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Let S8 be an analytic space over € and let X

be a family of curves over S. Let Xén) denote the
nth symmetric product of X over S and let E}S denote

the family of Jacobians over S. Suppose we are given a

%

map f : Xén)+93 and let u : f .Q%, —>'§21(n) be the
S/S XS/S

map induced by f. We define the analytic subspace Z° (u)

(rid n-r+1
of XS to be given by the vanishing of A 12,

We study two cases:
(1) S = Spec (€) and f is the classical map defined

by integrating holomorphic differentials. We let GE(X)
denote ZY(u) in this situation.

(2) 8 = Tz, the Teichmilller space, X is the universal
family of Teichmliller surfaces of g, and f is the natural
relativization over Tg of the map in case (1). We let

?di denote Zr(u) in this situation.

Put t = (r+l)(n-r) - rg. We show that 33% -ljis

nonempty, 1s smooth of pure dimension 3g - 3 + T + 1.
From this result, we may conclude that for a generic curve

X the analytic space ~Gi(X) - Gi(X), if nonempty, is smooth

if

of pure dimension Tt + 1.

Variational formulas due to Schiffer and Spencer and
Rauch are employed in the study of }jg.

Thesis supervisor: Steven L. Kleiman
Title: Associate Professor of Mathematics



Dedication

In better words than I could say it:

I hear my father; I need never fear.

I hear my mother; I shall never be lonely, or want
for love.

When I am hungry it 1s they who provide for me; when
I am in dismay, 1t is they who fili me with comfort.

When I am astonished or bewildered, it is they who
make the weak ground firm beneath my soul: i1t is in them
that I put my trust.

When I am sick it is they who send for the doctor;
when I am well and happy, it is in their eyes that I know
best that I am loved; and it is towards the shining of
theif smiles that I 1ift up my heart and in their laughter
that I know my best delight.

I hear my father and my mother and they are my giants,
my king and my queen, beside whom there are no others so
wise or worthy or honorable or brave or beautiful in this

world.

I need never fear: nor ever shall I lack for loving

"

kindness.

from "A Death in the Family,"

by James Agee
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Introduction

Let X Dbe a complete, nonsingular curve of genus g

X(n)

over an algebraically closed field K. Let denote

the nth symmetric product of X. Let G

(n)

B
n

of all divisors D such that

denote the
subvariety of X
dim |D| > r. (In the literature, e.g. [16], Gi is

more often used to denote the subvariety of the Jacobian
of X of all linear systems of degree n and projective

dimension at least r.)

Put 1 equal to (r+l)(n-r) - rg. Brill and
Noether [4] asserted that if T were nonnegative and
X were a generic curve, then Gz would have dimension T + r.
The recent work of Kleiman and Laksov [14, 15] and Kempf [12]
shows that for X any curve, i1f T > 0, then GE has
dimension at least T + r. We wilill show, in the case

K =C, that if X is a generic curve, then g = G

n n’
if nonempty, has dimension <t + 1.
We work in the category of analytic spaces over Q:.
We do this because we want to consider the Teichmiiller

space, an analytic, but not algebraic, variety ([7]).

Let Y be an analytic space over ¢ and let E

and F Dbe locally free OY—modules of rank g and n

respectively. Suppose we are given a map u : E » F.
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In Chapter I, we define the analytic space z¥(u) to be
n-r+l
given by the vanishing of the map A u. Then we study

n
the inf%&esimal structure of Z¥(u).

Let S be an analytic space over @€ and let X

be a family of curves of genus g over 3. Let X(n)

S
denote the nth symmetric product of X over S (ef. [11])

and let S}S denote the family of Jacobians over S.
. . ki)
Suppose we are given a map f : XS *Jar Let
# 1 T
1 £ R > @ (n) be the map induced by f. We
}S/S XS/S

u

study the analytic space Z' (u) < Xén) in the following

two situations:

(i) S = Spec (€) and f is the classical map
defined by integrating holomorphic differentials. We 1let
GE(X) denote 7zY(u) in this situation. A C-valued
point of GE(X) is a divisor D of degree n and

projective dimension at least r.

(11) § = T, the Teichmliller space, X 1is the
universal family of Teichmilller surfaces of genus g,
and f is the natural relativization over T@ of the
map in case (i). We let kji denote Z'(u) in this

situation.
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In Chapter I, we show how to compute the dimension
of the tangent space at a point D of GZ(X). This is
done by seeing when a tangent vector to ch) at D is
a tangent vector to GE(X) at D. (Severi appears to
employ a similar argument in [25], pp. 388-9, with his

"Linearmantels".)

In Chapter II, we describe a variation of structure
of Riemann surfaces due to Schiffer and Spencer [23].
We derive variational formulas similar to those in
[23], but much closer in form to those in Rauch [22].

We then state a result due to C. Patt [21].

In the second section of Chapter II, we review the
work of Meis [20], and give his examples of Riemann

surfaces.

In Chapter III,iwe use Patt's Theorem and the
variational formulas to help to analyze the structure

r ; ;
of an. Our main result is

Theorem: Suppose ¥ E}ji —;ni. Then the dimension of

the tangent space to jji at y is 3g -3 + T + 1.

From this result, we can conclude that if X 1is a



genericsRiemann surface, then Gi(X) - Gi(X), if

nonempty, is smooth of pure dimension -1 + 1.

We then use Mels's examples and perform computations
which show that if +t > 0, then the analytic space iji

(resp.jjg) has a component of dimension

3¢ - 3+ 1T+ 2 (resp. 38 - 3 + 1 + 3).

In Chapter IV, we discuss some open questions.

In particular, we discuss the moduli of curves with

"extra-special” (i.e. T < 0) divisors on them.
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Chapter I

The Analytic Space of Special Divisors

and its Infinitesimal Structure

5l .

We will work in the category of analytic spaces
over L. We take the Séminaire Cartan, 1960-61, as
our foundational reference. In particular, we allow
the structure sheaf of an analytic space to contain
nilpotents. We work in this category because we will
want to consider the Teilchmifiller space, an analytic,

but not algebralc, variety [T7].

Let S Dbe an analytic space over Gl. Denote by
((an/S)) the category of analytic spaces over S.
Let Y be an analytic space over S and let E and

F be locally free Oy-modules of rank g and n respectively.

Y
Suppose we are given a map u : E - I, Define the
functor 2ZY¥(u) : ((an/S))O + ((Sets)) by

7 _ n-r+l _
Z-(u)(T) = {g € Hom (T,¥Y)| A g u = 0}.

We wish to show that this functor 1s represented by an
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analytic subspace of Y.

Definition 1 [7]: Let S be an analytic space and

let G : ((an/S))O + ((Sets)) be a functor. We say that

G is of a local nature if for every T the presheaf

U ~ G(U), where U runs through the open sets of T, is

a sheaf.

Remark: This is the analog to the notion of a Zariskil
sheaf in the category of contravariant functors from

((Schemes)) to ((Sets)).

Lemma 1: Let (Si) be a covering of an analytic space S
by open sets. Let G : ((an/S))O + ((Sets)) be a functor.
Then G 1s representable iff G d1s of a local nature

and for every 1, the functor G/Si : ((an/Si))O + ((Sets))

1s representable.
Proof: [7], Corollary 5.7 of Expose 7. §

Our functor Zr(u) is clearly of a local nature.
Hence, by the lemma, its representability is a local

guestion.

Let y be a point of Y. Since E and F are

locally free of rank g and n respectively, the map u
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is given locally at y by an n x g matrix [f, of

Jk]
functions regular at y. The functor Zr(u) is then

locally represented by the analytic subspace defined by
the vanishing of the minors of order n - r + 1 of the

matrix [fjk]' Thus we have

Proposition 1: 7z (u)  is represented by an analytic

subspace of Y. §

We will use Z°(u) to also denote this analytic

subspace.

Put p = rank (u ® k(y)). Locally at y, both E
and F sgplit off a direct summand of rank o, and u
maps one summand isomorphically onto the other. The map
that u induces on the other two summands is given by
an (n-p) x (g-p) matrix [ejk} of functions regular
at y. The analytic space Z%(u) 1is also defined locally
at y by the vanishing of the minors of order (n - r + 1 - p)

of the matrix {ejkg (ef. [141).

Proposition 2: Assume r > 0. Then the points of

r+l(u)

Z are singular points of 2% ().

r+1(u)

Proof: Suppose y & Z . Then we have p < n - r.

By construction, the ejk above vanish at y, hence are
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in the maximal ideal m of O The analytic space

Y.y’
z¥(u) 1is defined locally at y Dby the vanishing of

the minors of order (n - r + 1 - p) of the matrix [ejk]
and, since p < n - r, all these minors are of order at
least 2, hence are in mz. Thus y cannot be a smooth

point of Z%(u). 1§

We want now to study the infinitesimal structure
of Zr(u). Let & denote a tangent vector to Y at y.
We will also use & to denote the comorphism, which is

a Q:—homomorphism of local rings
£ : 0y,  ~Clel/(e?).
Y,y

We are interested in seeing when £ i1s a tangent vector
to z'(u) at y. By definition, this will be true if

A Eu=0.

Proposition 3: & 1is a tangent vector to Zr(u) at vy

iff the minors of order n - r + 1 of the matrix
[E(fjk)] are all zero.

%
Proof: It is easy to see that the map £ u 1s given

n-r+l .
by the matrix [E(fjk)]. Thus we have A Eu=020
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iff the minors of order n - r + 1 of [E(fjk)] 211

vanish. &

We now assume that Y is smooth of dimension m
over L. Let y e Y and let Opswevs0, De local

parameters on Y at y. Let 8, in € be given by
g(o’g) = S‘Q'g £ = 132,-..,1}1

Then, by Taylor's Theorem, we have

The vanishing of the minors of order n - r + 1 of
the matrix [E(fjk)] gives rise to linear équations in
the 32. These equations must be satisfied for & *to

be a tangent vector to z¥(u) at y. If we view

gl,...,sm as being unknowns, then the dimension of the

solution space of this system of equations is the

dimension of the tangent space to z(u) at y.

T+l

If y e 7¥ (0) - Z (u), we will want to use the

following lemma.
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Lemma 2: Let A be a commutative ring (with unit).
Let M = [ajk] be an m X n matrix over A. Suppose
a minor u of order r 1is a unit, and that every
minor of order r + 1 containing u vanishes. Then

every minor of order r + 1 vanishes.

Proof: The following proof owes its brevity to

D. Eisenbud.

Without loss of generality, we may assume that u
is the leading (i.e. upper left) minor of order r. Since
# is a unit, we may perform column operations using

the first r columns to change M to the matrix

i1 B T

where N 1is an (m-r) x (n-r) matrix.

Then, by row operations using the first r rows, we

may change M' to the matrix
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Now, no minor containing p 1is affected by performing
these row and column operations. Hence, the minors of
order r + 1 of M" which contain u are all zero.

Thus N 1s the zero matrix.

But this implies that every column of M is a
linear combination of the first r columns of M. Hence,
every minor of order r + 1 of M 1s =zero. l

Suppose now that y e Z'(u) - Zr+1(u).

Then the
matrix [fjk] has rank n - r. We may thus assume
that the leading minor of order n - r of [fjk]’ call
it u, is nonzero. Let u' denote the leading minor
of order n - r of [E(fjk)]. Then p' = u + ce for
some ¢ e:@n Since W 1s nonzero, u' does not lie
in the maximal ideal of @[e]/(az), hence is a unit.
We then have, by Proposition 3 and lemma 2, that & 1is
a tangent vector to 7¥(u) at y 1ff +the minors of

)

order n - r + 1 of [E(fjk)] which contain p all

vanish. Obviously, there are r + (g - n + r) such
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minors. If the equations in the 31 given by the
vanishing of these minors are linearly independent
(over € ), then the dimension of the tangent space to
Zr(u) at ¥y 1s m~-r - (g - n + r). We could then

conclude that y 1s a smooth point of 2% (u) by virtue

of the following proposition.

Proposition 4: Either 2T (u) is empty, or each component

has codimension at most r - (g - n + r) in Y.

Proof: This is proved in [13] for Y a scheme. With
the obvious modifications, the proof is valid for Y an

analytic space. ‘
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§2.
In this section, we describe the two situations to

which we will apply the theory in §1.

Situation 1: A Riemann Surface

Let X be a compact Rilemann surface of genus
g > 0. Choose a point P & X and denote by ﬂl(X,P)
the fundamental group formed by the homotopy classes
of closed curves from P. The group ﬂl(X,P) can be

generated by 2g generators YooY N

o l,...,&g which

satisfy the single relation
-1.-1 -1.-1 _
YlélYl 61 "‘YgGng 6g =1 [(271.
Such an ordered system of generators is called a

canonical homotopy basis.

We will also use the symbols Yio s Yoo 61,...,6

g g

to denote the classes of these elements in Hl(X,Z).

These classes form a canonical homology basis, meaning

that the matrix of the intersection pairing on X with

respect to this basis is
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where I denotes the g x g identity and O the

g x g zero matrix ([27], [8]).

Let dcl,...,dgg be a basis of the holomorphic

differentials on X. Choose a canonical homology basis

g
{Yi’ai}i=l and put

.= [ dr,

B {, °5
s

Pag = £ A5 “ad ™ LswensB
1

One calls the g X 2g matrix [aij,bij] the period matrix
of X. The 2g columns of this matrix generate a maximal
lattice subgroup o of €% and the complex analytic
torus Cﬁ%gf is the Jacoblan variety J of X ([8], §8).

Fix a point PO € X. Consider the mapping
P+ X »J given by

P 2
p(P) = (f dil,...,f dcg) mod periods.
P P

0 0
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(n)

Denote by X the nth symmetric product of X.

Given a divisor D of degree n on X, we will use D

fo also denote the point of X(n)

representing this
divisor. For any n, we may extend ¢ to a map

¢ 1 3 55 as Pollows. TFf D is the divisss

([ o

Pi then

P. P
1

g dcl,...,
0

£(D) =
1

o~
nMp

/ dz_ ) mod periods.
P

1 i

'3

%
Let u : T 91 - Ql be the map induced by f.
J x (1)

Since X(n) and J are smooth of dimension n and

* 4
g respectively, the sheaves f Q} and Ql(n) are
X

locally free O (n)—modules of rank g and n respectively.
X

Thus, we may consider the analytic subspace Zr(u) of

X(n). We will denote by

r
6% (1),

or just Gi if the reference to X 1is clear, the

analytic space 2T (u) arising in this situation.
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<=> dim |D| > r.

{n e

Proposition 5: D € G

Proof: Let M denote the matrix of u evaluated at
D. Then it is shown in [9] (also in [18] and [5]) that
the rank of M is n - dim |D|. But D e G iff the

rank of M 1is at most n - r, hence D ¢ GE <=> dim |D| > r. &

Thus, the definition of Gz is consistent with the
classical one (cf. the Introduction). 1In the next

section, we will write out the matrix M explicitly.

Put T equal to (r+l)(n-r) - rg. We know by [14]
that if Tt d4is at least zero, then GE is nonempty.
Hence, by Proposition 4, every component of Gg has
dimension at least n - r(g - n +r) =1 + r. Brill and
Noether [U4] asserted that for a generic curve X, if =
is nonnegative, then Gi(X) has dimension equal to 1T + r.
To prove something true for a generic Rlemann surface,

one is led to consider the following situation.

Situation 2: The Universal Family of Teichmlilller Surfaces

We first give a definition of a Teichmilller surface.

Our definition is from [1] (also see [21], [22]).

If P and Q are points of X, then we know

that ﬂl(X,P) and ﬂl(X,Q) are isomorphic. Furthermore,
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we can associate a unigue isomorphism with every arc o
from P to Q: it is the isomorphism 7 which trans-
forms the homotopy class of a closed curve C from P
into the homotopy class of o 1Co. Choose a canonical
homotopy basis for wl(X,P) and denote it by (T,A).
Let (P',A') be a canonical basis for ﬂl(X,Q). We
shall say that (I',A) and (F',A‘) are equivalent iff
(F',A') = TG(T,A) for some o3 1.e. each generator in
(Ir',A) 1s transformed by 7% into the corresponding

1 1
generator in (T ,A ). The conditions for an equivalence

relation are obviously satisfied.

Suppose now that ¢ 1is a topological mapping of X
onto another surface X'. Then any canonical basis
(I'unA) on X is transformed into a canonical basis
$(T,A) on X’ formed by the images of the generators.
We shall say that ¢ maps (X,(T,4)) onto (X ,(T ,A))
iff ¢(T,A) 1is equivalent to (T ,A'). Finally, if ¢
is a conformal mapping, we say that ¢ maps (X,(T,A))
conformally onto (X',(F?,A')), and the two pairs are
said to be conformally equivalent. Again, the conditions

for an equivalence relation are trivially fulfilled.

Definition 2: A Teichmilller surface is a class of -
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conformally equivalent pairs (X,(T',A)).

Theorem 1: There exists an analytic space Té and a

family V of Teichmfiller surfaces of genus g over

Tg which is universal in the following sense: for every

family X of Teichmiiller surfaces of genus g over an
analytic space S, there exists a unique map ¢ : S ~» Té,
such that X 1is isomorphic (as a family of Teichmilller

surfaces) to the pullback via @& of V/Té.
Proof: [7], Theorem 3.1 of Expose 7 and Expose 17. |

Tg is called the Teichmlller space (for Telchmilller

surfaces of genus g). The Teichmilller space is a smooth,

irreducible, and simply connected analytic space [T7].

We will now relativize the map ¢ of situation 1
over the Teichmiiller space and obtain a map from the
universal family of Teichmliller surfaces to the family

of Jacobians, as is done in [19].

Iet h : V » 'I'g denote the structural morphism.

By well-known topological facts, since Ié is simply
1

connected, the fiber bundle R hgZz is trivial. Thus,

there are sections of this bundle which give rise to

cycles Yi(s),ﬁi(s), i=1,...,g8, which form a
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canonical homology basis of Hl(V »Z), S € Tg [19]

1

Consider the sheaf QV/Tg

For all s € Tg’ we

have

1

Ly
v/T
g

4 0 ; 0 .
dim H (VS,Q ® k(s8)) = dim H (VS,QV = g.

S5

1 g
Hence, h*QV/T is a vector bundle of rank g over Tg

and we have

1 -
*QV/Tg ® k(s)

0 1
H (VS,QVS)

h

by [6].

#
Choose holomorphic sections dci, L = LywewsBs

1 * g " .
of h*QV/Tg such that {dz;(s)}7_; 1s a basis for
0 1
H (VS,QVS), s € Tg {ef. [18]). Put
(s) = S dz.(s)
a..(s) = z.(s
iJ Yi(s) J
%
bi.(s) = [ dg.(s) i, = 1,...,8.
J J
8, (s)

For each s e T,, the matrix [aij(s), bij(s)]

is
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the period matrix of VS. Recall that the columns of
this matrix generate a maximal lattice subgroup of Cc®.
Let % be the quotient of T x C% by this family of
lattices. The induced projection 9 > T, glves a
complex analytic family of complex tori, the fiber gs

being the Jacobian variety of the Teichmiiller surface

v [197]-

Since our concern will only be local, we assume that
#
there exist sections of V » T,. Let Po(s) be such a

section. As in [19], define a map ¢ : V '+ 3. by

P P,
P(s,P) = (s, [ dgl(s),..., i) dcg(s)) mod periods
* %
Po(s) Po(s)
for "p € Vs.
(n) th .
Denote by VT the n symmetric product of V
: g
over Tg (ef. [11]). Extend ¢ to a map f : Vén) é-S}
g
as follows. If s e T and D € (V(n)) is the divisor
g Tg s
n
.E Pi on VS, then
i=1
P P

n i % n %
f(s,D) = (s, Z [ ° d;l(s),..:, T S d;g(s)) mod periods
=1 _%

i=1 _¥ i
Py(s)
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Let u : f*QﬁyT -+ Ql( )
g VTn /T

be the map induced by f.

Since 9 and vén)
g
dimension g and n regpectively, the sheaves

are smooth over qg of relative

¥
i Ql and Ql are locally free of rank g and
/T (n)
g V, ¥l
T
g
n respectively. Thus, we may consider the analytic

(n)

Tg

BN

g

subspace z%Y(u) eV of §81. We will denote by

the analytic space Zr(u) which arises in this situation.
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§3.

We return to situation 1 of the bPreceding section.
We will compute the matrix of the map E*u, where &
is a tangent vector at a point of X(n). As in [18],

we will first direct our attention to a point nP on
x(n)

Let P e X and let t be a local parameter on

X at P. Consider the divisor nP. Let & et

12
be n copies of t. Then the elementary symmetric

Pl gy

n

functions of the tj’ denoted dl(tl,...,tn

Un(tl,...,tn), form a system of local parameters on

M) 46 the point nP [2].

To understand the map u, we need to study the

x(n)

space of holomorphic 1-forms on We have

Proposition 6: The space of holomorphic 1-forms on X

is naturally isomorphic to the space of holomorphic

x ()

1-forms on Both these spaces are isomorphic %o

the space of holomorphic symmetric 1-forms on the

Cartesian product X7,

Proof: [18] (we give the correspondence below), I
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We will identify the space of holomorphic symmetric

1-forms on X7 with the space of holomorphic 1-forms
on X(n).

We now make explicit the correspondence between

holomorphic 1-forms on X and holomorphic symmetric

1-forms on X". Let dz be a holomorphic l-form on

X, and write

dr = ¥ agtgdt.
2=0
Put
T, = LO4E_ ¢ + £9dt j=0,1,2
s Jag, + ... dat_ ,1,2,. ..

Then we have

Proposition 7: The symmetric 1-form dr¢ on x which

corresponds to dg may be written

Proof: [18] (also see [5], lemma 2). &
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Now, we can express dr in terms of
ddl,...,dcn by using the following identities [187:

k _
kT = 171 ¥ vss B (=1) Ty = d0k+1

(By convention, O = 0 and dok =0 1if k > n)
Inverting these identities, and writing out only the

linear terms, we obtain

Ty, = (—l)k(do - o.do

Kk - o,do -

K+l 190y, 240, g = -+ = 0,d0q)

+ higher order terms

Thus we get

¥ s o
(*¥) dz aodcl + al( d02 + cldcl) +

a2(d03 - 01d02 - ngol + higher order terms)

Now suppose dcl,...,dcg is a basls for the

holomorphic Abelian differentials on X. Write
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at k=1,...,g

and put ti.

equal to a

0

| e B

Oy . N

(n)

Recall that the map f : X +~ J is given by

P P,
n n i n i
£z Pi) = (L [J dgl,..., % [ dz_.) mod periods
1=1 i=1 P i=1 P g
0 Q-
ng
Let T be given by
J
" n 23g
k
dg, = I +— do..
k . 30,
J=L "] L

Then we have

Proposition 8: The Jacobian matrix of £, i.e. the

matrix of the map u, locally at nP is

|

ack j—l,...,l’l

30} K= 1,su0,8

Proof: This readlily follows from the definitions

(cf. [5], lemma 2 and [9] p. 80 f£r.)., ¥}



31.

It is easily seen from (¥) that
(#%) K = (1)1 v 1 (- la 5,)
5 k-1 " g0y k,j+9-17%

+ higher order terms

Thus we have

Hence, the matrix of u evaluated at nP is jusst

Lieessh

1,...,8.

(-9t

This matrix has rank n - dim |nP| by Proposition 5.
Now let & denote a tangent vector to X(n) at

nP and let B4 in € be given by E(Gj> =856, J = 15eus s

Then we have, as in §1,

agk ng n 32Ek

aa.) = g (nP) + ez 8, ——(nP).

b cj 0=1 L aogaaj

£(
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One sees from (¥¥) that

327
"k = (_1)9t% -
aogaoj(nP) (1) "ay s4p 18
for &£ = 1,...,n.

To sum up, we have shown the following

Proposition 9: Let P e X and let t be a local

parameter on X at P. Let d;l,...,dzg be a

bagis for the holomorphic differentials on X and

write dck = ¢kdt. Let & be a tangent vector to X(n)

at nP and let 8. in C be glven by

J
g(oj) = g&g.e, j=121l,...,n, wWhere o

3 PN gre

1°° n

local parameters on X(n) at nP. Then the matrix

~

9Ly . #
5(55_) , the matrix of & wu, is
J

-1 J =, - n 4 J+4 ) .
[%;_—%7'_ o @) e 3 Ty g0 ()

3 2 lasssstiy B = dyeus,ge

Now consider a divisor of degree n of the form

D = mlP 2 RPN mde. The obvious map



33.

) (m

)
X X ... XX a% 5 X(n)

is a local analytic isomorphism [18]. Thus, a local

calculation on X(n)

(ml) (md)

X X ... %x X » using d sets of elementary symmetric

can be performed instead on

functions as local parameters. Also, the tangent space
to X(n) at D 1is isomorphic to the direct sum of

(m,)

the tangent spaces to X J at m.P, d = Liwswzhls

J°J’
(m,)
Let fj : X J° 5 7 be the map defined in
*
situation 1 of 52. Let u, : fjg} > Ql(mj) be the
X

map induced by fj' Locally, the map f is the one
induced by the fj and the map u dis the one induced
by the uJ, using the fact that

(md) N X(n)

X X ... x X is a local analytic

isomorphism.

Thus, the matrix of u 1locally at D is obtained
by "stacking" the matrices of the uj locally at
m.,P.. Since a tangent vector & to X(n) at D is

d J
(mj)
determined by tangent vectors Ej to X at m.P
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¥

the matrix of £ u 1is also obtained by "stacking" the
%

matrices of the Ejuj' Thus, by using Proposition 9

and the above discussion, one can write the matrix of

% %
Eu for any D. Let M' denote the matrix of & u.

In the simple case when all mj =1, 1.e.

D = Pl F oawew °F Pn with all points distinct, it is
easy to be very explicit. Let tj denote a local
parameter on X at Pj and write dck = ¢jkdtj. Then

the matrix M' 1is just

lyee.,nn

LywswsE

> vl
i

M' = [0, (Py) + 8,64, (Py)]

We can simplify M' somewhat, for any divisor D.
Put i equal to dim H-l(X,OX(D)). One calls 1 the

index of specialty of D and D is a special divisor

if 1 is positive. With our notation, the Riemann-Roch
Theorem is n - dim |D| = g - 1. Assume that 1 1s
positive, and choose a basis of the holomorphic differentials

such that dg dcg vanish on D. Thus, the last

goi417° 02
1 columns of the matrix of u evaluated at D (we have

denoted this matrix by M) are identically zero.
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r r+1
Assume D € Gn - Grl i

Then dim |[D| = r and

M has rank n - r. By performing row permutations, if
necessary, we may arrange to have the leading minor

of order n - r of M be nonzero. (this involves
slightly altering the form of M from that specified
earlier). Call this minor uy. Let u' denote the
leading minor of order n - r of M', the matrix

of E*u. Recall that since p 1is nonzero, u' is a
unit in G:[E]/(EE). Hence, by lemma 2, to have that
every minor of order n - r + 1 of M' 1is zero, it

is sufficient that the minors of order n - r + 1

containing u' all vanish.

Now, the last 1 columns of M' will have "pure"
e~-terms, i.e. elements of the maximal ideal of
ﬂ:[ej/(gg). This is because, by our choice of a
basis of differentials, the last i columns of M were
identically zero. Thus, in computing a minor of
order n - r + 1 containing u', any e's in the
first n - r columns will be "cancelled" by the ¢
in the last column of the minor of order n - r + 1.

Therefore, we have established
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Lemma 3: For purposes of computing the minors of order
n-r+ 1 containing u', we may replace the first
n -r columns of M' by the first n - r columns

of M. §

Denote by ADM the matrix obtained by replacing
the first n - r columns of M' by the first n - r

columns of M.

To illustrate this, we again turn to the case

when D consists of n distinct points. Then

we have
1 columns
F‘ r————)’_\—
¢1,1(P1) d}l’n_r(Pl) |
At =} - |
d)n—r,l(Pn"r) e ¢n—I‘,n—I’(Pn-—I‘) I s J J:k Pj)
¢n—r+l,l(Pn—r+1)’"¢n_r+15n_r n—r+1)l J = 1l,...,40
) . l k = g-i+l,...,8
r rows . : i
9,1 ¢Fp) b 1B I




37.

Now, for any D, there are r+(g - n + r) = r-i
minors of order n - r + 1 of ADM which contain u.
The vanishing of each of these minors gives a linear

equation in §1,...,§ One might expect that in a

e
generic situation these 1-r equations would be
independent. In Chapter III, we will consider the
generic case by analyzing situatiéon 2 of the preceding
section. To see what the functions f'jk of 81 are in
situation 2, we will use variational formulas similar to
those first derived by Schiffer and Spencer [23], and

later refined by Rauch [22] to the form in which we use

them. We derive these formulas in the next chapter.
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Chapter II

The Analytic Theory

§1. Variation of Structure of Teichmilller Surfaces

We describe a variation of structure of Teichmilller
surfaces due to Schiffer and Spencer [23]. We then
derive variational formulas similar to those found
in [22], [21] and [23]. For generalities on Riemann
surface theory, we recommend [27], and for more on
Teichmiiller surfaces and the variational formulas, we

recommend [22] and the references given there.

Let X be a compact Riemann surface of genus
g > 0. Let T = (Yl,...,yg) and A = (51,...,6g)
be a canonical homotopy basis as in I - §2. Let 1
be the simply connected surface obtalned by the canonical

dissection of X determined by T and A (cf. [27]).

Let oIl denote the boundary of II. We have

Let o and B Dbe Abelian integrals on X. (For

a good classical treatment of Abelian integrals, see
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Bliss [3], Chapter V.) Suppose that o and dB have

at most poles in the interior of I and are analytic

on 3I. (8o, in particular, da has no residues.)
Then
g
S adB = I (S adB + f adB + [ adB + [ adB)
ol i=1 oy, &y Y;l 5;1
g + — + —
= L (f (o -0 )dR + f (a - a )dp)
i=1 Yy 6i

+ .
where o is the value of o on Yi 5

the second integral) and o  is the value of o on

Y;l (resp. on 651). But, since da has no residues,
the value of o on Y;l differs from the value of «
Yy by the period of do around Si, and the wvalue of

(resp. on 6 in

on

o on &, differs from the wvalue of o on 6;1 by the

L

period of da around Yy Hence we have

foing I adB =
oll i

(/ do [ dB - [ da [ dB)
Loys 4y 6, vy

Il -

(ef. [3], Theorem 37.1).
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We will derive several expressions from (1).
Let ¢ be an Abelian integral of the first kind. Let

1 =1,...,8, denote the T'-periods of dz; that is,

Let w e X and let

denote the (normalized) elementary integral of the second
kind with pole of order v + 1 at w and zero T'-periods.

In (1), put o =r and dBf = drt Then, applying the

WaV '~

Residue Theorem to the left side of (1), we get

@ YV = 2

I 09
o
-
Q
'_]
—
|
S

Now let

an(W)

be the (normalized) elementary integral of the third kind
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with residues -1 at x and +1 at y and zero

[-periods. In (1), putting o =¢ and B = M ? and
using the Residue Theorem, we obtain
g an__(z)
(3)  zw) - g(x) = 52— 1 a, f] X0 g
2mi L J 0%
Jj=1 S,
J

N.B.: By abuse of notation, we will use the letters

t, X, ¥, w to represent local parameters at the points

as well as the points themselves.

Differentiating (3) a total of (v + 1) +times with

respect to w yields

v+2
g 3 (z)
(31) C(\H‘l)(w) - “2‘%5 5 aj I \)+1XW
Jj=1 Sj ow 37
Remark: The expansion of Ny, 1ear z is of the form

nxw(z) = log (z - w) - log (2 - x) + regular terms

so differentiation of nXW(z) with respect to x or w

or z makes sense. For example,



(ef.

b2,

2
9 nxw(Z) _ 1

JWIE

1

+ regular terms
(z - w)

[23], 84.1).

Again in (1), put o = TW,V(Z) and dB = dnxy(z),

use the Residue Theorem, and get

(4)

Finally, putting o = Ty O(z) and dB = dt
>

+
| , 3V ()
Tw,v(y) - Tw,v(x) T VT L

(z),

ysv_l

and applying the Residue Theorem, we obtain

(5)

V
3T (y) ot (£)
t,O ar (\) _ l)! y,\)“l
v 3t
3y

Suppose w occurs with multiplicity m 1in a

1
speclal divisor D. Then the values gk(w), .

g P
m!

;ém)(w) would be entries in the k' column of

the matrix M of I - 3. What we are interested in is

how these values change as Teichmiiller surface X is

deformed. We will now define a new Telchmliller surface

*
X

by using a variation due to Schiffer and Spencer [23].
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Let Q Dbe in the interior of I and assume Q
is not a zero of dg and Q # w. Let t Dbe a local
parameter at @ and let D be a disk around Q,
lying in the domain of t, completely contained in the
interior of II and containing neither w nor any
zero of dg. Let B be a Jordan curve contained in D,

but not containing Q. Let

denote the interior of the region enclosed by B. Then
B 1s topologically and conformally equivalent to the

unit disk (Riemann Mapping Theorem).

%*
A new Jordan curve 8 can be defined in D by

% #
replacing € by ¢t , where ¢t 1s given by

(7) £ (5) = t +

o
wr

if ¢ dis sufficiently small.

The mapping defined by (7) will carry an annulus
about B onto an annulus about 8*, both annuli contained
in D. By taking ¢ small enough, the annulus about B
will contain B%, and the annulus about 8* will contain

B. Let
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%
denote the interior of the region enclosed by B .

We now define the new Teichmllller surface X*. As
D was chosen so that it would not intersect any of the
curves of T or A (recall that D was contained
in the interior of 1II), these same curves will be used

%
as a canonical homotopy basis on X .

Now delete the disk B from X. This leaves a
surface with boundary (namely RB). Adjoin to this

¥
surface the closed disk B in suech a manner that each

point tO on B 1is ddentified with the point

® c * =
th = (t4 + =) on B . On the complement of B ,
0 0 to
%
the surfaces X and X have the same points and the

same conformal structure.

% %
Let ¢ be the integral of the first kind on X
such that
S dr = ay i=1, -
Y1
*
Let T be the normalized elementary integral
3

#
of the second kind on X with pole of order v + 1

at w. Then we have, as in [2],
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2;ae(\)+1)(w) - E%I j

1 ™0g
W
'-_..
Q
~
P
I
N

1 J S W,V

Our objective now is to compute

iy = O gy - D .

Put XO = X - B. Suppose x,y € X and define the

0
integral_of the third kind n;y on X* wilith the same
normalization on X* as nxy on X. On XO slit along
an arc from x to y, a determination of nxy is an
analytic function. If a determination of ”;y is also

chosen on the same sl1it region, it will be a single-valued
analytic function as well. The difference Anxy(z) =
n;y(z) - nxy(z), for these determinations, will be a
single-valued analytic function which can be continued
along the slit remaining single-valued. The singularities
at x and y will cancel out, hence Anxy(z) is a
single-valued analytic function on XO. By contour

integration, we have

_ 1 9

(8) Anxy(W) - Anxy(Z) = oy g Anxy(u) 5 Ny (w)du
1 ]

oot S Anxy(u) U zw(u)du

am
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where 2z, w € XO.

But, upon applying (1), we see that

0 _
gﬂ Anxy(u) 55 nzw(u)du = 0.

Hence we have
(9) An__(w) = An__(2) = === S(n._(u) () n_(uwa
9 xy Nyy 2 owi 3 Ny = Mg ML IR Ny \1.2HT

Now, by our choice of c, we have that B 1is con-
N3 %
tained 1n the union of B and an annulus about B8

# —
Hence, we may view nx.Y as- being a function on B

3
(by restriction), as well as on B . Thus, we can make
*
sense of the expression nxy(t}, as well as the expression

* % %
nxy(t (t)). In the term (nxy(u) - nxy(u)), which measures

the variation of the integral of the third kind as the
surface changes, we clearly want to view nzy as a
function on X*. Hence, in replacing the dummy variable u
by the variable of integration t, we must replace the u
in the argument of n;y by t*(t), obtaining

(9')  Ang (o) - dn (2) = E%E-é(niy(t*(t))—nxy(t))%g 2 (B8
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*
On the other hand, since nxy is analytic on

3 *
the union of B and an annulus about B , and
_ %
B 1s contained in this union, nxy(t}, as well as
nxy<t)’ is analytic on B. Hence, by Cauchy's

Theorem, the two integrals

* 3 9
énxy(t)é—gnzw(t)dt and énxy(t)ﬁ‘g nzw(t)dt
%
both vanish. Thus, we may replace nxy(t) by nxy(t)

in (9'), yielding
L5 % * % 9
(10 anyy () = dn (2) = g JOn (67 (83)omye (890 gy (6)at

This is the basic formula for computing the wvariation

of periods of integrals (ef. [21]).

Now we can consider n points Q@ ..,Qn; disjoint

il

1""’Dn with curves Bl,...,ﬁn in each
*

*
respectively; and Bl,...,Bn defined by

disks D

*
tj(tj)=tj+t—3 j = 1,...,n

where tj is a local parameter at Qj. The wvariation

from all the disks will be defined by adding the
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integrals on the right side of (10) for each of the Bj.

We proceed in the case J = 1. We have

n:y(t*(t)) - niy(t)

* & %
ny(t + ';G*) - an(t)

il

L)

3 ¥ 2
5E nxy(t) + 0(e“).
Thus, from (10), we get

* 3
nxy(t)gg nzw(t)dt

o

- 1
(11) Anxy(w) - Anxy(Z) ol é

+ O(cg).

Differentiating with respect to w yields

(1) Loan_ () = sio 7 S 2 o¥ (533 L ya
ow Xy 2ni B t 9 Xy owat 'zw

+ 0(02).

Now, the right side of (11') is obviously O0(e),

so the left side is also 0O(e). Hence, it can be seen

*
that we may replace nxy by nxy in the integral on

the right side of (11) and retain the 0(02). Thus we

have



1 c 9 9
- ( = e e i i T

(12} Anxy(W) Anxy\z) 5 é T 5T nxy(t)at nzw(t)dt

+ 0(02).
By (3'), we may write

g v+2

13) atV =5 §oa s 2 an_(2)az.
j=1 4 &, aw' “az

In (12), interchange y and w and differentiate
(v+l)-times with respect to w and once with respect

to =z, obtaining

v+2

5 An__ (z) 9" “n__(t) 9°n__ (%)
(14) _"—\T-FT_XE = e Bl f xW Zy dt + 0(02)
ow Az B

Now, replacing w by t and y by w in (4) and
putting v = 0, we obtain

)

T (w) - Tt,O(X) = s£ N (%) -

0 XW

Then, by differentiating (v+1) times with respect to w,

we see that
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v+2 v+1

3 _ 3
ST, Mg ¢P) = oL Ty,0(W)-

Again in (4), replace w by t and x by =z, put

v = 0 and then differentiate with respect to =z, getting

2
o
523% Nzy () = = 337 T4 o(2).

[a 7]

Remark: In the derivation of (4), we needed that x
was in the interior of N, while =z here is on 23I.
However, since the functions in (4) are continuous in

x as long as x 1is distinet from w (ef. the earlier
Remark in this section), the equality (4) is also wvalid

for x on the boundary of I.

Now, by substituting the above equalities into (14),

and then substituting into (13), we see that

+
AL gy = 2 2 i e B th,o(W) 3T, o(z)dzdt
T i) Zamad 3
(2mi)° j=1 9 3 55 pyvtl e
+ 0(02)

But, (2) with v = 0 1is Just
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g
1
1 {— D .
et (t) = 50y jil 43 é. th,O(Z)
J
hence
v+l
) T (w)
R ow

Now, by (5), we have

8\)+1 BTW "
ST Te,0(W) = vl = (6)
oW ?

so finally we obtain

&

O < B8 3, (00 + 06

2mi

Applying the Residue Theorem, we see that

0G0 = vie B @ @) + o).
. . ' 3
Notation: Write Tw’v (Q) for N Tw,v(Q)'

If we perform this variation at n points,

Qla"-gQ , then we obtain

n
(15) Az () = v1 3

oy (9 (@) + 0(e?)

1
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where ¢ = max ICkl-
1<k<n
We will want to use the following theorem, due to

Patt [21]7:

Theorem 2: One may choose 38 -~ 3 points Ql""’Q3g—3

on X suech that, if Con is the variation parameter at
Qm’ then a neighborhood of the origin in the

Cl""’°3g-3 space describes a complex-analytic

structure for a neighborhood of X in the Teichmiller
space. Moreover, the set of collections of 32 - 3 points

with this property is open in x38-3,

Proof: The first assertion follows from Theorems 2 and 4
of . [21]. Although Patt does not state the second
agsertion, his proofs demonstrate it, as was noted by

Farkas [5], p. 885. 1§
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§2. Meis's Work

In [20], Mels demonstrates the existence of special
divisors for the case r = 1. He does this by considering
the universal space of special divisors ’Qj% over the
Telchmliller space and explicitly exhibiting a special
fiber of dimension T + 1 in the case in which n is
the minimum integer such that T > 0. He may then
conclude that a component of the universal space of
special divisors has dimension 3g - 3 + 1 + 1, and
that this component maps surjectively down to the
(irreducible) Teichmiiller space. Hence, he shows that
for an arbitrary Riemann surface X, the subspace G%
of X(n) is nonempty of dimension at least T + 1 if
n 1is any integer such that =t > 0. His methods also
show that for a generiec suface, GE‘ has a component
of dimension T + 1 if n is the minimum integer such

that T > 0.

We present Meis's examples below, and Will make use
of them in the next chapter. Suppose g 1is given and

that r = 1. Then the minimum n such that T >0 is

g + 2

if g even => 1 = 0

EXd av o o mis v =1
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So, the r = 1 case breaks up naturally into even and
odd genus subcases. Meis gives one class of even genus

surfaces and one of odd genus surfaces.

Even genus case

Suppose g = 2m and consider the Riemann surface

of the algebraic function
g™ = (x-1) (x-2) (x-3) (x=1)"(x-5)"(x-6)™.

This surface has m + 1 sheets and ramification points
of order m over the points x = 1,2,3,4,5,6. By the
Riemann-Hurwitz formula, the surface has genus 2m.
Mels shows that the following form a basis for the

holomorphic differentials:

C (=) 5 K (o) B ax
k yk

az k= 1,uw:ssl

dck+m = xd;k o2 Ly e g

One can easily compute the order of vanishing of
the differentials at the ramification points and at the
points over x = 0 and X = « (and these are the only

points where the differentials might vanish). To do this,
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notice that a local parameter at the point x = j,
2 +}~—_~T
for j=1,...,6, 1is E = J , a local parameter

at the points over x =0 1s x, and a lccal parameter

at the points ovef X =9 ig %n Then express the

dzg as fjdt, where € 1s a local parameter, and

J

see what the order of vanishing of f is at t = 0.

J
Meis gets the follecwing table for the order of wvanishing
of the differentials at the point(s) over the given

value of x:

X = L 2 3 h 5 6 8] o
dzk m-k m~k m-k k-1 k-1 k-1 0 x
dck+m m~k m-k m-k k-1 k-1 k-1 1 0

0dd genus case

Supppose g = 2m + 1 and consider the Riemann

surface of the algebraic funetion:

m+2
I (x - i)
3 _ i=1
J 2m+2
n (x - 3)
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This surface has 3 sheets, and ramification points of
order 2 over X = 1,2,...,2mt2 and over x = oo,

(4m+6) +

Thus, g = 5

1 -3 =2m + 1. Meis shows that

a basis for the holomorphic differentials is given by:

x5 Lg
dgy, = ST D R
yB I(x - j)
J=m+3
dck+m+l = ydck k= 1,...,.

Meis gets the following table for the order of vanishing

of the differentials:

X = 1 m+3 0 ©
1<k <mbl dg, 0 i k-1  3(m+l-k)
1 <k<m - 1 0 k-1 3(m+l-k)-2

For examples of special divisors with r = 1 and

n minimum so that Tt > 0, Mels takes:

g even: the g—%—g points over O.
g odd : the Bt ramification points over
2

x=1,2,...,m+t2 (note mt+2 = &w%—i).



BT

In Chapter III, we wlill combine the deformation
theory of I and II - 1, and then will use Meis's

examples for some explicit computations.
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Chapter III

Determination of the Dimension of the Tangent Space

to the Universal Analytic Space of Special Divisors

81 s

We return to situation 2 of I - 2. Recall that
we let Tg denote the Telchmiiller space for Teichmiiller
surfaces of genus g and we let V denote the universal

family of Teichmilller surfaces of genus g over Tg.

Let X be a compact Riemann surface of genus g > 1.

Let {Yj’aj}§=1 be a canonical homotopy basis and let
{dck}§=l be a basis of the holomorphic differentials.
Put
Ajk = [ dck J.k = 1,...,8.
b

Let P Dbe a point of X and let t be a local

parameter on X at P. Write
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Fix a point P different from P. Choose a

0
point (Ql"'"’Qgg-3) from the open subset of x38-3

in Patt's Theorem such that all the Qm are different
from P and P, and such that none of the Q, 1is a
zero of any dgk. Perform the variation described in
IT - 1, taking the disk about each Qm sufficiently

small so that no two disks intersect and no disk

contains P, PO’ or any zero of any dgk. Let Co be

the variation parameter at Qm,

IT - 1. (Note: the choice of the point (Ql""’Q

m=1,...,3g-3, as in

3g-3’

will be further modified later.)

Let s, & T be the module point of X (i.e.

0 g
T, = X). By definition of the variation in II - 1,
0
there exists a complex-analytic neighborhood U of SO

in Tg such that, for all s' £ U, the curves

}g are a canonical homotopy basis on V , the

P A A
{YJs j73=1 1

points Py and P are on Vs" and t 1s a local

parameter on VS, at P. Choose holomorphic sections

¥ 1
dck, k=1,...,8, of h*QV/Tg such that
S dzi(s') = A s' e U
k ik

Y.
J Jok = 1,...,8
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(ecf. I - 2 and [19], §2).

Proposition 10: With notation as in II - 1 and above,

%
if we define ak,% by

ad ¥ ; a* tﬁdt
1 S ’
then we have
% B + Sg_s ] 1 2
g T By mzl cmTP’E(Qm)EK(Qm) + 0fe™ )

Proof: The variational formula (specifically equation (15)
of II - 1 with n = 3g - 3) shows that this equality
holds in a complex—analytic neighborhood of (SO,P) on

V. This is the main import of the variational formula. 1

¥ .1 1
In order to study the map u : f Q - Q
¥y v{n)

of I - 2, we proceed in a similar manner to I - 3.

We first consider the divisor nP on X. Let tl,...,tn

. 5T denote the

be n copies of t and let o -

l,‘.

n elementary symmetric functions in tl""’tn'
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(n)

g

Proposition 11: Local parameters on V at s

are given by Cl""’c3g—3’01""’dn'

Proof: By Patt's Theorem, local parameters on Tg at

sy are given by cl,...,c3gm3. By [2], local parameters

on X(n) at nP are given by o ,0_. By the

1220,
definition of the wvariation in II - 1, local para-

meters on (Vén))s, at nP, for s' & U, are also given
g
=50 - Thus, local parameters on V(n) at

iy
g

by Ogs--

(so,nP) are given by ¢ Opsenns0 - |

l,...,ng_3, #

The following proposition relativizes Proposition 6
to our present situation. It is proved by making the
obvious modifications in the proof cited for
Proposition 6. As in I - 3, we will make precise the

correspondence in the proposition after we have stated 1it.

Proposition 12: The space of relative holomorphic

(n)
Tg over Tg

1-forms on V and the space of relative

holomorphic 1-forms on V over Tg are naturally

isomorphic. Both spaces are isomorphic fo the space
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of relative symmetric holomorphic 1-forms on V% .
123

product over Tg of n copies of V, over Tg. |

the

Similarly to I - 3, we will identify the space

of relative symmetric holomocrphic 1-forms on V% over

£

Tg with the space of relative holomorphic 1-forms

on Vén) over T .
o 28

We will now make explicit the correspondence
between relative holomorphic l1-forms on V over Tg

and relative symmetric holomorphic 1-forms on Vg
g
~ %
over Tg’ Let dck denote the relative symmetric
holomorphic 1-form on V% over Tg corresponding to
g

*
dgk.

Recall from I - 3 that
= j j -1 =
Tj tldtl + www F tndtn J D lws s

Proposition 13: We may write

ait = 3
C =
k 0=

*

o k.28
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Proof: Equality holds in a complex-analytic neighbor-

hood of (sO,P,...,P) on VE by Proposition 7 and

g
Proposition 10. W
Now, as in I - 3, we use the-identities
G T = O, LT, + + (-1)%, = do
k0 k-1"1 Tt k k+1°

*
Thus, writing out a and using the above identities

ky,%
~ %
to write dck in terms of dol,...,dcn, we may write
@ ait = % (<D, , + 3 e th (@ )e(a )
G, = - a '+ C
k 2=0 k,2% n=1 W P,a" ™ m’ "k ™m
(d0£+1 - cldoQ - ... - ogdcl)]
+ 0(02,02)

where 0(02,02) denotes higher order terms in the cj

and the Cm'

Now, by the definition of the map f : Vén)+ 59»
g

in I - 2, it is ‘easy to see that f 1is given at

(so,nP) by
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P oy P

~ 3 ~ %
f(so,nP) = (s> é dCl(SO),-.-, g dgg(so)) mod periods
0 0
P~y
where the integrals [ dck(so) are evaluated by
PO
recalling that tl,...,trl are just copies of ¢t.
~ %
ng
Let S be given by
o
il
~%
dg, = = do, .
k ; ,
g=1 %93

Then we have

%

Proposition 14: The map u : f Q%VT + Ql(n)
& Vo s

g B

is given locally at (SO,nP) by the matrix

g )
B;k J = lysesst
30,

J k=1,...:8.

Proof: This follows easily from the definitions of £

8~*

2tk

dg. °
J

and (Compare with [5] and [9]1). { .
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Note that

8~*

L

k
gag(so,nP)

.
]
=
-
"
=

is just the matrix M of I - 3.

Now let & be a tangent vector to Vén) at

g

(SO,nP). Let g and b in € be given by

[
03]
i

(o)

il

I o

;(oj)

1,...,38-3.

I
o
m
=
Il

E{ 0y

Then, using Taylor's Theorem as in I - 1, we have

~ % o~ %
3 (o

S _——
% BORBUJ

o 3

I

30 o0 .
o

(1) &«

[ ]

(SO,nP) + & (SO,nP)

L=1

27 %
38~3 9 Ly
+ & I b

e, 0P )
m=1 0

m 9c_90,
moJ

We now use (#) to compute the partial derivatives
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~ %
Bck
of the functions T with respect to Cy and with
J
respect to c¢_. (We remind the reader that the functions

m

o, and G vanish at (so,nP).) We obtain

1%
B = (-1)dFd
aogacj(so’np) (=107 ey y+0-1
and
%
2°z, . :
W (Soal’lP) = TP,j—l(Qm)Ck(Qm)‘

Substituting these expressions for the partial

derivatives into (1) gives us

Proposition 15:

0y, %%y a 2
E,('-“-"BO,J) = BGJ- (SO,I’IP) + € 251(_1) Sﬂ,ak,j‘Fﬂ.-’l
3&2—3 1 1
te 2 b,Tp,5-1 ()T (8- B

Now on to the general case. Consider a dlvisor D

on X of the form D = mlPl + ... + mde. Assume D is
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in GE(X) and choose a basis {dzk}§=1 of the holomorphic

differentials on X such that the last i = dim Hl(X,OX(D))

of them wvanish on D.

In performing the variation in II - 1, choose a

point (Ql""”QBg"B) from the open set x38-3 in

Patt's Theorem so that each Qm is different from

PO,Pl,...,Pd, and any other zero of any dgk. Take the

disk about each Qm sufficiently small so that no two

disks intersect and such that no disk contains PO,P P

19"} d’

or any other zero of any d;k.

(m, )
Let fj : VT I Saf be the map defined in I - 2

&

and u., : f%ﬂl '4'91 be the map induced by f..
J J ?/Tg (mj) J
V
ol bl
g/ g
The obvious map V X oo X0V + Vg is a loecal
T T T " ik
g g g g g

analytic isomorphism by an argument analogous to that in

[18]. Let & Dbe a tangent vector to Vén) at (sO,D)
g
(mj)
and let gj be the tangent vector to V at
g

(SO’ijj) induced by &£, for j = 1,...,d. Then, by
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#

the same reasoning as in I - 3, the matrix of & u is
#

obtained by "stacking™ the matrices of the E Uss for

J =l’t|l,d0

%
Let 97' denote the matrix of & u. By our choice

of basis of the holomorphic differentials on X, the last

%
oC,
i columns of M, the matrix 335 (so,D) , are identically
J
zero, hence the last i columns of y7' contain "pure"
e terms (i.e. members of the maximal ideal of E[e]/(eg)).

Thus, as in lemma 3, we have

Lemma U4: For purposes of computing the minors of order
n-r+1 of 9M', we may replace the first n - r columns

of 9" by the first n - r columns of M. W
Let %Yl denote the resulting matrix.

%ﬂt has a particularly nice form in the case that

D = P1 + ... P, with all points distinct. Let tJ

be a local parameter at Pj and write dck = ¢j,kdtj'

Then we have
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™M = o) 7)) [€(s505 (B + X bty (9 )z(a )
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— | -

3g~3

m=1 J,0

Jo=1,0vee,n )3

lsoot’n

k=1’...’g""i|k g"'i+1,l--,g

Going back to the general ecase, reeall that, by
Proposition 1, & will be a tangent vector to thz at
(s,D) iff the minors of order n - r + 1 of the
matrix frnb 8ll vanish, Assume D = mlPl * aue + 0 P

d d

+
r 1(

4 X). Then the matrix M has rank

. T
is in Gn(X) - G

precisely n - r, Hence, by permuting the rows of M,

if necessary, we end up with a matrix whose leading minor
of order n - r, which we will denote by U, is nonzero.
We will continue to denote this matrix by M, although

its Fform may differ slightly from that specified earlier.

Perform the same row permutations as above on the
matrix ‘WKL and denote the resulting matrix also by ﬁnl.
Then u 1is also the leading minor of order n - r. of 7”&,
S0 we may apply Lemma 2. Thus, for all the minors of
order n -r + 1 of ‘DL to vanish, it is sufficient that
every minor of order n - r + 1 which contains u

vanishes. The vanishing of each of these minors gives
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fise to a linear equation in the s; and the b .

Let denote the minor or order n - r + 1

uj,k
of ‘P obtained by adjoining to u the first

n -r elements of the n - r + ,jth row of On’L and

the first n - r elements and the n - r + jth element
of the n - r + kth column of a?", (thus j runs from 1
through r and k runs from 1 through i). The

equation uj w = 0 ids of the form
3

eE. = 0
Jsk

where Ej K is a linear equation in the Sj and the
3

bm with coefficients in €.

We will now view the sJ and the bm as being

unknowns (as in I - 1). Thus, E is an equation in

Jsk
3g - 3 + n unknowns. By the discussion after

Proposition 1, the dimension of the tangent space to

o ;
gjn at (sy,D) 1s

3z = 3 + n - (the number of E,
Jsk

linearly independent).

whiech are
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Consider the coefficient of bm in E This

Jsk”®
coefficlent will be a linear combination of certain of

1 "
the TPj v(Qm)Ck(Qm)‘ That is, the coefficient of b
3

will be a certain quadratic differential (the above

)

linear combination of certain of the drt azg

Ps
dsV

k
evaluated at the point Qm' It should be noted that,
by the symmetry of the matrix ?Yﬂ; in the bm, this
quadratic differential does not depend on m, but only
on Jj and k. The coefficient of bl is the value
of this quadratic differential at Ql’ the coefficient

of b, the value at Q,, etc. Fut

CIJ- Jk

equal to the above linear combination of certain of the

dtp dck. Then o, K is a (not necessarily finite)

3sv e
quadratic differential.
Notation: Choose a loecal parameter u, on X at Qm

. _ 2 .
and write A5 x = g(um)dum. Then we will write

aj’k(Qm)
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for g(0).

Hence, by the above discussion, a. k(Q ), the value
J 0

of the quadratliec differential at Qm, is the coefficient

of bm in Ej,k'

Our aim now 1s to show that, in certain situations,

by suitably choosing the point (Ql,...,Q3€_3), we may

conclude that the Ej are linearly independent. By

> K

elementary linear algebra, to conclude that the Ej W
3

are linearly independent, it is sufficient to show that

the matrix of coefficients

d = 1lycea,r
L (PR c |

is nonsingular.

Lemma 5: Assume that the a, for J = 1is.sT and

Jsk?
k =1,...,1, are linearly independent. Then we may choose
X3g-3

a point (Ql""’Q3g-3) from the open set in in

Patt's Theorem such that each Qm is different from PO

and the zeros of dzl,...,dag and such that the above
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matrix A is nonsingular.
Proof: The lemma will follow readily from the following

Sublemma: Let Bl,...,Bn be n linearly independent

quadratic differentials on X. Let U be an open set
contained in X". Then we may choose a point

(Pys...sP ) € U such that each P, 1s different from

a finite set of points of X and such that the matrix

i

[8.(P )] Loeeest
8.(P
J Tk K =1,...,n.

is nonsingular.

Proof: By induction on n. If n =1, then By 1s a
non-trivial quadratic differential. Hence, Bl is non-
zero and finite on a dense open set of X. So, given any
open set in X, there exists a point in that set satisfying

the requirements of the sublemma.

Now suppose U is an open set contained in X'.
Let V be the projection of U onto Xn=l. Then
V 1is open and, by induction, we may choose a point

(PO,...,Pn_l) e V such that each P, 1s different
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from a finite set of points of X and such that the

leading subdeterminant of order n - 1 of the determinant

B1(Py) o o . By (P 4) By

L] L] ®
- L] L]

® . -

Ba(Py) o o o B (P _4) 8

is nonzero, Expanding the full determinant by the last
column, we obtain a non-trivial linear combination of

Bl,...,Bn. By the linear independerce of these quadratic

differentials, this sum is a non-trivial quadratic
differential, hence 1s nonzero and finite on an open
dense set W contained in X. Since U 4is open in X"
and W 1is dense in X, we may choose a point in the

intersection of U and {(PO,...,Pn_l)} x W which
satisfies the requirements of our sublemma.

Now, since the set of points in x38-3 4y Patt's
Theorem is open, it is easy to see that we may choose a

point (Ql""’Q3g~3> in this set such that each Q,

is different from P, and the zeros of dal,...,dgg
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and so that Ql"”’Qri make the matrix A nonsingular.

This completes the proof of the lemma. R

We then have

Proposition 16: Suppose D is in GE(X) - G£+1(X).

Then, if all the o are linearly independent, the

Jok
dimension of the tangent space to 232 at (sO,D) is

=3 +1 +7r,

Proof: By Lemma 5, we may choose a point (Ql""’Q3gw3)

from the open set in Patt's Theorem such that each Qm

is different from Py, and the zeros of dcl,...,dcg

(note that this latter set includes the points of D),

and such that the equations Ej y are linearly independent.
5
i r
Thus, the dimension of the tangent space to X) n at
(spsD) is 3g=~3 +n-ir =3g-3+1+r. §
In the subsequent sections in this cahpter, we con-

sider the real work of showing that the aj  are
3

linearly independent.
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§2., The cases r =1 and i =1

The case r = 1

For simplicity, we will first treat a divisor consisting

of n distinect points. So assume D = Pl + w.s P all

nﬂ

points distinct, is in G%(X) - Gi(X). Recall that the

matrix Y is

3 3g-3 7
1 1 r
¢j,k(Pj) E(de)j,k(Pj) % El bytp. ()%, (Q.))
qql m= js0
J = 13 e ¢! &= l, L, 1
k=1, s &1 k = g-1+1, -8

Let |j| denote the minor of order n - 1 obtained

by omitting the jth row from the matrix

]
[
L'}

.
w
]

[o5 1 (Py)]

Then we have

iy s '
Bl J,0

™3

al,k(Q) =
b

For k= lyseenuyi.
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Suppose we had a linear relation of the form

i
L a,o = 0 wlith some a nonzero. Then this would
=1 k™ 1,k L
imply
n § Ay i i
(#) (DIl @3 ac (@) = 0.
1=1 3,0 R=T k n+k-1
But the dTP s J = 1l,...,n, are linearly independent

j,o0
since they have poles at different points. This, together
with the fact that |f1| # 0, implies that there is a dense
open set of points of X where the expression

n jo1,0,
2 f=1) IjITP (Q) is nonzero.
J=1 j,0

And the linear independence of d;n,...,dcg, together
with the fact that some ag is nonzero, implies that the
other expression in parentheses in (¥) is nonzero on a
dense open set of points of X. Hence, we may choose a

point @ such that (¥) 1is nonzero, contradicting the

assumption that Op qoees0y 4 are linearly dependent.
3 ]

Now suppose D = mlP1 * owiw mde is in
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Gi(X) - Gi(X). Then we have

(@ = e @ UL, @+ .o+ (1l (@)

C
1,k P10 a>Ma-1

Hence, if there existed a linear relation

kgl akal,k = 0, we would have
L ! ! | n-1,7_"
(kil aKCn+k_1(Q))(]l[TP1’O(Q) * owss * (=1) InITPd’mdnl(Q)) =
The same reasoning as in the case of simple points
applies, since the dTP ,...,dTP are easlily seen

1,0 a*%a-1
to be linearly independent (they have either poles at

different points or poles of differing orders at the same

point).
. . r r+l
Remark: The above reasoning shows that if D € Gn - Gn s
then the aj X for a fixed jJ are linearly independent.
-]

The casge 1 =1

Again, first suppose that D = P1 * wyw F Pn’ with

all points distinct. Assume that

i = dim Hl(XSOX(D)) = 1. For the sake of notation,
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write Tj instead of Tp s o = Wlga.s gl

Jj’0
Our matrix “IYL is
B 1 3%"‘ t t 7]
¢j,k(Pj) €(sl<b1’g(Pl) 2 mzlmel(Qm)cg(Qm))
1 = Ly -1
k=1,...,8-1 ‘

1 3%"3 ' 1

e(anbn’g(Pn) + milmen(Qm)Cg(QTﬂ))
th

Let R denote the g row of the matrix

= L% ewsll
[¢.  (P.)]
gk d k=1,...,8-1

Then we have
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fly By
, A : Bg q

Rn—r Rn—r
n-r+j n-r+j

Rl

oo+ (1Y L e (Q)

- n-r+j

R

n-r

for J = 1,...,7r.

Now suppose we had a linear relation of the form

b

L a.o, = 0 with some a, # 0. Then this would imply
j=1 J Js1 %

the existence of a relationship of the form

' n
*%
(%) (Q)( 2

1
N bjTj(Q)) =0

n-1 R1
with bn_r+£ = ag(—l) ) £ 0.
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But again, by linear independence of dTl,...sdTn,

we may choose a point Q, not a zero of d;g, such that
®%) 1
(¥%) is nonzero. Hence al,l""’ar,l are linearly

independent.

The case when i = 1 and D has multiple points
follows by the same reasoning, with a modification
completely analogous to that used in the r = 1 and
multiple point case (i.e. all the differentials of the

second kind will still be linearly independent).

Thus we have established our main result:

Theorem 3: Suppose D is in GE(X) - G£+1(X) and
assume either r = 1 or dim Hl(X,OX(D)) = 1. Then the
. ; r .
dimension of the tangent space to_ﬁj L, at (SO,D) is
3g -~ 3 + 1 + r. Furthermore, xJ . 1is smooth at (s,,D).
. 3 n O.’
Proof: The first assertion follows from Proposition 16

and the work of this section. By Proposition 4, the

dimension of jb § at (SO,D) is at least 3g - 3 + 1 + P,

hence_jj z is smooth at (SO,D) by the first assertion.
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Remarks:

1) Theorem 3 does not depend on T being non-
negative. This has implications about the modulil of
curves with "extra-special' divisors (i.e. T < 0).

We will come back to this in IV - 1.

2) It was already known that cﬁﬂ1b£ =3g -3 +T1T+r

in the case 1 = 1. Indeed, let

r

Gy (X)
denote the lmage of GE(X) in the Jacobian J of X
under the map [ : X(n) +J of I - 2. Let K denote

the point of J which is the image of the canonical

divisor. Then the map
£(D) + K - £(D)

is an automorphism of J which, iIf r =n - g + g

. e =0 .
carries G onto G5, 5 ([16]). It is well-known
that dim 50 = 2g - 2 - n and that the singular

2g—2-n
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0 =1

points of G2g—2—n are the points of G2g—2—n' 1t

follows that dim ﬁi 2g - 2 - n =1 and that the

singular points of @i are the points of §§+l. Thus
we have that Gg(X), if nonempty, has dimension T + r
(since if f£(D) is in Gy - §§+1, then the fiber
£71£(D) has dimension r).

Now, if r =n - g+ 1, then T =n - 2r which,

by Clifford's Theorem, must be nonnegative. Hence,
GE(X) is nonempty for every X by [14]. Therefore,
we have dim}j§= 3g -3+ 71T+ r.

As consequences of Theorem 3 we have the following
two important results.
Theorem U4: }jik-:&ji, if nonempty, is smooth of pure

dimension 3g - 3 + 1 + 1.
Proof: Thils follows immediately from Theorem 3. §

Theorem 5: Suppose that for a generic curve X, we have
1 2 ; 1 2
Gn(X) - Gn(X) is nonempty. Then Gn(X) = Gn(X), for a

generic X, 1s smooth of pure dimension =t + 1.
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Proof: Under our assumption, the image of ﬁj i —jﬂ i

in Tg would be a dense open subspace U. By Sard's

Theorem, since lj % ‘.iji is smooth, the generic fiber

of the map_}j i u,&ji -+ U 1s smooth and since U has
dimension 3g - 3 and jtj; - jﬂi has dimension

3g - 3+ 1 + 1, the generic fiber has dimension T + 1.
Thus, for a generiec curve, G%(X) - Gﬁ(X) is smooth of

dimension T + 1. I

Remarks:

(1) If T >0, then by [14] we know that G_(X) is

nonempty. If we knew that GE(X) were reduced for a

1

generic X, then, since the points of G£+ are singular

P+1(X)

points of GE, we could conclude that Gg(X) - Gn

is nonempty.for generic X.

(2) Martens proved in [17], using Farkas's results [5],

that Ei(x) - @i(X) is smooth for a generic curve X.
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§3, The case r = 2

We now show that the hypotheses of Lemma 5 are
satisfied in the case of explicit special divisors which
we construct from Melis's examples. We assume throughout

this section that r = 2.

Even genus case:

Suppose g = 2m and n are given such that 7t 1is
nonnegative. Consider Meis's Riemann surface of genus g

(see II - 2):
m+l _ m m m
y = (x-1)(x-2)(x-3)(x-4)"(x-5)" (x-6)
Qur divisor D will consist of the following:

+
(1) the g—g—g (= m+l) points over x = 0, denoted

Po,...,P

12" m+l1°

(2) the (ramification) point over x = 6, denoted
P 4o> With multiplicity m - 1 (where i =2 + g - n),

and

(3) the point over x = 5, denoted Pm+3.
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Let dck, k=1,...,g, be Meis's basis of

holomorphic differentials (see II - 2). Let tj be

a local parameter at Pj’ J =1,...,mt3, and write

dt

dc,. = ¢, ..
“x ¢J>k J

The divisor Pl ¥ ax & Pm+l’

1 2
m+1 " Sme1

specialty 1s easily seen to be m from the table in

Meis's example of a
divisor with r = 1, dis in G (its index of

ITI - 2). Hence, the {(m+l) x g matrix

J=1,...,mtl

N o= oy (P)] o

has rank m. By renumbering two of these points, if
necessary, we may assume that the leading minor of

order m of N 1is nongzero.

In the matrix M of IIT - 1, we will take the row

arising from Pm and move 1t to the next to the last

+1
row. This is done jusf to have the leading minor of
order n - 2 of %YL be nonzero. Thus ‘ML has the

following form:
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i columns

e * —
m rows ¥ 0%, ® O
= CRE . %
(1% 0 0 0 & 0 0 OI
- Fo% 0 o t * 0 ol O
N T T ¥ 0 *t t ¥ . Ol
. . :{
. .I
|t I |
. & . . B . . . o]
¥ 0 0 ¥ 0 O]

where a "#" is nonzero and a "t+" may be nonzero. (The
table in II - 2 of order of vanishing of the differentials
is what is used to see that 5771 has the above form.) The

last two rows are those which arise from Pm+1 and Pm+3'

Note (from the table in II - 2) that the m differentials
which vanish at Pm+1’ vanish only simply there. Thus,

the quadratic differentials dTP d;k, for k = g-d+l,.s:38;

m+l1,0

will each have a simple pole at P (since dtT
: » m+1 P
m+1,0

has a pole of order 2 there).
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Now suppose there existed a linear dependence

relation among the «o say

J,k’

+ + ... + a.a, .
a0 ay% 4

By definition of the aj k We have

m m-i+1
( £ wu.dr + I
g=Itkyo1 T P00 weo

ul,k = dg

where uj,

T 2y41% g

U, and U are * minors of order

n

+

e

(and u 1is nonzero). Thus, the 0y s for k = 1,.
5

will all have a simple pole at Pm+1

adr . s, dT
g-i+k Pm+l,0

terms are regular at Pm+l)'

finite at Pm+1

all).

But the

¥ Dl’

(since they contain

%%
(since they don't contain drt

5

m+1,0

with nonzero coefficient and all other

will all be

at

Therefore, the relation (¥) will imply the existence

of a linear dependence relation among the

k=1,...,1, and among the Oy 1o for k
=23

“1,k°

= 9,

for

i

If

(¥) 1is nontrivial, then at least one of these relations

will be nontrivial. But the aj K
3

for fizxed

J

are
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linearly independent (cf. the Remark after the r = 1
case). This contradiction shows that our divisor D
satisfies the hypotheses of Lemma 5. Hence, by prudently

choosing the points Ql""’QBg—B on our surface, we
2
are assured that the tangent space to )zjn at (SO,D),

where s is the module point of Meis's Riemann surface,

0
has dimension 3g - 3 + t + 2 (by Proposition 16).

Example

We have the feeling that the reader might like an
example here. We will oblige the reader, but he or she

will probably regret it.

Consider the case r =2, g = 8, n = 8, hence 1 = 2,

Our surface 1is given by the algebraic function

32 = (x-1)(x-2)(2-3) (x=1)" (x-5) % (x-6)"
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The table of order of vanishing of the differentials

is:

x = 1 2 3 Yy 5 6 0 oo
dzgq 3 3 3 0 o0 0 0 1
dc, 2 2 2 L 1 1 0 i
d§3 1 1 X 2 2 2 0 IR
azcy, 0 0 0 3 3 3 0 1
dzg 3 3 3 0 o 0 1 0
dzg 2 2 L 1 1 1 1 0
dc7 1 1 1 2 2 2 1 0
dtg 0 0 0 3 3 3 i 0

We take for our divisor D the 5 points over O,

denoted Pl,...,PS; the point over x = 6 (denoted P6)

with multiplicity 2; and the point over x = 5, denoted

P7'



The matrix M has the form

00 1B 4y (B 0y S(B)) 6y (R 0 0 0 0]
¢5,1(F) b5 5(Fp) 45 3(Bp) 95 4(Pp) 0 0 0 0

m=| 93,1(F3) 5 2(F3) ¢3,3(P3) b3 4(P3) 0 0 0 0
¢y 1 (Py) by o (By) by, 3(Fy) by, 4 (Py) 0 0 0 0
%6,1(Fg) 0 0 0 tg,5(Pg) 0 o 0
;%¢é,1(P6) ~3%5.5(Pg) 0 0 ~5¢5 5 (Pg) -%¢é’6(P6) 0 0

b5 1(Pg) 05 2(F5) b5 5(Pg) ¢5 1 (Pg) 0 0 0 0

N ¢7’1(P7) 0 0 0 ¢7’5(P7) 0 0 ?4

where we have moved the fifth row to the seventh row in order to make the leading minor

of order 6, denoted u, nonzero.

"T16



By lemma 4, we may assume that the "deformed" matrix €Y’ has the same first 6

columns as M. The last two columns of 9Y¥L are given by € times:

Col. T Col. 8

1 3g~3 1 1 1 38-3 1 1
s101,7P) + T optp  (8)5q(ay) s101,5(P0) + 3 gty (8)24(a)

1 3g-3 ' 1 3 3gf3 v 1
s2¢2,7(P2) + milmeP2 O(Qm)c7(Qm) 52¢2,8(P2) # milmePE’ O)Qm)-’;g(Qm)

' 3g-3 v | ' ' 3g-3 ' '
- 1 ) 3%-3 1 1 t 38:3 1 1
Sufbu,?(Pr) + mzlmePf—l O(Qm)C7(Qm) Slld)L!,B(P’—l) + mzlmePQ O(Qm)Cg(Qm)
g i 3g-3 ' ' 3g-3 ' 1
58706 7(Pg) * m__Z_l bmrP6 O(Qm)¢7(Qm) ElmeP6 O(Qm)cg(Qm)

1 3g-3 ' 1
%’364’6,7(36) - %374’&?%“’6) * "%574’&?{)3(136) * mzlme% 1(Qm)C8(Qm)
3%“3 t 1

milmeP6,l(Qm);7(Qm) |
S5b5 7(P5) + mzlbmrPB O(Qm)c7(Qm) 5505 g(Pg + milmeP5,o(Qm)c8(Qm)
e el (@ )eh(a) et (@eh(a)
b_T 'S T [
el P7,0 ms =7 ¥m ! - m P7,0 m’>8"*m

*26
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Notice that sg does not appear (it would be in the
last row) since dcT and d§8 both vanish with multipli-
city greater than 1 on the point P7 (which is a
simple point of D). This should have implications
about the tangent space to G%(X) at D, but we have

not been able to see Jjust what those implications are.

al,l and a1’2 will contain the terms
—udT dzg and -pdt dc respectively. Hente,
P 7 P 3
550 5,0

these quadratic differentials will have a pole at P5.

Now,

But a2:1 and a2,2 will be finite at P5.

0dd genus case:

This case is quite similar. Suppose that
g =-2m + 1 and n are glven such that is non-

negative. Consider Meis's surface:

mt+2
m(x-1J)
3 . _J=l
Y~ T Sm*3
I (x - k)
k=m+3

| 4
Let P, and P denote two of the three points

0
over x = 0. Our divisor D will consist of:



94.

(1) the m + 2 ramification points over x = 1,2,...,m+2

which we will denote by Pl""’Pm+2

7

(2) P, and
(3) the point P, with multiplicity m - 1.

The divisor P1 . Pm+2 was Meis's sample

divisor. Similarly to the even genus case, we may
assume that one of the two last rows in DYVL arises

from Pm‘ The other of the two last rows arises

.
b

from Pé.

Now, the last m differentials in Meis's basis wvanish

simply at Pm+2’ hence the quadratic differentials

dt dg

N for k=1,...,1i, will have a pole
m+2,0 &

P 1452

at P We may apply the same reasoning as in the

m+2°
even genus case to conclude that a linear dependency
relation among all the aj i would imply a linear

2
dependency among those arising from a fixed row, a

contradiction.

Thus, we have established

'

Proposition 18:’2j i has a component of dimension

3z - 3+ 1+ 2 for any n and g such that T 1is

nonnegative.
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§4. The case r = 3

We assume throughout this section that r = 3.

We construct a special divisor from Meis's examples
and then show that the aj x are linearly independent by
Y
considering the order of vanishing of the aj i at some
5>

of the points of the divisor.

Even genus case

Suppose g = 2m and n are given such that 1 1is
nonnegative. Consider Meis's Riemann surface of genus g

in II - 2. Our divisor D will consist of:

(1) the m + 1 points over x = 0, denoted

.,P

12" m+1

(2) the point over x'= 6, denoted Pm+2’ with

multiplicity (m - i) and

(3) the point over x = 5, denoted Pm+3, and the

point over x = 4, denoted il

Then our divisor has degree equal to
m+ 1+ (m-1) + 2 = 2@ -1+ 3 =n. Its index of
specialty is 1 since’ only the last i differentials
in Meis's basis vanish to order m - 1 at the point over

X = 6. More expliecitly, recall from II - 2 that the
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order of vanishing of dggui+k at the points Pm+2’

Pm+3 and Pm+u is m=~- (1 -k + 1), for k =1,...,1.
Let t.j be a local parameter at Pj, J= 1l,...,m+l,

and write dck = ¢j,kdtj' Since Meis's divisor

Py + ... + P ., isin Giﬁl()() - G§+l()(), the (m+l) x-g

matrix

J=1,...,mt1l

[d’j,k(Pj)] Ly

has rank m. By remMmbering these points, if necessary,
we may assume that the leading minor of order m is
nonzero. In the matrix‘?TL, take the row arising from

P and put it just above the row arising from Pm+3.

m+1
This insures that the leading minor u of order n - 3
of 771 is nongzero. (771&@5 a form completely analogous
to that described in the previous section.) The three
last rows of ¥ are those arising from P12 Pm+3

and Pm+4'

Now suppose there existed a linear relation of the

"
i

form

+ ... + a +

*
(¥) ajoq g+ ...t 2500 3+ 85490 4 21%2,1

#31%3,1 7
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a are

We will show that all the j

at P P and

order of . _—L

J.k m+3

Now, those o with J =1

J.k
dt

ag
Pt1,0

will contain with

g-i+k

(namely +u). But dzg

g-i+k’

at P (see II - 2). Hence, as

mt+l

the o will have a pole at P

1,k

kK= 1,...

m+1

0 by considering the

Pm+4'

(and only those)

a nonzero coefficient
,1, vanishes simply
in the previous section,

, while the a2,k

and the u3 . will be regular there. This implies,
2 z

by (¥), that we must have

a1%1 .1

But the al,k

hence we must have

al=a2

o + ... +a.o, ., = 0.

are linearly independent by IITI - 2,

It is quite a bit more complicated to show that the

other coefficients in (¥) are zero.

at P

of dt and P,

g-1+k m+3

2,k

with a nonzero coefficient

m - (i-k+1) - 2 at P

m+3

is

will contain

Recall that the order

m - (i-k+1l), for

dt dr .
Pn3,0 717K

(+u)’, hence will have order

(all other terms in o are
. 2,k
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regular at Pm+3)' The a3,k will have order at least

m - (i-k+1l) at P (since " does not contain

m+3 %3 k

dTP and every other differential of the second
m+3,0

kind is regular at Pm+3)‘ The converse situation will

hold at Pm+h'

Recall that (¥) has become

* - = -
(%) 834995 3 F -0r Fagiay y Foagy 00 g F Y Bgyly g F 0

Consider the followlng table of order of vanishing

of the aj,k at the points Pm+3 and Pm+ﬂ:
Bk Pm+3 Pm+u ok Pm+3 Pm+4

u2,1 m~1-2 >m-~1 a3,l >m-1 m-i-2
&5 2 m-3-1 >m-i+l a3’2 >m-1i+1 m-i-1

. A a4 _
% 3 m-1i >m-i+2 o3 3 Sm=142 m-i

a 1 iy 4
G5 ) m-i+1 >m=-1+3 a3,u >m=-1%3 m-i+l
u2,k m-(i-k+3) >m-(i-k+1) a3’k >m-(i-k+1) m-(i-k+3)
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Observing the orders at Pm+3’ we see that we must

have 8541 T @440 = 0 (since a2,l and a2’2 have lower

1
order at Pm+3 than any of the other aj,k)‘ We needn't
have that ai+3 = 0 since we may have that the order of
m3,1 is m~ 1 at Pm+3 and a331 and a233 may

"cancel" each other.
However, now consider the orders at Pm+4' Since
a3’1 and a3’2 have lower order at Pm+u than any of

the other aj,k’ we must have 85541 = a2i+2 = 10y But,

going back to the situation at P thls implies that

m+3°

ai+3 = ai+u = 0. And this in turn implies that

83543 T Bpq4y = 0 (going back to Pm+u). By continuing
to go back and forth in this manner, we can show that all

the are Q0.

4
Thus, invoking Lemma 5 and Proposition 16, we may
conclude that the dimension of the tangent space to ijéz

ak (SO,D) is 3z -3 + 1 + 3.

0dd genus case

Suppose g =2m + 1 and n are given such that T

is nonnegative. Consider Meis's Riemann surface of genus g
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in II - 2. OQur divisor D will consist of:

(1) the m+ 2 ramification points over

x=1,...,m+*2, which we denote by Pl”"’Pm+2

(2) one of the three points over x = 0, denoted

PO’ with multiplicity m - 1 and

(3) the other two points over x = 0, denoted

1 1"
PO and PO‘

By a completely analogous argument to that in the
even genus case, one can show that the dimension of the
tangent space to 13 g at (SO,D) iz 3g -3+ 1 + 3.

Thus, we have established

Proposgition 19:‘)3 g has a component of dimension

32z -3+ 1+ 3 forany n and g such that T 1s

nonnegative.

This is as far as Mels's examples will carry us,

perhaps due to our own limitations.
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Chapter IV

Open Problems and Conjectures

§1. Moduli of Extra-Special Divisors

We return to Remark (1) after Theorem 3 of IIT - 2.

2

Recall that we proved that Y i'—)ﬂll, if nonempty, has
pure dimension 3g - 3 + T + 1, whether or not T 1is

nonnegative.

Suppose that 1 1is negative and that Xj i —ﬂi is

nonempty. Let 6 be the map Y % —‘2j§ - Tg and let W
; . R - 1 2
be an irreducible component of the image of-jj i "«Ejn

under this map. We can say what the dimension of W is
if we-know the dimension of a generic fiber of the map
B'I(W) + W. Let d denote the dimension of such a

generic fiber. Then we have

dim W= 3g - 3+ 1+ 1 - d.

Example 1: Hyperelliptic'Curves

A hyperelliptic Riemann surface of genus g is

defined by the algebraic function
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y2 = Alx - ay) ... (x - “2(g+1)) [3]

Hyperelliptic Riemann surfaces are characterized by having
a nonempty G% or, equivalently, by a hyperelliptic
Weierstrass point ([8]). Let P be a hyperelliptic
Weierstrass point on a Riemann surface X. Then the gap
sequence at P 1is 1, 3, 5, 7, ... By general theory

of Weilerstrass points (ef. [8]), we may choose a basis

of the holomorphic differentials {dck} on X such

that the order of dck at P is 2(k-1), k 1,00.58.

The matrix ADM of I - 3 for the divisor D = 2P is

S
6, (B) - & 52 0320 (p) T

T S s
- %qbl(P) - € 2—1¢£2)(P) + e 33 ¢§3)(P) 0 ... 0

b -~

For all of the minors of order 2 of this matrix to
vanish, 81 and 85 must satisfy one equation. Thus,
the dimension of the tangent space to G%(X) at D is
2 - 1=1. We can conclude that the dimension of G%
at D 1is 1, since we, always havg dim GE > r (cf. Remark

(2) after Theorem 3). This serves to illustrate the
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methods of I - 3. We can independently conclude that
every component of G% has dimension 1 by virtue of the

following lemma.

Lemma 6: Every member of G%(X) is linearly equivalent

to 2P where P0 is a hyperelliptilic Welerstrass

0°
point.
Proof: Suppose E 1is in G3(X). Then there is a function
h whose poles are the points of E and by means of

which X is displayed as a two-sheeted branched covering

of the Riemann sphere, the branch points being hyperelliptic
Weierstrass points. Let PO be a branch polnt and suppose

P occurs over X = 0. Then the function x - o has as

0
its divisor 2PO - E, hence E and 2P0 are linearly

equivalent. §

3

Thus, each component of G2 maps to a point of J,

hence is l-dimensional.

Now, we have T = 2(2-1) - g =2 - g. Thus, the
subvariety of Tg of all hyperelliptic surfaces has
dimension 3g - 3 + (2-g) + 1 - 1 = 2g - 1. This is
very well-known and, in fact, our methods are very close

to those of Farkas [5].
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Example 2:

Suppose we wanted to compute the moduli of curves
with nonempty G%. By Clifford's Theorem, ﬁj g is
empty hence, by Theorem 4, ﬁﬂ 1, if nonempty, is smooth
of pure dimension 3g - 3 + 1t + 1. Now,

T =2(3-1) ~g=1U4-g. So, Y 1, if nonempty, has

dimension 2g + 2.

By Theorem 1 of [16], we have that, for g > i,
if G%(X) is nonempty, then every component has dimension
at least 5 - g and at most dimension 2, with the upper
bound occurring if and only if X 1s hyperelliptic. But
each component of G% must have dimension at least 1.
So, 1f there exists a non-hyperelliptic curve of genus g
with nonempty G%, then we must have that the dimension
of the generic fiber of the map jtj% -+ T is 1. Hence,

g
we would have that the dimension of the subvariety of Tg
of curves with nonempty G% is 2g +2 -1 =2g + 1.
This agrees with the number which appears in Segre [24]

and Severi [26].

To be more concrete, for odd genus Mels's examples
have branch points of order 2 over x = 1,2,3,...,2mt+2

and ». These branch points are Weierstrass points whose
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gap seguence is

~ A

1, 2, 3, 4, 5, 6, ..., 3(B2H) + 1.
Thus, 3 times one of these points is in G%. Also note
that these curves are not hyperelliptic, since hyper-
elliptic curves have only hyperelliptic Welerstrass
points. The reader may convince himself that if P 1is
one of the above branch points and D = 3P, then by the
methods in I - 3, the dimension of the tangent space to

G%(X) at D 1is 1.

We have established

Proposition 17: Suppose there exists a non-hyperelliptic

curve of genus g with a nonempty G% (which condition 1is
certainly true for g odd).  Then the subvariety of Tg of
curves with nonempty G% has dimension 2g + 1. |

It is hoped that the machinery developed here will

help to solve similar "moduli questions."
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X §20
Suppose there exists a compact Riemann surface X
of genus g and a divisor D on X such that the

following two properties hold:

n
(1) D= =t Pj’ all points distinet
J=1

(2) There exists a basis {dz, }_, of the holo-

morphic differentials on X such that

order dck
.
3 g~1+1<kz<g \di

where 1 = dim H1(X,OX(D)).

Let be the quadratic differentials

®1,100°9% 4

of IIT - 1, Suppose there existed a linear relation

(*) X b. .a e 0
J=ls wn sa® J,k73,k

k=%’.£3 .gi;-f
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Put drj = dTPj . By definition of aj,k’
k]
we have

(eldtl+...+(@l)n_r”le dr. _+(~1)""Tuar )

aj,k = drﬁn+k-—l =Y =l h=r+]j

where the e, are minors of the matrix YN of III - 1
and u 1s the (nonzero) leading minor of order n - r

of /M,. Computing orders, we see that

-1 3=1,\«x
a =
or erPg‘ Otj ,k '
>1 § # 2,V¥k

.Hence, a linear relationship such as (¥) implies

that the aj Kk for J fixed are linearly dependent.
s :

This contradicts what was shown in III =« 2 (ef. the

Remark there). Hence Oy gseeesty, y are linearly

independent. By Lemma 5 and Proposition 16, we may then
conclude that the dimension of the tangent space to Qj g
at (sy,D), where s, 1is the module point of X, is

-

3g - 3+ 1T + r.
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Question 1: For what values of g,r and n does there

exist such an X and D?

Producing such an example would show that _23;; has

a component of dimension 3g -3 +1 + pr,

Question 2: If g,r and n are such that T is

nonnegative, then is the situation described above

dense
genericy i,e., is there apopen set of mg consisting
of divisors on Riemann surfaces satisfying conditions (1)

and (2)2

This would show that if = > 0, then for a generic
Riemann surface X the analytic space GE(X) has
dimension T + r, the result whiph we originally set

out to prove.
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