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It is Compositional Sparsity: a framework for ML
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Abstract

I propose a theoretical framework that aims to explain why deep networks work and what are the
properties of different architectures. The framework describes a few results and conjectures.

The core thesis is that compositional sparsity of the underlying regression function – thus an hy-
pothesis about the task to be learned – is the key principle of machine learning. I discuss the thesis
(with S. Lloyd) that all learnable functions must be compositionally sparse. Sparsity of the target func-
tions then naturally leads to sparse networks and sparsity-biased optimization techniques. I argue that
this is the case of transformers, through the self-attention layers, implementing a flexible version of
sparsity (that is, selecting which input tokens interact in the MLP layer). For more classical feedforward
multilayer networks, `2 optimization can also be used when the sparsity of the target function is known
and is reflected in the architecture of the network, as it is the case for CNNs.

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.



1 Introduction
We still do not understand why deep networks work. Until recently this question could be rephrased as
the question of why CNNs work so well. In the meantime other architectures, especially transformers,
also show amazing performance. Is there a common explanatory principle? In the following, I describe
a framework built around around a specific principle that I conjecture to be at the core of all of deep
learning. In this preliminary brief note, the main text outlines the main argument, while the appendices
provide more details – either background or proofs.

2 The curse of dimensionality can be avoided for target functions
that are either very smooth or compositionally sparse

The relatively old work of Maskhar and Poggio [1] starts from the classical curse of dimensionality:
an upper bound on the number of parameters needed for approximation of a continuous function
supported on a compact domain ofRd is W = O(ϵ

d
s ), where ϵ is the approximation error and s is a a

measure of smoothness of the function. The curse can be avoided by shallow or deep networks if s
is large and in particular if s grows with d. The curse can also be avoided by deep networks (but not
by shallow ones) if the function is compositionally sparse, that is if the function graph is such that each
constituent function has low dimensionality1. The theorem is

Theorem 1 Let G be a DAG,n be the number of source nodes, and for each v ∈ V , let dv be the number of
in-edges of v. Let f : Rn 7→ R be a compositional G-function, where each of the constituent functions is in
W dv

mv
. Consider shallow and deep networks with infinitely smooth activation function as in Theorem 1. Then

deep networks - with an associated graph that corresponds to the graph of f -avoid the curse of dimensionality in
approximating f for increasing n, whereas shallow networks cannot directly avoid the curse. In particular, the
complexity of the best approximating shallow network is exponential in n

Ns = O
(
ϵ−

n
m

)
,

where m = minv∈V mv , while the complexity of the deep network is

Nd = O

∑
η∈V

ϵ−dv/mv

 .

3 Physically computable functions must be sparse
An obvious question at this point is how "big" is the class of such compositionally sparse functions wrt
the class of all continuous functions. Perhaps unsurprisingly, the answer seems to be that in practice all
functions must be sparse compositional. Let us recall the classical definition of a computable function:

Definition 1 f : Nd → N is effectively computable if there is an effective procedure or algorithm that correctly
calculates f .

The definition above may be enough for our purposes – if "effective" is appropriately defined. For
more clarity we may also consider an explicitly more restricted definition of computability (work with
S. Lloyd):

Definition 2 A function f : Nd → N is physically computable if it can be computed/stored in time/memory
that is at most polynomial in d.

Then the "thesis" is:

Thesis 1 All efficiently computable functions are compositionally sparse, that is their constituent functions have
"small" d

s .
1We use the term of compositional sparsity following [2] instead of another equivalent term we used earlier: hierarchical

compositionality.
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The argument for this "thesis" is simple: a function f : N 1000 → N requires a memory of > 101000

bits, larger than the number of protons in the Universe, 1080.
Kolmogorov and Arnold [3, 4, 5] solution of Hilbert’s thirteenth problem shows that every continu-

ous functions can be represented exactly as a compositions of functions of one variable. However, the
constituent functions are very non-smooth. Appendix 7.1 has more information.

4 The sparse graph is known: CNNs
In the overparametrized square loss case, generalization depends on solving a sort of regularized ERM,
that consists of finding minimizers of the empirical risk with zero loss, while selecting the one with
lowest complexity (Malach and Poggio, in preparation). Recent work [6] has provided theoretical and
empirical evidence that this can be accomplished by SGD provided

1. the sparse function graph of the underlying regression function is assumed to be known and
takes the form, for instance, of a convolutional network;

2. the network is overparametrized allowing zero empirical loss;

3. the loss function is the regularized (e.g. weight decay) square loss or an exponential loss.

Thus this optimization problem can be solved if the graph of the underlying regression function is
known and takes the form of a compositionally sparse graph, such as, for instance, a convolutional network.

Empirical evidence suggests that for dense networks that do not reflect the sparse graph the same
problem cannot be solved using ℓ2 minimization. Sparsity must be explicit in the architecture of the
network for ℓ2 minimization to work. Theoretical and empirical evidence points in the same direction:
generalization bounds are several orders of magnitudes better for CNNs than for dense networks and
close to be non-vacuous for CNNs and presumably for other sparse networks.

The performance of trained neural networks is robust to harsh levels of pruning2. This empirical fact
supports the hypothesis that the network should reflect the sparsity of the underlying target function.
However, ℓ2 optimization cannot attain sparsity by itself, since it preserves very small weights that
should in fact be zero. Appendix 7.2 is about pruning and related issues. Empirically it seems that the
graph of the target function needs to be known approximately: it is sufficient that the sparse network
contains as a subgraph the target function graph. A proof would be interesting.

The conclusion is that if the sparse graph is known and approximately implemented in the architec-
ture of the network minimization in either ℓ2 or ℓ1 should work. A conjecture may be

Conjecture 1 If the sparse graph of the target function is reflected in the network and zero loss is attained then
both ℓ1 and ℓ2 minimization lead to solutions with good expected error. ℓ1 minimization however leads to pruned
networks wrt ℓ2 optimized networks.

5 The sparse graph is unknown: transformers
The second part of our framework is about the case of unknown function graph and sparsity constraints
in optimization. I propose the conjecture that when the sparse graph structure of the underlying
regression function is not known, optimization with sparsity constraints is needed. In particular, two
situations should be considered. The first main one is focused on dense networks under sparsity
constraints, the second on transformers.

5.1 Dense networks optimized under sparsity constraints
For dense networks it is known that a CNN-like inductive bias can be learned from data and through
training by using a modified ℓ1 regularization. Consistent with this empirical finding, pruning of a
dense network by using iterative magnitude pruning (IMP) also works.

2Coupled with the ever-growing size of deep learning models, this observation has motivated extensive research on learning
sparse models.
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5.2 Self-attention as flexible sparsity
For transformers a key question is: how does self-attention find the sparse set of tokens that are input to
a processing node (that is are the variables of a constituent function)? The tentative answer proposed
here is that self-attention for each token selects the relevant other tokens in the sequence. The matrices
WQ and WK that are set during the training time in such a way that A = QKT – with Q = xWQ,
K = xWK – may be together somewhat similar to a learned Malanhobis distance. In Appendix 7.3 the
normalized softmax HD(x) = xH(x) (with H being a threshold on x) induce sparsity in the selection
of connections, preferring only a small number of very similar token (where the similarity is adjusted
via the learnedWH ,WQ matrices. After the attention step there is a one-layer dense network on the
linear combination of a few tokens – this is very similar to the first node of a convolutional network.

Figure 1: The network here – similar to a CNN – reflects the sparse compositional function graph of
the target function.
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Figure 2: Here attention (followed by a one-layer RELU network) selects for each input token its
connections, effectively instantiating a network that tries to reflect a compositional function graph – or
an approximation to it. Each input here is a token, that is a vector, such as a patch of an image. The "A"
box is the self-attention algorithm; the RELU circle represent a one-layer NN.

6 Summary
I propose a theoretical framework that aims to explain why deep networks work and what are the
properties of different architectures. The framework describes a few conjectures and partial results
that require much empirical and theoretical analysis.

The key assumption is about the world, that is about the tasks that networks could try to learn. The
assumption is that all learnable functions must have a representation with the property of compositional
sparsity, that is they can be represented as compositional functions with a function graph comprising
constituent functions with a bounded – and "small" – dimensionality. The assumption is justified by
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a conjecture/theorem stating that all efficiently computable functions are compositionally sparse (this
statement is also independently supported by Kolmogorov solution of Hilbert’s 13th problem.). The
next main result is the following theorem: For functions that admit a compositionally sparse directed acyclic
graph (DAG), approximation by appropriate multilayer networks is possible without incurring in the curse of
dimensionality. Two main cases should be considered: 1) the sparse graph of the underlying target
functions is known, 2) the sparse graph is unknown.

1. In the overparametrized square loss case, generalization depends on solving a sort of regularized
ERM, that consists of finding minimizers of the empirical risk with zero loss, while selecting the
one with lowest complexity. Recent work has provided theoretical and empirical evidence that
this can be accomplished by SGD (with norm regularization under the square loss or without
regularization under an exponential loss) with weight decay in the overparametrized case when
the network architecture reflects the sparse graph of the target function. This implies that this
optimization problem can be solved if the graph of the underlying regression function is known
and takes the form of a compositionally sparse graph, such as, for instance, a convolutional network.
Empirical (and perhaps theoretical) evidence shows that for dense networks the same problem
cannot be solved using ℓ2 minimization. Sparsity must be explicit in the architecture of the
network for ℓ2 minimization to work.

2. The second part of our framework is about the case of unknown function graph and sparsity
constraints in optimization. In particular, two situations should be considered. The main one is
focused on transformers, the second on dense networks under sparsity constraints.
For transformers the conjecture is that the self-attention layer finds the sparse graph structure
of the underlying regression function. I will show that the stages of self-attention and MLP
with normalization and residual connections can be seen as a sparsification step followed by a
one-layer MLP.
For dense networks it is known that a CNN-like inductive bias can be learned from data and
through training by using a modified ℓ1 regularization. Consistent with this empirical finding,
pruning of a dense network by using iterative magnitude pruning (IMP) also works.

In summary, the claim is that sparsity of the underlying regression function is the key assump-
tion/principle in machine learning. Sparsity then naturally leads to sparsity-biased optimization
techniques. This is the case of transformers. ℓ2 optimization however can be used when the sparsity of
the target function is known and is embedded in the architecture of the network (eg CNNs).

Acknowledgments This material is based upon work supported by the Center for Minds, Brains and Machines
(CBMM), funded by NSF STC award CCF-1231216. This research was also sponsored by grants from the National
Science Foundation (NSF-0640097, NSF-0827427), and AFSOR-THRL (FA8650-05-C-7262).
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7 Appendices
7.1 Kolmogorov’s theorem[3]
Theorem 2 (Kolmogorov, 1957). There exist fixed increasing continuous functions hpq(x), on I = [0, 1] so
that each continuous function f on In can be written in the form

f (x1, . . . , xn) =

2n+1∑
q=1

gq

(
n∑

p=1

hpq (xp)

)
,

where gq are properly chosen continuous functions of one variable.

This result asserts that every multivariate continuous function can b represented by the superposi-
tion of a small number of univariate continuous functions. In terms of networks this means that every
continuous function of many variables can be computed by a network with two hidden layers, whose
hidden units compute continuous functions (the functions gq and hpq ).

The interpretation of Kolmogorov’s theorem in term of networks is very appealing: the representa-
tion of a function requires a fixed number of nodes, polynomially increasing with the dimension of the
input space. Unfortunately, these results are somewhat pathological and their practical implications
very limited. The problem lies in the inner functions of Kolmogorov’s formula: although they are
continuous, theorems of Vitushkin and Henkin [7] prove that they must be highly nonsmooth. One
could ask if it is possible to find a superposition scheme in which the functions involved are smooth.
The answer is negative, even for two variable functions, and was given by [8] with the following
theorem:

Theorem 3 (Vitushkin 1954). There are r(r = 1, 2, . . .) times continuously differentiable functions of n ≥ 2
variables, not representable by superposition of r times continuously differentiable functions of less than n
variables; there are r times continuously differentiable functions of two variables that are not representable by
sums and continuously differentiable functions of one variable.

7.2 Pruning
Empirically it seems that dense networks cannot learn convolution under L2 minimization but can
under L1 minimization. In particular, the possibility of learning CNN-like inductive bias from data and
through training was investigated in Neyshabur (2020). It was shown that training using a modified L1

regularization is a way to induce local masks for visual tasks. Consistent with this finding, pruning of a
dense network by using iterativemagnitude pruning (IMP) on FCNs trained on a low resolution version
of ImageNet uncovers (see https://doi.org/10.48550/arxiv.2104.13343) sub-networks characterized by
local connectivity, especially in the first hidden layer, and masks leading to local features with patterns
very reminiscent of the ones of trained CNNs3.

This is similar to results: enforcing sparsity during training leads to structures characterized by
locality. d’Ascoli et al. (2019) studies the role of CNN-like inductive biases by embedding convolutional
architectures within the general FCN class. It shows that enforcing CNN- like features in an FCN can
improve performance even beyond that of its CNN counterpart. Finally, Tolstikhin et al. (2021) shows
that by considering a particular multilayer perceptron architecture, called MLP-mixer, some of the
CNN features can be learned from scratch using a large training dataset.

7.3 Transformers
7.3.1 K, Q, V

X ∈ RT,din ; Q = XWQ with WQ ∈ Rdin,dk ; K = XWK with WK ∈ Rdin,dk ; V = XWV with
WV ∈ Rdin,dout

3Deeper layers are made up of these local features with larger receptive fields hinting at the hierarchical structure found in
CNNs. Pruning induces locality also beyond the first hidden layer. Their remarks "These results highlight the role of the task in
shaping the properties of the network obtained by pruning: only for the task that the network can efficiently learn, and not just
memorize, local features emerge..." are consistent with our hypothesis of compositional sparsity of the underlying task, in this
case a visual task.
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Lemma 1 The matrix XWQW
T
KXT ∈ RT,T can be a RIP matrix with appropriate choices of WK ,WQ.

Notice that the standard formulation of the transformer layers can be written as

y = x+MLP (LayerNorm(x+Attention(LayerNorm(x)))

.
This implies that the sparsity function and the nonlinear association are intertwined – together

one stage in a multistage architecture. This may be ideal to represent compositional sparsity. There is
however a formulation with similar empirical performance (see PALM paper) which can be written as

y = x+MLP (LayerNorm(x)) +Attention(LayerNorm(x))

.

8 Training transformers
In this paper, I describe results and conjectures on trained transformers. I leave open all the theoretical
questions about characterizing the training of transformers and the convergence to matrices Q,K, V
that guarantee sparsity.

8.1 Transformers as associative memories
Transformers transform input matrices into output matrices of the same dimensionality for instance
a German sentence into a French one. In other words, functions implemented by self-attention map
from RT,d to itself, so that instances from this function class can be composed. This is important for
compositionality in compositional sparsity. It is also important in the use of transformers a sequence of
associations from an input x′ to an output x” which is then used for another association. x′ could be a
sentence with a missing word and x” its completion.

The idea of associative memory is consistent with the interpretation of the self-attention layer as a
learned, differentiable lookup table. The Q, K, and V are described as “queries,” “keys,” and “values”
respectively, which seem to invoke such an interpretation. Consider only one attentional head. Each
object or token xi has a query Q(xi) that it will use to test “compatibility” with the key K(xj) of each
object xj . Compatibility of xi with xj is defined by the inner productQ(xi),K(xj); if this inner product
is high, then xi ’s query matches xj key and so we look up xjs value V (xj). We construct then a soft
lookup of values compatible with xi’s key: we sum up the value of each object xj proportional to the
compatibility of xi with xj .
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