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Motivic decompositions for the Hilbert scheme
of points of a K3 surface

By Andrei Neguţ at Cambridge, MA, Georg Oberdieck at Bonn and Qizheng Yin at Beijing

Abstract. We construct an explicit, multiplicative Chow–Künneth decomposition for
the Hilbert scheme of points of a K3 surface. We further refine this decomposition with respect
to the action of the Looijenga–Lunts–Verbitsky Lie algebra.

1. Introduction

In the present paper, we study the motivic aspects of the Looijenga–Lunts–Verbitsky
([20,34], LLV for short) Lie algebra action on the Chow ring of the Hilbert scheme of points of
a K3 surface. Using a special element of the LLV algebra and formulas of [23] by Maulik and
the first author, we construct an explicit Chow–Künneth decomposition for the Hilbert scheme,
prove its multiplicativity, and show that all divisor classes and Chern classes lie in the correct
component of the decomposition. This confirms expectations of Beauville [2] and Voisin [36].
We also obtain a refined motivic decomposition for the Hilbert scheme by taking into account
the LLV algebra action, and prove its multiplicativity.

Both results parallel the case of an abelian variety, which we shall briefly review.

1.1. Abelian varieties. LetX be an abelian variety of dimension g. Recall the classical
result of Deninger–Murre on the decomposition of the Chow motive h.X/.

Theorem 1.1 ([5]). There is a unique, multiplicative Chow–Künneth decomposition

(1.1) h.X/ D

2gM
iD0

hi .X/

such that for all N 2 Z, the multiplication ŒN � W X ! X acts on hi .X/ by ŒN ��D N i .
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The decomposition in (1.1) specializes to the Künneth decomposition in cohomology
(hence the name Chow–Künneth), and to the Beauville decomposition [1] in Chow. The latter
takes the form

(1.2) A�.X/ D
M
i;s

Ai .X/s

with

Ai .X/s D A
i .h2i�s.X// D ¹˛ 2 Ai .X/ j ŒN ��˛ D N 2i�s˛ for all N 2 Zº:

The multiplicativity of (1.1) stands for the fact that the cup product

[ W h.X/˝ h.X/! h.X/

respects the grading, in the sense that

[ W hi .X/˝ hj .X/! hiCj .X/ for all i; j 2 ¹0; : : : ; 2gº.

This can be seen by simply comparing the actions of ŒN ��. As a result, the bigrading in (1.2)
is multiplicative, i.e., compatible with the ring structure of A�.X/.

The Beauville decomposition is expected to provide a multiplicative splitting of the
conjectural Bloch–Beilinson filtration on A�.X/. A difficult conjecture of Beauville (and con-
sequence of the Bloch–Beilinson conjecture) predicts the vanishing A�.X/s D 0 for s < 0 and
the injectivity of the cycle class map

cl W A�.X/0 ! H�.X/:

Further, any symmetric ample class ˛ 2 A1.X/0 induces an sl2-triple .e˛; f˛; h/ acting
on A�.X/. A Lefschetz decomposition of h.X/ with respect to the sl2-action was obtained
by Künnemann [16], refining (1.1). More generally, Moonen [24] constructed an action of the
Néron–Severi part of the Looijenga–Lunts [20] Lie algebra gNS on A�.X/, which contains all
possible sl2-triples above (he actually considered the slightly larger Lie algebra sp.X �X_/;
see [24, Section 6]). He then obtained a refined motivic decomposition with respect to the
gNS-action.

Theorem 1.2 ([24]). There is a unique decomposition

(1.3) h.X/ D
M

 2Irrep.gNS/

h .X/;

where runs through all isomorphism classes of finite-dimensional irreducible representations
of gNS, and h .X/ is  -isotypic under gNS.

Here being  -isotypic means that h .X/ is stable under gNS and that for any Chow
motive M , the gNS-representation Hom.M; h .X// is isomorphic to a direct sum of copies
of  .

Again (1.3) specializes to refined decompositions in cohomology and in Chow.

1.2. Chow–Künneth. We switch to the case of the Hilbert scheme. Let S be a projec-
tive K3 surface over an algebraically closed field of characteristic 0, and let X D Hilbn.S/ be
the Hilbert scheme of n points on S .
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In the paper [29], the second author lifted the action of the Néron–Severi part of the LLV
algebra gNS from cohomology to Chow. In particular, there is an explicit grading operator

h 2 A2n.X �X/

which appears in every sl2-triple .e˛; f˛; h/ in gNS. We normalize h so that it acts onH 2i .X/

by multiplication by i � n.
We regard h as a natural replacement for the operator ŒN �� in the abelian variety case.

Our first result decomposes the Chow motive h.X/ into eigenmotives of h.

Theorem 1.3. There is a unique Chow–Künneth decomposition

(1.4) h.X/ D

2nM
iD0

h2i .X/

such that h acts on h2i .X/ by multiplication by i � n.

The mutually orthogonal projectors in the decomposition (1.4) are written explicitly
in terms of the Heisenberg algebra action [15, 26]. We also show that (1.4) agrees with the
Chow–Künneth decomposition obtained by de Cataldo–Migliorini [4] and Vial [35].

As before the decomposition in (1.4) specializes to a decomposition in Chow:

(1.5) A�.X/ D
M
i;s

Ai .X/2s

with
Ai .X/2s D A

i .h2i�2s.X// D ¹˛ 2 Ai .X/ j h.˛/ D .i � s � n/˛º:

1.3. Multiplicativity. In the seminal paper [2], Beauville raised the question of whether
hyper-Kähler varieties behave similarly to abelian varieties in the sense that the conjectural
Bloch–Beilinson filtration also admits a multiplicative splitting. As a test case, he conjectured
that for a hyper-Kähler variety, the cycle class map is injective on the subring generated by
divisor classes.

For the Hilbert scheme of points of a K3 surface, Beauville’s conjecture was recently
proven in [23]; see also [29] for a shorter proof. But the ultimate goal remains to find the multi-
plicative splitting. Meanwhile, Shen and Vial [32, 33] introduced the notion of a multiplicative
Chow–Künneth decomposition, upgrading Beauville’s question from Chow groups to the level
of correspondences/Chow motives.

The main result of this paper confirms that (1.4) provides a multiplicative Chow–Künneth
decomposition for the Hilbert scheme.

Theorem 1.4. Let S be a projective K3 surface and let X D Hilbn.S/.

(i) The Chow–Künneth decomposition (1.4) is multiplicative, i.e., the cup product

[ W h.X/˝ h.X/! h.X/

respects the grading, in the sense that

[ W h2i .X/˝ h2j .X/! h2iC2j .X/

for all i; j 2 ¹0; : : : ; 2nº. As a result, the bigrading in (1.5) is multiplicative.

(ii) All divisor classes and Chern classes of X belong to A�.X/0.
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Part (ii) of Theorem 1.4 is related to the Beauville–Voisin conjecture [36], which predicts
that for a hyper-Kähler variety, the cycle class map is injective on the subring generated by
divisor classes and Chern classes. In the Hilbert scheme case, one may further ask the vanishing
A�.X/2s D 0 for s < 0 and the injectivity of the cycle class map

cl W A�.X/0 ! H�.X/:

We do not tackle these questions in the present paper.
The key to the proof of Theorem 1.4 (i) is the compatibility between the grading opera-

tor h and the cup product. For example, at the level of Chow groups, we show that the operator�h D hC n�X 2 A2n.X �X/
acts on A�.X/ by derivations, i.e.,

(1.6) �h.x � x0/ D �h.x/ � x0 C x ��h.x0/
for all x; x0 2 A�.X/. We achieve this by explicit calculations using the Chow lifts [23] of the
well-known machinery for the Heisenberg algebra action [18,19], and our argument yields (1.6)
at the level of correspondences; see Section 4. Once the compatibility is established, part (i) of
Theorem 1.4 is deduced by simply comparing the eigenvalues of �h.

1.4. Previous work. Theorem 1.4 was previously obtained by Vial in [35] based on
Voisin’s announced result [37, Theorem 5.12] on universally defined cycles. A second proof,
also relying on Voisin’s theorem, was given by Fu and Tian [8]. They interpreted part (i) of
Theorem 1.4 as the motivic incarnation of Ruan’s crepant resolution conjecture [31]. Our proof
has the advantage of being explicit and unconditional at the moment.

We note that multiplicative Chow–Künneth decompositions, for both hyper-Kähler and
non-hyper-Kähler varieties, have been studied in [6, 7, 9–12, 17].

1.5. Refined decomposition. We further obtain a refined decomposition of the Chow
motive h.X/ with respect to the action of the Néron–Severi part of the LLV algebra gNS. Both
the statement and the proof parallel the abelian variety case.

Theorem 1.5. Let S be a projective K3 surface and letX D Hilbn.S/. There is a unique
decomposition

(1.7) h.X/ D
M

 2Irrep.gNS/

h .X/;

where runs through all isomorphism classes of finite-dimensional irreducible representations
of gNS, and h .X/ is  -isotypic under gNS.

Consider the weight decomposition

gNS D gNS;�2 ˚ gNS;0 ˚ gNS;2; gNS;0 D gNS ˚Q � h;

where gNS is the Néron–Severi part of the reduced LLV algebra (terminology taken from [14]).
Let t � gNS be a Cartan subalgebra and write

t D t˚Q ��h:
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Then the decomposition in (1.7) implies a motivic decomposition in terms of the irreducible
representations (i.e., characters) of t as follows:

(1.8) h.X/ D
M
�2t�

h�.X/:

The decomposition (1.8) specializes to a refined decomposition in Chow:

(1.9) A�.X/ D
M

i;s;�2t
�

Ai .X/2s;�;

where (with � D .i � s/�h� C �) we let

Ai .X/2s;� D A
i .h�.X// D ¹˛ 2 A

i .X/2s j hv.˛/ D �.v/˛ for all v 2 tº:

Theorem 1.6. As above, let X D Hilbn.S/ with S a projective K3 surface.

(i) The decomposition (1.8) is multiplicative, i.e., the cup product respects the weight decom-
position, in the sense that

[ W h�.X/˝ h�.X/! h�C�.X/

for all �;� 2 t�. As a result, the triple grading in (1.9) is multiplicative.

(ii) All Chern classes of X belong to A�.X/0;0.

By a result of Markman [22], g (namely the entire reduced LLV algebra, instead of just
its Néron–Severi part; see [14]) is the Lie algebra of the monodromy group of X . Since the
images of Chern classes in cohomology are invariant under monodromy, they are of weight 0
with respect to t. We see that part (ii) of Theorem 1.6 confirms the expectation from the
Beauville–Voisin conjecture.

The decompositions (1.8) and (1.9) can be defined also for abelian varieties starting from
the decomposition (1.3) obtained by Moonen. The analogue of Theorem 1.6 (i) then follows
from [24, Proposition 6.9 (iii)].

Since t � gNS ˚Q ��h, Theorem 1.6 (i) follows from the statement that any element
of gNS acts on A�.X/ by derivations, akin to (1.6). The generators of gNS are denoted by

h˛ˇ 2 A
2n.X �X/

and indexed by ˛ ^ ˇ in ^2.A1.X//. We then deduce Theorem 1.6 (i) from the identity

(1.10) h˛ˇ .x � x
0/ D h˛ˇ .x/ � x

0
C x � h˛ˇ .x

0/

for all ˛; ˇ 2 A1.X/ (our proof of (1.10) will be at the level of correspondences; see Section 4).
It is natural to ask for an extension of our results to arbitrary hyper-Kähler varieties. By

a result of Rieß [30], the Chow motives of two birational hyper-Kähler varieties are isomor-
phic as graded algebra objects. Moreover, the isomorphism preserves Chern classes. Hence our
results here apply equally well to any hyper-Kähler variety birational to the Hilbert scheme of
points of a K3 surface.

1.6. Conventions. Throughout the paper, Chow groups and Chow motives will be taken
with Q-coefficients. We refer to [25] for the definitions and conventions of Chow motives.
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We will often switch between the languages of correspondences and operators on Chow
groups, in the following sense. Every operator f W A�.X/! A�.Y / will arise from a corre-
spondence F 2 A�.X � Y / by the usual construction

X � Y

�1

{{

�2

##

X Y

f D �2�.F � �
�
1 /

and any compositions and equalities of operators implicitly entail compositions and equalities
of correspondences. For example, the operator

mult� W A�.X/! A�.X/

of cup product with a fixed element � 2 A�.X/ is associated to the correspondence

��.�/ 2 A
�.X �X/;

where � W X ,! X �X is the diagonal embedding.
Moreover, a family of operators f W A�.X/! A�.Y / labeled by  2 A�.Z/ will arise

from a correspondence F 2 A�.X � Y �Z/, by the assignment

f arises from �12�.F � �
�
3 .// 2 A

�.X � Y /

for all  2 A�.Z/. We employ the language of “operators indexed by  2 A�.Z/” instead of
cycles on X � Y �Z because it makes manifest the fact that  does not play any role in taking
compositions. For instance, the family of operators

mult W A�.X/! A�.X/

labeled by  2 A�.X/ is associated to the small diagonal �123 � X �X �X .
We will often be concerned with cycles on a variety of the form Sn D S � � � � � S for a

smooth algebraic variety S (most often an algebraic surface). We let

�a1:::ak 2 A
�.Sn/

denote the diagonal ¹.x1; : : : ; xn/ j xa1 D � � � D xakº, for all collections of distinct indices
a1; : : : ; ak 2 ¹1; : : : ; nº. Moreover, given a class � 2 A�.Sk/, we may choose to write it
as �1:::k in order to indicate the power of S where this class lives. Then for any collection
of distinct indices a1; : : : ; ak 2 ¹1; : : : ; nº, we define

�a1:::ak D p
�
a1:::ak

.�/ 2 A�.Sn/;

where we let pa1:::ak D .pa1 ; : : : ; pak / W S
n ! Sk with pi W Sn ! S the projection to the

i -th factor. Finally, if � denotes any index from 1 to k C 1, we writeZ
�

W A�.SkC1/! A�.Sk/

for the push-forward map which forgets the factor labeled by �.
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2. Hilbert schemes

2.1. Throughout the paper, S will denote a projective K3 surface. In [3], Beauville and
Voisin studied the class c 2 A2.S/ of any closed point on a rational curve in S , and they proved
the following formulas in A�.S/:

c2.TanS / D 24c;

˛ � ˇ D .˛; ˇ/c

for all ˛; ˇ 2 A1.S/ (above, we write . � ; � / W A�.S/˝ A�.S/! Q for the intersection pair-
ing). Moreover, we have the following identities in A�.S2/:

� � c1 D � � c2 D c1 � c2;(2.1)

� � ˛1 D � � ˛2 D ˛1 � c2 C ˛2 � c1;(2.2)

where � 2 A�.S2/ is the class of the diagonal, and the following identity in A�.S3/:

(2.3) �123 D �12 � c3 C�13 � c2 C�23 � c1 � c1 � c2 � c1 � c3 � c2 � c3:

By iterating this identity, we obtain the corollary

(2.4) �1:::k D
X

1�i<j�k

�ij
Y
`¤i;j

c` � .k � 2/

kX
iD1

Y
`¤i

c`:

Proposition 2.1. The following formulas hold:

1c1 D c1

Z
�

�c�(2.5)

1˛1 D c1

Z
�

�˛� C ˛1

Z
�

�c�(2.6)

1�1:::k D

kX
iD1

i
Y
j¤i

cj C

 
�1:::k�

kX
iD1

Y
j¤i

cj

!Z
�

c��� .k�1/c1 : : : ck

Z
�

�(2.7)

for any  2 A�.S � S l/, where only the first index of  appears in the equations above (the
latter l indices are simply the same on the left and right-hand sides).

Proof. Formulas (2.5) and (2.6) both follow by taking (2.1) and (2.2) in A�.S � S/
(with the factors denoted by indices 1 and �), multiplying them by �, and then integrating
out the factor �. As for (2.7), let us consider identity (2.3) in A�.S � S � S/ (with the factors
denoted by indices 1, 2, and �) and multiply it by �. We obtain that

�12�� D �12c�� C�1�c2� C�2�c1� � c1c2� � .c1 C c2/c��

and hence

�12�1 D �12c�� C�1�c21 C�2�c12 � c1c2� � .c1 C c2/c��:

If we integrate out the factor �, we precisely obtain the k D 2 case of (2.7). To prove the general
case of (2.7), we proceed by induction on k: the induction step is obtained by multiplying both
sides of (2.7) with �k;kC1, and then applying (2.1), (2.2), and the k D 2 case of (2.7).
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2.2. Consider the Hilbert scheme Hilbn of n points on S and the Chow rings

Hilb D
1G
nD0

Hilbn; A�.Hilb/ D
1M
nD0

A�.Hilbn/

always with rational coefficients. We will consider two types of elements of the Chow rings
above. The first of these are defined by considering the universal subscheme

Zn � Hilbn � S:

For any k 2 N, consider the projections

Hilbn
�
 � Hilbn � Sk

�
�! Sk

and let Z
.i/
n � Hilbn � Sk denote the pullback of Zn via the i -th projection Sk ! S .

Definition 2.2. A universal class is any element of A�.Hilbn/ of the form

(2.8) ��cŒP.: : : ; chj .OZ
.i/
n
/; : : : /

1�i�k
j2N ��

for all k 2 N and for all polynomials P with coefficients pulled back from A�.Sk/.

In particular, by inserting diagonals if necessary, the classes (2.8) where P is a monomial
are of the form

(2.9) univd1;:::;dk .�/ D ���Œchd1.OZ
.1/
n
/ : : : chdk .OZ

.k/
n
/ � ��.�/��:

The following theorem holds for every smooth quasi-projective surface (see [28]), but we only
prove it here in the case where S is a K3 surface (the argument herein easily generalizes to any
smooth projective surface using the results of [13]).

Theorem 2.3. Any class in A�.Hilbn/ is universal, i.e., of the form (2.8).

Proof. Consider the product Hilbn � Sk � Hilbn, and we will write �1, �2, �3, �12,
�23, and �13 for the various projections to its factors. As a consequence of [21] (see also [13]),
the diagonal �Hilbn � Hilbn � Hilbn can be written as follows:

�Hilbn D �13�

�X
a

��2 .a/
Y
.i;j /

chj .OZ
.i/
n
/
Y
.�i ;�j /

ch�j .O�Z.�i/n /
�

for suitably chosen k 2 N, where we do not care much about the specific coefficients a and
indices i; j;�i ; �j which appear in the sum above (we write Zn and �Zn for the universal sub-
schemes in Hilbn � S � Hilbn corresponding to the first and second copies of Hilbn, respec-
tively). Since the diagonal corresponds to the identity operator, the equality above implies
that

IdHilbn D �1�

�X
a

��2 .a/
Y
.i;j /

chj .OZ
.i/
n
/
Y
.�i ;�j /

ch�j .O�Z.�i/n /��3
�

(2.10)

D

X
a

��

� Y
.i;j /

chj .OZ
.i/
n
/��

�
a � ��

� Y
.�i ;�j /

ch�j .O�Z.�i/n / � ��
���

hence the universality.
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Formula (2.10) implies the surjectivity of the homomorphism

(2.11)
M
a

A�.Sk/� A�.Hilbn/;
X
a

�a 7!
X
a

��

� Y
.i;j /

chj .OZ
.i/
n
/��.�a/

�
;

where the sums over a are in one-to-one correspondence with the sums in (2.10).

2.3. Let us present another important source of elements of A�.Hilbn/, based on the
following construction independently due to Grojnowski [15] and Nakajima [26] (in the present
paper, we will mostly use the presentation by Nakajima). For any n; k 2 N, consider the closed
subscheme

Hilbn;nCk D ¹.I � I
0/ j I=I 0 is supported at a single x 2 Sº � Hilbn � HilbnCk

endowed with projection maps

Hilbn;nCk
p�

yy

pS

��

pC

&&

Hilbn S HilbnCk

that remember I , x, I 0, respectively. One may use Hilbn;nCk as a correspondence

(2.12) A�.Hilbn/
q˙k
���! A�.Hilbn˙k � S/

given by

(2.13) q˙k D .˙1/
k
� .p˙ � pS /� ı p

�
�:

Because the correspondences above are defined for all n, it makes sense to set

A�.Hilb/
q˙k
���! A�.Hilb � S/:

We also set q0 D 0. The main result of [26] (although [26] is written at the level of cohomology,
the result holds at the level of Chow groups; see for example [27, Remark 8.15 (2)]) is that the
operators qk obey the commutation relations in the Heisenberg algebra, namely

(2.14) Œqk;ql � D kı
0
kCl.IdHilb ��/

as correspondences
A�.Hilb/! A�.Hilb � S2/:

In terms of self-correspondences A�.Hilb/! A�.Hilb/, the identity in equation (2.14) reads,
for all ˛; ˇ 2 A�.S/,

(2.15) Œqk.˛/;ql.ˇ/� D k.˛; ˇ/ IdHilb :

2.4. More generally, we may consider

(2.16) qn1 : : :qnt W A
�.Hilb/! A�.Hilb � S t /;

where the convention is that the operator qni acts in the i -th factor of S t D S � � � � � S . Then
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associated to any � 2 A�.S t /, one obtains an endomorphism of A�.Hilb/:

(2.17) qn1 : : :qnt .�/ D ��.�
�.�/ � qn1 : : :qnt /

where � and � denote the projections of Hilb � S t to the factors.

Theorem 2.4 ([4]). We have a decomposition

(2.18) A�.Hilb/ D
M

n1�����nt2N
�2A�.S t /sym

qn1 : : :qnt .�/ � v;

where “sym” refers to the part of A�.S t / which is symmetric with respect to those transposi-
tions .ij / 2 St for which ni D nj , and v is a generator of A�.Hilb0/ Š Q.

Proof. Since we will need it later, we recall the precise relationship between Nakajima
operators and the correspondences studied in [4]. Let � be a partition of n with k parts, let
S� D Sk and let S� ! S .n/ be the map that sends .x1; : : : ; xk/ to the cycle �1x1C� � �C�kxk
in the n-th symmetric product of the surface S . We consider the correspondence

�� D .Hilbn �S.n/ S
�/red D ¹.I; x1; : : : ; xk/ j �.I / D �1x1 C � � � C �kxkº;

where � W S Œn� ! S .n/ is the Hilbert–Chow morphism sending the subscheme I to its under-
lying support. The subscheme �� is irreducible of dimension nC k and the locus � reg

�
� ��,

where the points xi are distinct, is open and dense; see [4, Remark 2.0.1]. Similarly, the
Nakajima correspondence q�1 : : :q�k is a cycle in Hilbn � Sk of dimension nC k supported
on a subscheme that contains � reg

�
as an open subset and whose complement is of smaller

dimension [26, Section 4 (i)]. Moreover, the multiplicity of the cycle on � reg
�

is 1. Hence we
have the equality of correspondences

(2.19) �� D q�1 : : :q�k 2 A
�.Hilbn � S�/:

The result follows now from [4, Proposition 6.1.5], which says that

(2.20) �Hilbn D
X
�`n

.�1/n�l.�/

jAut.�/j
Q
i �i

t�� ı ��

where � runs over all partitions of size n, and we let l.�/ and �i denote the length and the parts
of �, respectively.

Remark 2.5. As shown in [28], there is an explicit way to go between the descrip-
tions (2.8) and (2.18) of A�.Hilb/. Concretely, for all n1 � � � � � nt there exists a polynomial
Pn1;:::;nt with coefficients in ��.A�.S t // such that for all � 2 A�.S t /,

qn1 : : :qnt .�/ D ��
�
Pn1;:::;nt .: : : ; chj .OZ.i//; : : : /

1�i�t
j2N � ��.�/

�
:

Moreover, [28] gives an algorithm for computing the polynomial Pn1;:::;nt .

2.5. Two interesting collections of elements of A�.Hilbn/ can be written as universal
classes: divisors and Chern classes of the tangent bundle. One has

A1.S/˚Q � ı Š A1.Hilbn/
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(with the convention that ı D 0 if n D 1), where the isomorphism is given by

l 2 A1.S/ 7! univ2.l/;

ı 7! univ3.1/:

Similarly, the Chern character of the tangent bundle to Hilbn is given by the well-known
formula (see for example [23, Proposition 2.10])

ch.TanHilbn/ D ��
��

ch.OZn/C ch.OZn/
0
� ch.OZn/ch.OZn/

0
�
��.1C 2c/

�
;

where . � /0 is the operator which multiplies a degree d class by .�1/d . Therefore, the Chern
character of the tangent bundle is a linear combination of the following particular universal
classes:

univd ./ and univd;d 0.��.//;

where  2 ¹1; cº, and d; d 0 are various natural numbers.

3. Motivic decompositions

3.1. Recall the Lie algebra action gNS Õ A�.Hilbn/ from [29], which lifts the classical
construction of [20, 34] in cohomology. To this end, consider the Beauville–Bogomolov form,
which is the pairing on

V D A1.Hilbn/ Š A1.S/˚Q � ı:

This form extends the intersection form on A1.S/ and satisfies

.ı; ı/ D 2 � 2n; .ı; A1.S// D 0:

Let U D . 0 11 0 / be the hyperbolic lattice with fixed symplectic basis e; f . We have

gNS D ^
2.V

?

˚ UQ/;

where the Lie bracket is defined for all a; b; c; d 2 V ˚ UQ by

Œa ^ b; c ^ d� D .a; d/b ^ c � .a; c/b ^ d � .b; d/a ^ c C .b; c/a ^ d:

Consider for all ˛ 2 A1.S/ the following operators:

e˛ D �
X
n>0

qnq�n.��˛/;(3.1)

eı D �
1

6

X
iCjCkD0

Wqiqjqk.�123/W;

�f˛ D �X
n>0

1

n2
qnq�n.˛1 C ˛2/;

�fı D �1
6

X
iCjCkD0

Wqiqjqk

�
1

k2
�12 C

1

j 2
�13 C

1

i2
�23

C
2

jk
c1 C

2

ik
c2 C

2

ij
c3

�
W:
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Here W � W is the normal ordered product defined by

(3.2) Wqi1 : : :qik W D qi�.1/ : : :qi�.k/ ;

where � is any permutation such that i�.1/ � � � � � i�.k/. We define operators e˛ and �f˛ for
general ˛ 2 A1.Hilbn/ by linearity in ˛. By [23, Theorem 1.6], we have that e˛ is the opera-
tor of cup product with ˛. If .˛; ˛/ ¤ 0, the multiple �f˛=.˛; ˛/ acts on cohomology as the
Lefschetz dual of e˛. In [29], it was shown that the assignment

(3.3) act W gNS ! A�.Hilbn � Hilbn/; act.e ^ ˛/ D e˛; act.˛ ^ f / D �f˛
for all ˛ 2 V , induces a Lie algebra homomorphism. In particular, it was shown in [29] that the
element e ^ f 2 gNS acts by

(3.4) h D
X
k>0

1

k
qkq�k.c2 � c1/:

The operator h specializes in cohomology to the Lefschetz grading operator, which by our
normalization acts on the space H 2i .Hilbn/ by multiplication by i � n. Similarly, for any
˛; ˇ 2 A1.S/ � A1.Hilbn/, the element ˛ ^ ˇ 2 gNS acts by

(3.5) h˛ˇ D

1X
kD1

1

k
qkq�k.˛2ˇ1 � ˛1ˇ2/

and the element ˛ ^ ı 2 gNS acts by

(3.6) h˛ı D �
1

2

X
iCjCkD0

i;j;k2Z

1

k
Wqiqjqk.�12.˛1 C ˛3//W:

3.2. Proof of Theorem 1.3. Let us start with the decomposition of the diagonal into
Nakajima operators

(3.7) �Hilbn D
X
�`n

.�1/l.�/

z.�/
q�q��.�/;

where � runs over all partitions of n,

z.�/ D jAut.�/j
Y
i

�i

is a combinatorial factor, and for any � 2 A�.S � S/ we write

q�q��.�/ D q�1 : : :q�l.�/q��1 : : :q��l.�/.�1;l.�/C1�2;l.�/C2 : : : �l.�/;2l.�//

D Wq�1q��1.�/ : : :q�l.�/q��l.�/.�/W:

Formula (3.7) follows directly from (2.19), (2.20), and the fact that tqm D .�1/mq�m (which
is incorporated in the definition (2.13)).

Consider the decomposition of the diagonal of S as

(3.8) � D ��1 C �0 C �1;

where
��1 D c1; �0 D � � c1 � c2; �1 D c2:

It is easy to note that ��1, �0, �1 are the projectors onto the �1; 0;C1-eigenspaces of the
action of h on A�.Hilb1/ D A�.S/.
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To define projectors corresponding to the action of h on A�.Hilbn/, we insert the decom-
position (3.8) into (3.7), and then expand and collect the terms of degree i . Concretely, for
every integer i , we let

Pi D

�;�;�X
j�jCj�jCj�jDn

�l.�/Cl.�/Di

.�1/l.�/Cl.�/Cl.�/

z.�/z.�/z.�/
Wq�q��.

t��1/q�q��.
t�0/q�q��.

t�1/W:

In particular, we have Pi D 0 unless i 2 ¹�n; : : : ; nº. Let us check that Pi are indeed projec-
tors onto the eigenspaces of h.

Claim 3.1. For all integers i; j 2 ¹�n; : : : ; nº, we have the following equalities in the
ring A�.Hilbn � Hilbn/:

(a) Pi ı Pj D Piıij ,

(b) h ı Pi D iPi .

Proof. (a) We determine Pi ı Pj by commuting all Nakajima operators with negative
indices to the right, and then using that we act on Hilbn so all products of Nakajima operators
with purely negative indices of degree > n vanish. Since every summand in Pj contains such
a product of degree n, we find that for a term to contribute all operators with negative indices
coming from Pi have to interact with operators (with positive indices) from the second term.
The interactions are described as follows. For a single term (let a; b > 0 and r; s 2 ¹�1; 0; 1º)
we have

qaq�a.
t�r/qbq�b.

t�s/ D qaŒq�a;qb�q�b..
t�r/12.

t�s/34/

C qaqbq�aq�b..
t�r/13.

t�s/24/;

where by the commutation relations (2.14) the first term on the right is

qaŒq�a;qb�q�b..
t�r/12.

t�s/34/ D .�a/ıabqaq�b.�14�..
t�r/12.

t�s/34�23//

D .�a/ıabqaq�a.
t�s ı

t�r/

D .�a/ıabqaq�a.
t .�r ı �s//

D .�a/ıabırsqaq�a.
t�r/:

Hence for a composition

Wq�q��.
t��1/q�q��.

t�0/q�q��.
t�1/W ı Wq�0q��0.

t��1/q�0q��0.
t�0/q�0q��0.

t�1/W

(with �;�; � as in the definition of Pi , and the same for the primed partitions) to act non-
trivially on Hilbn we have to have � D �0, � D �0 and � D �0. Moreover, if we write �
multiplicatively as .1l12l2 : : : /, where li is the number of parts of size i , there are precisely
jAut.�/j D

Q
i li Š different ways to pair the negative factors in q�q��.

t��1/ with the positive
factors q�0q��0.

t��1/, and similarly for �; �. Hence

Wq�q��.
t��1/q�q��.

t�0/q�q��.
t�1/W ı Wq�0q��0.

t��1/q�0q��0.
t�0/q�0q��0.

t�1/W

D ı��0ı��0ı��0.�1/
l.�/Cl.�/Cl.�/z.�/z.�/z.�/ Wq�q��.

t��1/q�q��.
t�0/q�q��.

t�1/W

which implies the claim.
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(b) To determine h ı Pi we commute h into the middle, i.e., to the right of all Nakajima
operators with positive indices, and to the left of all with negative ones. In the middle position
h acts on the Chow ring of Hilb0, where it vanishes. Hence again we only need to compute the
commutators. For this we use (4.19) and that �i are the projectors onto the eigenspaces of h
so that

.h � Id/.t�r/ D t ..Id�h/.�r// D t .h ı �r/ D r.
t�r/:

As desired we find

h ı Pi D .�1 � l.�/C 0 � l.�/C 1 � l.�//Pi D iPi :

By using the claim, it follows that the motivic decomposition:

h.Hilbn/ D
2nM
iD0

h2i .Hilbn/

with h2i .Hilbn/ D .Hilbn; Pi�n/ has the stated properties. The uniqueness of the decom-
position follows from the uniqueness of the decomposition of �Hilbn under the action of h
on A�.Hilbn � Hilbn/; see the proof for the refined decomposition in Section 3.3 below.

By (2.20), an alternative way to write the projector Pi is

Pi D
X
�`n

.�1/n�l.�/

z.�/
t�� ı �Pi ı ��;

where �Pi 2 A�.S� � S�/ is the projector

�Pi D X
i1C���Cil.�/Di

�i1 � � � � � �il.�/ :

Hence the decomposition of Theorem 1.3 is precisely the Chow–Künneth decomposition con-
structed by Vial in [35, Section 2].

3.3. Refined decomposition. Let U.gNS/ be the universal enveloping algebra of gNS.
The Lie algebra homomorphism (3.3) extends to an algebra homomorphism

act W U.gNS/! A�.Hilbn � Hilbn/:

Lemma 3.2. The image W � A�.Hilbn � Hilbn/ of act is finite-dimensional.

Proof. For every fixed k � 1 the subring of R�.Sk/ � A�.Sk/ generated by

� ˛i for all i and ˛ 2 A1.S/,

� ci for all i ,

� �ij for all i; j

is finite-dimensional, and preserved by the projections to the factors. Hence the space of
operators �W � A�.Hilbn � Hilbn/ spanned by

q�1 : : :q�l.�/q��1 : : :q��l.�/.�/
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for all partitions �;� of n and all � 2 R�.S l.�/Cl.�// is finite-dimensional. The commutation
relations (2.14) show that �W is closed under compositions of correspondences. Moreover, by
inspecting the expressions for the generators of gNS in (3.1) (and using (3.7) to bring them into
the desired form), we see that all generators of gNS lie in �W . Hence g 2 �W for all g 2 U.gNS/,
i.e., W � �W .

We find that W is a finite-dimensional vector space which is preserved by the action
of U.gNS/, and hence defines a finite-dimensional representation of gNS. Since gNS is semi-
simple, this representation decomposes into isotypic summands

W D
M

 2Irrep.gNS/

W :

Let us look at the image of �Hilbn 2 W under this decomposition:

(3.9) �Hilbn D
X

 2Irrep.gNS/

P ;

where P 2 W .

Claim 3.3. The elements P 2 A�.Hilbn � Hilbn/ are orthogonal projectors.

Proof. Let us first show that left-multiplication by P maps W to W , i.e.,

(3.10) P ıW � W :

Indeed, for all a 2 W , right multiplication by a is a gNS-intertwiner and thus sendsW toW .
In other words, we have W ı a � W , hence W ıW � W , which implies (3.10). If we
multiply any a 2 W by relation (3.9), we obtain

a D
X

 2Irrep.gNS/

P ı a:

By (3.10), the summands in the right-hand side each lie inW . If a 2 W 0 , then by comparing
summands the equality above implies

P 0 ı a D a and P ı a D 0

for all  ¤  0. In particular, taking a D P 0 implies the relations P ı P 0 D ı
 
 0P . More-

over, this implies that the inclusion (3.10) is actually an identity, hence left multiplication byP 
projects W onto W .

From Claim 3.3 we obtain the decomposition

(3.11) h.Hilbn/ D
M

 2Irrep.gNS/

h .Hilbn/;

where h .Hilbn/ D .Hilbn; P /. We can now prove the main result of this section.

Proof of Theorem 1.5. It remains to show that the summands h .Hilbn/ are  -isotypic
and that the decomposition (3.11) is unique. Let M be a Chow motive. The action of gNS on
Hom.M; h.Hilbn// is defined by g 7! act.g/ ı .�/ . Hence if f 2 Hom.M;M 0/ is a morphism
of Chow motives, the pullback

f � W Hom.M 0; h.Hilbn//! Hom.M; h.Hilbn//
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is equivariant with respect to the gNS-action. Now, for any v 2 Hom.M; h .Hilbn// we have
v D P ı w for some w 2 Hom.M; h.Hilbn// and thus

U.gNS/v D U.gNS/w
�.P / D w

�.U.gNS/ ı P /:

Since U.gNS/ ı P � W , this implies that U.gNS/v is finite-dimensional and  -isotypic.
Since v was arbitrary, we conclude that Hom.M; h .Hilbn// is  -isotypic.

The decomposition (3.11) is unique because (3.9) is unique. Indeed, suppose we had any
other decomposition

(3.12) �Hilbn D
X

 2Irrep.gNS/

P 0 ;

where P 0 2 W for all  . Then we would need P 0 D P ı a for some a 2 W . But mul-
tiplying (3.12) on the left with P and using the orthogonality of the projectors would imply
P D P ı P ı a D P ı a D P

0
 .

As in [24, Proof of Theorem 7.2], we could also have used Yoneda’s Lemma to conclude
the existence of the decomposition (3.11). Our presentation above has the advantage of being
constructive. It also shows that the projectors P can be written in terms of the Nakajima
operators applied to elements in R�.Sk/.

4. Multiplicativity

4.1. The main purpose of the present section is to prove Theorems 1.4 and 1.6. Let
us first discuss the general strategy. Given an operator H W A�.Hilbn/! A�.Hilbn/ among
h; h˛ˇ ; h˛ı , we will first prove a commutation relation of the form

(4.1) ŒH;multx� D multy ;

where multx is the operator of multiplication by any x 2 A�.Hilbn/ and y will be given by an
explicit formula in terms of x. This equation will help us in two ways: Firstly, applying (4.1)
to the fundamental class 1n 2 A0.Hilbn/ yields

(4.2) H.x/ �H.1n/x D y:

Hence if we define �H D H �H.1n/ IdHilbn , then (4.1) reads

Œ �H;multx� D mult �H.x/:
In other words, we have �H.x � x0/ D �H.x/ � x0 C x � �H.x0/ for all x; x0, which precisely states
that �H is multiplicative. Secondly, the explicit formula for y together with (4.2) will yield an
expression for H.x/, namely y CH.1n/x. This will be used to determine the value of H on
Chern and divisor classes.

4.2. In order to prove relations of the form (4.1), we will introduce the machinery of
operators on Chow groups developed by [18, 19, 23]. The main idea is to develop a common
framework for studying the Nakajima operators (2.12) and the following operators:

(4.3) Gd W A
�.Hilb/

��

��������! A�.Hilb � S/
multchd .OZ/

��������! A�.Hilb � S/
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(where � W Hilb � S t ! Hilb denotes the first projection). We will employ the following nota-
tion for compositions of these operators, akin to (2.16) and (2.17):

Gd1 : : :Gdt W A
�.Hilb/! A�.Hilb � S t /;

where the convention is that Gdi acts on the i -th factor of S t D S � � � � � S . Then associated
to any � 2 A�.S t /, one obtains the following endomorphism:

Gd1 : : :Gdt .�/ D ��.�
�.�/ �Gd1 : : :Gdt / W A

�.Hilb/! A�.Hilb/

(where � W Hilb � S t ! S t is the second projection). By a push-pull argument, the expression
above is the operator of multiplication by the universal class (2.9):

Gd1 : : :Gdt .�/ D multunivd1;:::;dt .�/

which explains our interest in the operators (4.3).

4.3. Consider the following operators, defined by [19] for all n 2 Z and d 2 N t 0:

J dn W A
�.Hilb/! A�.Hilb � S/

given by

(4.4) J dn D dŠ

�
�

X
j�jDn; l.�/DdC1

q�

�Š

ˇ̌̌̌
�

C

X
j�jDn; l.�/Dd�1

s.�/C n2 � 2

�Š
��.c/q�

ˇ̌̌̌
�

�
;

where for any integer partition � D .: : : ; .�2/m�2 ; .�1/m�1 ; 1m1 ; 2m2 ; : : : /, we define

l.�/ D
X
i2Zn0

mi ; j�j D
X
i2Zn0

imi ; s.�/ D
X
i2Zn0

i2mi ; �Š D
Y
i2Zn0

mi Š

q� D : : :q
m2
2 qm11 qm�1

�1 qm�2
�2 � � � W A

�.Hilb/! A�.Hilb � S l.�//

and j� denotes the restriction to the small diagonal A�.Hilb � S l.�//! A�.Hilb � S/. For
any  2 A�.S/, we may consider the operator

J dn ./ D ��.�
�./ � J dn / W A

�.Hilb/! A�.Hilb/

and then formula (4.4) yields the following:

J dn ./ D dŠ

�
�

X
j�jDn; l.�/DdC1

1

�Š
� q�.�1:::dC11/(4.5)

C

X
j�jDn; l.�/Dd�1

s.�/C n2 � 2

�Š
� q�.�1:::d�11c1/

�
;

where �1:::d denotes the small diagonal in Sd .

4.4. The following result is proved just like its cohomological counterpart in [19, Theo-
rem 5.5] (the only input the computation needs is relation (2.14), which takes the same form in
cohomology as in Chow).
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Theorem 4.1. For all n; n0 2 Z and d C d 0 � 3 (or d C d 0 D 2 but nC n0 ¤ 0), we
have

(4.6) ŒJ dn ;J
d 0

n0 � D .dn
0
� d 0n/��.J

dCd 0�1
nCn0 /C 2�

d;d 0

n;n0��.�
�.c/ � J dCd

0�3
nCn0 /

as operators A�.Hilb/! A�.Hilb�S �S/, where� W S ,! S �S is the diagonal,�d;d
0

n;n0 are
certain integers, and � W Hilb � S ! S is the second projection.

The precise formula for the numbers �d;d
0

n;n0 can be found in [19, relation (5.2)] (note that
one must replace n; n0 $ �n;�n0 to match our notation with [19]), but we will only need the
following particularly simple cases of formula (4.6):

Œqn;J
d
0 � D dn��.J

d�1
n /;(4.7)

ŒLn;J
d
0 � D dn��.J

d
n /C 2d.d � 1/n.n

2
� 1/��.�

�.c/ � J d�2n /;(4.8)

where we note that J 0n D �qn, while J 1n D �Ln with

(4.9) Ln D
1

2

X
i;j2Z; iCjDn

Wqiqj

ˇ̌̌̌
�

W

and W � W denotes the normal ordered product (3.2).

Theorem 4.2 ([19, Theorem 4.6] in cohomology, [23, Theorem 1.7] in Chow). For any
d 2 N, we have

J d0 D dŠ.GdC1 C 2�
�.c/ �Gd�1/

as operators A�.Hilb/! A�.Hilb � S/, where � W Hilb � S ! S is the second projection.
Equivalently, we may write the formula above as

(4.10) J d0 ./ D dŠ.GdC1./C 2Gd�1.c//

as operators A�.Hilb/! A�.Hilb/ indexed by  2 A�.S/.

Because c2 D 0, inverting formula (4.10) gives

Gd D
J d�10

.d � 1/Š
�
2��.c/ � J d�30

.d � 3/Š

or equivalently as

(4.11) Gd ./ D
J d�10 ./

.d � 1/Š
�
2J d�30 .c/

.d � 3/Š
:

4.5. Let us now recall the operators

(4.12) h; h˛ˇ ; h˛ı W A
�.Hilb/! A�.Hilb/

defined in formula (3.4), (3.5), and (3.6) for all ˛; ˇ 2 A1.S/ � A1.Hilb/. In order to prove
Theorems 1.4 and 1.6, we need to compute the commutators of these operators with the opera-
tors (4.3) of multiplication by universal classes.
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Proposition 4.3. For any d � 2 and ˛; ˇ 2 A1.S/ � A1.Hilb/, we have

Œh;Gd ./� D Gd

�
.d � 1/ C

Z
�

�.c � c�/

�
;(4.13)

Œh˛ˇ ;Gd ./� D Gd

�Z
�

�.˛ˇ� � ˛�ˇ/

�
(4.14)

as operators A�.Hilb/! A�.Hilb/ indexed by  2 A�.S/.

Formula (4.13) is the main thing we need to prove Theorem 1.4. However, to prove
Theorem 1.6, we will also need the following more complicated version of the formulas above.

Proposition 4.4. For any d � 2 and ˛ 2 A1.S/ � A1.Hilb/, we have

Œh˛ı ;Gd ./� D �G2.˛/Gd�1./ �G2.1/Gd�1.˛/(4.15)

�GdC1

�
˛

Z
�

� C

Z
�

�˛�

�
C 2Gd�1

�
˛

Z
�

�c�

�
as operators A�.Hilb/! A�.Hilb/ indexed by  2 A�.S/.

We separate the relations above into two different propositions, because the proof of the
latter will be significantly more involved than the former. But before we dive into the proof, let
us observe that according to our conventions, we are actually proving (4.13), (4.14), and (4.15)
as the following identities:

.h � IdS / ıGd �Gd ı h D .d � 1/Gd C �2�
�
.c1 � c2/ � �

�
1 .Gd /

�
;(4.16)

.h˛ˇ � IdS / ıGd �Gd ı h˛ˇ D �2�
�
.˛1ˇ2 � ˛2ˇ1/ � �

�
1 .Gd /

�
(4.17)

and

.h˛ı � IdS / ıGd �Gd ı h˛ı(4.18)

D �2�
�
�.˛1 C ˛2/ � �

�
1 .G2/�

�
2 .Gd�1/ � .˛1 C ˛2/ � �

�
1 .GdC1/

C 2˛1c2 � �
�
1 .Gd�1/

�
of operatorsA�.Hilb/! A�.Hilb�S/, where �i W Hilb�S�S ! Hilb�S denotes the identity
on Hilb times the projection onto the i -th factor of S . The reason why we prefer the language
of (4.13), (4.14), and (4.15) over (4.16), (4.17), and (4.18) is simply to keep the explanation
legible.

4.6. The reader who is willing to accept Propositions 4.3 and 4.4, and wishes to see how
they lead to Theorems 1.4 and 1.6, may skip to Section 4.8.

Proof of Proposition 4.3. We will start with (4.13). From a straightforward calculation
(see [29, Lemma 3.4]), one obtains the commutation relations

(4.19) Œh;q�1 : : :q�k .ˆ/� D q�1 : : :q�k .ˆ/

for all ˆ 2 A�.Sk/, where we write

(4.20) ˆ D

kX
iD1

Z
�

ˆ1:::i�1;�;iC1:::k.ci � c�/„ ƒ‚ …
this class lies in A�.Sk�S/
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with the last factor in Sk � S represented by the index �. We have

Œh;J d0 ./�
(4.5)
D dŠ

�
�

X
j�jD0; l.�/DdC1

1

�Š
� Œh;q�.�1:::dC11/�(4.21)

C

X
j�jD0; l.�/Dd�1

s.�/ � 2

�Š
� Œh;q�.�1:::d�11c1/�

�
(4.19)
D dŠ

�
�

X
j�jD0; l.�/DdC1

1

�Š
� q�.�1:::dC11/

C

X
j�jD0; l.�/Dd�1

s.�/ � 2

�Š
� q�.�1:::d�11c1/

�
:

To evaluate the expression above, we will need the result below:

Claim 4.5. For any k > 0, l � 0 and any  2 A�.S � S l/, we have

(4.22) �1:::k1 D �1:::k

�
.k � 1/1 C

Z
�

�.c1 � c�/

�
:

When writing �, the index � refers to the first factor of  2 A�.S � S l/. The other l factors
of  are not involved in the formula above, as the bar notation is defined as in (4.20) with
respect to the indices 1; : : : ; k only.

Proof. In the sequel, we let � and � denote two different copies of the surface S which
will be integrated out. Using (2.7), the left-hand side of (4.22) equals

kX
iD1

Z
�

�1:::i�1;�;iC1:::k�.ci � c�/

D

"
kX
iD1

X
j2¹1;:::;k;�º�¹iº

Z
�

j
Y
x¤i;j

cx.ci � c�/

#

C

"
kX
iD1

Z
�

�
�1:::i�1;�;iC1:::k �

X
j2¹1;:::;k;�º�¹iº

Y
x¤i;j

cx

�
.ci � c�/

Z
�

�c�

#

�

"
kX
iD1

.k � 1/

Z
�

c1 : : : ci�1c�ciC1 : : : ck.ci � c�/

Z
�

�

#
:

A straightforward calculation using formula (2.5) shows that the three square brackets above
are equal to the corresponding three square brackets below (one needs to integrate out the factor
denoted by �): "

.k � 1/

kX
iD1

i
Y
j¤i

cj C kc1 : : : ck

Z
�

� �

kX
iD1

Y
j¤i

cj

Z
�

�c�

#
(4.23)

C

"
kX
iD1

�
�
1:::Oi :::k

ci � .k � 1/
Y
j¤i

cj

�Z
�

�c�

#

�

�
k.k � 1/c1 : : : ck

Z
�

�

�
:
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Using the following corollary of (2.4):

kX
iD1

�
1:::Oi :::k

ci D .k � 2/�1:::k C

kX
iD1

c1 : : : ci�1ciC1 : : : ck;

we may rearrange (4.23) as

.k � 1/

kX
iD1

i
Y
j¤i

cj � Œk.k � 2/c1 : : : ck�

Z
�

�

C

�
.k � 2/�1:::k � .k � 1/

kX
iD1

Y
j¤i

cj

� Z
�

�c�:

Using formulas (2.5) and (2.7), one recognizes that the expression above equals

�1:::k

�
.k � 1/1 C

Z
�

�.c1 � c�/

�
thus establishing formula (4.22).

Relation (4.21) together with the following immediate consequence of (2.5):

�2c C

Z
�

�c�.c � c�/ D

Z
�

�c.c � c�/

implies that

(4.24) Œh;J d0 ./� D J d0

�
d C

Z
�

�.c � c�/

�
:

Together with (4.11), formula (4.24) implies (4.13).
In order to prove (4.14), we will recycle the argument above. By analogy with (4.19),

we have
Œh˛ˇ ;q�1 : : :q�k .ˆ/� D q�1 : : :q�k .ˆ/

for all ˆ 2 A�.Sk/, where we write

(4.25) ˆ D

kX
iD1

Z
�

ˆ1:::i�1;�;iC1:::k.˛iˇ� � ˛�ˇi /„ ƒ‚ …
this class lies in A�.Sk�S/

;

where the last factor in Sk � S is the one represented by the index �.

Claim 4.6. For any k > 0, l � 0 and any  2 A�.S � S l/, we have

(4.26) �1:::k1 D �1:::k

Z
�

�.˛1ˇ� � ˛�ˇ1/:

When writing �, the index � refers to the first factor of  2 A�.S � S l/. The other l factors
of  are not involved in the formula above, as the double bar notation is defined as in (4.25)
with respect to the indices 1; : : : ; k only.
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Proof. In the sequel, we let � and � denote two different copies of the surface S which
will be integrated out. By definition, the left-hand side of (4.26) equals

kX
iD1

Z
�

�1:::i�1;�;iC1:::k�.˛iˇ� � ˛�ˇi /

(2.7)
D

"
kX
iD1

X
j2¹1;:::;k;�º�¹iº

Z
�

j
Y
x¤i;j

cx.˛iˇ� � ˛�ˇi /

#

C

"
kX
iD1

Z
�

�
�1:::i�1;�;iC1:::k �

X
j2¹1;:::;k;�º�¹iº

Y
x¤i;j

cx

�
.˛iˇ� � ˛�ˇi /

Z
�

c��

#

�

"
kX
iD1

.k � 1/

Z
�

c1 : : : ci�1c�ciC1 : : : ck.˛iˇ� � ˛�ˇi /

Z
�

�

#
:

One can apply (2.6) to compute the square brackets above (integrate out the factor of S denoted
by �), and obtain

D

"
kX
iD1

Y
j¤i

cj

�
˛i

Z
�

�ˇ� � ˇi

Z
�

�˛�

�#
C Œ0�C Œ0�:

Formula (2.2) shows that the right-hand side of the formula above is equal to

�1:::k

Z
�

�.˛1ˇ� � ˛�ˇ1/

which establishes (4.26).

The analogue of formula (4.21) holds with h replaced by h˛ˇ and the bar replaced by
a double bar, hence Claim 4.6 implies the following analogue of formula (4.24):

Œh˛ˇ ;J
d
0 ./� D J d0

�Z
�

�.˛ˇ� � ˛�ˇ/

�
:

Together with (4.11), this implies (4.14).

4.7. Proof of Proposition 4.4. Recall the definition of the operators of Lk in (4.9).
Then formula (3.6) takes the form

h˛ı D
X
k¤0

1

k
WLkq�k.˛1 C ˛2/W(4.27)

D

X
.x;y/2¹.˛;1/;.1;˛/º

X
k¤0

1

k
WLk.x/q�k.y/W:

We may invoke (4.7) and (4.8) to obtain

Œh˛ı ;J
d
0 ./� D d

X
k¤0

X
.x;y/2¹.˛;1/;.1;˛/º

�
�WLk.x/J

d�1
�k .y/W C WJ dk .x/q�k.y/W

C 2.d � 1/.k2 � 1/ WJ d�2k .xc/q�k.y/W
�
:
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In the normal ordered products above, we put qk and Lk to the left of the expression if k > 0
and to the right of the expression if k < 0. Since q0 D 0 but L0 D �J 10 , we may rewrite the
formula above as

Œh˛ı ;J
d
0 ./� D �dJ 10 .˛/J

d�1
0 ./ � dJ 10 .1/J

d�1
0 .˛/(4.28)

C d
X
k2Z

X
.x;y/2¹.˛;1/;.1;˛/º

�
�WLk.y/J

d�1
�k .x/W

C WJ dk .x/q�k.y/WC2.d �1/.k
2
�1/ WJ d�2k .xc/q�k.y/W

�
:

Let us compute the formulas on the second and third lines of the formula above.

Claim 4.7. We have the following formulas:X
k2Z

X
j�jDk; l.�/DdC1

1

�Š
Wq�.�1:::dC1.x/1/q�k.y/W(4.29)

D

j�jD0X
l.�/DdC2

1

�Š
� q�

 
dC2X
iD1

�
1:::Oi :::dC2

.x/¤iyi

!

and X
k2Z

X
j�jDk; l.�/Dd�1

s.�/C k2 � 2

�Š
Wq�.�1:::d�1.xc/1/q�k.y/W(4.30)

D

X
j�jD0;l.�/Dd

s.�/ � 2

�Š
q�

 
dX
iD1

�
1:::Oi :::d

.xc/¤iyi

!
;

where �
1:::Oi :::d

x¤i refers to �
1:::Oi :::d

xj for any j ¤ i .

Proof. The right-hand side of (4.29) is equal to

X
�D.:::;.�2/m�2 ;.�1/m�1 ;1m1 ;2m2 ;::: /

: : :q
m�k
�k

: : :

: : : m�kŠ : : :

 
l.�/X
iD1

yi�:::Oi :::.x/¤i

!
:

In each summand above, we can pick a copy of q�mk in m�k ways for any k, and assign
to that copy the insertion yi , and to all other copies the insertion �

:::Oi :::
.x/¤i . The corre-

sponding sum will be term-wise equal to the left-hand side of (4.29). Formula (4.30) is proved
analogously, so we leave it to the interested reader.

Claim 4.8. We have the following formulas:X
k2Z

X
j�jD�k; l.�/Dd

1

�Š
WLk.y/q�.�1:::d .x/1/W(4.31)

D

X
j�jD0; l.�/DdC2

1

�Š
q�

� X
1�i<j�dC2

�
1:::Oi ::: Oj :::dC2

.x/¤i;j�ijyi

�

�

X
j�jD0; l.�/Dd

s.�/

2�Š
q�.�1:::d .xy/1/
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and X
k2Z

X
j�jD�k; l.�/Dd�2

s.�/C k2 � 2

�Š
WLk.y/q�.�1:::d�2.xc/1/W(4.32)

D

X
j�jD0; l.�/Dd

s.�/ � 2

�Š
q�

� X
1�i<j�d

�
1:::Oi ::: Oj :::d

.xc/¤i;j�ijyi

�

C

X
i;j2Z

X
j�jD�i�j; l.�/Dd�2

ij

�Š
Wqiqj .�12y1/q�.�1:::d�2.xc/1/W:

Proof. As in the proof of (4.29), the terms on the first line of (4.31) are in one-to-
one correspondence with the terms on the second line. However, while the latter are normally
ordered by definition, the former are not always normally ordered, due to the presence of the
following terms:

qkq�l.�12y1/q�.�1:::d .x/1/;(4.33)

q�.�1:::d .x/1/qlq�k.�12y1/(4.34)

for all k � l � 0 (if k D l , the corresponding product appears in both (4.33) and (4.34), and we
weigh it with weight 1

2
in both of these formulas). Therefore, the difference between the first

and second lines of (4.31) is equal to the work necessary in normally ordering the expressions
(4.33) and (4.34), and we must identify the contribution of these with the expression on the
third line of (4.31). For fixed k, this contribution is

�

�
1C 2C � � � C k � 1C

k

2

�
qkq�0.�1:::d .xy/1/ in the case (4.33);

�

�
1C 2C � � � C k � 1C

k

2

�
q�00q�k.�1:::d .xy/1/ in the case (4.34);

where �0 (respectively �00) denotes � without any one factor ql with l positive (respectively
negative). As we sum over all partitions � and over all ways to remove any one factor ql from
them, we are left with

�

X
k2Z

X
j�jD�k; l.�/Dd�1

k2

2�Š
Wqkq�.�1:::d .xy/1/W;

which is precisely the third line of (4.31). Formula (4.32) is proved analogously, only that we
do not have to worry about the commutators that arose in the preceding paragraph, because
xyc D 0 for any .x; y/ 2 ¹.˛; 1/; .1; ˛/º. The expression on the last line of (4.32) simply
arises as the difference k2 � i2 � j 2 D s.�/C k2 � s.� t ¹i; j º/ in the notation thereof.

For every k 2 N consider the cycles in Sk defined by

Ak./ D
X

.x;y/2¹.˛;1/;.1;˛/º

X
1�i<j�k

�
1:::Oi ::: Oj :::k

.x/¤i;j�ijyi ;

Bk./ D
X

.x;y/2¹.˛;1/;.1;˛/º

kX
iD1

�
1:::Oi :::k

.x/¤iyi :
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Then using Claims 4.7 and 4.8 and (4.5), we may rewrite formula (4.28) as

Œh˛ı ;J
d
0 ./�(4.35)

D �dJ 10 .˛/J
d�1
0 ./ � dJ 10 .1/J

d�1
0 .˛/C dŠ

" X
l.�/DdC2

1

�Š
q�.AdC2.//

�

X
.x;y/

X
l.�/Dd

s.�/

2�Š
q�.�1:::d .xy/1/ �

X
l.�/Dd

s.�/ � 2

�Š
q�.Ad .c//

�

X
.x;y/

X
i;j2Z

X
j�jD�i�j; l.�/Dd�2

ij

�Š
Wqiqj .�12y1/q�.�1:::d�2.xc/1/W

� d
X

l.�/DdC2

1

�Š
q�.BdC2.//C d

X
l.�/Dd

s.�/ � 2

�Š
q�.Bd .c//

�

X
.x;y/

X
k2Z

X
j�jDk;l.�/Dd�1

2.k2 � 1/

�Š
Wq�.�1:::d�1.xc/1/q�k.y/W

#
;

where above and hereafter, all the partitions denoted by � will have j�j D 0 and .x; y/ runs
over ¹.˛; 1/; .1; ˛/º.

Claim 4.9. The sum of the third and fifth lines of (4.35) equals

(4.36) 2
X

l.�/Dd

1

�Š
q�

 
dX
iD1

�
1:::Oi :::d

.c/¤i˛i

!
:

Proof. Because ˛c D 0, only the .x; y/ D .1; ˛/ has a non-zero contribution to the third
and fifth lines of (4.35), which means that their sum equals (using (2.1) and (2.2))

�

X
k2Z

X
j�jDk;l.�/Dd�1

2.k2 � 1/

�Š
Wq�.1c1 : : : cd�1/q�k.˛/W(4.37)

�

X
i;j2Z

X
j�jD�i�j; l.�/Dd�2

ij

�Š
Wqiqj .˛1c2 C c1˛2/q�.1c1 : : : cd�2/W:

Because ˛c D 0, all the qi commute in the formula above, hence the second line of (4.37)
equals

�2
X
i2Z

Wiqi .˛/
X
j2Z

X
j�jD�i�j; l.�/Dd�2

j

�Š
qj .c/q�.1c1 : : : cd�2/W:

The underlined sum is equal to X
j�jD�i; l.�/Dd�1

j�j

�Š
q�.1c1 : : : cd�1/:

Plugging this fact into (4.37) leads to

2
X
k2Z

X
j�jDk; l.�/Dd�1

1

�Š
Wq�.1c1 : : : cd�1/q�k.˛/W

which is equal to (4.36) by a straightforward rearranging of terms (akin to the one we performed
in Claim 4.7).
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Using Claim 4.9, and after reordering terms, we may rewrite (4.35) as

Œh˛ı ;J
d
0 ./� D �dJ 10 .˛/J

d�1
0 ./ � dJ 10 .1/J

d�1
0 .˛/(4.38)

C dŠ

� X
l.�/DdC2

1

�Š
q�.AdC2./ � dBdC2.//

C 2
X

l.�/Dd

1

�Š
q�.Ad .c/ � .d � 1/Bd .c//

C

X
l.�/Dd

s.�/

�Š
q�

�
dBd .c/ � Ad .c/

��1:::d

�
˛1

Z
�

�c� C c1

Z
�

�˛�

���
;

where in the last term, we used (2.6).

Lemma 4.10. We have

Ak./ � .k � 2/Bk./ D �1:::k

�
˛1

Z
�

� C

Z
�

˛��

�
and

Ak.c/ D .k � 1/�1:::k˛1

Z
�

�c�; Bk.c/ D �1:::k˛1

Z
�

�c�:

Proof. The equations in the second line follow immediately from (2.1). The first line
follows from (2.4) and the following claim.

Claim 4.11. For any ˛ 2 A1.S/ and any  2 A�.S � S l/, we have the following:

Ak./ D .k � 2/
X
i¤j

˛ij
Y
s¤i;j

cs � .k � 1/.k � 3/

�X
i

˛i
Y
j¤i

cj

��Z
�

�

�
(4.39)

C

�X
i<j

�ij
Y
s¤i;j

cs

��Z
�

�˛�

�
C .k�2/

� X
i¤s<t¤i

˛i�st
Y

j¤i;s;t

cj

� .k � 3/˛i
X
j¤i

Y
s¤i;j

cs

��Z
�

�c�

�

and

Bk./ D
X
i¤j

˛ij
Y
s¤i;j

cs � .k � 2/

�X
i

˛i
Y
j¤i

cj

��Z
�

�

�
(4.40)

C

�X
i

Y
j¤i

cj

��Z
�

�˛�

�
C

� X
i¤s<t¤i

˛i�st
Y

j¤i;s;t

cj

� .k � 3/˛i
X
j¤i

Y
s¤i;j

cs

��Z
�

�c�

�
:
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Proof. Let us prove (4.40) and leave the analogous formula (4.39) as an exercise to the
interested reader. Formulas (2.4) and (2.7) imply

�
:::Oi :::

.x/¤iyi D
X
i¤j

jxjyi
Y
s¤i;j

cs C

� X
i¤s<t¤i

�styi
Y

j¤i;s;t

cj

� .k � 2/yi
X
j¤i

Y
s¤i;j

cs

��Z
�

�x�c�

�

� .k � 2/yi
Y
j¤i

cj

�Z
�

�x�

�
:

If we sum over i 2 ¹1; : : : ; kº and over .x; y/ 2 ¹.˛; 1/; .1; ˛/º, we obtain (4.40) (note that in
the .x; y/ D .˛; 1/ case of the first term in the right-hand side, we need to use formula (2.6) to
calculate j j̨ ).

With Lemma 4.10 in mind, (4.38) reads

Œh˛ı ;J
d
0 ./� D �dJ 10 .˛/J

d�1
0 ./ � dJ 10 .1/J

d�1
0 .˛/

C dŠ

� X
l.�/DdC2

1

�Š
q�

�
�1:::dC2

�
˛1

Z
�

� C

Z
�

�˛�

��

�

X
l.�/Dd

s.�/

�Š
q�

�
�1:::dc1

Z
�

�˛�

��
:

By (4.4), the second and third lines of the expression above equal

dŠ

�
�

1

.d C 1/Š
J dC10

�
˛

Z
�

� C

Z
�

�˛�

�
C

2

.d � 1/Š
J d�10

�
c

Z
�

�˛�

��
:

If we convert the operators J to operators G in the formula above using (4.10), we obtain
formula (4.15).

4.8. Before we prove Theorems 1.4 and 1.6, let us compute how the operators (4.12)
act on the fundamental class.

Lemma 4.12. If 1n 2 A�.Hilbn/ denotes the fundamental class, then h.1n/ D �n and
h˛ˇ .1n/ D h˛ı.1n/ D 0 for all ˛; ˇ 2 A1.S/ � A1.X/.

Proof. It is wellknown that

1n D
1

nŠ
q1.1/

n.10/:

Because the only operator qk which fails to commute with q1 is q�1, formula (3.4) implies
that

h.1n/ D h

�
1

nŠ
q1.1/

n.10/

�
D

�
h;
1

nŠ
q1.1/

n

�
.10/

D

�
q1.1/q�1.c/ � q1.c/q�1.1/;

1

nŠ
q1.1/

n

�
.10/

D

nX
iD1

1

nŠ
q1.1/

i�1
� q1.1/Œq�1.c/;q1.1/� � q�1.1/

n�i
� .10/ D �n1n;
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where the fact that Œq�1.c/;q1.1/� D �1 is a consequence of formula (2.15). The fact that
Œq�1.˛/;q1.1/� D 0 for any ˛ 2 A1.S/ means that the analogous computation implies that
h˛ˇ .1n/ D 0. Similarly, let us use formula (4.27) to compute

haı.1n/ D
1

nŠ

�
haı ;q1.1/

n
�
.10/(4.41)

D
2

nŠ

1X
kD1

1

k

�
Lkq�k.˛1 C ˛2/ � qkL�k.˛1 C ˛2/;q1.1/

n
�
.10/:

As a consequence of formula (2.15), q�k.˛/ and q�k.1/ commute with q1.1/. Meanwhile,
the well-known Virasoro algebra relation [18] reads ŒLk./;q1.1/� D �qkC1./ for all k 2 Z
and  2 A�.S/. Therefore, all the commutators vanish in (4.41) (or more precisely, they all
have an annihilating operator q�k with k � 0 on the very right, and therefore act by 0 on 10)
hence haı.1n/ D 0.

4.9. By iterating relation (4.13) t times, we infer the following formula for all integers
d1; : : : ; dt � 2 and all � 2 A�.S t /:

Œh;Gd1 : : :Gdt .�/� D Gd1 : : :Gdt

 
tX
iD1

.di � 1/� C

Z
�

tX
iD1

�1:::i�1;�;iC1:::t .ci � c�/

!
(note that we are actually using formula (4.16) in order to conclude the aforementioned result).
Since Gd1 : : :Gdt .�/ is the operator of multiplication by univd1;:::;dt .�/, we conclude that

(4.42) Œh;multunivd1;:::;dt .�/
� D multunivd1;:::;dt .�

0/;

where � 0 D
Pt
iD1.di � 1/� C

R
�

Pt
iD1 �1:::i�1;�;iC1:::t .ci � c�/. We are now ready to prove

Theorem 1.4, and follow the strategy outlined in Section 4.1.

Proof of Theorem 1.4. Let us first prove part (i). By applying (4.42) to the fundamental
class 1n 2 A�.Hilbn/, we obtain

h.univd1;:::;dt .�// � univd1;:::;dt .�/ � h.1n/ D univd1;:::;dt .�
0/:

As a consequence of Lemma 4.12, we obtain

univd1;:::;dt .�
0/ D h.univd1;:::;dt .�//C n � univd1;:::;dt .�/(4.43)

D �h.univd1;:::;dt .�//

on A�.Hilbn/. Therefore, relation (4.42) reads

(4.44) Œ�h;multunivd1;:::;dt .�/
� D mult�h.univd1;:::;dt .�//

:

As a consequence of the surjectivity of the morphism (2.11), we conclude that

(4.45) Œ�h;multx� D mult�h.x/
as an equality of operators A�.Hilbn/! A�.Hilbn/, indexed by any x 2 A�.Hilbn/. This is
precisely equivalent to (1.6). In the language of correspondences, relation (4.44) is viewed as
an equality of correspondences in A�.Hilbn � Hilbn � S t /. By (2.10) and (2.11), there exist
correspondences

Z 2 A�
�

Hilbn �
G
a

S t
�

and W 2 A�
�G

a

S t � Hilbn

�
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(here the indexing set follows the notation at the end of Section 2.2) such thatW ıZ D �Hilbn .
By composing the third factor of (4.44) with tZ 2 A�.taS t � Hilbn/, we obtain (4.45) as an
equality of correspondences in A�.Hilbn � Hilbn � Hilbn/, which is what our result claims.

Let us now prove part (ii), which requires us to show that�h.x/ D deg.x/ � x if x is a divi-
sor class or a Chern class of the tangent bundle. According to Section 2.5 it suffices to show
this relation for

x D univd1;:::;dt .�/;

where t D 1 and � D  2 ¹1; l; cºl2A1.S/, or t D 2 and � D ��./ 2 A�.S2/ for  2 ¹1; cº.
The degree of such a class x is

deg x D d1 C � � � C dt C deg� � 2t:

As a consequence of (4.43), we have

�h.x/ D univd1;:::;dt

 
.d1 C � � � C dt � t /� C

Z
�

tX
iD1

�1:::i�1;�;iC1:::t .ci � c�/

!
so the class x lies in the appropriate direct summand ifZ

�

tX
iD1

�1:::i�1;�;iC1:::t .ci � c�/ D .deg� � t /�:

If t D 1 and � D  2 ¹1; l; cºl2A1.S/, this relation is trivial, while if t D 2 and � D ��./
for  2 ¹1; cº, it is an immediate consequence of Claim 4.5.

Proof of Theorem 1.6. The proof follows that of Theorem 1.4 very closely. For part (i)
we iterate relations (4.17) and (4.18) to obtain

Œh˛ˇ ;multunivd1;:::;dt .�/
� D multunivd1;:::;dt .�

0/;

Œh˛ı ;multunivd1;:::;dt .�/
� D multP

d 0
1
;:::;d 0t

univ
d 0
1
;:::;d 0t

.� 00/;

where in the right-hand sides, � 0 and � 00 are obtained from � 2 A�.S t / by pulling back to
some S tCt

0

, multiplying with certain cycles, and pushing forward to S t again. In either case, we
may apply the relations above to the fundamental class (and invoke Lemma 4.12) to conclude
that

h˛ˇ .univd1;:::;dt .�// D univd1;:::;dt .�
0/;

h˛ı.univd1;:::;dt .�// D
X

d 01;:::;d
0
t

univd 01;:::;d 0t .�
00/:

Therefore, we conclude that

Œh˛ˇ ;multunivd1;:::;dt .�/
� D multh˛ˇ.univd1;:::;dt .�//

;

Œh˛ı ;multunivd1;:::;dt .�/
� D multh˛ı.univd1;:::;dt .�//

:

As explained at the end of the proof of Theorem 1.4 (i), the formulas above imply (1.10) as an
equality of correspondences in A�.Hilbn � Hilbn � Hilbn/.

For part (ii), one can check the identity h˛ˇ .ck.TanHilbn// D 0 in the same way as the
analogous proof in Theorem 1.4 (ii). Hence it remains to prove that h˛ı.chk.TanHilbn// D 0. By
Lemma 4.12, it suffices to show that the commutator of h˛ı with the operator of multiplication
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by chk.TanHilbn/ vanishes. By Section 2.5 this operator is precisely

multchk.TanHilbn /
D 2GkC2.1/C 4Gk.c/C

X
iCjDkC2

.�1/jC1GiGj .�/(4.46)

C 2
X

iCjDk

.�1/jC1Gi .c/Gj .c/:

Using (4.15), one has for all d the commutation relations

Œh˛ı ;Gd .1/� D �G2.˛/Gd�1.1/ �G2.1/Gd�1.˛/C 2Gd�1.˛/;

Œh˛ı ;Gd .c/� D �G2.˛/Gd�1.c/ �GdC1.˛/

and for all i; j � 2 the relations

Œh˛ı ;GiGj .�/� D �G2.˛/.Gi�1Gj CGiGj�1/.�/

�G2.1/.Gi�1Gj CGiGj�1/.�˛1/

� .GiC1Gj CGiGjC1/.˛1 C ˛2/

C 2Gi�1.˛/Gj .c/C 2Gi .c/Gj�1.˛/:

By using the above identities, it is straightforward to show that h˛ı commutes with the right-
hand side of (4.46) (we leave the computation as an exercise to the interested reader). This
implies the required equation, namely Œh˛ı ;multchk.TanHilbn /

� D 0.
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