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POSITIVE STRUCTURES IN LIE THEORY

G. Lusztig

This paper is based on a lecture given at the International Consortium of Chi-
nese Mathematicians, Taipei, December 2018.

0.1. In late 19th century and early 20th century, a new branch of mathematics
was born: Lie theory or the study of Lie groups and Lie algebras (Lie, Killing,
E.Cartan, H.Weyl). It has become a central part of mathematics with applications
everywhere. More recent developments in Lie theory are as follows.

-Analogues of simple Lie groups over any field (including finite fields where they
explain most of the finite simple groups): Chevalley 1955;

-infinite dimensional versions of the simple Lie algebras/simple Lie groups: Kac
and Moody 1967, Moody and Teo 1972;

-theory of quantum groups: Drinfeld and Jimbo 1985.

0.2. In Lie theory to any Cartan matrix one can associate a simply connected Lie
group G(C); Chevalley replaces C by any field k and gets a group G(k). In [L94]
we have defined the totally positive (TP) submonoid G(R>0) of G(R) and its
“upper triangular” part U+(R>0). In this lecture we will review the TP-monoids
G(R>0), U

+(R>0) attached to a Cartan matrix, which for simplicity is assumed
to be simply-laced. In [L94] the nonsimply laced case is treated by reduction to
the simply laced case.

0.3. The total positivity theory in [L94] was a starting point for
-a solution of Arnold’s problem for real flag manifolds, Rietsch 1997;
-the theory of cluster algebras, Fomin, Zelevinsky 2002;
-a theory of TP for the wonderful compactifications, He 2004;
-higher Teichmüller theory, Fock, Goncharov 2006;
-the use of the TP grassmannian in physics, Postnikov 2007, Arkani-Hamed,

Trnka 2014;
-a theory of TP for the loop group of GLn, Lam, Pylyavskyy 2012;
-a theory of TP for certain nonsplit real Lie groups, Guichard-Wienhard 2018;
-a new approach to certain aspects of quantum groups, Goncharov, Shen.

Supported by NSF grant DMS-1566618.

Typeset by AMS-TEX

1

http://arxiv.org/abs/1812.09313v3


2 G. LUSZTIG

0.4. Schoenberg (1930) and Gantmacher-Krein (1935) (after initial contributions
of Fekete and Polya (1912)) defined the notion of TP matrix in GLn(R): a matrix
all of whose s× s minors are ≥ 0 for any s. Gantmacher and Krein showed that if
for any s, all s×s minors of a matrix A are > 0 then the eigenvalues of A are real,
distinct and > 0. For example, the Vandermonde matrix (Aij), Aij = xj−1

i with
x1 < x2 < · · · < xn real and > 0 is of this type. According to Polya and Szegö,
the matrix (Aij), Aij = exp(xiyj) with x1 > x2 > · · · > xn, y1 > y2 > · · · > yn
real is also of this type.

The TP matrices in GLn(R) form a monoid under multiplication. This monoid
is generated by diagonal matrices with > 0 entries on diagonal and by matrices
which have 1 on diagonal and a single nonzero entry off diagonal which is > 0
(Whitney, Loewner, 1950’s). Our definition [L94] of the TP part of any G(R) was
inspired by the work of Whitney, Loewner.

However, to prove properties of the resulting monoid (such as the generalization
of the Gantmacher-Krein theorem) I had to use the canonical bases in quantum
groups (discovered in [L90]) and their positivity properties. The role of s × s
minors is played in the general case by the canonical basis of [L90]. Unlike in
[L94], here we define G(R>0) by generators and relations, independently of G(R).
Surprisingly, this definition of G(R>0) is simpler than that of G(R) (see [ST]).
From it one can recover the Chevalley groups G(k) for any field k. Namely, the
relations between the generators of G(R>0) involve only rational functions with
integer coefficients. They make sense over k and they give rise to a “birational
form” of a semisimple group over k. This is the quotient field of the coordinate
ring of G(k); then G(k) itself appears as a subgroup of the automorphism group
of this field. In this approach the form G(R>0) is the most basic, all other forms
are deduced from it.

0.5. We now describe the content of various sections. In §1 we define a positive
structure on a set. Such structures have appeared in [L90], [L94] in connection
with various objects in Lie theory. In §2 we define the monoid U+(R>0). In §3
we define the monoid G(R>0). In §4 we use this monoid to recover the Chevalley
groups over a field. In §5 we define the non-negative part of a flag manifold.

1. Positive structures

1.1. The TP monoid can be defined not only over R>0 but over a structure K
in which addition, multiplication, division (but no substraction) are defined. In
[L94] three such K were considered.

(i) K = R>0;
(ii) K = R(t)>0, the set of f ∈ R(t) of form f = tef0/f1 for some
f0, f1 in R[t] with constant term in R>0, e ∈ Z (t is an
indeterminate);
(iii) K = Z.

In case (i) and (ii), K is contained in a field R or R(t) and the sum and product
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are induced from that field. In case (iii) we consider a new sum (a, b) 7→ min(a, b)
and a new product (a, b) 7→ a+ b. A 4th case is

(iv) K = {1}
with 1 + 1 = 1, 1× 1 = 1.

In each case K is a semifield (a terminology of Berenstein, Fomin, Zelevinsky
1996): a set with two operations, +, ×, which is an abelian group with respect
to ×, an abelian semigroup with respect to + and in which (a + b)c = ac + bc
for all a, b, c. We fix a semifield K. There is an obvious semifield homomorphism
K → {1}. We denote by (1) the unit element of K with respect to ×.

1.2. In [L94] we observed that there is a semifield homomorphism α : R(t)>0 →
Z given by tef0/f1 7→ e which connects geometrical objects over R(t)>0) with
piecewise linear objects involving only integers. I believe that this was the first
time that such a connection (today known as tropicalization) was used in relation
to Lie theory.

1.3. For any m ∈ Z>0 let Pm be set of all nonzero polynomials in m indetermi-
nates X1, X2, . . . , Xm with coefficients in N.

A function (a1, a2, . . . , am) 7→ (a′1, a
′
2, . . . , a

′
m) from Km to Km is said to be

admissible if for any s we have a′s = Ps(a1, a2, . . . , am)/Qs(a1, a2, . . . , am) where
Ps, Qs are in Pm. (This ratio makes sense since K is a semifield.) In the case
where K = Z, such a function is piecewise-linear. If m = 0, the unique map
K0 −→ K0 is considered to be admissible (K0 is a point.)

1.4. A positive structure on a setX consists of a family of bijections fj : K
m ∼

−→ X

(with m ≥ 0 fixed) indexed by j in a finite set J , such that f−1
j′ fj : K

m −→ Km is

admissible for any j, j′ in J ; the bijections fj are said to be the coordinate charts

of the positive structure. The results of [L94], [L97], [L98], can be interpreted as
saying that various objects in Lie theory admit natural positive structures.

2. The monoid U+(K)

2.1. The Cartan matrix. We fix a finite graph; it is a pair consisting of two
finite sets I,H and a map which to each h ∈ H associates a two-element subset
[h] of I. The Cartan matrix A = (i : j)i,j∈I is given by i : i = 2 for all i ∈ I
while if i, j in I are distinct then i : j is −1 times the number of h ∈ H such that
[h] = {i, j}.

An example of a Cartan matrix is:

I = {i, j}, A =

(

2 −1
−1 2

)

.

We fix a Cartan matrix A. For applications to Lie theory A is assumed to be
positive definite. But several of the subsequent definitions make sense without
this assumption.

We attach to A and a field k a group G(k). When A is positive definite, G(k)
is the group of k-points of a simply connected semisimple split algebraic group of
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type A over k. Without the assumption that A is positive definite, the analogous
group G(k) (with k of characteristic 0) has been defined in [MT], [Ma],[Ti].

We will associate to A and K a monoid G(K) and a submonoid U+(K) of
G(K). In the case where K = R>0 (resp. K = R(t)>0), G(K) and U+(K) can
be viewed as submonoids of G(k) where k = R (resp. k = R(t)). In the case
where K = R>0,k = R, G(R) = SLn(R), U+(K) is the monoid of TP matrices
in G(R) which are upper triangular with 1 on diagonal. We first define U+(K).

2.2. Let U+(K) be the monoid (with 1) with generators ia with i ∈ I, a ∈ K and
relations

iaib = ia+b for i ∈ I, a, b in K;

iajbic = jbc/(a+c)ia+cjab/(a+c) for i, j ∈ I with i : j = −1, a, b, c in K;

iajb = jbia for i, j ∈ I with i : j = 0, a, b in K.
(In the case where K = Z, relations of the type considered above involve piecewise-
linear functions; they first appeared in [L90] in connection with the parametriza-
tion of the canonical basis.) The definition of U+(K) is reminiscent of the def-
inition of the Coxeter group attached to A. In the case where K = Z and A is
positive definite the definition of U+(K) given above first appeared in [L94, 9.11].

2.3. When A =

(

2 −1
−1 2

)

, K = R>0, we can identify U+(K) with the sub-

monoid of SL3(R) generated by




1 a 0
0 1 0
0 0 1



,





1 0 0
0 1 b
0 0 1



,

with a, b in R>0.

2.4. Let W be the Coxeter group attached to A. It has generators i with i ∈ I
and relations ii = 1 for i ∈ I; iji = jij for i, j ∈ I, i : j = −1; ij = ji for i, j ∈ I,
i : j = 0. Let Ow be the set of reduced expressions of w that is the set of sequences
(i1, i2, . . . , im) in I such that i1i2 . . . im = w in U+({1}) where m is minimum. We
write m = |w| (=length of w).

WhenK = {1}, U+(K) is the monoid (with 1) with generators i1 with i ∈ I and
relations i1i1 = i1 for i ∈ I; i1j1i1 = j1i1j1 for i, j ∈ I, i : j = −1; i1j1 = j1i1 for
i, j ∈ I, i : j = 0. By a lemma of Iwahori and Matsumoto we have can identify (as
sets) W = U+({1}) by w = i1i2 . . . im ↔ i11i

1
2 . . . i

1
m for any (i1, i2, . . . , im) ∈ Ow.

This bijection is not compatible with the monoid structures.

2.5. The semifield homomorphism K → {1} induces a map of monoids U+(K) →
U+({1}). Let U+

w (K) be the fibre over w ∈ U+({1}). We have U+(K) =
⊔w∈WU

+
w (K).

We now fix w ∈ W . It turns out that the set U+
w (K) can be parametrized by

Km, in fact in many ways, indexed by Ow. For i = (i1, i2, . . . , im) ∈ Ow we define
φi : K

m → U+
w (K) by
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φi(a1, a2, . . . , am) = ia11 i
a2
2 . . . iamm .

This is a bijection. Now U+
w (K) together with the bijections φi : K

m → U+
w (K)

is an example of a positive structure. (We will see later other such structures.)

2.6. Let w ∈ W,m = |w|. In the case K = Z, U+
w (N) := φi(N

m) ⊂ U+
w (Z) is

independent of i ∈ Ow. We set U+(N) = ⊔w∈WU
+
w (N); this is a subset of U+(Z).

When W is finite, let wI be the element of maximal length of W . Let ν = |wI |.
Now U+

wI
(N) was interpreted in [L90] as an indexing set for the canonical basis of

the plus part of a quantized enveloping algebra. A similar interpretation holds for
U+
w (N) when W is not necessarily finite and w is arbitrary, using [L96, 8.2].

3. The monoid G(K)

3.1. In order to define the monoid G(K) we consider besides I, two other copies
−I = {−i; i ∈ I}, I = {i; i ∈ I} of I, in obvious bijection with I. For ǫ = ±1,
i ∈ I we write ǫi = i if ǫ = 1, ǫi = −i if ǫ = −1.

Let G(K) be the monoid (with 1) with generators ia, (−i)a, ia with i ∈ I, a ∈ K
and the relations below.

(i) (ǫi)a(ǫi)b = (ǫi)a+b for i ∈ I, ǫ = ±1, a, b in K;

(ii) (ǫi)a(ǫj)b(ǫi)c = (ǫj)bc/(a+c)(ǫi)a+c(ǫj)ab/(a+c)

for i, j in I with i : j = −1, ǫ = ±1, a, b, c in K;

(iii) (ǫi)a(ǫj)b = (ǫj)b(ǫi)a

for i, j in I with i : j = 0, ǫ = ±1, a, b in K;

(iv) (ǫi)a(−ǫi)b = (−ǫi)b/(1+ab)i(1+ab)
ǫ

(ǫi)a/(1+ab)

for i ∈ I, ǫ = ±1, a, b in K;

(v) iaib = iab, i(1) = 1 for i ∈ I, a, b in K;

(vi) iajb = jbia for i, j in I, a, b in K;

(vii) ja(ǫi)b = (ǫi)a
ǫ(i:j)bja for i, j in I, ǫ = ±1, a, b in K;

(viii) (ǫi)a(−ǫj)b = (−ǫj)b(ǫi)a for i 6= j in I, ǫ = ±1, a, b in K.

3.2. When A =

(

2 −1
−1 2

)

, K = R>0, we can identify G(K) with the sub-

monoid of SL3(R) generated by:




1 a 0
0 1 0
0 0 1



,





1 0 0
0 1 b
0 0 1



,





1 0 0
c 1 0
0 0 1



,





1 0 0
0 1 0
0 d 1



,





e 0 0
0 (1/e) 0
0 0 1



,





1 0 0
0 f 0
0 0 (1/f)



,

with a, b, c, d, e, f in R>0.
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3.3. The assignment ia 7→ ia (with i ∈ I, a ∈ K) defines a monoid isomorphism
of U+(K) onto a submonoid of G(K); when K = {1}, we denote by w ∈ G({1})
the image of w ∈ U({1}) under this imbedding. The assignment ia 7→ (−i)a (with
i ∈ I, a ∈ K) defines a monoid isomorphism of U+(K) onto a submonoid of G(K);
when K = {1}, we denote by −w ∈ G({1}) the image of w ∈ U({1}) under this
imbedding. The map W ×W → G({1}), (w,w′) 7→ w(−w′) is a bijection of sets
(not of monoids).

3.4. Tits has said that W ought to be regarded as the Chevalley group G(k)
where k is the (non-existent) field with one element. But G({1}) is defined for the

semifield {1}. The bijections W
∼
−→ U+({1}), W ×W

∼
−→ G({1}) almost realizes

the wish of Tits.

3.5. For general K, the semifield homomorphism K → {1} induces a monoid
homomorphism G(K) → G({1}). Let Gw,−w′(K) be the fibre over w(−w′) of
this homomorphism. We have G(K) = ⊔(w,w′)∈W×WGw,−w′(K). We now fix
(w,w′) ∈ W ×W . Let M = |w| + |w′| + r. It turns out that the set Gw,−w′(K)
can be parametrized by KM , in fact in many ways, indexed by a certain finite
set Ow,−w′ . Let O−w′ be the set of sequences (−i1,−i2, . . . ,−i|w′|) in −I such
that (i1, i2, . . . , i|w′|) ∈ Ow′ . Let Ow,−w′ be the set of sequences (h1, h2, . . . , hM )
in I ⊔ (−I) ⊔ I such that the subsequence consisting of symbols in I is in Ow, the
subsequence consisting of symbols in −I is in O−w′ , the subsequence consisting of
symbols in I contains each symbol i (with i ∈ I) exactly once.

For h = (h1, h2, . . . , hM ) ∈ Ow,−w′ we define ψh : KM → Gw,−w′(K) by

ψh(a1, a2, . . . , aM) = ha11 h
a2
2 . . . haMM .

This is a bijection. The bijections ψh : KM → Gw,−w′(K) (for various h ∈
Ow,−w′) define a positive structure on Gw,−w′(K).

In the case where K = R>0 or K = R(t)>0, the statements above are proved
by using Bruhat decomposition in the group G(k) considered in 2.1 with k = R

or R(t). (When W is finite this is done in [L19]. See also the proof of [L94,
Lemma 2.3] and [L94, 2.7].) The case where K = Z follows from the case where
K = R(t)>0, using α : R(t)>0 −→ Z in 1.2.

4. Chevalley groups

4.1. In this section we assume that K = R>0 and that I 6= ∅. Let k0 be a field
and let k be an algebraic closure of k0.

Let w ∈ W,w′ ∈ W . Let M = |w| + |w′| + r. For h,h′ in Ow,−w′ , ψ−1
h′ ψh :

KM → KM (see 3.5) is of the form (a1, a2, . . . , aM) 7→ (a′1, a
′
2, . . . , a

′
M ) where

a′s = (Ph
′

h
)s(a1, a2, . . . , aM)/(Qh

′

h
)s(a1, a2, . . . , aM ) and each of (Ph

′

h
)s, (Q

h
′

h
)s is a

nonzero polynomial in N[X1, X2, . . . , XM ] (independent of K) such that the g.c.d.
of its 6= 0 coeff. is 1.
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Applying the obvious ring homomorphism Z → k0 to the coefficients of these
polynomials we obtain 6= 0 polynomials (P̄h

′

h
)s, (Q̄

h
′

h
)s in k0[X1, X2, . . . , XM ]. We

define a rational map ψ̄h
′

h
: kM → k

M by
(z1, z2, . . . , zM ) 7→ (z′1, z

′
2, . . . , z

′
m),

z′s = (P̄h
′

h
)s(z1, z2, . . . , zM )/(Q̄h

′

h
)s(z1, z2, . . . , zM )

This is a birational isomorphism. It induces an automorphism [ψh
′

h
] of the quotient

field [kM ] of the coordinate ring of k
M . We have [ψh

′

h
][ψh

′′

h′ ] = [ψh
′′

h
] for any

h,h′,h′′. Hence there is a well defined field [Gw,−w′(k)] containing k with k-
linear field isomorphisms [ψh] : [Gw,−w′(k)] → [kM ] (for h ∈ Ow,−w′) such that

[ψh
′

h
] = [ψh][ψh′ ]−1 : [kM ] → [kM ] for all h,h′.

4.2. We now assume that W is finite. Let wI , ν be as in 2.6. Let M = 2ν + r.
Let i ∈ I, ǫ = ±1, z ∈ k0. We can choose h = (h1, h2, . . . , hM ) ∈ Oω,−ω such
that h1 = ǫi. The isomorphism k

M → k
M , (z1, z2, . . . , zM ) 7→ (z1 − z, z2, . . . , zm)

induces a field isomorphism τz : [k
M ] → [kM ]. Let A be the group of all k-linear

field automorphisms of [Gω,−ω(k)]. We define (ǫi)z ∈ A as the composition

[Gω,−ω(k)]
[ψh]
−−→ [kM ]

τz−→ [kM ]
[ψh]

−1

−−−−→ [Gω,−ω(k)].

Now (ǫi)z is independent of the choice of h. Let G(k0) be the subgroup of A
generated by (ǫi)z for various i ∈ I, ǫ = ±1, z ∈ k0. Then G(k0) is the Chevalley
group associated to k0 and our Cartan matrix.

5. Flag manifolds

5.1. In this section W is not assumed to be finite. We assume that K is R>0.
Let G(R) be the group considered in 2.1. Let V be an R-vector space which is an
irreducible highest weight integrable representation of G(R) whose highest weight
takes the value 1 at any simple coroot. Let η be a highest weight vector of V . Let
B be the canonical basis of V (see [L93, 11.10]) containing η. Let P be the set of
lines in the R-vector space V . Let P≥0 be the set of all L ∈ P such that for some
x ∈ L − {0} all coordinates of x with respect to the basis B are ≥ 0. The flag
manifold B of G(R) is defined as the subset of P consisting of lines in the G(R)-
orbit of the line spanned by η. We define B(K) = B∩P≥0. By a positivity property
[L93, 22.1.7] of B (stated in the simply laced case but whose proof remains valid
in our case), the obvious G(R)-action on B restricts to a G(K)-action on B(K).
(As mentioned in 2.1, G(K) can be viewed as a submonoid of G(R).) When W is
finite, B(K) is the same as the subset B≥0 defined in [L94,§8]. (This follows from
[L94, 8.17].)
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