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Abstract 
 
How is algorithmic model interpretability related to human acceptance of algorithmic 
recommendations and performance on decision-making tasks? We explored these questions in a 
multi-method field study of a large multinational fashion organization. We first conducted a 
quantitative field experiment to compare the use of two models—an interpretable versus an 
uninterpretable algorithmic model— designed to assist employees with decision making around 
how many products to send to each of its stores. Contrary to what the literature on interpretable 
algorithms would lead us to expect, under conditions of high perceived uncertainty, decision 
makers’ use of an uninterpretable algorithmic model was associated with higher acceptance of 
algorithmic recommendations and higher task performance than was their use of an interpretable 
algorithmic model with a similar level of performance.  We next investigated this puzzling result 
using 31 interviews with 14 employees—2 algorithm developers, 2 managers, and 10 decision 
makers. We advance two concepts that suggest a refinement of theory on interpretable algorithms. 
First, overconfident troubleshooting—a decision maker rejecting a recommendation coming from 
an interpretable algorithm, because of their belief that they understand the inner workings of 
complex processes better than they actually do. Second, social proofing the algorithm—including 
respected peers in the algorithm development and testing process—may make it more likely that 
decision makers accept recommendations coming from an uninterpretable algorithm in situations 
characterized by high perceived uncertainty, because the decision makers may seek to reduce their 
uncertainty by incorporating the opinions of people with their own knowledge base and 
experience. 
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1.  Introduction 
 

With the continuing application of artificial intelligence (AI) technologies, algorithmic 

decision-making is becoming more efficient, often even outperforming humans. Despite this 

superior performance, human decision makers often consciously or unconsciously display 

reluctance to accept algorithmic recommendations, a phenomenon known as algorithm aversion. 

Algorithm aversion is particularly prevalent in decision making situations characterized by 

uncertainty, such as medical (Dietvorst & Bharti, 2020; Kawaguchi, 2021) and financial 

investment decision making contexts (Zhang et al., 2021). Yet, this tendency for decision makers 

to reject algorithmic recommendations in uncertain situations is particularly problematic, because 

such areas may be the ones that are most amenable to improved outcomes through the use of 

human-in-the loop decision making (Verganti et al., 2020). 

One potential mechanism for increasing human decision maker acceptance of algorithmic 

decisions is that of interpretable AI, or designing algorithmic models that are inherently 

interpretable to humans (Rudin, 2019). The literature on interpretable AI puts forth two arguments 

that are relevant to our study. First, providing human decision makers with an “interpretable model 

that obeys a domain-specific set of constraints to allow it (or its predictions, or the data) to be more 

easily understood by humans” (Rudin et al., 2022, p. 3) should result in greater acceptance of 

recommendations from the model than providing human decision makers with an equally high 

performing uninterpretable model (Ashoori & Weisz, 2019; Brundage et al., 2020). Second, 

providing human decision makers with an interpretable algorithmic model with a similar level of 

model performance should allow for better human decision-making performance than providing 

human decision makers with an uninterpretable algorithmic model (Arrieta et al., 2019; Rudin & 

Radin, 2019).  
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While this research has been important in illuminating important issues related to 

algorithmic interpretability, human acceptance of algorithmic recommendations, and human task 

performance on algorithmically informed decision-making tasks, it cannot explain the results we 

found in our multi-method study in a large multinational fashion organization.  We first performed 

a quantitative field experiment to test the effect of human decision makers’ use of an interpretable 

(weighted moving average with clear inputs) versus an uninterpretable algorithmic model 

(recurrent neural network – Machine Learning), under conditions of high perceived uncertainty, 

on the dual outcomes of 1) human decision maker acceptance of algorithmic recommendations 

and 2) human decision maker task performance. We randomized algorithmic assistance throughout 

the company’s allocation decision-making processes where half the employee decisions around 

how many products to send to each of its stores were assisted with recommendations from the 

interpretable algorithm and half were assisted with the uninterpretable algorithm.  

Contrary to what the literature on interpretable algorithms would predict, we found that, 

under conditions of high perceived uncertainty, human decision makers’ use of the uninterpretable 

algorithmic model was associated with greater acceptance of algorithmic recommendations and 

greater performance—fewer stockouts and higher sales measured by quantity and value— than 

was human decision makers’ use of the interpretable model in situations with a similar level of 

model performance. 

We next conducted 31 interviews with 14 employees to understand this puzzling result. 

The key theme that emerges from our qualitative analysis is that, under conditions of high 

perceived uncertainty, algorithmic models that are interpretable to humans may, 

counterintuitively, lead to lower acceptance of algorithmic recommendations. This may occur 

because allowing human decision makers to interrogate an algorithmic recommendation may lead 
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them to do what we call overconfident troubleshooting—a decision maker rejecting a 

recommendation coming from an interpretable algorithm, because of their belief that they 

understand the inner workings of complex processes better than they actually do. Because of the 

“illusion of explanatory depth” (Rozenblit & Keil, 2002)—humans’ belief that we understand the 

causes, effects, and inner workings of complex mechanisms, events, and processes much better 

than we actually do—providing humans with an interpretable algorithm may make it more likely 

that they reject the recommendation coming from it.  

Further, social proofing the algorithm, including respected peers in the algorithm 

development and testing process, may make it more likely that decision makers accept 

recommendations coming from an uninterpretable algorithm in situations characterized by high 

perceived uncertainty, because the decision makers may seek to reduce their uncertainty by 

incorporating the opinions of these peers. The mismatch between a human decision maker’s initial 

judgment and algorithmic recommendation may lead the decision maker to become more uncertain 

in their judgment and want to reduce their uncertainty. When a human decision maker is not able 

to interrogate the reasoning behind the algorithmic recommendation, in a decision-making 

situation characterized by high perceived uncertainty, they may seek to reduce their uncertainty by 

incorporating the opinions of people like them—people with their knowledge base and 

experience— who have been involved in the algorithm development and testing process. 

The rest of the paper continues as follows. In the next section, we describe the relevant 

literature and theoretical background. Section 3 describes the experimental setting and the 

organization’s processes involved in product allocation. The quantitative methods and quantitative 

analysis are discussed in Section 4 and 5. Section 6 describes the qualitative methodology adopted. 

Section 7 reports the findings from the qualitative interviews, and explains our concepts of  
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overconfident troubleshooting and social proofing the algorithm. The theoretical lessons learned 

from this study are discussed in Section 8 followed by a brief conclusion in Section 9. 

2. Background Literature 
 

 
Figure 1: Theoretical Model 

 

Our theoretical model (Figure 1) frames the effect of algorithmic model’s decision making 

support on firm performance through the mediation of employees’ acceptance of algorithmic 

recommendations, which represents the human-in-the-loop model of AI adoption (Kleinberg et al., 

2018). The higher the algorithm aversion, the less the employee’s acceptance of the algorithmic 

support. Finally, the framework involves the moderation of perceived uncertainty (Dietvorst & 

Bharti, 2020), which influences the employee acceptance of the algorithmic recommendation. 

Differences in algorithmic support: Accuracy and interpretability 
 

Algorithmic support refers to the information provided by an artifact capable of cognitive 

tasks. Herm et al (2020) classify algorithms with respect to accuracy and interpretability. First, 

algorithms on average differ in their capability to predict the likelihood of a future event to happen 

and last (Bonde Thylstrup et al., 2019; Henriksen & Bechmann, 2020). For example, ML models 

perform better than rule-based models in high data-frequency contexts with high variability and 

turbulent conditions, or in changing contextual conditions that require learning and adaptation 

(Herm et al., 2022). Second, algorithms differ in their interpretability. Compared to ruled-based 
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algorithms, which are based on hierarchies of rules and control flows (Lebovitz et al., 2022), ML 

algorithms are less intelligible to users, who have difficulties understanding the quality of the 

information received. The reduction of algorithmic interpretability correlates to the increasing 

mathematical knowledge required to understand the model and the information processing 

required for humans to replicate algorithmic paths and rules (Burrell, 2016).   

The mechanics of employee acceptance: Algorithm aversion under conditions 
of perceived uncertainty  
 

With the progress in AI technologies, the accuracy of algorithms is increasing, often even 

outperforming humans. The advancement of algorithmic support in decision-making loops aims 

to increase human decision-making performance by providing better data. Although the study of 

ML-based decision-making support is in an early stage, ML-based decision-making support has 

already shown the importance of considering the human-in-the-loop behavior when looking at the 

ML effect on firm performances. For example, in court decisions, Kleinberg et al (2018) show an 

average performance increase in bail decisions when decision making is informed by ML-based 

decision-making support. In discussing the findings, they however supported the hypothesis that 

“good predictors do not necessarily improve decisions.”” 

Indeed, despite this superior performance, human decision makers are sometimes reluctant 

to accept algorithmic recommendations, displaying algorithm aversion. Algorithm aversion is 

particularly prevalent in decision making domains characterized by perceived uncertainty 

(Dietvorst & Bharti, 2020; Feng & Gao, 2020; Kawaguchi, 2021; Sutherland et al., 2016; Zhang 

et al., 2021). For instance, in highly uncertain environments such as medical decision-making 

(Dietvorst & Bharti, 2020; Kawaguchi, 2021) and financial investment decision-making (Zhang 

et al., 2021), human decision makers frequently reject algorithmic recommendations. This may be 
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due to people feeling insecure regarding the outcome, and concerned about the consequences of 

this outcome (Grgić-Hlača et al., 2019; Lennartz et al., 2021).  

Building interpretable algorithms 
 

Algorithm aversion can be problematic, especially considering the increase in the accuracy 

of algorithms. Thus, scholars have explored potential mechanisms for increasing human 

acceptance of algorithmic decisions in settings of high uncertainty, in hopes of increasing human 

performance on decision-making tasks. Vaccaro & Waldo (2019) focused on understanding the 

role of human mediation between the recommendation and the human decision maker’s bail 

decision, showing an anchoring bias to the recommendations provided; decision-makers tended to 

deviate by a number of units depending on the absolute value received from the algorithm. Their 

analysis suggests that, if the algorithm accuracy increases, algorithm aversion can decrease the 

positive effect on performance. 

The literature on interpretable AI has suggested that making algorithms transparent can 

help to reduce algorithm aversion. The field of interpretable AI design is growing rapidly, and 

identifying new ways to design algorithms that are naturally interpretable by humans (e.g. Rudin 

et al., 2022). The rationale is that people are often averse to recommendations if they cannot 

interpret the actual prediction results of the algorithm (Ashoori & Weisz, 2019; Brundage et al., 

2020). It follows that providing an interpretable model should lead to greater acceptance of the 

model's recommendations by human decision-makers than providing an equally powerful model 

that is not interpretable. However, to our knowledge, the interpretability of AI has never been 

connected to firm performance in field experiments. 
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3. Empirical Context 
 

The experiment was conducted at Tapestry, Inc. (NYSE: TPR), a leading New York-based 

house of iconic accessories and lifestyle brands consisting of Coach (founded in 1941), Kate 

Spade, and Stuart Weitzman, acquired in 2017 and 2015, respectively. In 2022, the Tapestry group 

counted more than 18,000 employees globally, and sales of $6.7B.  

At the supply chain level, the firm (like other retail companies) faces the problem of 

optimizing product allocations to stores, which means placing the right number of products, at the 

right time, in the right store to maximize sales and reduce misallocation.  The supply chain is 

organized in a Make to Stock model. Raw materials are purchased, and products are manufactured 

based on aggregate demand per geographical region (e.g., North America, Asia Pacific, EMEA). 

The manufactured products are then stored in fulfillment centers (FC) located strategically within 

the geographical regions. As new products are available in the FC, teams of employees oversee 

their allocation to stores within the region, deciding how much of each SKU should be sent to each 

store across the geographic area. This decision is based on short-term forecasts, which require high 

precision decision making. Therefore, product allocations are optimized if the firm can predict the 

demand per product in each store at the right time and organize the supply chain accordingly. 

Poor allocation accuracy can adversely affect firm performance such as increased 

stockouts, declines in sales, costs associated with shipping excess product to different stores and 

so on. For this reason, Tapestry made investments in developing an integrated AI forecasting 

model with the objective of improving allocation accuracy. Prior to this investment, the demand 

forecast was traditionally calculated with a ruled-based algorithm, a weighted moving average 

(WMA) of the known historical sales from the previous weeks. 
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The ML is a recurrent neural network model which differs from the WMA both in the 

diverse data inputs it uses and for the sophistication and accuracy of the model (Taddy, 2018). 

First, concerning the data employed, the ML expands the array of temporal data, using 16 weeks 

of data to calculate the prediction instead of the 3 weeks considered by the WMA, and it adds to 

the calculation contextual data like promotions and holidays, which expands the data variety 

available to make predictions. Second, the RNN contains a more complex function to turn inputs 

into output predictions. Unlike, the WMA which is interpretable by human decision makers, the 

ML model is considerably more complex, rendering it unfeasible for human decision makers to 

interpret its decision-making process or actual prediction results.  

In this experiment, we study the allocation decisions for the North America region, which 

entail allocating around 5,000 SKUs to roughly 200 stores1. Each allocator in the allocation team 

working in the greater New York area is assigned to a subset of SKUs. We randomized algorithmic 

assistance so that half the allocator decisions on how many SKUs to send to each of its stores were 

assisted with recommendations from the WMA (interpretable) algorithm and half were assisted 

with the ML (uninterpretable) algorithm. Every week, for each SKU, allocators iterate the 

following fixed procedure. They select one product from the list in the software interface and they 

select the model randomly assigned to that product to make the forecast (either WMA or ML).  

They receive an algorithmic recommendation from the software on how many units of that 

SKU will be sold in that store in the following weeks. The decision that allocators are required to 

make is either to confirm the recommendation received and ship the quantity or to deviate from 

the recommendation, shipping a different number of products. The allocation decision is hence 

 
1 The number of SKUs can vary overtime as new products are introduced and older products as 

discontinued. Within our study we focus on existing products which includes 216 SKU varieties.  
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informed by the algorithmic recommendation provided by the software, and mediated by the 

allocators’ acceptance of or deviation from the recommendation. 

4. Quantitative Methods 
Experimental design 
 

A subset of products and locations were used in the experiment. For those products and 

locations used, the experimenters intervened by providing the predicted demand from the new ML 

algorithm in place of the prediction from the current WMA system in half of the decision 

situations.  The allocators were free to deviate from the recommendations received from either the 

WMA algorithm or the ML algorithm, allowing observation of any differences in the allocators’ 

use of the recommendations from the two sources.  

The product-locations used were determined primarily to satisfy feasibility constraints. The 

products included were selected to have at least 16 weeks of historical sales to satisfy the needs of 

the ML algorithm, and priority was given to products that were frequently allocated to maximize 

the number of observations during the experiment. 

The experiment took place over 3 weeks in the summer of 2021. Sales and inventory data 

was collected for an additional two weeks to construct outcome measures for the final weeks of 

the experiment. Randomization occurred at the “style-color” level for compatibility with the 

existing workflow. Style-color is a slightly coarser identifier than product. Whereas “product” 

identifies a particular style, in a particular color, and particular size, style-color groups different 

sizes together. For example, a black, flat-style shoe may be available in sizes from 5 to 11. In the 

experiment, all sizes were treated in the same way; algorithmic recommendations were provided 

for all sizes or none of the sizes. Randomization was stratified by “department”. Departments 

group related products together, e.g., “Women’s Bags”. There are 17 departments in total. The 
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experiment used a balanced, 1x2 design with 50 percent of the style-colors in the treated group 

and 50 percent in the control group. In total 241 style-colors were used in the experiment, allocated 

across 186 locations. 

Data 
The dataset is an unbalanced panel of 17,245 allocation decisions. Each decision is 

identified by a product, retail location, and week. The products are allocated 79.84 times on 

average with a maximum of 402 and a minimum of 1.  

For each decision we observe the product, retail location, timestamp, the allocator 

anonymized, number of units allocated, the demand forecast of the WMA, the demand forecast of 

the ML system, and the system experimentally assigned for the allocation. For each product we 

observe its department. In addition, we used a supplementary dataset of historical sales data to 

calculate a priori characteristics of the products and retail locations. Using data from January 2019 

to January 2021 (two years prior to the experiment), we calculate average sales volume at each 

retail location. 

Based on input from the partner firm, outcomes two weeks from the point of the decision 

were used to assess decision-making. We observe inventory levels in units and sales volume in 

units and dollars. We consider a stockout has occurred if for a given product at a given location in 

a given week inventory is less than or equal to zero. 

Summary statistics on the main variables used for the analysis are included in Error! 

Reference source not found.. The treated group (ML algorithm) on average allocated less product 

than the control group, while at the same time the recommendations received by the treatment 

group were lower on average (14.08 units) than the control group (21.56). Deviation on average 

for treatment group was lower than those in the control where the absolute value deviation 

(measured by allocation-recommendation) is 10.62 and 13.33, respectively. In terms of average 
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performance, the treatment group has higher inventory, sales units and net revenue and lower 

stockouts than the control group. The definitions for all variables used in the study can be found 

in Table A1 in the Appendix.  

Table 1 Summary statistics of main variables across all, treatment, and control groups 

  All ML WMA 
Mean SD Mean SD Mean SD 

Allocation 12.35 23.76 12.05 22.07 12.69 25.59 

Recommendation 17.54 49.3 14.08 38.76 21.56 59.02 
Deviation 11.87 32.08 10.62 23.15 13.33 40 
Stockouts 0.29 0.45 0.23 0.42 0.35 0.48 
Beginning 
Inventory 12.9 28.46 13.56 29.65 12.14 26.98 

Sales Units 2.48 6.42 2.55 6.81 2.4 5.93 
Net Revenue 164.47 485.82 178.42 568.67 148.22 365.68 
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5. Quantitative Analysis 
 

The following section presents the empirical results from our quantitative field experiment 

to test the effect of human decision makers’ use of an interpretable (weighted moving average with 

clear inputs – WMA) versus an uninterpretable algorithmic model (recurrent neural network – 

Machine Learning), under conditions of high perceived uncertainty, on the dual outcomes of 1) 

human decision maker acceptance of algorithmic recommendations and 2) human decision maker 

task performance. We start by statistically confirming that ML generated distinct product quantity 

recommendations in comparison to the WMA. We then test the robustness of our treatment on 

product allocation by incrementally including fixed effects and by deriving robust standard errors. 

To identify whether our treatment affects the decision making of allocators, we control for the 

recommendations provided by either the WMA or the ML algorithm. We next turn to assessing 

the effect of ML on decision-making task performance as measured by stockouts, beginning 

inventory, sales volume, and sales value. Finally, we examine if there are heterogeneous effects in 

our treatments both in terms of performance and allocation by a priori store sales volume. 

ML algorithm and system recommendations 
 

The first section of our empirical strategy is to confirm whether the ML recommendations 

affect the average size of the recommendation seen by allocators. We examine the experimental 

outcomes within a regression framework. The simplest specification is illustrated in Equation 1: 

𝑦!"# = 𝛽$%1$% +	𝜇&'( + 𝜖!"# 

Equation 1 

𝑦!"# is the outcome of interest which captures recommendations of product-store-time 

presented to allocations. 𝛽$%is the coefficient on an indicator for the recommendation being 

included in the treatment group. Note the indicator is for inclusion in the treatment group, not that 
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the ML recommendation was used. As such, we are presenting intent-to-treat estimates of the 

treatment effect. As the randomization was stratified by department, we include department fixed-

effects, 𝜇&'(. The coefficient of interest is 𝛽$% measures the average effect of the ML intervention 

on recommendations. 

The result in Table 2 demonstrates the average effect of the ML intervention on the system 

recommendations. As expected, there is a detectable difference in the average recommendation 

produced by the ML system. This naïve estimate suggests that ML induced a statistically 

significant reduction in the amount of product recommendations, by an average of 6 products.  

Table 2: Effect of ML on system recommendations 

Dependent Variable: Recommendation (1) 

  
Treatment -6.6100*** 
 (0.7669) 
  

  
R Squared 0.08 
Observations 17,245 
Note: The dependent variable represents system recommendation quantities. The treatment variable takes the value of one when 
recommendations are made with ML and zero otherwise. The model includes department fixed effects. Statistical significance is 
defined as follows *** p<0.01, ** p<0.05, * p<0.10.  

 
ML algorithm and product allocation 

After confirming the statistical difference in recommendation quantities between the two 

technologies, next we assess the extent to which the treatment impacts allocation decisions within 

the firm (see Equation 2).  

𝑦!"# = 𝛽$%1$% +	𝛽)𝑟!"# +	𝜇&'( + 𝜈# + 𝛿*++ + 𝜖!"# 

Equation 2 

 𝑦!"# signifies the allocation quantity of a product 𝑖 location 𝑗 combination at week 𝑡. 𝛽$% 

captures the average effect of the ML intervention on allocation quantities. 𝛽) is the coefficient on 

the recommended allocation from the system, either from the WMA in the case of a control 
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observation or from the ML system in the case of a treated observation. In addition to department 

𝜇&'(, we also include week and allocator fixed effects specified by 𝜈# and 𝛿*++, respectively. 

The results in Table 3 illustrate the effects of ML algorithm on allocation decisions. Model 

One to Model Three incrementally add department, week, and allocator fixed effects. The 

coefficient in Model Three suggests that the average effect of the ML algorithm intervention is to 

reduce allocation by about 1.7 units. This estimate combines the effect of the difference in 

recommendations coming from the ML algorithm as well as the effect of any difference in the 

allocators’ response to the recommendation. To isolate the behavioral change in allocator decisions 

we control for the system recommendation in Model Four. We find that the ML algorithm leads to 

an average increase in the allocation decision by roughly one product (0.918).  

Table 3 Effect of ML on allocation decisions. Specifications incrementally include fixed-effects 

Dependent Variable: Allocation (1) (2) (3) (4) 

     
Treatment -1.3250*** -1.7820*** -1.6963*** 0.9178*** 

 (0.3813) (0.4034) (0.4033) (0.2370) 
Recommendation    0.3704*** 

    (0.0139) 

     
Controls     
Department ✓ ✓ ✓ ✓ 
Week  ✓ ✓ ✓ 
Allocator   ✓ ✓ 

     
R Squared 0.10 0.11 0.11 0.65 
Observations  17,245 17,245 17,245 17,245 
Note: The dependent variable reflects allocation units. The treatment variable takes the value of one when decisions are made with 
ML and zero otherwise. Model One to Model Four, incrementally add fixed effects including department, week, and allocator and 
Model Four controls for recommendations provided to allocators. Robust standard errors are in parenthesis. Statistical 
significance is defined as follows   *** p<0.01, ** p<0.05, * p<0.10.  

 
ML algorithm and human decision maker task performance 

To assess the effects of the ML algorithm on decision maker task performance we augment 

Equation 2 by replacing 𝑦!"# with measures of performance which are expected to improve when 
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allocation decisions are made with better recommendation. We examine the effect of the ML 

algorithm on the probability of stockouts, inventory levels, units sold, and revenue at the product-

location and week level. To estimate these regressions, we rely on the most restrictive specification 

consistent with Model Four in Table 3, which controls for department, week, allocator, and 

recommendations.   

The results in Table 4  indicate changes to product allocation decisions induced by the ML 

algorithm had significant effects on performance outcomes. We find that ML algorithm resulted 

in a reduction in the probability of stock outs, increases in inventory levels, raised sales quantity, 

and raised revenue. The average effect of each outcome is precisely estimated and highly 

significant at the 1% level. ML reduced the probability of stock outs by 9%, which led to higher 

sales of about half a product (0.62) and increased sales by $38.74 on average per allocation.  

Table 4 Effect of ML on the probability of stockouts, inventory levels, units sold and net revenue 

 (1) (2) (3) (4) 

Dependent Variable 
Stock outs Beginning 

inventory Sales quantity Sales value 

     
Treatment -0.0860*** 2.5326*** 0.6180*** 38.7361*** 

 (0.0069) (0.4465) (0.1060) (8.3883) 
Recommendation 0.0000 0.1671*** 0.0530*** 3.2377*** 

 (0.0001) (0.0234) (0.0062) (0.5506) 

     
     

R Squared 0.18 0.17 0.23 0.19 
Observations 17,245 17,245 17,245 17,245 

Note: The dependent variables include probability of stockouts, inventory levels, product units sold, and net revenue. The treatment 
variable takes the value of one when decisions are made with ML and zero otherwise. All models include department, time, and 
allocation fixed effects and controls for system recommendations. Robust standard errors are in parenthesis. Statistical significance 
is defined as follows *** p<0.01, ** p<0.05, * p<0.10.  

 
Heterogeneous treatment effects on allocation decisions and performance 

While we find significant average effects of ML algorithm on performance, it is important 

to understand where and how these performance gains were achieved. The next section of the 
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analysis examines the existence of heterogeneous treatment effects. To examine this heterogeneity 

by the average historic sales volume, quintiles of the sales distribution across location were 

calculated. A set of dummy variables was created indicating the quintile. The dummies are then 

included in the regression specification as well as interacted with the treatment indicator to 

calculate the treatment effect at each quintile. 

𝑦!"# = 𝛽$%1$% + Γ" ⋅ 1$% ⋅ Β$%, + Γ" ⋅ Β, +	𝛽)𝑟!"# +	𝜇&'( + 𝜈# + 𝛿*++ + 𝜖!"# 

Equation 3 

Γ" is a vector of dummy variables indicating the quintile with the distribution of sales for 

the 𝑗th location (see Equation 3). When assessing the heterogeneous treatment effects on allocation 

𝑦!"# refers to allocation units by product-location and time. When assessing the heterogeneous 

treatment effects on performance, 𝑦!"# signifies, probability of stockouts, inventory levels, sales 

units, and revenue by product-location and time.  

The specification in Equation 3 is used to estimate the heterogeneous effects of ML on 

product allocation decisions by historic location sales volume. The results represented in Table 5 

highlight significant heterogeneity with the effect only becoming significant in the highest quintile 

where allocators tended to increase allocations by almost 3 units relative to similar incumbent 

recommendations. This result implies that much of the increase in product allocation induced by 

ML is driven by allocation to the highest selling stores.  

To see whether the performance delta due to ML adoption is achieved amongst certain 
store locations, we estimate Equation 3, where we replace allocation as a dependent variable with 
probability of stockouts, inventory, sales units, and net revenue. The results in   
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Table 6 also find marked heterogeneity in the treatment across location quintiles for certain 

outcomes. The estimates show larger magnitude effects in the highest quintile for stockouts and 

revenue. Focusing on Model Four, we find that ML algorithm leads to an increase in sales revenue 

by $36.95 in the 4th quintile and by $104.96 in the 5th quintile on average per allocation. Consistent 

with where more product is being allocated to, we find statistically significant gains in stockouts 

and revenue at the highest selling stores.  

Table 5 Heterogeneous effects of ML on Allocation decision by the quintile of prior location sales volume 

Dependent Variable: Allocation (1) 

  
Treatment 0.0800 
 (0.2308) 
Treatment*Location Sales Q2 -0.3886 
 (0.3291) 
Treatment*Location Sales Q3 -0.0652 
 (0.3869) 
Treatment*Location Sales Q4 0.2923 
 (0.4877) 
Treatment*Location Sales Q5 2.9539*** 
 (0.8472) 
Location Sales Q2 0.6779** 
 (0.2691) 
Location Sales Q3 1.0979*** 
 (0.3523) 
Location Sales Q4 2.4717*** 
 (0.4466) 
Location Sales Q5 4.9284*** 
 (0.6327) 
Recommendation 0.3569*** 
 (0.0144) 
  

  
R Squared 0.66 
Observations 17,245 
Note: The dependent variables allocation units. The treatment variable takes the value of one when decisions are made with ML 
and zero otherwise. Quintile interactions are derived from ex-ante average location sales volume (2 years before the start of the 
experiment).  All models include department, time, allocation and recommendation controls. Robust standard errors are in 
parenthesis. Statistical significance is defined as follows *** p<0.01, ** p<0.05, * p<0.10.  
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Table 6 Heterogeneous effects of ML on stockout probability, inventory levels, sales units and net sales by the quintile of prior 
location sales volume 

 (1) (2) (3) (4) 

Dependent Variable 
Stock outs Beginning 

inventory Sales quantity Sales value 

     
Treatment      -0.0493***       1.2865***       0.3011***      -3.2149    
     (0.0137)        (0.3703)        (0.0744)        (5.9650)    
Treatment*Location Sales Q2      -0.0367*         0.1762          0.1502         13.5315    
     (0.0200)        (0.5082)        (0.1122)        (8.6533)    
Treatment*Location Sales Q3      -0.0369**        0.3945          0.0951         12.3060    

     (0.0184)        (0.6151)        (0.1305)        (9.9633)    
Treatment*Location Sales Q4      -0.0501**        1.1172          0.2332         36.9570*** 
     (0.0195)        (0.7998)        (0.1578)       (11.3892)    
Treatment*Location Sales Q5      -0.0589***       1.3801          0.5358        104.6963*** 
     (0.0200)        (1.6233)        (0.3708)       (31.1632)    
Location Sales Q2       0.1027***       0.6212*         0.2786***      14.7734**  

     (0.0148)        (0.3579)        (0.0863)        (6.7989)    
Location Sales Q3       0.0003          4.7150***       0.7223***      41.9336*** 
     (0.0139)        (0.5045)        (0.1203)       (10.1797)    
Location Sales Q4       0.0692***       5.6253***       1.1336***      62.3735*** 
     (0.0146)        (0.7240)        (0.1642)       (13.6249)    

Location Sales Q5       0.0904*** 
     
13.9734***       2.4316***     129.4310*** 

     (0.0151)        (1.2422)        (0.2910)       (26.3256)    
Recommendation      -0.0001          0.1365***       0.0475***       2.8674*** 
     (0.0001)        (0.0246)        (0.0065)        (0.5765)    
     

     
R Squared 0.19 0.20 0.25 0.21 
Observations 17,245 17,245 17,245 17,245 

Note: The dependent variables include probability of stockouts, inventory levels, product units sold, and net revenue. The treatment 
variable takes the value of one when decisions are made with ML and zero otherwise. Quintile interactions are derived from ex-
ante average location sales volume (2 years before the start of the experiment).  All models include department, time, allocation 
and recommendation controls. Robust standard errors are in parenthesis. Statistical significance is defined as follows *** p<0.01, 
** p<0.05, * p<0.10.  

 

Finally, we examine the mediating factor of human deviation from the recommendations 

received. The difference between the allocation and the recommendation can be interpreted as a 

measure of acceptance or rejection of the algorithm’s recommendation.   
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Table 7 shows the estimates of the heterogeneous effects of the ML algorithm on absolute 

deviations using the specification in Equation 3. Allocators’ behavior varies across the sales 

distribution with absolute deviations when using the ML algorithm falling more than 2 units in the 

highest quintile relative to the bottom quintile. Moreover, the effect is increasing from the lowest 

to highest selling stores. These results demonstrate that allocators accept ML recommendations 

more when the product will go to the highest selling stores. Conversely, allocation decisions are 

more likely to deviate when the product will go to the lowest selling store. These results imply that 

the performance gains achieved by ML occur when allocation decisions deviate less from the 

recommendations made by ML.  
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Table 7 Heterogeneous effects of ML absolute deviation decisions by the quintile of prior location sales volume 

Dependent Variable: Deviation (1) 

  
Treatment 1.6371*** 

 (0.3182) 
Treatment*Location Sales Q2 -1.0807*** 

 (0.3158) 
Treatment*Location Sales Q3 -1.4347*** 

 (0.4164) 
Treatment*Location Sales Q4 -1.9643*** 

 (0.5232) 
Treatment*Location Sales Q5 -2.0249*** 

 (0.7705) 
Location Sales Q2 0.5912 

 (0.4593) 
Location Sales Q3 -0.8132 

 (0.5000) 
Location Sales Q4 -1.4197** 

 (0.6213) 
Location Sales Q5 -3.0792*** 

 (1.0235) 
Recommendation 0.5576*** 

 (0.0180) 

  
  

R Squared 0.70 
Observations 17,245 

Note: The dependent variable is the absolute value of deviation=abs(allocation-recommendation). The treatment variable takes 
the value of one when decisions are made with ML and zero otherwise. Quintile interactions are derived from ex-ante average 
location sales volume (2 years before the start of the experiment).  All models include department, time, allocation and 
recommendation controls. Robust standard errors are in parenthesis. Statistical significance is defined as follows *** p<0.01, ** 
p<0.05, * p<0.10.  
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6. Qualitative Methods 
 

We carried out a post-experiment interview study to understand this unexpected pattern of 

allocator acceptance of recommendations from and superior task performance on decision making 

informed by the uninterpretable model versus the interpretable model in situations with a similar 

level of model performance under conditions of high perceived uncertainty. 

Sample characteristics 
We conducted 31 interviews with 14 employees—2 developers, 2 managers, and 10 

allocators— during the Spring and Summer of 2022 (Table 9). In the field experiment, 1 manager 

and 9 allocators were randomized to receive from the interpretable or uninterpretable (ML) 

algorithm algorithmic assistance with decision making around how many products to send to each 

of its stores. We interviewed this 1 manager and all 7 of the 9 allocator participants who were still 

employed at the organization at the time the interviews were conducted. The 2 allocators not 

included in the sample left the organization for reasons of relocation rather than performance. 

 In addition to interviewing these 8 employees who had been participants in the experiment, 

we also interviewed 3 allocators who were not employed at the organization at the time of the 

experiment, but who had post-experiment experience with receiving algorithmic assistance from 

both the interpretable and the uninterpretable algorithm. Finally, to gain additional information on 

the broader context, we interviewed 3 employees from other departments—2 developers from the 

data science department and 1 manager from the IT department— who had helped to develop the 

uninterpretable machine learning algorithm. 
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Table 9: Interview Study Sample 
  

Organizational Position Participant in 
experiment? 

Number of 
Interviews 

Developer 0 4 
Developer 0 4 
IT Manager 0 3 
Allocation Manager 1 3 
Allocator 1 3 
Allocator 1 3 
Allocator 1 3 
Allocator 1 1 
Allocator 1 1 
Allocator 1 1 
Allocator 1 1 
Allocator 0 1 
Allocator 0 1 
Allocator 0 2 
Allocator* 1 0 
Allocator* 1 0 
Total 10 31 

Note: The two allocators not included in the interview study sample left the organization before the interviews were conducted for 
reasons of relocation rather than performance 

 

Interview Questions 
 

In our interviews with developers, managers, and the allocators involved in the 

development of the algorithms, we asked about the development process for both the interpretable 

algorithm and the uninterpretable algorithm. In particular, we asked about how workflows were 

mapped and datasets were constructed during model design, how the model was built, validated 

and tested for accuracy during model development, and how the model was incorporated into 

allocator workflows during model integration. 

In our interviews with the allocators, we asked how they experienced making allocation 

decisions for low volume stores versus for high volume stores. And, we asked how they decided 

whether or not to accept recommendations from each type of algorithm. Crucially, interviews 

confirmed the pattern of allocator acceptance of recommendations that we had identified from our 
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earlier quantitative field experiment: that is, allocators noted that they perceived a high degree of 

uncertainty when making allocation decisions for high volume stores, and that they were less likely 

to accept recommendations from the weighted moving average algorithm (interpretable) than from 

the ML-based algorithm (uninterpretable) when making these decisions. 

7. Qualitative Analysis 
 
Factors previously shown to be related to algorithm aversion cannot explain 
puzzling findings from the field experiment 
 

The interpretable and uninterpretable algorithms were well matched on the contextual and 

organizational factors that have been shown to be important to algorithm aversion—the conscious 

or unconscious display of reluctance to accept algorithmic recommendations. Thus, these factors 

cannot explain our puzzling findings of why an interpretable model was associated with lower 

rather than higher acceptance of algorithmically based recommendations, and performance on 

algorithmically informed decision-making tasks than was an uninterpretable model. 

Both algorithms provided assistance to the same set of individuals. As noted earlier, we 

randomized algorithmic assistance throughout the company’s allocation decision-making 

processes where half the employee decisions were assisted with recommendations from 

interpretable algorithm (weighted moving average) and the other half of the employee decisions 

were assisted with recommendations from the uninterpretable algorithm (ML-based). Both 

algorithms also delivered guidance around the same decision-making task. As noted earlier, the 

two algorithms were designed to assist employees with decision making around how many 

products to send to each of its stores. 

Both algorithms supported decision making situations that allocators perceived to be 

characterized by a high degree of uncertainty. For example, allocators noted that, regardless of 



   
 

   
 

25 

which algorithm was offering recommendations, allocation to high volume stores was 

characterized by a high degree of uncertainty. On allocator noted: 

“[For higher selling stores], you’re feeding into sales, and it’s always 
volatile. Things are more subjective at the high end, so it’s less clear how 
much to send.” 

In contrast, allocation to low volume stores was less uncertain for allocators because they 

used particular “rules of thumb” around “minimum quantities.” One allocator explained: 

“There’s no hard and fast rule. But you generally want stores to have enough 
to have 1 unit to sell and 1 to display. So, you’re usually not going to send 
only one unit to a store.” 

Both algorithms provided recommendations that conflicted with the allocators’ own initial 

judgment regarding how many products to send to each of its stores. Allocators noted that, upon 

reviewing the recommendations informed by both algorithms, they often felt a mismatch between 

what their own expertise suggested sending and what the algorithm was recommending they send. 

The mismatch led allocators to become more uncertain in their judgement and want to reduce their 

uncertainty.  

New barrier to acceptance of algorithmic recommendations: Overconfident 
troubleshooting 
 

Our analysis identified a new barrier to acceptance of algorithmic recommendations from 

an interpretable algorithm—overconfident troubleshooting—that helps to explain why an 

interpretable model was associated with lower rather than higher acceptance of algorithmically 

based recommendations, and performance on algorithmically informed decision-making tasks, 

than was an uninterpretable model. We found that the allocators engaged in interrogation of the 

interpretable model and in troubleshooting of counter-intuitive recommendations. However, their 

very ability to engage in interrogation and troubleshooting resulted in their lower acceptance of 

the recommendations from the interpretable algorithm.  
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Allocators attempted to reduce their uncertainty by interrogating and troubleshooting the 

reasoning behind the algorithmic recommendation by viewing key inputs to the recommendation. 

As noted earlier, the mismatch between allocator initial judgement and algorithmic 

recommendation led allocators to become more uncertain in their judgement and want to reduce 

their uncertainty. In the case of the interpretable algorithm, allocators reported that they attempted 

to troubleshoot the reasoning behind the algorithmic recommendation in order to reduce their 

uncertainty. One allocator noted:  

“With [the interpretable model], I can check to see why the system is 
making the recommendation it is making. I can see all of the numbers that 
[the interpretable model] is basing its recommendations on. So, for 
example, I can see that it’s basing its recommendation on 3 weeks of trend. 
If there were inconsistencies across the 3 weeks—it was 200, then 5, then 
5—I can see this information.” 

Similarly, another allocator reported: 

“The [interpretable model] is making recommendations based on the last 3-
4 weeks of sales and projected weeks of inventory on hand. It doesn’t take 
into account that there may have been greater sales in the last few weeks 
because of a holiday or a bump in traffic due to a specific event. If I look in 
[the interpretable model], I can see that one week ago we sold 4 units, two 
weeks ago we sold 12 units, and 3 weeks ago we sold 4 units.” 

In our interviews, allocators reported how they often created narratives for themselves to 

explain the inner workings of the interpretable algorithm. And, because they believed they 

understood the causes, effects, and inner workings of the algorithm, this often led them to overrule 

the algorithm’s recommendations. One allocator said: 

“If I see store SKU inconsistencies across the 3 weeks, I would say, 
‘[interpretable model] is telling me to send 1500 units, but I’m not sure I’m 
comfortable doing that, because I see the inconsistencies. There was a really 
high week at 200. I think, there was probably a convention in Las Vegas. 
So, I’m going to take it down a little.” 

Another allocator noted: 
“I can see that one week ago we sold 4 units, two weeks ago we sold 12 
units, and 3 weeks ago we sold 4 units. I assume that the store had an event 
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two weeks ago that led to the spike in sales to 12 units. [I make a guess that] 
maybe this was due to the NFL draft. I don’t know that for sure, but it must 
be something like that to explain that pattern. Whenever there is an 
unaccounted for event, then sales spike. I assume that [the interpretable 
algorithm] isn’t taking into account things like a bump in traffic for a 
specific event. It’s probably recommending that I send more units than I 
really should send. So I would adjust it down from what [the interpretable 
algorithm] recommended.” 

A third allocator explained: 

“We had a view where we could see the past 3 weeks for each SKU, what 
was sold and what was in inventory. So, if saw 10 units sold, then 20 units 
sold, then 200 units sold, then I would guess that there was probably a price 
change. Like, if the [name of the product] price was cut from 60% off to 
70% off, then sales would probably go from 50 units to 100 units. So, if I 
see a jump in sales, then I know that it was probably due to a price cut. I 
wouldn’t want [the algorithm to apply] weeks on hand to that sale for the 
week, because there was a probably a price cut. So, I’d overrule that 
recommendation.” 

Our results from the interviews suggest that allocators’ interrogating and troubleshooting 

of the interpretable algorithm often led them to reject its recommendations. Allocators reported 

that they often created narratives for themselves to explain the relationship between model inputs 

and outputs, and that this often led them to overrule the interpretable algorithm’s 

recommendations. Our results from the quantitative experiment show that allocators’ lower 

acceptance of the recommendations from the interpretable algorithm than from the uninterpretable 

algorithm in situations with a similar level of model performance resulted in lower rather than 

higher task performance. Taken together, these results suggest that, unexpectedly, under conditions 

of high perceived uncertainty, allocators’ interrogating and troubleshooting of the interpretable 

algorithm was associated with their lower acceptance of recommendations from this algorithm; in 

turn, allocators lower acceptance of recommendations from the interpretable algorithm was 

associated with lower performance on the algorithmically informed decision-making task of 

deciding how much of each SKU should be sent to each store. 
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It is important to point out that overconfidence bias alone cannot explain the difference in 

acceptance of algorithmic recommendations from the interpretable versus the uninterpretable 

algorithm. When deciding whether to accept algorithmic assistance from both algorithms, the 

allocators were equally confident in their general knowledge about how many products to send to 

stores. Indeed, as noted earlier, both algorithms provided assistance to the same set of individuals. 

What was different between the two kinds of situations was that, in the case of the interpretable 

algorithm, being able to see model inputs allowed allocators to create a narrative that supported 

their overconfidence in particular decision-making situations. 

New facilitator of acceptance of algorithmic recommendations: Social 
proofing the algorithm  
 

Our analysis also identified a new facilitator of acceptance of algorithmic 

recommendations from an uninterpretable algorithm—involvement of respected peers in the 

development and testing process—that helps to explain why an uninterpretable model was 

associated with higher rather than lower acceptance of algorithmically based recommendations, 

and performance on algorithmically informed decision-making tasks than was an interpretable 

model. 

Allocators attempted to reduce their uncertainty by incorporating the opinions of others whom they 

perceived as having a similar knowledge base and experience—peers who had been involved in 

the development of the uninterpretable algorithm.  

As noted earlier, the mismatch between allocator initial judgement and algorithmic 

recommendation led allocators to become more uncertain in their judgement and want to reduce 

their uncertainty. Yet, in the case of the uninterpretable algorithm, allocators were not able to 

interrogate and troubleshoot the reasoning behind the algorithmic recommendation in order to 

reduce their uncertainty. One allocator explained:  
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“I often get recommendations that seem wonky from both models. But, with 
[the uninterpretable model], I can’t see what goes into the 
recommendation.” 

In this ambiguous situation where allocators were unable to determine the appropriate 

mode of action, they sought to reduce their uncertainty by incorporate the opinions of others who 

they perceived themselves as similar to through the use of social proof. In particular, they 

incorporated the opinions of peers who had been involved in the development process. One 

allocator said: 

“Since I couldn’t see what was behind the recommendation, I was only 
willing to accept it because I knew that [peers] had spent a lot of time with 
the developers beforehand making sure that the model was accurate. So, 
you can’t know why it’s recommending what it is in each case, but [peers] 
told us how accurate the [uninterpretable] model was.”  

Another allocator explained: 

“With [the uninterpretable algorithm, we often didn’t agree with particular 
recommendations. It’s not like we trusted the model at the level of the 
recommendation. It’s that we trusted it at the more macro level, because 
[peers] had been involved in development.”   

A third allocator noted: 

“We heard that initially [during development], the model wasn’t accurate. 
But [peers] worked with [developers] to rectify the problems. After working 
through those touchpoints, [peers] felt like those issues were corrected, and 
they became willing to trust the model.” 

It is important to point out that involvement of peers in the development process alone 

cannot explain the difference in acceptance of algorithmic recommendations from the interpretable 

versus the uninterpretable algorithm. Allocators’ peers were involved in the development of both 

the interpretable and the uninterpretable algorithm. It was the combination of peer involvement in 

development with not being able to interrogate the uninterpretable model that made allocators 

more likely to accept recommendations from the uninterpretable model than from the interpretable 

model. 
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8. Discussion  
 
Uninterpretable algorithm was associated with higher recommendation 
acceptance, and higher decision-making task performance  
 

Prior research on algorithmically advised human decision making—where humans receive 

an algorithmically-based recommendation before making a final decision— has focused on the 

need for inherently interpretable algorithms, and has assumed that making algorithms more 

amenable to human interrogation and troubleshooting will result in higher human acceptance of 

algorithmic recommendations and higher performance on decision making tasks. This has been 

suggested to be particularly important in situations of high uncertainty. Indeed, it has led scholars 

of interpretable algorithmic models to go so far as to argue that: “Let us consider a possible 

mandate that, for certain high-stakes decisions, no black box [algorithmic model] should be 

deployed when there exists an interpretable model with the same level of performance” (Rudin, 

2019, p. 10). 

Our analysis suggests otherwise. In the present paper, we have demonstrated how the 

concepts of overconfident troubleshooting and social proofing the algorithm add important nuance 

to the current literature’s understanding of human-in-the-loop decision making. Here, we expand 

our discussion of these concepts to explore how they can inform our understanding of 

algorithmically advised human decision making.  

Ironically, under conditions of high uncertainty, human decision makers’ interrogating and 

troubleshooting of interpretable algorithms can lead to lower acceptance of algorithmically based 

recommendations, and lower performance on algorithmically informed decision-making tasks 

(Figure 2). Understanding how humans navigate human-in-the-loop decision making when using 
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an interpretable versus uninterpretable algorithm is vital to understanding algorithmically 

informed outcomes. Two key theoretical implications follow from our analysis. 

 

Figure 2: Overconfident troubleshooting, social proofing the algorithm, and algorithmic acceptance and task performance. 

New barrier to algorithmic recommendation acceptance and task 
performance: Overconfident troubleshooting 
 

Research on human-in-the loop decision making has depicted that well-intentioned human 

decision makers are often thwarted in using recommendations provided by algorithmic systems 

because of their inability to interpret the algorithm’s actual prediction results. Nevertheless, despite 

extensive and granular depictions of interpretation-related barriers to algorithmic recommendation 

acceptance, the extant literature assumes that human decision makers have little need to navigate 

barriers related to their own human decision -making biases. Sometimes, the literature implicitly 

assumes that if humans can understand the reasoning behind algorithmic recommendations, they 

will be more likely to accept them and, thus, make more accurate decisions; other times, this 
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literature explicitly suggests that providing humans with interpretable models will be associated 

with better performance on decision making tasks. 

In contrast, we find that, in situations where human decision makers perceive a high degree 

of uncertainty, they may, indeed, engage in interrogation of the model and in troubleshooting of 

counter-intuitive recommendations. However, their very ability to engage in interrogation and 

troubleshooting may result in lower acceptance of the recommendations and lower task 

performance. These outcomes arise from what we call overconfident troubleshooting. 

Humans and algorithms can only outperform algorithms alone when humans appreciate 

what they know and do not know (Fugener et al., n.d.). Overconfidence bias can lead humans to 

misperceive that their personal abilities, including their own knowledge, are better than they really 

are. Further, because of the “illusion of explanatory depth” (Rozenblit & Keil, 2002)—humans’ 

belief that we understand the causes, effects, and inner workings of complex mechanisms, events, 

and processes much better than we actually do—allowing human decision makers to interpret an 

algorithm may make it more likely that they reject the recommendation coming from the algorithm. 

New facilitator of algorithmic recommendation acceptance and task 
performance: Social proofing the algorithm 
 

We also contribute the insight of social proofing the algorithm rather than interpretable 

models as a facilitator of algorithmic recommendation acceptance and decision-making task 

performance. We found that human decision makers were persuaded to accept algorithmic 

recommendations even when they could not understand the reasoning behind them because they 

knew that people like them—people with their knowledge base and experience—had had input 

into how and why these recommendations were being made and had tested the performance of the 

algorithm. We call this social proofing the algorithm. 
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Our finding about the conditions under which humans may be willing to accept 

recommendations coming from an uninterpretable algorithm is informed by Cialdini’s concept of 

“social proof.” Social proof has been shown to be prominent in ambiguous social situations where 

people are unable to determine the appropriate mode of behavior and is driven by their assumption 

that the surrounding people possess more knowledge about the current situation than they do 

themselves. This social proof was likely particularly powerful in the case we studied both because 

of the situation of perceived uncertainty (which leads people to be more likely to incorporate the 

opinions of others) and because of decision makers perceived similarity to those who had helped 

develop the uninterpretable algorithm (people are more likely to incorporate the opinions of others 

through the use of social proof when they perceive themselves as similar to the people who 

performed the same actions before them).  

Boundary conditions and future research 
 

We expect that overconfident troubleshooting will be most important in two contexts that 

should be kept in mind when drawing on the concepts from this study. First, we are likely to see 

overconfident troubleshooting in contexts where individuals have a lower level of appreciation for 

what they know and do not know. Research by Fugener and colleagues (2021, 2022) suggests that 

individuals vary in their ability to assess their own capabilities. Second, we may be more likely to 

see overconfident troubleshooting in decision making contexts where humans have a higher level 

of algorithm aversion. Recent reviews of the literature on algorithm aversion suggest that 

algorithm aversion varies not only by situational factors such as perceived uncertainty of decision 

making task, but also by other task factors such as complexity, subjectivity, and perceived moral 

nature, by individual factors such as psychology, personality, familiarity, and demography, and by 

organizational factors, societal factors, and cultural factors (Mahmud et al., 2022). 
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While it is likely that the kinds of algorithmic recommendation acceptance and decision-

making task performance dynamics we observed are present in other settings, our setting allowed 

us to observe these dynamics in high relief. We faced two constraints, however, by studying 

human-in-the-loop decision making with a combination of field experiment and interviews in the 

context of fashion allocation. First, the design of the experiment did not allow us to understand, in 

real time and in specific situations, why allocators were accepting or rejecting recommendations 

from the interpretable versus non-interpretable algorithms. We chose not to observe allocators in 

real time and ask them to explain their reasoning for acceptance versus rejection in particular 

situations, because this may have changed their decision-making behaviors. Future research could 

explore the concepts of overconfident troubleshooting and social proofing the algorithm using 

other methods. 

Second, while the decision-making task situation of fashion allocation to high volume 

stores was perceived by allocators to be a situation of high uncertainty, this situation is clearly 

different than situations such as medical diagnosis and treatment or situations such as bail 

decisions or credit lending decisions in which people’s life chances depend on the decision. It is 

possible that, given the decision-making context, the human decision makers in our study took less 

time to troubleshoot than they have in the contexts studied by scholars of interpretable algorithms. 

Future research could explore the concepts of overconfident troubleshooting and social proofing 

the algorithm in other decision- making contexts. 

Finally, our results raise the question of the conditions under which social proofing the 

algorithm will result in higher decision-making task performance. In our context, the peers who 

were involved in the development of the uninterpretable machine learning algorithm had input into 

how and why these recommendations were being made and had rigorously tested the performance 
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of the algorithm. One could imagine that in other contexts, peers might be involved in algorithm 

development, but not have their suggestions for improvement incorporated, or that the algorithm 

might not be rigorously tested. Future research could explore the conditions required to allow 

social proofing the algorithms to result in higher decision-making performance.  

9. Conclusion 
 

Advances in AI are increasing the accuracy of recommendations provided to decision-

makers in an increasing variety of use cases throughout the economy and society. Contrary to 

popular belief, AI is rarely fully automating decision making but is instead providing guidance and 

recommendations to humans who then make the subsequent decision.  

 Yet, human decision makers often display reluctance to accept algorithmic 

recommendations, particularly in decision-making situations characterized by uncertainty, a 

phenomenon known as algorithm aversion. The literature on interpretable AI suggests that 

providing decision makers with an algorithmic model that is inherently interpretable to humans 

should result in greater acceptance of algorithmic recommendations and better decision-making 

performance than providing decision makers with an uninterpretable algorithmic model.   

To test these ideas in a real-world setting, we constructed a quantitative field experiment 

within a large fashion company in North America. We measured the effect of human decision 

makers’ use of an interpretable (weighted moving average with clear inputs) versus an 

uninterpretable algorithmic model (recurrent neural network – Machine Learning), under 

conditions of high perceived uncertainty, on the dual outcomes of 1) human decision maker 

acceptance of algorithmic recommendations and 2) human decision maker task performance. In 

the experiment, human decision makers were allowed to accept or reject the recommendations 

made by either the uninterpretable algorithm or the interpretable algorithm.   
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Contrary to what the literature on interpretable algorithms would predict, we found that, 

under conditions of high perceived uncertainty, human decision makers’ use of the uninterpretable 

algorithmic model was associated with greater acceptance of algorithmic recommendations and 

greater performance—fewer stockouts and higher sales measured by quantity and value— than 

was their use of the interpretable model in situations with a similar level of model performance. 

Our subsequent interview study identified that the concepts of overconfident troubleshooting and 

social proofing the algorithm explain these counterintuitive results.  

Paradoxically, under conditions of high uncertainty, providing human decision makers 

with more interpretable algorithms may lead to lower acceptance of algorithmic recommendations 

and lower performance on decision making tasks. By further testing the concepts of overconfident 

troubleshooting and social proofing the algorithm, we may be able to both improve organizational 

performance and advance the life chances of populations in need. It is certainly a possibility worth 

exploring. 
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11. Appendix 
 

 
Figure A1: Relationship between performance and historical location sales 

 
 
 
 
Figure A2: Relationship between (A) units recommended and(B) units allocated with historical location sales 
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Table A1 Variable definitions 

Variable Description 
Location sales volume Historic average sales volume in units for each retail location, calculated 

over the period from January 2019 to January 2021.  
Allocation Number of units shipped for a particular product at a particular retail 

location. 
Stockouts Indicator for the condition that the beginning inventory is less than or equal 

to zero. 
Beginning Inventory Reported stock of a particular product at a particular retail location at the 

beginning of a week. 
Sales units Reported sales in units of a particular product at a particular retail location 

during a week. 
Revenue Reported sales in dollars of a particular product at a particular retail location 

during a week. 
Deviation The absolute difference between the allocation and recommendation for a 

particular product at a particular retail location. 
 

 
 


