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Abstract
We present a simple method of discretely modeling solutions of the classical wave and 
Klein-Gordon equations using variations of random walks on a graph. Consider a collec-
tion of particles executing random walks on an undirected bipartite graph embedded in ℝD 
at discrete times ℤ , and assume those walks are “heat-like”, in the sense that a (conserved) 
density of particles obeys the heat equation in the continuum limit. If the particles possess 
a binary degree of freedom (so that they may be said to be either particles or “antiparti-
cles”, i.e., “positive” or “negative), then there exist closely related branching random walks 
on the same graph that are “wave-like”, in the sense that their (also conserved) net density 
obeys the D-dimensional classical wave equation. Such wave-like paths can be generated 
even on random graphs. The transformation by which the heat-like random walks become 
wave-like branching random walks is as follows: at every time step, any “incoming” par-
ticle arriving at any node X of the graph along some edge eX creates a particle-antiparticle 
pair at that node, with the stipulation that the newly created particle with the opposite sign 
of the incoming particle must initially step (in “Huygens” back-propagation fashion) along 
eX in the reverse direction, while the other two take a step (in “Brownian” fashion) along 
any edge of X (including possibly eX) with equal likelihood, and chosen independently. An 
additional degree of freedom (resulting in “bra” and “ket” particles) leads to quasi-proba-
bility densities proportional to the square of the wave functions.

Keywords Random walk · Wave propagation · Graph theory · Cellular automata · Discrete 
quantum fields

1  Introduction: Heat‑Like and Wave‑Like Walks

Consider a collection of particles executing random walks on an undirected bipartite graph 
embedded in ℝD . In other words, at any integer time t, every particle is located on some 
node of the graph, and then, in the subsequent time step, it is located at some neighbor of 
that node. For the purposes of this paper, we shall assume henceforth that unless otherwise 
specified, any edge of a node where a particle is located is equally likely to be chosen for 
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the subsequent step (and note that there may be more than one edge connecting any two 
nodes – i.e., the graphs may be multigraphs). We shall say that particles operating under 
these simple dynamics are executing Brownian motion. (We shall also implicitly assume 
all particles are initially on the same part of this bipartite graph, and on the other one in the 
next time step, and so on.) The random walks of such particles are said to be “heat-like” if, 
in the continuum limit, the expected density ρ(x,t) of the particles obeys the D-dimensional 
heat equation [1, Chapter 1.3]

for some positive constant k. Equivalently, a distribution is heat-like if the expected loca-
tion of a particle that is located at x0 at time t0 has, at some later time, t0 + t, the following 
Gaussian distribution centered on x0 with a variance proportional to t:

Throughout this discussion, we shall restrict ourselves to solutions of the heat equation 
whose integral over ℝD is conserved, except where otherwise noted. Assume next that 
these particles are endowed with an extra binary degree of freedom so that they may be 
said to be either “positive” or “negative” (or equivalently, can exist either as “particles” or 
“antiparticles”). The particles and their associated walks are “wave-like” if the expected 
net density �̃�(x, t) (i.e., density differential of positive and negative particles) satisfies the 
classical wave equation

We shall prove that any set of heat-like paths on a stationary graph becomes a wave-like set 
of (two-state) particles and paths if, at every node to which a particle travels, it spawns a 
particle-antiparticle pair (i.e., a pair of particles in opposite states) and if, furthermore, the 
new particle that has the opposite state of the original incoming particle always initially 
steps along the edge the incoming particle just traversed, in the reverse direction (Fig. 1).

In other words, for any graph, including random ones, on which the endpoints of ran-
dom walks have a probability distribution that is a Gaussian centered on the starting point 
of that walk with a variance proportional to time (and given the Central Limit Theorem, 
the variety of graphs and walks which satisfy that requirement is wide), there is a related 
set of “mostly” random walks of particles (and antiparticles) on the same graph whose 
distribution satisfies the classical wave equation. (We say “mostly” only to account for 
the sign- and direction-changing backpropagation steps whose initial post-creation step is 
therefore not random). As long as the earlier Brownian motion particles and their implied 
paths are “heat-like”, these modified particles and their paths are assuredly “wave-like”. 
That being the case, collections of particles that exhibit wave-like properties are no more 
paradoxical than, say, particles that exhibit diffusion-like properties. All that is needed to 
transform the latter into the former is the ability of particles to be in one of two states on 
walks that are reversible.

Note that it is only for ease of visualization that we say the incoming particle has 
spawned an anti-particle pair. We could equivalently say that it is the incoming particle 
that always changes state (i.e., that it reverses its sign) and also reverses its direction, while 

(1)
�

�t
� = k∇2�

(2)K(t, x, x0) =
1

(4𝜋kt)D∕2
e
−

r2

4𝜋kt

where r2 = ‖ x − x0‖2 and (t > 0).

(3)𝜕2

𝜕t2
�̃� = c2∇2�̃�.
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also spawning two other particles with the opposite sign. We prefer the former memory-aid 
only because physicists will likely regard it as more familiar and evocative, though in ana-
lyzing amplitudes or expected particle counts in terms of summations over paths, the latter 
approach will prove to be more useful. But in either case, note that the net particle count is 
strictly conserved.

The first part of the proof will show that the above-defined particle-antiparticle dynam-
ics do indeed lead to wave-like distributions in the specific case of regular lattices ℤD (for 
which the associated regular random walks are indeed heat-like).

Thereafter, we shall show that the normalized net count of the branching random walks 
in question can be expressed solely as a linear combination of values of the kernel of the 
heat equation – in other words, the expression does not depend on the particulars of the 
underlying graph on which the random walks take place (as long as the starting walks are 
heat-like). Therefore, what was shown to hold for walks on a regular D-dimensional lattice 
must be true for any graph configuration on which random walks of T steps have endpoints 
that are Gaussianly distributed in the continuum limit, with variances proportional to T.

In other words, classical wave motion is compatible with a surprisingly wide variety of 
structures and media.

2  Regular Lattices in D Dimensions

We shall first consider Brownian particles walking randomly along points of ℤD so that 
a step is always of length 1. Random walks that always traverse a unit distance along any 
axis have the property that the sums of the components at two successive times alternate 
in parity (and in this case, the parity of a point’s components distinguishes the two parts 
of the bipartite graph). For convenience, we shall restrict ourselves to the part of the graph 
consisting of nodes whose integer components have a sum that is even whenever the time 
t is even.

The transition matrix that gives the conditional probability that a particle at some point 
X will in the subsequent time be found at some nearest neighbor of X, call it “HeatMatrix”, 
is an N × N matrix of the form

Fig. 1  Brownian-Huygens propagation: any incoming particle (or antiparticle) at a graph node spawns a 
particle-antiparticle pair, and the newly-created particle that is in the opposite state of the incoming particle 
must initially step in the opposite direction of the incoming particle, while the other two outgoing particles 
randomly and independently choose to traverse any edge of the node. Upon reaching their respective neigh-
boring nodes in the subsequent time step, all outgoing particles become incoming particles

9 Page 3 of 26 23  
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where N is the number of neighbors at a given node (i.e., the degree). For the regular lat-
tice in ℤD we are considering, the degree of any node is 2D, but so as to keep our notation 
general, we shall continue to use N to signify the number of nearest neighbors at a node.

Note that HeatMatrix is idempotent and that its rows and columns sum to 1. As noted 
earlier, we shall refer to random walks whose expected values satisfy the above matrix as 
Brownian motion, regardless of the lattice in which they propagate.

We can also consider branching random walks [2, Chapter 1.1] for which any incoming 
particle produces a number of “descendant” particles at any step. For example, a particle 
that always produces another particle upon arriving at any node will have a related transi-
tion matrix,  HeatMatrix2 that is twice the value of HeatMatrix.

In that case, the number of particles will of course double at each time. We shall refer 
to this type of dynamics as Double Branching Brownian motion regardless of the graph 
in which it takes place. Note that if we choose to count paths, we will typically assume 
that a particle that was created at some time inherits the past locations of the particle that 
spawned it, so that every particle’s path, regardless of when that particle was created, has a 
history with the same number of steps.

We can also choose to give every particle a degree of freedom so that it can be either 
“positive” or “negative”, in which case, particles in the negative state will be referred to as 
“antiparticles”. We can likewise define net particle counts on any set of points as the differ-
ence between the count of positive and negative particles, and likewise we can define the 
net particle density. We can even choose to have particles and antiparticles traveling along 
the same edge at any time annihilate each other, though we will forego doing this whenever 
we wish to consider the set of all possible paths a particle might take.

Consider also the trivial dynamics wherein every particle always reverses direction and 
sign at every step. We shall refer to that dynamics as Huygens (back)propagation. In that 
case, the transition matrix that gives the expected net count of particles on an outgoing 
edge of some node in terms of the expected particle count along some “incoming” edge of 
that same node is

where I is the N × N identity matrix.
To reiterate, due to the systolic nature of random walks on bipartite graphs on which 

a node cannot be its own neighbor (in other words, cycles of length 1 are forbidden), the 
diagonal matrix elements in the above equation relate motions that are oppositely directed 
(and, due to the negation, of opposite sign) even though they refer to the same edge – in 
other words, they are a dynamics exclusively of back-and-forth path (and sign) reversal.

If we define the “momentum” of any particle at any time (on any arbitrary graph embed-
ded in ℝD ) as a unit vector in the direction of the propagation of a particle traversing across 
an edge in a single time step, multiplied by the speed required to traverse an edge along 
with some unit mass (i.e., ignoring any relativistic corrections merely for the sake of sim-
plicity), we see that the momentum is exactly conserved for particles exhibiting Huygens 
behavior, whereas in the case of Brownian motion, or the doubled branching thereof, the 

(4)HeatMatrix =
1

N
×

⎡
⎢⎢⎣

1 1 …

⋮ ⋱

1 1

⎤
⎥⎥⎦

(5)HeatMatrix2 = 2 × HeatMatrix

(6)HuygensMatrix = −I
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expected value of the momentum is zero on any graph where the expected vector distance 
(as determined from a graph’s embedding in ℝD ) from a node to its nearest neighbors has 
zero magnitude.

And as noted earlier, we can endow the particles with a sign and then calculate the 
expected net particle count (or net particle density). Using such two-state particles, we 
can consider a dynamical process that combines Double Branching Brownian motion and 
Huygens backpropagation, so that any incoming particle at a given node (being in either 
a positive or negative incoming state) results in an outgoing configuration of two other 
particles in the same incoming state (in other words a branching random process) and also 
an additional particle having the opposite sign, and that latter particle must travel in the 
opposite direction of the incoming particle. Each of the three outgoing particles will in the 
subsequent step likewise lead to three other outgoing particles in the same manner. (Note, 
however, that if we allow oppositely signed particles traveling along the same edge to anni-
hilate, then it is possible for one or both of the particles with the same sign as the incoming 
particle to choose the reverse direction as well, in which case there will only be one outgo-
ing particle in that step).

This particular kind of propagation – as previously noted, we shall refer to it as “Brown-
ian-Huygens propagation”, regardless of the of graph in which the particles travel – is of 
special interest, since it conserves the particle count and has numerous other interesting 
properties; for example, it can be shown that if the associated Brownian motion paths on 
the same graph are heat-like (so that their continuum limit distributions are rotationally 
invariant Gaussians) then the expected momentum for Brownian-Huygens propagation is 
also conserved.

Note that as was the case with Double Branching Brownian motion, every particle we 
create through Brownian-Huygens propagation has, in terms of its ancestry, a well-defined 
“wave path” that extends all the way back to some initial configuration. However, there 
is additional structure to consider than was the case with Brownian motion, given that an 
ancestor might have traveled in the reverse direction of a previous step and changed sign. 
But purely in terms of a sequence of locations, that takes no account of whether a step 
was Huygens or Brownian, a given wave path has an obvious correspondence to a spe-
cific element in the set of all possible Brownian motion paths. We shall call that element 
the “Brownian shadow” of that wave path, and because of the multiplicity inherent in any 
branching process, many wave paths will have the same Brownian shadow.

The matrix that gives the expected net particle count at an outgoing edge, given the 
presence of an incoming particle along some other edge, which we shall call WaveMatrix, 
is as follows:

Which may be expressed more compactly as

Note that WaveMatrix is a relation between the edges of a graph (so that it relates 
particle propagations on time intervals between two pairs of successive integer times, as 

(7)WaveMatrix =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
2

N
− 1)

2

N

2

N
…

2

N
(
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(
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.

(8)WaveMatrix = −I + 2 × HeatMatrix.
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opposed to a relationship among function values at nodes at two specific times), so that 
the resultant value of the expected number of particles at any point is just the sum of the 
incoming or outgoing expected particle counts along the edges (or “flows”) of that node. 
(We shall regard HeatMatrix in the same way, even though, as we shall see, the underly-
ing difference equation is first-order, which means that a particle’s contribution to the 
overall amplitude at a given node can be determined without reference to the edge along 
which it arrived.)

As was the case with HeatMatrix, WaveMatrix has rows and columns whose sum 
is 1, so that the sum of flows along any incoming edges converging on some node is 
the same as the sum of the particle counts in the node’s outgoing flows. And since 
HeatMatrix is idempotent, it is easy to prove from the previous relation between 
WaveMatrix and HeatMatrix that the former is involutory. Therefore, for a collec-
tion of particles obeying Brownian-Huygens propagation, the sum of the squares of 
the expected incoming particle counts or flows along any incoming edges to a node 
is the same as the sum of the squares of the expected outgoing particle counts (we 
stress that this equality, as was the case with momentum, only applies to the squares 
of the expected particle counts).

In the case of regular Brownian motion, since a particle has an equal likelihood of 
traversing to any of its neighbors (and likewise, the expected number of particles at any 
node is just the average of the expected particle count at its neighbors in the previous 
step), then considering again a regular lattice ℤD , the expected particle count at any 
time, ψ(x,y,z,…,t), is related to the previous neighboring particle counts according to 
the following difference equation

In all of the partial difference equations we present here, we will, for simplicity, usu-
ally specify only the coordinate of a function that deviates from x and t, or else omit 
arguments altogether, e.g.:

The expected particle count associated with Huygens propagation also follows a triv-
ial difference equation due to the fact that particles reverse direction at every subsequent 
time step:

In this case, the difference equation applies not just to the expected value of the 
particle count at t + 1, but the actual particle count, since Huygens dynamics are 
deterministic.

If we choose to visualize a particle as traveling along an edge from one node of an edge 
to another before being transformed into some other particle(s), we shall assume that the 
change-of-state (or particle creation) occurs just before the particle arrives at a neighbor 
node, and that will specify a particle’s contribution to any count taken along the nodes. 
(Moreover, in this paper we shall primarily be concerned with dynamics for which the net 
count is conserved at any node, so that whether particles change state just before or just 
after arriving at a node is irrelevant, as long as the convention is consistent for any changes 
of state.)

(9)
�(t + 1) =

1

N
(�(x + 1) + �(x − 1)

+�(y + 1) + �(y − 1)

+�(z + 1) + �(z − 1)… ).

(10)�(x) = �(y) = �(t) = � = �(x, y, z,… , t).

(11)�(t + 1) = −�(t − 1)
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Given that the RHS in (9) and (11) refer to different times than those in their LHS, the 
partial difference equation in the case of Brownian-Huygens propagation is easily seen to 
be (after rearranging so that the temporally displaced coefficients are all on the LHS)

By subtracting the “central” term 2�(x, y, z…t) from both the LHS and RHS of eqs (9) 
and (12) (and in the case of each RHS, apportioning that central term equally to each pair 
of terms inside the parentheses), i.e.,

and taking the continuum limit, we see that (9) converges to the familiar heat (1), with k 
= 1/N, whereas (12) converges to the D-dimensional wave (3) with c2 = 2/N (or, in the case 
of the regular lattices considered here, c2 = 1/D).

Given the scaling we have chosen, note that the coefficients of HeatMatrix are all equal 
to k whereas the off-diagonal and diagonal elements of WaveMatrix are equal to c2 and (c2 
− 1) respectively. And even though the particles in this space move one lattice length per 
time interval, the speed of any wave pulse is 

√
2∕N , just as with lattice gases [3] (Fig. 2).

As noted earlier, since the heat equation is first-order, calculating the likelihood that a 
particle at some node will be at a specific neighboring node in the subsequent step requires 
no earlier knowledge of where the particle had previously been. This is not the case with 
Brownian-Huygens propagation and the related second-order wave equation. In that case, 

(12)
�(t + 1) + �(t − 1) =

2

N
(�(x + 1) + �(x − 1)+

�(y + 1) + �(y − 1)+

�(z + 1) + �(z − 1)… ).

(13)
�(t + 1) − 2� + �(t − 1) =

2

N
(�(x + 1) − 2� + �(x − 1)

+�(y + 1) − 2� + �(y − 1)

+�(z + 1) − 2� + �(z − 1)… ).

Fig. 2  Contour plots exhibiting nearly circular wave-fronts (at time t = 64) of a wave pulse on a regular lat-
tice whose boundary conditions at t=-1 and t = 0 are respectively Dirac Delta functions at two neighboring 
nodes with the t = 0 node displaced in the direction of the large arrows. On the left is a two-dimensional 
pulse; on the right is a two-dimensional slice of a three-dimensional pulse. The respective diameters of the 
wave fronts, as measured from the peaks of their outer ripples (and as indicated by the notches on the right 
edge of either graph) are 91 and 75, which even at this relatively granular level are close to what is pre-
dicted from their respective continuous-case wave speeds of 128∕

√
2 = 90.51 and 128∕

√
3 = 73.90
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we must know both the arrival point of a given particle, and also the edge from which the 
particle came in the prior step, so that we know along which edge the Huygens backpropa-
gation particle must travel.

Given the nature of HeatMatrix, any sequence of nodes such that each successive mem-
ber of the sequence is a neighbor of the preceding member constitutes an acceptable path, 
and has the same probability of being traversed as does any other path of equal length. It 
is a well-known property of random walks on a square lattice [4] that for any two points 
X0 and X1, and any corresponding times T0 and T1 with T1 > T0, the value K(T,X1,X0) of 
the kernel of the heat equation (where T = T1 − T0) is equal, in the continuum limit, to the 
number of all paths of length T that begin at X0 and end at X1, divided by the number of all 
paths of length T.

We shall refer to the set of all such paths as HeatPaths(T), and for convenience, we 
shall omit mention of X0 and X1. We can similarly define WavePaths(T), though as men-
tioned before, in order to fully specify an element of the latter set, we must specify which 
of its steps were sign-changing Huygens steps (and these can only happen for path steps 
that are reversals of the prior step); moreover, as noted earlier, given that two Brownian 
particles are generated at every time step, then even after fully specifying which step of 
a path, if any, was a Huygens step, there will be multiple identical paths in WavePaths(T) 
having the same Brownian shadow in HeatPaths(T), the specific number of which shall be 
calculated below.

Let us similarly define all the paths generated by particles obeying the rules of Double 
Branching Random motion as  HeatPaths2(T). Clearly, given that the number of particles 
doubles at each node, the count of  HeatPaths2(T) is  2T times the count of HeatPaths(T).

In the case of WavePaths(T), in order to be able to precisely determine which of the 
initial steps of any element can be Huygens steps (so that they are the reversal of their pre-
vious step), we shall assume that all the paths in WavePaths(T) arrived at X0 from the same 
neighbor Xnbr, though that, too, will be suppressed for ease of notation. That being the case, 
if a path begins with a Hyugens step, it must, by the rules of Brownian-Huygan propaga-
tion, traverse back to that neighbor Xnbr at t = 1.

Finally, note that in the rest of this paper, any reference to the continuum limit in the 
case of distributions that are unbounded or ill-defined in that limit (e.g., Double Branching 
Brownian motion and Huygens propagation) will be taken to mean some quasi-continuum 
regime in which the discreteness of the underlying dynamics is unobservable, though for 
convenience, we shall continue to refer to that regime as the continuum limit.

3  Graph‑Invariance

A relationship associated with a set of heat-like walks on a particular graph, and whose 
endpoint distributions therefore obey the kernel of the heat equation as in (2), is kD-graph-
invariant if, in the continuum limit, that relationship remains true for any other graph 
whose random walk distributions obey a kernel having the same k and D (and note that 
regardless of the graph we are considering, we can always alter the time scale and thereby 
vary k as we please, so that it is essentially a free parameter). For simplicity, we shall 
henceforth drop the kD prefix and simply speak of graph-invariance.

We have already shown in the last section that heat-like paths, when transformed into 
the paths associated with Brownian-Huygens propagation, become wave-like if the under-
lying graph is a regular lattice.
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The purpose of this section is to show that this relationship between heat-like paths 
and the transformed Brownian-Huygens paths is graph-invariant. In other words, distri-
butions of heat-like paths on any graph, not just regular D-dimensional lattices, produce 
distributions that are wave-like when the associated walks are transformed so as to fol-
low the rules Brownian-Huygens propagation. It should be noted that with regard to all 
the formulas that are presented in this section, the sole purpose in deriving them is to 
show that they exhibit graph-invariance.

Given that we are considering branching processes, as well as particles that can be 
positive or negative, we shall also typically make reference to expected particle counts 
in what follows rather than probabilities, or more specifically, summations over all pos-
sible (possibly signed) paths of the dynamics under consideration.

For example, consider a particle that was initially located at X0 at T0, and that under-
goes Brownian motion thereafter. The expected particle count EPC(X1) at X1 and t = 
T is then equal to the number of paths in HeatPaths(T), divided by the total number of 
Brownian motion paths of length T, which we shall designate by ηB(T). In other words, 
given our initial assumptions about how Brownian motion walks are heat-like, then in 
the continuum limit

(Again, the dependence of HeatPaths(T1) on the boundary conditions X0 and T0 is 
being suppressed, for convenience, and henceforth, we shall likewise typically omit the 
X1 argument of the expected particle count.)

With regard to what was said earlier about Double Branching Random motion and 
the corresponding set of paths  HeatPaths2(T), the expected particle count in that case, 
designated as  EPCDBRM, in the continuum limit (or quasi-continuum limit, given what 
was earlier said about the continuum limit of Double Branching Random motion), satis-
fies the following relation

which follows directly from the definition of Double Branching Random motion, but can 
also be proved formally by way of induction. Note that even though the count of paths 
will vary depending on which graph the propagation takes place, as will the sum over all 
paths, the RHS of the above equation, and therefore the equality itself, is graph-invariant, 
so that the above relationship therefore holds for any graphs on which Brownian motion is 
heat-like.

Even in the case of pure Huygens propagation, the very fact that it consists simply of 
back-and-forth motion between nearest neighboring nodes, with a sign change at each 
time step, means that however pathological its continuum limit may be, the associated 
expected particle counts do not depend on the particulars of a given graph and are there-
fore also graph-invariant.

Given that Brownian-Huygens propagation is in some sense a combination of Double 
Branching Random motion and Huygens propagation, both of which produce particle 
distributions that are graph-invariant, it should not be altogether surprising if the same 
were true for Brownian-Huygens propagation. We at least know that the net count of all 
paths of a given length T (not just those paths that terminate at X1) is the same as for 
Brownian motion, i.e. it is equal to ηB(T), since any branching of paths occurs by way of 

(14)EPC(X1) =
1

�B(T)
Count[HeatPaths(T)] = K(T ,X1,X0)

(15)EPCDBRM(T) = 2T ∗ K(T ,X1,X0)
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particle-antiparticle creation, which does not alter the net particle count, and therefore, 
the net count of signed paths.

But even though there is, unfortunately, no similarly obvious graph-invariant relation-
ship between WavePaths(T) and the kernel of the heat equation, we will show that we can 
partition WavePaths(T) so that expected particle counts for any of the resultant subsets can 
indeed be similarly related to kernels of the heat equation in a graph-invariant manner, so 
the same must therefore be true of WavePaths(T) itself.

With that in mind, let us partition WavePaths(T) into  2T subsets, with each subset 
uniquely specified by a binary string composed of B’s and H’s that indicates which steps 
of the paths in a given subset are Huygens backpropagation steps (i.e., consisting of a step 
reversal and sign change) or else Brownian steps (the latter having a multiplicity of two 
since there are two Brownian particles created for any incoming particle). Note that since 
all the paths in any subset of this binary partition take their Huygens steps (and incur their 
sign-changes) at the exact same times, all particles traversing a path in that subset will 
have the same final sign once they reach X1 at T1. Moreover, since the number of Brownian 
steps is likewise the same for all paths in the subset, the multiplicity – i.e., the number of 
paths within that subset that have the same Brownian shadow in HeatPaths(T) – is likewise 
identical. We can combine these into a single multiplicity-and-sign factor MultSgn(nB,nH) 
as follows

where nB and nH are the respective numbers of Brownian and Huygens steps in any path of 
the subset in question (so that their sum is equal to T).

Note that the count of paths for different subsets varies greatly. For example, there is at 
most one element in the subset whose corresponding string consists entirely of H’s (i.e. the 
single path in WavePaths(T) that also happens to satisfy the rules of Huygens propagation 
for the entire duration of its path), and its contribution to the expected particle count at X1 
is positive or negative depending on whether T is even or odd, though unless X1 is equal 
to X0 (or Xnbr), and T is even (or odd), the subset will be empty (and that may be true for 
various other subsets as well, but we will continue to refer to the  2T-fold splitting as a par-
tition). Whereas subsets whose corresponding strings have progressively larger numbers 
of B’s will have larger and larger counts, since each Brownian step increases the overall 
multiplicity by a factor of 2, though once again, their contribution to the overall expected 
particle count at X1 will be positive or negative depending on whether the number of H’s in 
the associated string is even or odd.

Given that every element of WavePaths(T) implicitly includes the same “starter 
step” from some specific neighbor Xnbr to X0, let us also agree to preface any if its asso-
ciated binary B-H strings with an S as a placeholder for this starter step immediately 
preceding T0.

3.1  A Specific 1‑Dimensional Example

To give a specific example, consider a solution of the one-dimensional wave equation 
whose boundary conditions at t = − 1 and t = 0 are zero except at the point -1 at t = − 1 
and 0 at t = T0 = 0, where the value at both points is one; in other words, a delta-function 
traveling wave moving along the positive direction with a speed of 1. The solution to the 
heat equation for boundary conditions that are zero everywhere at t = 0 except at 0, where 
the value of the solution is 1, is just Pascal’s triangle, up to a normalization constant, with 

(16)MultSgn(nB, nH) = 2nB ∗ (−1)nH ,
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the value at any time T1 and node X1 equal to the count of paths of length T1 whose final 
value is X1, divided by 2T1.

Therefore, if we were to generate 1-dimensional paths as part of a Monte Carlo sim-
ulation, then the fraction of runs for which the path endpoint at T1 is X1 will approach 
the heat equation at those endpoint coordinates. Likewise, if we consider Double 
Branching Random motion, the expected particle count in that case would be 2T1 times 
that expected value.

Likewise, if we generate a very large number of simulations of Brownian-Huygens 
propagation starting with a particle that arrives at the origin at t = 0, having in the prior 
step been at x = − 1, and consider not only the full path of each particle (that as noted 
before, includes ancestral steps prior to its generation, so that all paths similarly start with a 
step to the origin at t = T0), but also the string that rerecords at which step of a path a par-
ticle is in a Huygens state (so that it therefore changed sign and reversed its previous step), 
then the observed count of particles at any point, divided by the number of simulations, 
will approach the wave equation at that point.

Observe that for T1 = 4, the nonzero values of Pascal’s triangle are (1,4,6,4,1) all divided 
by 16, where x is respectively (− 4,− 2,0,2,4). Let us consider paths of length 4 (plus a 
starter step) for which the associated strings all have a single H at the step corresponding 
at T* = 3, i.e., SBBHB, and set X1 to -2. In that case, there are just two paths to consider, 
with the coordinates (0,− 1,− 2,− 1,− 2) and (0,− 1,0,− 1,− 2). The value of the heat kernel 
needed to calculate the contribution for this subset is two steps earlier, and for this value of 
X1 it is 1/4 whereas the multiplicity and sign factor is -8, so that the resultant value for this 
subset is their product, -2. Later on, we shall calculate the rest of the subsets and verify that 
it gives us the correct value for the wave equation at x = − 2 and t = 4, which is zero.

3.2  Expected Particle Counts for Specific Subsets

As stated earlier, our goal in this section is to show that for any subset of this partition of 
WavePaths(T) into  2T subsets, the expected particle count can be expressed in terms of the 
kernel of the heat equation, so that the relationship between the two is graph-invariant.

For some subsets, this is already obvious. For example, consider the subset of the parti-
tion that has absolutely no Huygens steps and is composed simply of Brownian steps. In 
other words, this single subset of WavePaths(T) is identical to  HeatPaths2(T), and as was 
already noted in (15), has an expected particle count that is graph-invariant. Likewise, as 
noted, there is the subset corresponding to the path composed purely of Huygens steps. As 
noted, its contribution to the expected particle count is positive or negative depending on 
whether T is even or odd, and in the latter case, the path in the subset will by necessity ter-
minate at Xnbr instead of X0. Nonetheless, that path is likewise graph-invariant.

Finally, consider the more general case of subsets of WavePaths(T) that are composites of 
the above two cases; i.e., they consist of some number nH of Huygens steps followed by nB 
strictly Brownian steps (and by setting nB or nH to zero, we see that the previous two cases 
are just special cases of this category). For any such set of composite paths, we can determine 
the expected particle count of the Brownian (i.e., the non-trivial) portion from (15) simply by 
making the substitution T = nB. However, given what we just said about pure Huygens steps, 
then if nH is odd, the overall expected particle count will be negative. Moreover, the final argu-
ment of the heat kernel (i.e. the node at which the Brownian portion of the path begins) will 
have to be Xnbr instead of X0 since Huygens paths of odd length terminate at the former node, 
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which is therefore where the Brownian portion will begin. Regardless, the expected particle 
counts for all these subsets will therefore be graph-invariant as well.

In fact, as we shall see, for any i, where 1 ≤ i ≤  2T, the expected particle count  EPCi (again 
assuming an initial location of X0 with the same starter step) of subset i of this binary partition 
of WavePaths(T) can, in the continuum limit, be expressed as follows

for some Xstart near X0 (the details will be specified below) and for Ti such that 0 ≤ Ti ≤ T, 
where nB and nH are again the respective number of Brownian and Huygens steps in the ith 
subset, i.e., the respective number of B’s and H’s in the associated string. Moreover, Ti (and 
Xstart) may be determined solely by way of that same string, so that the expected particle 
count of the subset is graph-invariant.

First, let us consider what would happen to the expected particle counts of the paths in 
 HeatPaths2(T) if every path in the set was extended by m pairs of successive Huygens steps, in 
any combination. Given the behavior of Huygens steps, the answer is easily seen to be abso-
lutely nothing, apart from delaying the arrival time of each path from T1 to T1 + 2m, though, as 
trivial as that observation may be, let us formalize it into a theorem.

Theorem 1 (Adding paired Huygens steps) Let {mi} be an arbitrary finite set of m inte-
gers such that 0 ≤ mi ≤ T; for convenience, assume the integers are in reverse order. For 
each mi and for each path in  HeatPaths2(T) – in other words, Double Branching Random 
motion paths – enlarge it with two successive Huygens path steps immediately after step 
mi (thereby violating the rules of pure Double Branching Brownian motion). The expected 
particle count of the enlarged paths, whose length is now T + 2m, is then unchanged,

i.e., exactly as in the RHS of (15).

Proof By the rules of Brownian-Huygens propagation, a pair of two successive Huy-
gens steps inserted at time T*, where the latter is some member of {mi}, into any Double 
Branching Random motion path (let us assume that at T*, a given DBRM path is at the 
node X*, having just traversed the edge e*) must with probability 1 reverse-step twice (i.e., 
back-and-forth) along e*, whereupon it then proceeds exactly as before. Since every added 
step is part of a deterministic 2-cycle, the associated expected values at any subsequent 
time are unchanged (other than being delayed by precisely 2 time steps). □

To take a specific example, assume T = 5, and let {mi} be the set {3,5}. In that case, every 
single path in  HeatPaths2(T) will, after taking its third step, reverse that third step and then 
repeat it, and the same goes for the fifth step. Therefore all paths will now have a duration of 9 
steps rather than the original 5, but otherwise, nothing about the expected particle count at the 
destination of the paths has changed.

While the above theorem concerns paths in  HeatPaths2(T), it can also be applied to any of 
the subsets of our  2T-fold partition of WavePaths(T ′ ) whose Huygens steps are clustered in 
pairs, except the relation between the expected particle count (call it  EPCmExcisedHHPairs) and 
the kernel of the heat equation is then as follows:

(17)EPCi = MultSgn(nB, nH) ∗ K(T − Ti,X1,Xstart)

(18)EPCmAddedHHPairs(T + 2m) = 2T ∗ K(T ,X1,X0)

(19)EPCmExcisedHHPairs(T
�) = MultSgn(n

B
, n

H
) ∗ K(T � − 2m,X1,X0)
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where nH = 2m and MultSgn= 2(T
�−2m) . Moreover, T ′ in the above equation equals T + 2m 

in (18). In other words, instead of starting with Double Branching Random motion and 
adding Huygens pairs to it, here we are instead excising pairs of Huygens steps from some 
subset of WavePaths(T ′ ) whose Huygens steps are arranged in pairs so as to create a set of 
paths identical to  HeatPaths2(T).

We shall leave to the reader the proof for the following corollary of the above theo-
rem: instead of enlarging  HeatPaths2(T) with pairs of Huygens steps, we could have 
instead chosen to enlarge any other subset of WavePaths(T) in the same manner. The 
proof is nearly identical, and the only effect to the expected particle count of these Huy-
gens pair insertions is likewise a delay of two time steps for every added pair.

Next, let us consider a slightly different way of starting with  HeatPaths2(T) and then 
expanding each path so as to be more like an element of WavePaths(T). We will expand 
each path by pairs of path steps as before, but this time, the first member of any added 
pair of steps will be another Double Branching Random motion step (so that it has a 
multiplicity of 2). In other words, in terms of the strings we introduced earlier, we are 
now adding BH pairs instead of HH pairs. Admittedly, the (doubled branching) Brown-
ian step that begins each added pair manifestly depends on the particulars of whatever 
lattice node at which the insertion takes place, since Brownian steps, unlike Huygens 
steps, can traverse to any nearest neighbor node without restriction. Even so, with regard 
to the resultant expected particle counts at X1 (call that  EPCmAddedBHpairs), the Huygens 
step that follows the Brownian step effectively undoes whatever the latter might add to 
the sum over all distinct paths (apart from adding an extra factor of negative two due to 
the branching that took place, and the sign change of the Huygens step, though that, too, 
is graph-invariant).

Theorem 2 (Adding Brownian and Huygens step pairs) Let {mj} be an arbitrary finite 
set of m integers such that 0 ≤ mj ≤ T that are, again, in reverse order. For each mj and for 
each path in  HeatPaths2(T), enlarge the path with an arbitrary Brownian step (i.e., a step 
along any edge leading from the node where the path is situated at t = mj) followed by a 
Huygens step. The expected particle count for the enlarged paths (whose length is now T 
+ 2m) is multiplied by a factor of  2m * (− 1)m with respect to (15), i.e.,

Note that this conforms to our earlier derivation of MultSign(nB,nH) given that for the 
resultant enlarged paths, nB = T + m and nH = m.

Proof As before, by the definition of Huygens step, whatever edge the added Brownian 
step (which due to the branching, has a multiplicity of 2) traverses, the subsequent Huygens 
step will with probability 1 reverse it (and also change the sign of the path), so that apart 
from that factor of negative two (leading to an overall multiplier of (− 2)m when accrued 
over the entirety of {mj}), the value of the heat kernel that determines the expected particle 
count is otherwise exactly as before. □

Again, the fact that Huygens steps are deterministic and also reversals of a prior step 
means that however many neighbors are at the node at which a new (branching) Brownian 
step has been inserted, and whatever (possibly random) set of directions they involve, none 
of that can affect the expected particle count, given that the following Huygens step will 
with probability 1 undo it.

(20)EPCmAddedBHpairs(T + 2m) = 2T+m ∗ (−1)m ∗ K(T ,X1,X0)
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As with the case of adding pairs of Huygens steps, this result for Double Branching 
Random motion can instead be applied to subsets of the WavePaths(T ′ ) partition so as to 
excise any Huygens steps that are preceded by a Brownian step. In that case, the equiva-
lence is

where nB = T � − m and nH = m and where, as before, T � = T + 2m.
And as before, the proof of the following corollary to the above theorem is nearly 

identical to the one above: instead of enlarging  HeatPaths2(T) with BH pairs, we can 
likewise add BH pairs to any subset of WavePaths(T). In either case, the only effect of 
these insertions will likewise be a delay of two time steps for every added pair, along 
with an added factor of -2 to the expected particle count.

We have one remaining theorem before we can (by iteratively combining the above 
theorems – or more specifically, their corollaries) prove that every single subset of our 
WavePaths(T) partitions can be expressed in terms of the kernel of the heat equation in a 
graph-invariant manner, and it is related to the earlier observation that a Huygens propaga-
tion path of odd length terminates at xnbr, not at X0, so that the distribution of any remain-
ing portion of the path has a shifted origin node regarding any kernel of the heat equation.

Let us therefore consider the subsets of the binary partition of WavePaths(T) – i.e., 
this time, we shall not start with  HeatPaths2(T) and then use that to back out a result for 
WavePaths(T), but shall instead focus directly on the subset of WavePaths(T) that interests 
us – the partition subset which has only one Huygens step that occurs at the very beginning 
of the path. In other words, we are now considering the case of a Huygens step that is not 
preceded by a Brownian step, as was true with regard to the previous theorem.

Theorem 3 (Single‑initial‑Huygens‑step) For the expected particle count  EPCSingleInitialHuygens 
of the subset of WavePaths(T) that has a single Huygens step starting at T0,

where Xnbr is the neighboring node of X0 at which the starter step originated (i.e., the node 
of the path at t = − 1), and where nB = T − 1 and nH = 1.

Proof In this case, we choose to excise each path’s initial Huygens step along with the 
prior starter step (comprising a 2-cycle that with probability 1 began and terminated at 
Xnbr). Subsequently, the paths (whose length has been reduced by 1, given that the starter 
step was only a placeholder) now originate at Xnbr instead of X0; otherwise, given the lack 
of Huygens steps, the earlier results for Double Branching Random motion still apply, lead-
ing to the expression shown. □

Note that the formulas in all three of these theorems are graph-invariant. Also note 
that whereas for the first two theorems, the displacement to the arguments of the ker-
nel of the heat equation was some even number of time steps, in the final theorem we 
instead shift both the time coordinate and a spatial coordinate by one step. That means 
we thereby always relate spacetime points that are on the same part (parity-wise) of our 
bipartite graph.

To completely extend these theorems and their corollaries to all the  2T subsets of our 
partition, we only need to combine them, along with the observations that every single 

(21)EPCmExcisedBHpairs(T
�) = MultSgn(n

B
, n

H
) ∗ K(T � − 2m,X1,X0)

(22)EPCSingleInitialHuygens(T) = MultSgn(n
B
, n

H
) ∗ K(T − 1,X1,Xnbr)
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subset of the partition can be iteratively constructed from  HeatPaths2(T*) for some T* 
such that 0 ≤ T*≤ T, or else a subset of WavePaths(T*) where 1 ≤ T*≤ T which has only 
one Huygens step starting at T0, and then adding (or excising) HH or BH pairs until the 
subset with the desired corresponding string is obtained. In all cases, the contributions 
to the expected particle count are expressible in terms of the kernel of the heat equation 
and are therefore graph-invariant.

The general formula can then be stated as follows (and again, it is presented in the 
interest of completeness, given that demonstrating graph-invariance is the primary 
objective.) For any subset i of the  2T subsets in the binary partition of WavePaths(T), 
we must first determine whether the associated string for that subset begins with an odd 
number of H’s after the starter step (followed either by one or more B’s, or else continu-
ing until the end of the string). If so, let us define Xstart to be Xnbr, and if not, then let it 
be X0.

Also, define nodd to be the number of any additional (i.e., not at the start) odd clusters 
of H’s within the associated string of the subset – in other words, any odd clusters of 
H’s preceded by one or more B’s.

The expected particle count for that subset is then

where Ti = T − nH − nodd.
This formula for Ti accounts for the fact that in addition to all the H’s that will be 

excised from the path, every odd cluster of H’s not immediately after the starter step 
will require any preceding Brownian step to be excised as well.

As an example, consider the string SHHHBBHHBHHHHHBBHHHHBH, which, in 
terms of its clusters of B’s and H’s, may be more legibly expressed as (S + 3H + 2B + 
2H + B + 5H + 2B + 4H + B + H). It consists of an initial odd grouping of 3 H’s, so 
that Xstart in the above equation for the corresponding subset equals Xnbr. There are also 
two other odd groupings (a cluster of 5 H’s, and a single H at the end of the string), so 
that nodd = 2. Also, NH = 3 + 2 + 5 + 4 + 1 = 15. Therefore, Ti = T − 15 − 2 = T − 17.

In other words, if there is an initial odd grouping of H’s in the string corresponding 
to a given subset, then the Ti that must be decremented from T, so as to obtain effective 
time in the kernel of the heat equation that dictates that subset’s evolution, will be an 
odd number, and Xstart = Xnbr; otherwise, Ti will be even and Xstart = X0.

More importantly, for any subset of this partition of WavePaths(T), the expected 
particle count has no dependence on the specifics of any underlying graph, and that 
graph-invariance therefore extends to the expected particle count of their union, i.e., to 
WavePaths(T) itself.

And having established what was needed in the way of graph-invariance, as given in 
(17), we are ready to proceed to our main theorem:

Theorem  4 For any graph on which the expected particle counts of Brownian motion 
are heat-like (so that in the continuum limit, they can be expressed via kernels of the heat 
equation), the corresponding expected particle counts of Brownian-Huygens propagation 
are wave-like.

Proof We have just presented a graph-invariant decomposition of the expected particle 
counts associated with Brownian-Huygens propagation, which applies to any graph where 
the expected particle counts associated with Brownian motion are heat-like.

(23)EPCi(T) = MultSgn(nB, nH) ∗ K(T − Ti,X1,Xstart)
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But we also know from the previous section that if the graph in question is a D-dimen-
sional regular lattice, then those Brownian-Huygens walk distributions and their associated 
expected particle counts are wave-like.

Therefore, given the graph-invariance, they must be wave-like for any graph whose 
expected particle counts associated with Brownian motion are heat-like. □

In other words, we know from the earlier section that the endpoint distributions of 
Brownian-Huygens paths on a regular lattice are wave-like. We also know, by way of 
graph-invariance, that the expected particle counts and therefore the densities are the same 
for any graph on which Brownian motion distributions obey the kernel of the heat equation 
having the same k and D. Therefore the Brownian-Huygens path distributions and densities 
associated with any such graph are wave-like, not just those that are regular lattices.

That means that even if the graph in question is random, and has varying neighbors, as 
long as the graph is homogenous enough so that at some magnification its random walk 
endpoints are Gaussianly distributed with a variance proportional to the elapsed time of the 
walk, then we know that Brownian-Huygens propagation on that same graph will result in 
wave-like distributions.

3.3  Return to the 1‑Dimensional Example

Now we can consider the heat kernel weights for the rest of the 1-dimensional paths con-
sidered in the earlier example we noted, wherein a solution of the wave equation at x = − 2 
and t = 4 is calculated directly in terms of values of the heat kernel, as derived by way of 
Pascal’s triangle.

Table 1 displays the 22 distinct paths (and 12 distinct strings) leading from 0 to -2 in 
four steps that produce non-zero contributions, i.e., weights, to the solution of the wave 
equation. The remaining 4 possible strings (for a total of  24 = 16) have zero weights and 
so have been ignored; for example, the string SHHBH, after excising both the initial pair 
of H’s as well as the remaining BH string, is just the empty string (apart from the starter 
step), and that means that the relevant value of the heat kernel is at t = 0 and x = − 2, where 
it is zero. Some strings (e.g., SHBBH) have multiple paths, and though these are both dis-
played, the weight is specified only for the first instance (and accounts for the entire set of 
paths corresponding to that string) and is left blank for any subsequent listings of the same 
string. In each case, the magnitude of the weight (apart from the factor of − 1 to the power 
of the number of Huygens steps) is simply of the product of the heat kernel at some (pos-
sibly earlier) coordinates (those x and t coordinates are listed in the final column) times two 
to the power of the number of Brownian steps in the corresponding path.

As can be seen by inspection, the sum of the weights in this case is indeed zero at x = 
− 2, as it should be.

Since we have assumed a starter step that arrives at the origin from the point x = − 1, a 
similar tabulation for all space and time produces non-zero values only for the values x = 
t, where the value of the specified traveling wave is 1. For example, at the wave-front value 
x = t = 4, only the SBBBB string produces a non-zero value, and the value there is simply 
the multiplicity-and-sign factor,  24. times the value of Pascal’s triangle there, i.e., 1, times the 
overall normalization constant which is the inverse of the first term, for a result of 1. (Any 
other strings would, according to the formalism laid out here, involve values of the heat kernel 
at some earlier space-time coordinates that lie outside the reach of any paths with duration less 
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than 4 – i.e., at earlier times the destination is outside the light cone – and so their weight must 
be zero.)

This can be directly applied to higher dimensions as well (including, for example, hexago-
nal or triangular regular lattices in two dimensions, arguably the easiest configurations to con-
sider after the two-dimensional square lattice). As noted in the earlier section, any heat-like 
walks can be modified in such a way, though in cases of irregular lattices, closed form solu-
tions of the heat equation (apart from the continuum limit case of a Gaussian) will be harder 
to obtain.

Table 1  Calculating the 
1-dimensional wave equation at 
x = − 2 and t = 4 by tabulating 
all paths of length 4 (plus an 
implicit starter step to the origin 
beginning at x=-1) that begin at 
zero and terminate at x = − 2

 Only paths with a non-zero weight are shown, and weights for a 
given subset of paths (characterized by the indicated string) are dis-
played only for the first listed path of the subset; otherwise, they are 
suppressed. Since the 1-dimensional positive-direction traveling wave 
specified here has only a single non-zero value of 1 (at x = 4,t = 4), the 
sum corresponding to the point x = − 2 is zero. The remaining col-
umns are explained in the text

Four-Step 1-D WavePaths(0 →− 2) (starter step at -1)

Path String Wt Krnl  2nB Krnl(x,t)

(0,-1,-2,-3,-2) SHBBH 2 1/2 4 (− 1, 1) 
(0,-1,-2,-3,-2) SHBBB − 3 3/8 8 (− 1, 3) 
(0,-1,-2,-3,-2) SBBBH − 2 1/4 8 (− 2, 2) 
(0,-1,-2,-3,-2) SBBBB 4 1/4 16 (− 2, 4) 
(0,-1,-2,-1,-2) SHBHH − 1 1/2 2 (− 1, 1) 
(0,-1,-2,-1,-2) SHBHB 2 1/2 4 (− 1, 1) 
(0,-1,-2,-1,-2) SHBBH − 1/2 4 (− 1, 1) 
(0,-1,-2,-1,-2) SHBBB − 3/8 8 (− 1, 3) 
(0,-1,-2,-1,-2) SBBHH 1 1/4 4 (− 2, 2) 
(0,-1,-2,-1,-2) SBBHB − 2 1/4 8 (− 2, 2) 
(0,-1,-2,-1,-2) SBBBH − 1/4 8 (− 2, 2) 
(0,-1,-2,-1,-2) SBBBB − 1/4 16 (− 2, 4) 
(0,-1,0,-1,-2) SHHHB − 1 1/2 2 (− 1, 1) 
(0,-1,0,-1,-2) SHHBB 1 1/4 4 (− 2, 2) 
(0,-1,0,-1,-2) SHBHB − 1/2 4 (− 1, 1) 
(0,-1,0,-1,-2) SHBBB − 3/8 8 (− 1, 3) 
(0,-1,0,-1,-2) SBHHB 1 1/4 4 (− 2, 2) 
(0,-1,0,-1,-2) SBHBB − 2 1/4 8 (− 2, 2) 
(0,-1,0,-1,-2) SBBHB − 1/4 8 (− 2, 2) 
(0,-1,0,-1,-2) SBBBB − 1/4 16 (− 2, 4) 
(0,1,0,-1,-2) SBHBB − 1/4 8 (− 2, 2) 
(0,1,0,-1,-2) SBBBB − 1/4 16 (− 2, 4) 

Total: 0
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4  Additional Degrees of Freedom, Anisotropy, and Mass

Note that, as mentioned before, there can be multiple edges connecting two nodes. For 
example, consider a regular D-dimensional lattice where the number of edges connect-
ing any two nearest neighbors is some integer m > 1 (Fig.  3). In that case, HeatMatrix 
and WaveMatrix have the same general form as before, but N, and therefore the size of 
the matrices, is now multiplied by m; otherwise, the idempotency and involutority remain 
unchanged. Such multi-edge variations are useful if we desire our particles to have addi-
tional states – for example, charge. And if we choose, for any reason, to impose a “Pauli 
exclusion principle” on the particles – in other words, mandate that only particle in a given 
state can travel along an edge at any time – then if we apply that exclusion only to particles 
that are in identical states, such multi-channel graphs can ensure that annihilation or exclu-
sion only involves particles that have identical states.

Note that the formalism developed here can also be applied to anisotropic graphs and 
lattices that require a scale transformation in one or more dimensions in order for the 
random walks on the graph to become heat-like (Fig. 4). Also, the discreteness, and the 
manner in which the density of particles scales in one dimension or another can be used 
to our advantage.

In particular, consider a graph where a random subset of particles (such that their den-
sity is constant throughout the space) has an added dimension. For convenience, we may 

Fig. 3  (L) A graph with one edge connecting each neighbor along which oppositely signed particles annihi-
late. (R) A graph (i.e., a multigraph) with three edges connecting any nearest neighbor, suitable for particles 
with three binary degrees of freedom

Fig. 4  A case where a graph’s 
anisotropy can be compensated 
with a scale transformation (in 
this case, stretching along the y 
axis or compressing along the x 
axis), thereby making the associ-
ated random walks heat-like
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assume the new dimension is minimally small, i.e., isomorphic to ℤ∕2ℤ ). To visualize this 
in two dimensions, imagine that a random graph in the xy plane is duplicated and then 
stacked along the z axis, and some subset of points (for now, assume they have a uniform 
density) have pairs of edges leading up and down the z axis to a node’s stacked duplicate 
(Fig. 5). The evenness of the extra dimension ensures that the graph’s two parts can still be 
distinguished simply according to the parity of the components of this added dimension 
(and the same holds true for any regular graphs that are toroidal in one or more dimen-
sions, so that we shall stipulate that for any such ℤ∕mℤ dimension, that m must likewise be 
even). In any graph where the edges do not all lie along coordinate axis of ℝD , say a hex-
agonal two-dimensional lattice, or some irregular D-dimensional graph, the correspond-
ence between a given particle motion and an axis is not well-defined as it is in the case of 
the regular D-dimensional lattices we began with. But the fact that this added dimension, 
by construction, has a distinct axis and a uniform size means that movement in an edge 
along that dimension – let us refer to it henceforth as a “mass dimension” – is distinct from 
movement along any of the remaining “spatial” edges. Moreover, there is now an eigenvec-
tor in our space of functions corresponding to phase rotation along the axis of that new 
dimension. Let us isolate that mode and impose it onto the dynamics itself, by demanding 
that any particle that has taken a Brownian-Huygens propagation step along a spatial edge 
that then takes a step on an edge along the mass dimension (which means it appears to 
remains stationary with regard to the remaining dimensions, in the same way that a parti-
cle in a regular lattice is stationary with respect to any set of axes other than the one it is 
propagating along) incurs a factor of -1, just as with a Huygens backpropagation step, and 
likewise, another sign change when it chooses to take a step along a spatial edge after hav-
ing traversed some non-zero number of steps along the mass dimension – in other words, 
any transition into or out of motion along the mass dimension involves a change of sign. 
We shall call this modified Brownian-Huygens propagation. The length of a step along this 
mass dimension is also arbitrary, apart from inducing a scale factor α corresponding to 
that dimension length. (We shall further assume that the length is uniform throughout the 
space.)

Note that on this added dimension, the  2nd-order partial derivative of any function f, i.e.,

where 𝜖 approaches zero in the continuum limit, has a related function differing only in the 
sign of the second summand of the numerator and a normalization factor of 1/4:

(24)
f (x, i + 1, t) − 2f (x, i, t) + f (x, i − 1, t)

�2
,

Fig. 5  Adding a “small dimension”, isomorphic to ℤ∕2ℤ , along the z axis, by doubling a two-dimensional 
xy graph. Note that not all the nodes on the graph are required to possess edges leading along the added 
dimension

Page 19 of 26 239 



International Journal of Theoretical Physics (2022) 61: 239

1 3

which we shall call, for obvious reasons, a  2nd-order partial smoothing of f. Even though 
f(x,i + 1,t) and f(x,i − 1,t) are the same point (since the added dimension is isomorphic to 
ℤ∕2ℤ ), expressing them in more familiar form will make what follows easier to recognize. 
We shall also use the flexibility afforded to us by our discrete space to consider for the 
duration of this section only those expected particle counts that are so small in magnitude 
that the  2nd-order partial smoothing remains bounded even when 𝜖 is close enough to zero 
for our space to be indistinguishable from the continuum (or else, ensure the smoothing 
term stays bounded in this quasi-continuum limit by a compensating scaling of the mass 
dimension, since that, too, is essentially a free parameter). We shall further limit ourselves 
to functions that are already smooth enough so that the above smoothing is arbitrarily close 
to the continuum value of the function at x (at which point i is assumed to be either 0 or 1 
so as to properly specify the non-zero part of the bipartite graph).

Assuming that Brownian walks in this expanded graph are heat-like (up to the afore-
mentioned scale transformation along the mass dimension), then Brownian-Huygens prop-
agation in the graph will create walks that are wave-like. As for the modified Brownian-
Huygens propagation with the added sign change incurred when switching between a step 
along some spatial edge and one that is aligned along the mass dimension, and vice versa, 
we have the following related equation

where ψ(i ± 1) signifies the nearest neighbor locations along the newly added dimension 
(again, given the isomorphism to ℤ∕2ℤ , both refer to the same node) and N� = N + 2 , 
and αc is the resultant value of the scale factor α in the quasi-continuum limit, and where 
the discrete Laplacian operator ∇2

N� conforms to the number of neighbors N′ of the node 
in question (and where the discreteness of the  2nd-order time derivative is understood). 
Given the smoothing operator we have chosen, the central term ψ(x,i,t) in all the respec-
tive  2nd-order derivatives or smoothings in (24) and (25) still cancels on both sides of the 
above equation (though 2∕N� is of course smaller in magnitude than 2/N). Therefore, in the 
near-continuum limit we are considering, the above equation reduces to the familiar Klein-
Gordon equation with αc proportional to the square of the associated mass, justifying our 
usage of “mass dimension”.

If we consider the previous graph’s WaveMatrix to have been expanded by two columns 
and rows (representing forward and reverse step-wise movement along the added “mass 
dimension”) the coefficients there are negated relative to the rest of the matrix, except 
for the 2 × 2 submatrix at the very bottom of the diagonal, where the coefficients retain 
the same sign. (All of the coefficients, however will change in the sense that N has now 
increased to N + 2.) We shall call this modified matrix KGMatrix.

Although KGMatrix is still involutory, so that the sum of the expected squares of 
the amplitude in the edges is conserved under this kind of propagation, the sum of the 
components along any row or column is no longer unity as before, so that the sum of 
the amplitudes is no longer strictly conserved. However, given that a particle always 
incurs a change of sign with every transition from a step along the mass dimension 
to a step along some spatial edge (or vice versa), it is easy to see, even in the case 
where the length of the mass dimension is some larger even number than 2, that the 
sum of the amplitudes in the even-indexed slices along the mass dimension axis minus 

(25)
f (x, i + 1, t) + 2f (x, i, t) + f (x, i − 1, t)

4�2
,

(26)�2

�t2
� =

2

N�

(
∇2

N�� −
�c

4
(�(i + 1) + 2� + �(i − 1))

)
,
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the sum of the amplitudes in the odd-indexed slices is the same absolutely conserved 
quantity that would be the sum of the amplitudes if the particle were following the 
usual Brownian-Huygens propagation rules we defined earlier, instead of the modified 
version. So in that sense, the conservation of amplitudes still holds.

If we consider any paths in this expanded space, we can easily excise any steps 
taken along the mass dimension (which will always occur in even numbered groups) 
by repeating the approach described in the previous section (that was used to pro-
gressively excise Huygens steps from a set of paths) and use that to expand any val-
ues of the wave functions for a massive particle into either a sum of terms consist-
ing of factors of the regular wave equation, or else, a sum of terms of the propagator 
of the heat equation (with the excised walks taking place on a graph without any 
added mass dimension).

Depending on the equation we are interested in modeling, we could introduce still 
other kinds of alternate small dimensions (with possibly longer lengths), and specify 
more complicated phase factor transitions, rather than the single mass dimension and 
the simple negation that will suffice for the purpose of this paper, and in that way 
account for more complicated particle symmetries. In other words, we did not need to 
actually double and stack the graph – the extra dimensionality is just a way to incor-
porate an internal structure to the particles. For that matter, we did not need to intro-
duce signs or antiparticles, and could have continued with scalar particles, and instead, 
accommodated that two-state degree of freedom by similarly modifying the graph.

The approach here is in some ways a discrete and very rudimentary analog of string 
theory, and the manner in which dimension is treated there, but the goal of this section 
is simply to demonstrate that the approach we have chosen is not limited to the wave 
equation, and that discreteness, far from being a disadvantage, allows for a flexibility 
that is peculiarly well-suited for the path-integral equations of modern physics.

Moreover, the discussion on anisotropic graphs applies to the mass dimension as 
well. It is not necessary that every node of the graph contain an edge leading along the 
mass dimension. A graph that is “sparse” in such nodes would require a scale trans-
formation, relative to one that is not, in order for the generated waves to have identical 
densities and properly Gaussian evolution distributions, and in this case, that would 
mean changing the magnitude of the mass term (Fig. 6). Moreover, if the density of 
such mass dimension edges were different in one region of the space than another, the 
mass parameter would likewise vary, so that this formalism easily accommodates the 
curved spacetimes of general relativity in which mass varies. If we admit exogenous 
forces and interactions (and any such deviation from our rules that that entails), then 
any edges along the mass dimension can be conditioned on some exogenous variable 
or coupled to the presence of another kind of particle in the space; and given that all 
this can be accomplished with even a random arrangement of nodes and edges, space-
time can expand or shrink more easily than would be the case if the ability to model 
wave equations required the pristine symmetry of a regular lattice.

Therefore, this Brownian-Huygens approach is suitable not just the classical wave 
equation, but also quantum mechanical wavefunctions for particles with a mass. Since 
the transfer matrix approach already suffices to transform the second-order wave equa-
tions into first-order (a discrete analog of Hamilton’s transformation of second-order 
Lagrangian mechanics into a system of first-order equations), there is no need to fur-
ther pursue Dirac’s approach of “taking the square root of the d’Alembertian operator”.
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5  Quasi‑Probability Particle Densities

In the rest of the paper, we shall for simplicity’s sake ignore mass and return to simple 
Brownian-Huygens propagation. In addition to endowing particles with a sign, let us 
expand the universe to two distinct types of particles propagating on the same graph, 
whose randomly chosen path steps are completely independent. (Note that even with this 
two-fold expansion of particles, the added degrees of freedom still amount to far less com-
plexity than is contained in, say, a complex-valued 4-vector solution of the Dirac equation). 
Following Dirac’s nomenclature, we shall refer to this expanded universe of particles as 
being either “bra” or “ket”, respectively. Let us assume that the net density of both types 
of particles at t = 0 is equal to some function ψ(x,0), for which the integral of the square 
of the function is unity. Then, as has previously been noted [5], at any subsequent time t′ , 
the product at some point x of the net particle count of the bra particles times the net par-
ticle count of the ket particles has a positive expected value that is everywhere equal to the 
square of the expected value of the wave equation �(x, t�) . (Recall that since WaveMatrix 
was previously shown to be involutory, then the expected sum of the squares propagating 
along the edges of the graph is conserved, as is the sum.) By the law of large numbers, for 
a sufficiently fine-grained graph, and a sufficiently large region of that graph, the expected 
value of this count can be made so that the likelihood of it being negative when summed 
over this region is arbitrarily small, even if this region is itself a very small region of the 
entire graph. Admittedly, since Brownian-Huygens is a branching process, so that there is 
no single particle trajectory to speak of, the resultant wave dynamics here is more closely 
related to that of a quantum field than a wave-function for a single particle, but given the 
latter is only a non-relativistic limiting case, that is more a problem for the notion of single-
particle wavefunctions than this model.

Such generalized densities have similarities to quasi-probability distributions by 
Wigner and Moyal [6–8]. Given the fact that they can be negative, such quasi-probabilities 

Fig. 6  Two graphs, each consisting of an irregular 1-dimensional graph along with a mass dimension iso-
morphic to ℤ∕2ℤ . Due to the differences in the density of edges along the mass dimension, the associated 
mass parameter of the associated Klein-Gordon differs between the two graphs. (Note also that the left-hand 
side of the top graph has a different density of such edges, so that even within that graph, assuming the den-
sity differentials of such edges within different regions persists even in the continuum limit, the mass would 
then vary across those differing regions)
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do not violate Bell’s theorem ([9], despite their being local, and the same holds true of 
this approach.

Let us define a measurement as the operation of integrating any such bra-ket product 
count over some space-time path, so as to include whatever is on (or sufficiently close to) 
that path. Note that the presence of a negative bra-ket summand reduces the count, and 
different sequences of measurements along different paths will lead to different percep-
tions (or “worlds”), similar in some respects to how the distributions of electrons on an 
antenna can yield distinctly different programs depending on the frequency with which it 
is sampled; cf. the Wigner-von Neumann interpretation of quantum mechanics [10, 11] in 
which the subjective perception of an observer depends on, and is intrinsic to, a quantum 
mechanical measurement. Assuming all observers in such a space are of a sufficiently large 
macroscopic size, and only capable of registering macroscopic counts (even if those are 
taken over, say, the retina of an eye that is focused on a photoelectric cell that is designed 
to register the presence of a quantum event), then most any measurement would inherently 
involve nonnegative counts, to the extent that exceptions would be so rare as to be regarded 
as inconceivable.

6  Discussion

Surprisingly, the fundamental equations of quantum field theory can be modeled to arbi-
trary precision by extensions of random walks on a random graph, generated with rules so 
simple that any child who is familiar with the concept of negative numbers can follow and 
understand them.

The path-integral approach to quantum field theory by Dirac [12], and Feynman [13] is 
elegant and intuitively appealing; however, it has left physicists – and in particular, those 
holding to the notion that physics should be fundamentally simple at some basic level 
– with the philosophical quandary of assuming that any subatomic particles, created and 
annihilated in vast numbers even in tiny regions of the spacetime vacuum, are each able to 
traverse all possible paths to a given destination in the course of their propagation, includ-
ing paths implying arbitrarily superluminal speeds, and integrate at each instant of these 
paths a Lagrangian. It is a task that the smartest minds could not accomplish, and yet every 
single field particle is somehow able to execute it. (Admittedly, it was not much better dur-
ing the reign of Newtonian mechanics, wherein even the tiniest particles were implicitly 
assumed to have sufficient expertise in vector addition and trigonometry to the extent that 
they are capable of retaining and transferring energy, momentum, and angular momentum 
in any collision or interaction, with seemingly infinite precision [14, Note 5].)

Numerous physicists have voiced the notion, in the words of Anthony Zee, that at 
sufficiently small time scales “new physics must appear” [15, p. 172], and various pro-
posals have been offered in anticipation of a need for a more generalized (and ultimately 
simpler) paradigm of motion. For example, cellular automata have for decades been 
regarded by some as conceptually a simpler and more plausible foundation for suba-
tomic behavior [16–21], but there has been little effort devoted to the specifics of how 
the rules that govern cellular automata could recreate the fundamental and well-estab-
lished equations of modern physics.

With regard to the heat equation, and the summation of paths implicit in its kernel, there 
is, on the contrary, no particular mystery or vagueness as to how particles acting with sim-
ple rules suffice to explain that equation and its many variations, in ways that are accessible 
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to anyone familiar with Pascal’s triangle and its continuum limit. This is in sharp con-
trast to the Schrödinger equation, which is often characterized as formally being simply a 
heat equation with an imaginary scale factor k, without any elaboration as to what, if any-
thing, that might mean in a physical sense. That being said, there is also a growing body 
of research devoted to quantum mechanics with discrete time on quantum graphs that does 
frequently makes use of that formal diffusion-Schrödinger relationship [22–24]. These 
quantum walk approaches are essentially discrete extensions of the aforementioned path-
integral formulation of Feynman, Dirac, et al., so that along these discrete quantum-walk 
steps, a Lagrangian or Hamiltonian is integrated, so as to derive the particle’s complex-
valued phase factor (or alternatively, the overall phase evolution occurs by way of discrete 
phase shifts obtained by flipping a “quantum coin”).

Here, the dynamics is radically simpler and the only allowed phase factors are 1 and 
-1, and the transition from one to the other derives not from any evolution operator, but 
rather, the simple mechanics of particle-antiparticle creation (and the only other mathemat-
ical operation, so to speak, consists of choosing a nearest neighbor from among all those 
available to a given node so as to traverse a random walk). Remarkably, this very restricted 
range of discrete values and motions nonetheless leads to relativistically invariant wave and 
Klein-Gordon equations.

The formalism presented here builds on that clear connection between what is funda-
mentally simple and discrete, and the collective phenomena that emerge therefrom, and 
extends it to the wave equation and other relativistic quantum wavefunctions of field the-
ory, and thereby simplifies Dirac’s and Feynman’s path-integral formulation (cf. [25]). And 
unlike the continuous-case propagators first derived by Hadamard [26, Chapter 4.4] which 
have distinctly different solutions according to the dimension of the space, the propagators 
shown here are easily generalized to any number of dimensions, as is true of the kernel of 
the heat equation to which they are related. Moreover, the simplified approach explains 
how the interactions between fields – which, as Feynman diagrammatically demonstrated, 
can be expanded in graph-theoretic terms – are similar in nature to the interactions within a 
single field that govern its internal propagation even in the absence of outside interactions. 
And all this without so much as a single complex or floating-point number. Granted, the 
introduction of quasi-probabilities – even those that converge to Newtonian values at suf-
ficiently macroscopic scales – is something that will always be difficult to understand for 
macroscopic creatures living in a visibly Newtonian world, but there is nothing particularly 
surprising or unfathomable in recognizing that those who live in a macroscopic realm have 
powers of perception that conform to those scales.

The formalism presented here, while poorly suited as a computational scheme (though 
that may change with the emergence of quantum computing or massively parallel computa-
tion), clearly demonstrates how radically simple particles motions can, not by complexity, 
but by sheer number, recreate the fundamental wave equations of modern physics.

7  Conclusion
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