 47 at (5,,D) is

3gg=3+on =

Proof: By Lemma 5, we may choose a point (Qy5 00503, 3)

from the open set in Patt's Theorem such that each Qn

is different from Po, and the zeros of ACqs-..,di,

«note that this latter set includes the points of D),

and such that the equations Byx are linearly independent.

Thus, the dimension of the tangent space to x

Ss 03D) is 3g - 3 + Nn = ir = 3g - 3 + T + Tr

In the subsequent sections in this cahpter, we con-

sider the real work of showing that the oy 1 are
a

linearly independent.
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52. The cases r = 1 and 1 = 1

I'he case r = 1

For simplicity, we will first treat a divisor consisting

of n distinct points. So assume D =P, + ... + Ps all

points distinct, is in GL(X) - GS(X). Recall that the

matrix “WL is

M
 5 1(Fy)

J I

k = 1,...,8-1

1 38-3 1 1

(8,9; (P,) + I b_T (Q Nz, (Q_))
J i.k J n=1 0 P50 m’ km

J 1 geeseall

k =g31+lL,....,2

—

-~_p

“et |j| denote the minor of order

oy omitting the 3 row from the matrix

[0 |,(P ) |
J Lgew 3 ntl

K = Loses y,B-1

‘her. NE Lave

2

n - ”~
,. _ J=-1,% ! }

LQ) = JY 31, She(@)i

eo
Lor K gg w segs

n — 1 obtained



77.

Suppose we had a linear relation of the form

1
Lr  a,o = 0 with

wr k71,k

imply

some a) nonzero. Then this would

(1%)
n J 1 ~ ? i 1

(2 (1) 1] (QC 2 z (Q)) = 0.m1 31m pop kentk-1

3ut the dtp s J = 1,...,nn, are linearly independent
J,0

since they have poles at different points. This, together

with the fact that |[n| # 0, implies that there is a dense

open set of points of X where the expression

n J=1,%,
zo (-1) |3ltp  (Q) 1s nonzero.

i=1 j.0

And the linear independence of SIS RRREL LY together

with the fact that some ag is nonzero, implies that the

other expression in parentheses in (¥) is nonzero on a

dense open set of points of X. Hence, we may choose a

point Q such that (¥) is nonzero, contradicting the

assumption that Oy qo e50y 4 are linearly dependent.

JOow suppose D = m- P. + +I I ® ® ®

hb)

mst 13 li]
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31 (X) - G(X). Then we have

Y 7s 1 n-1," t _

RAC Sne-1 (DLT (QD) to... + (51) Inltp nm, (9) = 0.

Hence, if there existed a linear relation

1

2 2% Kk = 0, we would
rave

L 2. Pe Pnap-1(D) Ulrp (9) toe + -1 nl, (Q)) = 0.
In| Pa-Mg.1

The same reasoning as in the case of simple points

applies, since the dTp 5-0 50Tp n are easily seen
1,0 d’d-1

to be linearly independent (they have either poles at

jifferent points or poles of differing orders at the same

point).

Remark: The above reasoning shows that if D e¢ Gy, - al

then the a Kk for a fixed J are linearly independent.

fhe case 1 = 1

Again, first suppose that D =

211 points distinct. Assume that

~y + ~ wo
i.

4 7

{ = dim HT (X,0,(D)) = 1. For the sake of notation ’

with



79

write Ty instead of Tp s J = 1l,...,0.
‘ 3°20

—

by (BL)

Jur Latrix “Y

, 38-3 ? '

=(s101 (Py) + 2 by (9), (9)

13

“M -

J see 51d

k =1,...,8~]

{ 38-3 t 1

e (sy o (Bp) + I PnTn {8 tg (8)
-

Let Ry denote the qh row of the matrix

Lo. ‘DP.by it 501]
J = 1 ; % vw gl

k = 1,...,8-1

Then we have



re

ay 1(Q) = Cg (Q)

Ry

Ry
yl

R. -1

Rid]

|

T.(Q) -

R, |

"3

3
SR

Rot

r,(Q)

tq

Fo(=1 PT "ert (@)

 g] n-r

for j= 1....,7r.

Now suppose we had a linear relation of the form

I

x 250 1 = 0 with some a, # 0. Then this would imply
i=1 ; |

the existence of a relationship of the

x
- «

-

? n t

tg (2 bst,(Q)) = 0

with 0
_ n-1

n-r+8 a, (-1)
R.

= gy]

form

2
n-—71
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But again, by linear independence of ATs ...,dT

we may choose a point QQ, not a zero of ac,» such that

(¥%*) is nonzero. Hence Uy qs++-50, 4 are linearly

independent.

The case when 1 = 1 and D has multiple points

follows by the same reasoning, with a modification

completely analogous to that used in the r = 1 and

multiple point case (i.e. all the differentials of the

second kind will still be linearly independent).

Thus we have established our main result:

Theorem 3: Suppose D is in a, (X) - al (x) and

assume either r = 1 or dim HT (X,0,(D)) = 1. Then the

. 1 r .

dimension of the tangent space to " at (s4,D) is

3g - 3+ T+ Furthermore py " is smooth at (s,,D)&amp; : * 3 n 0 2

Proof: The first assertion follows from Proposition 16

and the work of this section. By Proposition 4, the

. g r .

dimension of 3 , at (sy,D) 1s at least 3g - 3 +

hence J) - is smooth at (45D) by the first assertion.

I r
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Remarks:

1) Theorem 3 does not depend on &lt;t being non-

negative. This has implications about the moduli of

curves with "extra-special" divisors (i.e. T &lt; 0).

We will come back to this in IV - 1.

2) It was already known that dim B- = 3g - 3 + T T 1

in the case 1 = 1. Indeed, let

3
3 -

T
™

x)

denote the image of G(X) in the Jacobian J of

under the map f : x (1) ~J of I - 2. Let K denote

the point of J which is the image of the canonical

divisor. Then the map

20D) pr K ha (0)

is an automorphism of J which, 1f r =n - g + 1,

. nis = .
carries G onto Gopon ([161). It is well-known

~0 — —

Goon 2 that the singular
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. =0 i =1

points of CGogmnon are the points of Gog2-n" It

Follows that dim G = 2¢ - 2 =n =1 and that the

singular points of G. are the points of ar Thus

we have that 6, (X), if nonempty, has dimension tT + r

: ? . . Fb r+] .

(since if f(D) is in G - G , then the fiber

"Le (D) has dimension r).

Now, if rr =n - g + 1, then T =n - 2r which,

oy Clifford's Theorem, must be nonnegative. Hence,

r .

a, (X) is nonempty for every X by [14]. Therefore,

we have dim J = 3g - 3 + 1 ~

As consequences of Theorem 3 we have

two important results.

the following

Theorem U4: 9 - 5°, if nonempty, is smooth of pure

dimension 3g - 3 + 1 + i

Proof: This follows immediately from Theorem 3. §

Theorem 5: Suppose that for a generic curve X., we have

Al 2 : 1 2
G(X) — G(X) is nonempty. Then G(X) —~ G(X), for a

generic X, is smooth of pure dimension Tt + L
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' ‘ 1 2
Proof: Under our assumption, the image of “ n - 3 n

in To would be a dense open subspace U. By Sard's

Theorem, since H : -%° is smooth, the generic fiber

of the map M1 -Be + U 1s smooth and since U has

dimension 3g - 3 and Hl - 32 has dimension

3g = 3 + 1 + 1, the generic fiber has dimension 1 + 1.

Thus, for a generic curve, G(X) - GZ (X) is smooth of

dimension tT + 1. i

Remarks:

If tT &gt; 0, then by [14] we know that Gy, (X) is

nonempty. If we knew that Gy, (X) were reduced for a

generic X, then, since the points of ah are singular

points of Gl, we could conclude that G(X) - atx)

is nonempty. for generic X.

“hat

(2) Martens proved in [17], using Farkas's results [51],

G(x) ~ 32 (x) is smooth for a generic curve X
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33. The case r = 2

We now show that the hypotheses of Lemma 5 are

satisfied in the case of explicit special divisors which

we construct from Meis's examples. We assume throughout

this section that r = °

Even genus case:

Suppose g = 2m and n are given such that tT is

nonnegative. Consider Meis's Riemann surface of genus g

{see IT - 2):

PD
1

2

nt. (x=1) (x=2) (2-3) (x=-4)"(x-5)"(x-6)"

ur divisor  OU will consist of the following:

1) the
x

&lt;0 = (= m+1) points aver X 0

so 2 5
Fr

m+ 1

denoted

(2) the (ramification) point over x = 6, denoted

&gt; +o» With multiplicity m - 1 (where 1 = 2 + g - n),

31d

 3) the point over X = 5, denoted oJ

“m+3



SE.

Let az, , k=1,...,8, be Meis's basis of

holomorphic differentials (see II - 2). Let ts be

a local parameter at P., J = 1,...,mt3, and write

A Yo

The divisor Pq + sus ¥ Pot? Meis's example of a
 oe . _ es 1 2 . :

divisor with =r = 1, 1s in Got - G+ (its index of

specialty is easily seen to be m from the table in

II - 2). Hence, the (m+l) x g matrix

' [4 (P.)] J = 1,-0.4 ,0%]
Jk" J k =1,...,8

has rank m. By renumbering two of these points, if

necessary, we may assume that the leading minor of

order m of N 1s nonzero.

In the matrix m of IIT - 1, we will take the row

arising from Po+1 and move it to the next to the last

row. This is done just to have the leading minor of

order n - 2 of ‘YL be nonzero. Thus ‘WL has the

following form:
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“YU

m YOws

m-1

{| »

’

a) 0

0

 ¥v

:

Mn

O
® 0 0

-~

» 83%

i columns

3)

5 O
3

rows

3

%

 ¥ 0
|.

"3 +" 0 )

where a "¥" is nonzero and a "1" may be nonzero. (The

table in II - 2 of order of vanishing of the differentials

is what 1s used to see that mm has the above form.) The

last two rows are those which arise from P+ and Pts”

Note (from the table in II - 2) that the m differentials

which vanish at Putt? vanish only simply there. Thus,

the quadratic differentials dTp dg,» for k = g-i+1,...,8.
m+1,0

will each have a simple pole at P (since drt
m+1 P+ 0

ras a pole of order 2 there).
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Now suppose there existed a linear dependence

relation among the a = say

|
L 5 +Og 1 Bnd. + .. 1

By 8 + 2141% 1 + ... + 853% 4 = 0.

Sy derinition of the WwW &amp; ave

m

Xx. . =dz_. .,. (= y.dt
-i+k", j

2 i=1 9 Fig

 MN =

wk
. ou dr + ud

v=0 v Pme2,v Pint1,0

where Myo u, and WY are + minors of order n - 2 of

(and uy is nonzero). Thus, the aq &gt; for k = 1,...,1,
9

will all have a simple pole at LS (since they contain

ACs 1497p with nonzero coefficient and all other
m+1,0

terms are regular at Poe1)- But the % k will all be

finite at P (since they don't contain drt at
m+] P

m+1,0
211).

Therefore, the relation (¥*) will imply the existence

of a linear dependence relation among the Op 105 for
5

k = 1,...,1. and among the Op 10s for k=1,...,i. If
— 9

(*¥) is nontrivial, then at least one of these relations

will be nontrivial. But the oF I for fixed j are
el 9
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linearly independent (cf. the Remark after the r = 1]

case). This contradiction shows that our divisor D

satisfies the hypotheses of Lemma 5. Hence, by prudently

choosing the points Qys--v5l3, 5 on our surface, we

2
are assured that the tangent space to J 2 at (545,50),

where Sy is the module point of Meis's Riemann surface,

has dimension 3g - 3 + 1 + 2 (by Proposition 16).

Example

We have the feeling that the reader might like an

example here. We will oblige the reader, but he or she

will probably regret it.

ur

Consider the case r = 2, g = 8, n = 8, hence i =

surface is given by the algebraic function

y (x-1) (2-2) (x=3) (x=1)F (x=5)* (2-6) Ll
i

Z
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The table of order of vanishing of the differentials

3 -

IT

iz,

SL

dc,

Age

ag.

dC

1c g

x = 1 2 3 I 5 6 0 oo

J
-

nw, 3 0 0 0 0 1

-l 2 2 1 i 1 0

1 1 1 2 2 2 0 =

J 0 0 3 3 3 0

3 3 0 0 0 4 L

D J —- 2 1 1 1 1 C

i | 1 2 2 2 1 C

0) 0 0 3 3 3  0)

We take for our divisor D the 5 points over O0,

denoted PiseresPys the point over x = 6 (denoted Pe)

with multiplicity 2; and the point over x = 5, denoted



The matrix M has the form

M

a

o, (Py)  bd 5 (Py)

95 1(Fp) 5 (Fs) bo 3(F5)

3 1 (F3) v3 o(P3) 43, 3(F-) 3 4 (F3)

oy 1 (By) 04 5B) oy RP) 0 (By)

N

1.1 1."

56 1(Pg)  —5%g (Pg) ] 8

05 1(Bs) 0g »(Ps) os 2 (Pc) bp (Ps)

L po (Pg) )  }
5

J

ks

U

)

-

»

de (Fg)
1 f

Ir

bo  Db Po)

0

)

J

0

1 {

~5%¢ (Pg)

J

0

a

S

0

:
ia

J

0

J

0

01

r

0

0

0

0
 dt

 |]

where we have moved the fifth row to the seventh row in order to make the leading minor

of order 6, denoted uu, nonzero.



By lemma 4, we may assume that the "deformed" matrix 9?L has the same first 6

columns as M. The last two columns of €Y¥, are given by € times:

Col. 7

38-3 ' 1

pnp, (Gn) ty (Oy)
3g-3 ' '

nn E, on 27 On)
38-3 1 | '

nome Ono (Gn)
38-3 ,

Syéu 7 (Fp) y women o (Gn)
Pm 38-3

58706 7 (Fg) + I Pure oom) Tr (On)

S560 (Rg) - F506 (2g) +
38-3 ' 1

anne Ome (8)
; 38-3 ’ '

s5bg7(Pg)+RLY SIRE A
38-3 ' '

EZ Pate, (Qe (Gy)

5101 7(B:) +

|

Col. 8

Ee el (aha)YF bo Q_)cq(Q
n=1 Mm P10 m’ 28" “m

! 38-3 tr 1

m=1 2,0

1 38-3 t 1

S363 g(P3) + worm, (On) 280)
‘ 38=3 1 !

sy¢y,8(Fy) + z b.Tp (Q )zg(Qy)m=1 4,0

Be tl (aha)T z
m=1 ™ Pe.0 m’=8""m

32-31 (3) ' !
-ZS5 0 (P,)+ I b_rT (Q )zq(Q)6°7v6,8'°6 = Pe 4 m’ 28" *m

1 38-3 ' 1

Seo (Po + Tb. T (Q )ca(Q)
575,875 my Mm Pp 0m’ 78m

b Tt Q.)TalQ
pe MO Pog m’ 28 %m

LC
Ng
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Notice that sg does not appear (it would be in the

last row) since dg and dzg both vanish with multipli-

city greater than 1 on the point Pa (which is a

simple point of D). This should have implications

about the tangent space to ag (%) at D, but we have

10ot been able to see just what those implications are.

Now, Aq and OW will contain the terms

-udT dc and -udt dg respectively. Hence,
Pr 0 7 Py 0 8

« 5

these quadratic differentials will have a pole at

But as 4 and Ay 5 will be finite at

P_

Jdd genus case:

This case is quite similar. Suppose that

&gt; =-2m + 1 and n are given such that tT 1s non-

negative. Consider Meis's surface:

y&gt;? =

m+2
I(x - J

io J)
m+3

I (x -
k=m+ 3 )

*

Let Pj and Py denote two of the three points

5,3 x = 0. Our divisor D will consist of:
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(1) the m + 2 ramification points over x = 1,2,...,m%2

which we will denote by Pi,...,P.,

2)

3)

Ea shale!

the point Py with multiplicity m - i.

. 0 L . 1

The divisor Pq +... + Poto was Mels's sample

divisor. Similarly to the even genus case, we may

assume that one of the two last rows in 9¥] arises

From Poros The other of the two last rows arises
c.

?

from Ph.

Now, the last m differentials in Meis's basis vanish

simply at Protos hence the quadratic differentials

dT dg .,,, for k = 1,...,i, will have a pole
P+2 0 g—-1i+k

at Proto: We may apply the same reasoning as in the

even genus case to conclude that a linear dependency

relation among all the Os Kk would imply a linear

dependency among those arising from a fixed row, a

contradiction.

Thus, we have established

Proposition 18:

3g — 3 + 1 + 2

2 :

Jy n has a component of dimension

for any n and g such that = ig

nonnegative.
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3h, The case rr = 3

We assume throughout this section that r = 3.

We construct a special divisor from Meis's examples

and then show that the a x are linearly independent by

considering the order of vanishing of the oj ” at some
S

of the points of the divisor.

fven genus case

Suppose g = 2m and n are given such that 11 1s

nonnegative. Consider Meis's Riemann surface of genus g

in IT - 2. Our divisor D will consist of:

Ci) the m + 1 points over  YX = 0.

D
r -I

(2) the point over x= 6, denoted

multiplicity (m ~- i) and

(3) the point over x = 5, denoted

hoint over x = 4, denoted Pale

denoted

P_.o, with

P4a&gt; and the

I'hen our divisor has degree equal to

m+ 1+ (m-1) + 2 =2m - 1 + 3 =n. Its index of

specialty is 1 since only the last i differentials

in Meis's basis vanish to order m - i at the point over

X = 6. More explicitly, recall from II - 2 that the
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rrder of vanishing of ATi tk at the points Protos

Pes and LS is m- (i -k + 1), for k=1,...

Let ts be a local parameter at Py jg=1,...,m+4,

ond write ag, = 5 9b; Since Meis's divisor
. . 1 2

Popp 1s in Greg OX) - Grp Xs the (m+l) x-g

matrix

[05 (Ps)
J = 1,...,mtl

k=1,...,¢g

has rank m. By remMmbering these points, if necessary,

we may assume that the leading minor of order m 1s

nonzero. In the matrix m. take the row arising from

P +1 and put it just above the row arising from Pots

This insures that the leading minor uu of order n - 3

of m is nonzero. (‘Mm has a form completely analogous

to that described in the previous section.) The three

last rows of ML are those arising from Pott? Pint

and Poin

NOW suppose there existed a linear relation of the

rm

; : +... LOA . +*) aqaq to... tae tag, tT as40, 3

A }
 Sy {

a
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We will show that all the Bq are 0 by considering the

order of Oy x at EE Pn+3 and Pole

Now, those 0s with j = 1 (and only those)
3

vill contain drt dg. with a nonzero coefficient
P g-1+km+1,0

(namely +n). But Ag 54%? k =1,...,1i, vanishes simply

at P+ (see II - 2). Hence, as in the previous section,

the % x will have a pole at Poti while the 5 x

and the ag 1 will be regular there. This implies,
5

by (#), that we must have

3 -

1

9.0 . = 0.
1.1

But the ay 4 are linearly independent by III - 2,
35

hence we must have aq = 85 T ... F a.

It is quite a bit more complicated to show that the

rther coefficients in (¥) are zero. Recall that the order

of dTo 54k at Pines and Pos is m - (i-k+1), for

lae..,1. The ao will contain drt dz.
2,k Pn+3,0 g-1+k

 Kk

with a nonzero coefficient (+n), hence will have order

(i-k+1) - 2 at Pia (all other terms in oa. , are
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regular at Pr+3) The Oy i will have order at least

 Zn . .

m (i-k+1) at Pt3 (since 03 x does not contain

dTp and every other differential of the second
m+3,0

kind is regular at

hold at Pine

Saal) The converse situation will

Recall that (¥) has become

a. A347 Fg 9 3 3
13 + ...+ a..a. . = 0;&gt;.1 YT asi41%31 Bagg4=0

consider the following table of order of vanishing

of the

*3.1

Byon

ds 3

Yo

Os po at the points Pita and Poel

oR SR Pl 1h P+3 Eat

mei —=2 &gt;m-1 o
3,1

o
3.2

&gt;m-1 m—i-2

m-i-1 &gt;m=-i+1 &gt;m-1+1 m—-i-=1

m-1i &gt;m-1+2 %3.3 &gt;m-i+2 m--1i

m-i+1 &gt;m-1+3 %s &gt;m-i+3 m-i+1

m-(i-k+3) &gt;m-(i-k+1) a
3.k &gt;m-(i-k+1) m-(i-k+3)
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Observing the orders at Peso we see that we must

have 8341 T 8540 = 0 (since Op 4 and Uy 5 have lower

1order at Pes than any of the other Gy gc) We needn't

have that 8343 = 0 since we may have that the order of

2g 1 is m~ 1 at Pt3 and Gz 1 and a 2 may

Tcancel" each other.

However, now consider the orders at Poth Since

Oy 4 and G3 5 have lower order at Poth than any of

the other Os Kk? we must have asi+1 = 85540 = 0. But,

going back to the situation at LY this implies that

23543 = asl = 0. And this in turn implies that

Bo343 = Boi4l © 0 (going back to Pond: By continuing

to go back and forth in this manner, we can show that all

the a, are 0.

Thus, invoking Lemma 5 and Proposition 16, we may

conclude that the dimension of the tangent space to A

at (sn,D) 1s 3g - 1

0dd genus case

Suppose g = 2m + 1 and n are given such that

+S nonnegative. Consider Meis's Riemann surface of genus g
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in

-

ITI - 2. Our divisor D will consist of:

(1) the m+ 2 ramification points over

 ae. ,m+t2, Which we denote by PioeeesP 5

(2) one of the three points over x = 0, denoted

3 A» With multiplicity m - 1 2nd

(3) the other two points over
i

and Po.DO
“nN

xX - 0, denoted

By a completely analogous argument to that in the

even genus case, one can show that the dimension of the

tangent space to 3H &gt; at (sq,D) is 3g - 3 + 7

Thus, we have established

Proposition 19: 9 3 has a component of dimension

3g ~ 3+ 1+ 3 for any n and g such that 1 1s

nonnegative.

This 1s as far as Meis's examples will carry us,

perhaps due to our own limitations.
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Chapter IV

dpen Problems and Conjectures

31. Moduli of Extra~Special Divisors

We return to Remark (1) after Theorem 3 of IIT - 2.

1 2
Recall that we proved that . - A,» if nonempty, has

pure dimension 3g - 3 + tv + 1, whether or not

nonnegative.

Suppose that Tt 1s negative and that be ! -H4: is
1 2

nonempty. Let 6 be the map pa " - 4: + Ty and let W

. . . - 1 2

be an irreducible component of the image of J n - 4:

under this map. We can say what the dimension of W is

if we-know the dimension of a generic fiber of the map

o™L (w) &gt; W. Let d denote the dimension of such a

ceneric fiber. Then we have

dim W = 3g -~ 3 + 71 + i a.

hxample 1: Hyperelliptic Curves

A hyperelliptic Riemann surface of genus g is

defined by the algebraic function
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y° = A(x - ay) co. (x - 0s (p41) 37.

Hyperelliptic Riemann surfaces are characterized by having

a nonempty Gy or, equivalently, by a hyperelliptic

Weierstrass point ([8]). Let ©P be a hyperelliptic

Weierstrass point on a Riemann surface X. Then the gap

sequence at P is 1, 3, 5, 7, ... By general theory

of Weierstrass points (ef. [8]), we may choose a basis

of the holomorphic differentials {daz } on X such

that the order of dz, at P dis 2(k-1), k = 1,...,2.

I'he matrix AM of I - 3 for the divisor D = 2P is

na

hte

H
S

{P) - ¢ Sh 652) (p) 7

Lo S S
Lote) - ec 2082p) +e 20830) 0

—

/

0

For all of the minors of order 2 of this matrix to

vanish, Sq and 85 must satisfy one equation. Thus,

the dimension of the tangent space to 65 (X) at D is

2 - 1 = 1, We can conclude that the dimension of G3

at D 1s 1, since we,always have dim GF &gt; r (cf. Remark

(2) after Theorem 3). This serves to illustrate the
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methods of I - 3. We can independently conclude that

every component of G5 has dimension 1 by virtue of the

following lemma.

Lemma 6: Every member of G3 (X) is linearly equivalent

to 2Pns where Py is a hyperelliptic Welerstrass

point.

Proof: Suppose E 1s in G5 (X). Then there is a function

h whose poles are the points of E and by means of

which X is displayed as a two-sheeted branched covering

of the Riemann sphere, the branch points being hyperelliptic

Weierstrass points. Let Py be a branch point and suppose

Py occurs over XxX = o. Then the function Xx - oa has as

its divisor 2P - E, hence E and 2P are linearly

aquivalent. §

Thus, each component of G5

hence is l-dimensional.

maps to a point of J

Now, we have 1 = 2(2-1) - g = 2 ~- g. Thus, the

subvariety of Te of all hyperelliptic surfaces has

dimension 3g - 3 + (2-g) +1 - 1 = 2g - 1. This is

very well-known and, in fact, our methods are very close

to those of Farkas [5].



104,

Example 2:

Suppose we wanted to compute the moduli of curves

with nonempty G3 By Clifford's Theorem, A : is

empty hence, by Theorem 4, 2 a if nonempty. is smooth

of pure dimension 3g - 3 + Tt + 1. Now,

T =2(3-1) —g=1U4~-g. So, Y 5 if nonempty,

dimension 2g + 2.

has

By Theorem 1 of [16], we have that, for g &gt; 4,

if 63 (X) is nonempty, then every component has dimension

at least 5 - g and at most dimension 2, with the upper

bound occurring if and only if X dis hyperelliptic. But

each component of 63 must have dimension at least 1.

So, 1f there exists a non-hyperelliptic curve of genus g

with nonempty G3, then we must have that the dimension

of the generic fiber of the map HY &gt; Tg is 1. Hence,

we would have that the dimension of the subvariety of To

of curves with nonempty 63 is 2g + 2 - 1 = 2g + 1.

This agrees with the number which appears in Segre [24]

and Severi [26].

To be more concrete, for odd genus Meis's examples

have branch points of order 2 over, x = 1,2,3,...,2m+2

and «©, These branch points are Weierstrass points whose
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cap sequence 1s

~N -1
1s 8, B, 6, ces 3(852) + 1.

Thus, 3 times one of these points is in 63- Also note

that these curves are not hyperelliptic, since hyper-

elliptic curves have only hyperelliptic Weierstrass

points. The reader may convince himself that if P is

one of the above branch points and D = 3P, then by the

methods in I - 3, the dimension of the tangent space to

31(X) at D is 1.

We have established

Proposition 17: Suppose there exists a non-hyperelliptic

surve of genus g with a nonempty Gy (which condition is

certainly true for g odd). Then the subvariety of I of

curves with nonempty ch has dimension 2g + 1.

It is hoped that the machinery developed here will

help to solve similar "moduli questions.
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82.

Suppose there exists a compact Riemann surface

of genus g and a divisor D on X such that the

)

following two properties hold:

(1 3
n

D= Z Ps
so 32 2ll points distinet

2) There exists a basis {az,}e_, of the holo-

norphic differentials on X such that

where

0 1&lt;

srde _rs daz,
1 g - i +

* F -
2

1 Nj

 ft k  eg \dj

1 = dim HY (X,0.(D)).

Let Oa gseeesl, 4 be the quadratic differentials

of III « 1. Suppose there existed a linear relation

r%
re

a

y % b. ,0

k=F, 1,001.7

au J
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Put dt, = d

1.0 y definition of «a Jak?

NC “1

IY 4 z\=Pel _qyn=r
35 = Bp (eqdT+.i+(-1)€nerQTnopt(1) TdT) 0s)

where the e, are minors of the matrix YN. of IIT - )

and u 1s the (nonzero) leading minor of order n - r

of “YM. Computing orders, we see that

-1 J =1,Vk

orderp Oy =
&gt;1 J # 2, Vk

Hence, a linear relationship such as (¥) implies

that the a, K for J fixed are linearly dependent.

This contradicts what was shown in III « 2 (ef. the

Remark there). Hence Oy yseeesly4 are linearly

independent. By Lemma 5 and Proposition 16, we may then

conclude that the dimension of the tangent space to 3 :

at (s,,D), where s, is the module point of X, is
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Question 1: For what values of g,r and n does there

exist such an X and D?

Producing such an example would show that 4r has

a component of dimension 3g - 3 + - ok

Question 2: If g,r and n are such that T is

nonnegative, then is the situation described above
dense »

cenericy i.e., is there aq open set of 7 consisting

of divisors on Riemann surfaces satisfying conditions (1)

a nad (2)

This would show that if = &gt; 0, then for a generic

Riemann surface X the analytic space Gy (X) has

dimension +t + r, the result which we originally set

out to prove.
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