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ABSTRACT

This thesis is concerned with the problem of controlling a lifting re-
entry vehicle during the atmospheric phase characterized by subcircular
velocity. The vehicle under investigation is a constant trim (constant L/D)
vehicle. The control problem is divided into two sub-problems. One is the
range control and the other is the lateral control.

Approximate expressions for the nominal trajectory are given and the
long period motion of the vehicle is derived using linearization at local points
along the trajectory.

The range control system uses the nominal trajectory as a reference

and controls the range by adjusting the vertical component of the lift-to-drag
ratio which is achieved by rolling the vehicle. An accelerometer package
consisting of three delta modulated accelerometers measures the acceleration
and a DDA computer performs the necessary calculations. The delta modulated
accelerometer is described and special attention is paid to the limit cycle
problem in the range control loop due to the output character of the delta modu-
lated accelerometer. A low frequency model is derived for the accelerometer.
During the first part of the analyzed flight the range control experiences a limit
cycle, which dies out as the vehicle approaches the landing point. No analysis
regarding initial errors is carried out.

The lateral control system operates as an on-off system switching the
lift vector from one side to the other to keep the cross range error within

desired limits. The limit cycle of the lateral control is analyzed using the
phase plane method.

Thesis Supervisor: Wallace E. Vander Velde, Sc.D.
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CHAPTER 1

INTRODUCTION

L.1 ~~ Object

During the past decade interest in space travel has increased

tremendously and a trip to another planet is today far from science fiction. The

first step of space travel to be made by this country is the Apollo project, whose

object is to land two men on the moon and then pick them up and bring the space

crew back to the earth. There are, of course, many problems to be solved

before a manned spacecraft can safely be sent out from the earth with hope to

get the crew back. One problem common to all space travel is how a returning

spacecraft should be landed on the earth.

This thesis is concerned with the problem of controlling a lifting vehicle

through the atmosphere to a desired point when Delta Modulated Accelerometers

are used to measure acceleration and a Digital Differential Analyzer, DDA, is

used for the computations.

1.2 Reentry Philosophy

The reentry vehicle under investigation in this thesis is without thrust

so that the only force available to control the trajectory is aerodynamic. The

shape of the vehicle is further, such that the vehicle will experience a constant

lift-to-drag ratio. The only way to control the trajectory is therefore to roll



the vehicle and with it the lift vector, which can be achieved by small roll jets.

When landing a vehicle on the earth several requirements must be met.

Among other things, the acceleration and heating loads must be kept within

design limits in order to assure the vehicle's arrival at the desired destination.

The space vehicle is approaching the atmosphere of the earth with a small

angle and the method suggested to break down the supercircular velocity of the

vehicle and landing it is shown in Fig. 1.1.

During the first phase of the landing, up to point A in Fig. 1.1, the

vehicle has its lift vector pointing upwards. When the flight path starts to pull

up at point A the vehicle goes into a climb which is a controlled flight to

prevent escape. At point B a constant altitude phase begins. The atmosphere

has continuously decelerated the speed of the vehicle and at the end of the

constant altitude phase, point C, the velocity is subcircular, and the altitude

about 300,000 ft. From this point up to a point very close to the destination

point the nominal flight trajectory is defined by a constant lift-to-drag ratio

with the lift vector in the vertical plane pointing out from the earth as shown

in Fig. 1.1. The last part from D to the destination point can be handled

by conventional techniques as the velocity now is less than a fifth of the circular

velocity and the vehicle is in high density atmosphere.

[n this paper the control of the trajectory from C to D will be studied

and this phase of the reentry will, in the following, be called the Landing Phase.

[n Chapter 2 the predicted range to go for a constant lift-to-drag ratio

vehicle is derived. The result shows that the range to go is proportional to the

lift-to-drag ratio. Other studies, Ref. (1) and (2), have proved that the
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cross coupling between longitudinal and lateral motion can be neglected when the

lift vector is rolled out from the vertical plane. That gives a natural method of

controlling the vehicle during the Landing Phase. If the vehicle is designed with

a lift vector larger than the nominal value for the Landing Phase, the lift vector

may be rolled out from the vertical plane so that the vertical component of lift

corresponds to the nominal lift value of the Landing Phase. The vertical

component of the lift-to-drag ratio will consequently give the correct range.

However, during the approach to the destination, the vehicle will move out

laterally from the nominal trajectory plane but, by rolling the lift vector to the

other side, the vehicle will be brought back to the nominal trajectory. If this

is repeated often enough throughout the approach to the landing point, the

vehicle will oscillate laterally about the nominal trajectory but within the cross

range limits. The correct range will be achieved if the lift vector has the

correct vertical component in the two roll positions. The switching from one

side to the other can be done fast so its effect upon the range is negligible.

To be able to correct for initial errors and off nominal conditions the

vehicle should be supervised bv a control system. How this can be done is

outlined in the next section.

1.3~~ Range and Lateral Control Systems

To guide the vehicle in range to the desired landing point on the earth

the difference between actual distance to go and nominal distance to go are

compared and the difference is used as an error signal in a control system

operating on the vertical component of the ratio lift-to-drag. That component

of the lift-to-drag ratio is controlled by rolling the vehicle a small angle

proportional to the command signal. To stabilize the range control svstem



signals other than the error in the range have to be introduced. In this paper

the acceleration and velocity error in the direction along the nominal flight path

are used as stabilizing signals. The acceleration in that direction is measured

by an accelerometer package mounted on an inertial platform. The accelero-

meter package consists of three Delta -Modulated Accelerometers whose pulses

are transmitted to a DDA -computer which performs the necessary computations.

Analysis has been carried out to find if the output nature of the Delta -Modulated

Accelerometer causes any limit cycles in the range control system. To design

the range control system the long period motions of the vehicle must be derived.

This has been done in Chapter 3 using linearization at local points along the

trajectory. The roll angle control is,throughout this thesis, assumed to have a

bandwidth so its dynamic can be neglected compared to the other elements in

the range control loop.

The lateral control system uses a prediction computation of the cross

range error to control the position of the lift vector. The predicted cross range

error used in the control system is determined by calculating the cross range

error the vehicle would give if, from the actual point, it continued its flight

without horizontal component of lift and with nominal lift-to-drag ratio. When

the predicted cross range error has reached one of the limits for the cross

range error the lift vector is switched to the other side. This is then repeated

at the other limit and thus, the lateral control system works as a two position

control system.

1.4 Guidance Equipment

The vehicle is equipped with a Space Integrator (inertial platform) which,

in this thesis, is assumed to carry a package of three Delta Modulated Accelero-



meters. The accelerometer outputs are resolved by the vehicle computer to

yield the desired components. Prior to the reentry the Space Integrator is

aligned and then holds its orientation relative to inertial space.

The choice of computer is defined by the overall mission and in most

cases a general purpose digital computer would be choosen. In this thesis,

however, the reentry control is treated as a separate problem and a DDA-

computer has been chosen for the computations and the analysis to be carried

it

Both the Delta ~-Modulated Accelerometer and the DDA -computer have

been described in the literature, i.e., Refs. (3), (4), (5), and (6).



CHAPTER 2

NOMINAL TRAJECTORY

2.1 Introduction

Before it is possible to start analyzing the overall control system of the

range control, several pre-calculations must be done. One of these is to

determine the characteristics of the nominal trajectory during the landing

phase. The nominal trajectory of that phase of the re-entry has a constant

L/D and the equilibrium glide path is essentially that one where the aero-

dynamic lift force just balances the centrifugal and gravity force along the

trajectory. The initial conditions required are a near-horizontal entry angle

and a velocity slightly below circular orbital velocity. |

A general analytic expression describing the motion of a body moving

through a planetary atmosphere does not exist. However, several authors,

i.e., Refs. (1), (7), and (8), have derived approximate solutions. The

derivations in this chapter will follow the general pattern.

2.2 Equations of Motion

IJsing the notations of Fig. 2.1 we can write the differential equations

of motion. The first equation defines the motion perpendicular to the flight

path and the second parallel to the flight path



Flightpath

Surface of earth

Notations:

[+ 3. 2.1 The Two-Dimensional Trajectory.

angular range

velocity measured with respect to an inertial
coordinate system

mass

) drag
11;

local gravitational acceleration

_

distance to the center of the planet

radius of the planet

flight path angle with resnect to local geographic
horizon

distance along flight path

distance along surface

(r+



Z
V cosy © LL

. + VY=gcos vy 0

8 « sin -D
dc 8 Y" om

(2.1)

(2.2)

When writing the equations of motion it has been assumed that the planet and

the atmosphere are not rotating and also that the planet is spherical. Fig. 2.1

shows that the rate of change of the altitude is a function of velocity and flight

path angle

dh .

Fr V sin 2 3)

The traveled distance along the surface is related to velocity and flight path

angle as follows:

 XL
dX _ Py cos y
dt Tr 2. 4)

2.3 SolutionoftheEquationsof Motion

To be able to get the solutions of the equations of motion in a nice

analytic form, some approximations must be done. The flight path angle will

be small so that cos v= 1. If we then neglect Vy and the component of

gravity along the flight path compared to the drag, equations (2.1) and (2.2)

become

voL
r &amp;€ nn

dv__D
dt m

(2.5)

(2 5)

Equations (2.5) and (2. 6) will give analytic solutions.



When solving the equations of motion it is preferable to choose a

ratio of velocity to local circular orbital velocity as independent variable

instead of the velocity itself. If denoting the ratio by V, and the local

circular orbital velocity by V_, the ratio is

-  V

V=y3
Q

(2 FA

where

7

V _ = gr

Substituting the ratio V into the equations (2.5) and (2.6) yields

v2
=a-v)=k
r Im

v @v_ Dp _%%
s dt m dt

(2. 8)

(2.9)

If eliminating m by substituting equation (2. 8) into (2. 9), it will result in the

following differential equation

2
= V dv

dV _ 8 1-72-78
Ys at= Lt VV og

D

(2. 10)

The acceleration along the trajectory may be written as

dv._dv dS_dv
dt dS dt =ds v (2.11)

Assuming A a constant and dividing both sides of equation (2. 11) by V, gives

dv — dV
dt Ve’ ds r 2

Substituting equation (2.12) into equation (2. 10) and again neglecting the rate of

change of the circular orbital velocity transforms equation (2. 10) to



2= dV s =2

VV 5 = I (1 -V%)
D

1, = =

r 5 Vdv

dg = ————5—
(1 -V))

(2.13)

(2.14)

Equation (2. 14) can easily be integrated if assuming L/D to be a constant

and r to be equal to a mean radius r of the trajectory. The distance along

the flight path is then

~

»
-

~=7
1-V°,

i 2 mD 1-2
(2 3)

where the subscripts i and f denote initial and final values, respectively.

When the velocity has decreased to V = 0.4 a distance of 95% of the

rotal one has already been covered. If the final velocity is taken to be very

small, it is therefore possible to neglect V, in equation (2.15). The

expression for the total range S becomes then

S yy Log, 1
2 mD Re (2. 16)

Distance traveled along the flight path can be translated to distance traveled

along the ground by the expression

x = £2 g
Tr

mM

(2.17)

or to angular range 6, as shown in Fig. 2.1, by the formula



1=p To1-V
(2.18)

which is independent of radius and proportional to L/D.

[t is important to know the flight path angle. To be able to derive an

expression for the flight path angle the altitude must first be calculated along

the flight path. This can be done by use of equation (2. 8) and the knowledge

of the altitude -density relationship of the earth. The conventional approxima-

tion.of the density as a function of altitude is

0 =p =
Bh

(2. 19)

3
where p is the density and A, and B are constants (Py = 0.0027 slug/ft and

B = ew fh), The approximation is good below 300, 000 feet.

The lifting force is

p  iL =2_2
srpVIVIC. A (2.20)

where C, and A represents lift coefficient and a reference area,

respectively. Substituting equation (2.20) into equation (2. 8) and solving for

p vields

5 = 2(1 =v
T C_A

L . V2
m

(2. 1)

The expression for the altitude is then given by equation (2.19) and (2. 21)

Cif —2
p,. — 1rV

L 0 m

% 3 Ln TTT 5
21 - V7)

j J J 2)



Figure 2.1 shows that the equilibrium glide flight path angle is

di dh dV
dt__dydt
7 VV_

(2. 23)

If C pT and B are assumed to be constant, equation (2.22) can be

differentiated to get dh/ dv. Equation (2. 10) gives dv/dt, then equation (2. 23)

takes the form

 —=2 L
BV D

(2. 24)

The line of travel along the trajectory can be calculated from equation

(2.10) if V is assumed to be a constant as before. Separating the variables
[=]

of equation (2. 10) yields

L —

oo. p%
vo (1-V9

(2.25)

If equation (2.25) is integrated, assuming r, V, and L/D constant, the

result is

rk 1+V 1+V
D i £]- tmp [tn ta —t

£1 2Vg 1-V 1-V,
(2.26)

As the final velocity is very small, the total time T may be approximated as

follows

L w—

TS 1+V,
T= —4dn ——

2Vg 1-V.
(2.27)

-
-



2.4 Some Useful Expressions

In this section some expressions will be derived which are needed in

the following chapters when calculating the perturbation equations for the flight

path dynamics. The derivatives of the perturbation equations are all functions

of the nominal flight path characteristics.

Equation (2.25) gives the dimensionless acceleration

dv
qt

=2

 BEY
a.

D

(2. 28)

and if V is assumed to be constant, the acceleration along the flight path
&lt;Q

takes the form

2 =2
1 ~-av__YC V)

dt Lb
nD

(2. 29)

However, V, and r are related to each other as follows:

= IY (2.30)

 a

Vv
pw? =-S_8

orb 2 rt
2 31)

where woh is local orbital frequency. Substituting equation (2.30) into

equation (2. 29) yields

=2
dvgl -V’)
de L

3

(2. 32)

The acceleration along the nominal flight path is thus primarily a function of

V and 1./D.



Figure 2.1 gives the rate of change of r

dr
— = - Vv

dt
(2.33)

The flight path angle 7 is given by equation (2. 24). Substituting that equation

into equation (2.33) transforms (2. 33) to

2
2ar Vs

it L
rBYV 5

ar Vs
dt — L

rfV 3

(2.34)

(2. 35)

The second derivative of r or altitude can be calculated from equation (2. 34)

by derivation

2

dr _ Vs £355- dt dt ’

de&gt; Vg © vd r -
(2.36)

Substituting equation (2.32) and (2. 34) into equation (2.36) gives

2

Ir. [1-74 2
de BV (EY Ar

-

(2.37)

As fBr= 10°, equation (2.37) may be approximated to

2 —2
dr __2¢ 1-V

~ 2 =2

dt rB(Z) Vv
(2.38)

The second derivative is thus rapidly increasing for decreasing V. It is also

of interest to know the drag and lift forces along the equilibrium glide path.



Substituting equation (2.32) into equation (2.6) gives the drag force.

{J =m -gl-V%)

(5)
(2.39)

The drag force is a function of the dimensionless velocity and the L/D ratio

for the flight path. Solving equation (2.39) for the lift force results in

[, cm ol - V2) (2. 40)

The lift force is just a function of the dimensionless velocity.

2.5 Remarks

(he equations derived here for the nominal trajectory are of course

not exact but will serve the purpose of giving nominal characteristics for

the perturbation equations in the next chapter very well. The range expression

may also be used in a continuous closed loop range control system for the

landing where errors in the beginning automatically will be eliminated under

the approach to the desired landing point. If an open loop range control is to

be used the accuracy of the range expression should be improved. This can

be done using the method of adjoint functions described bv G. A. Bliss. Ref.

(10), and H.S. Tsien, Ref. (11). The adjoint function method has successfully

been used by R. Rosenbaum, Ref. (1), for the range prediction problem of a

re-entry vehicle entering an atmosphere.



CHAPTER 3

VEHICLE DYNAMICS

3.1 Introduction

The next step in building up the range control system is to derive the

differential equations describing the dynamics of the vehicle itself. This is

best done by linearization of the equations of motion. The nominal trajectory

for the linearizations will be the trajectory derived in the preceeding chapter.

If the linearized model of the vehicle dynamics, during the reentry, will be a

good approximation of the line behaviour of the vehicle, depends on the relative

change of the coefficients of the differential equations and the bandwidth of the

overall system.

3.2 The Perturbation Equations

The perturbation equations will be derived from the complete equations

of motion, equations (2.1) and (2.2), which take the following forms if the small

angle assumption, with respect to vy, is made

kM VE oe _L
2 r Y= m

7 &lt;M __D
2 YET

(3.1)

(3.2)

where K is the universal gravitational constant and M the mass of the earth.



Replacing ¥ and ¥ by the relations

(3.3)

; r Iv
V = = = 4 ~~

2v V
(3.4)

equations (3.1) and (3. 2) become

KM _V ,. IV_L
2 T V m

..  KMr D

T= a
rV

(3.5)

3 4)

T'o find the deviations about the nominal trajectory introduce the following

expressions

r=r +Ar
n

V=V +AV
n

L +AL
D=D_ +AD

=
(3.7)

The subscript n denotes the value along the nominal flight path. If equations

(3.7) substituted into equations (3.5) and (3.6), the perturbation equations

become

4

v2 r
EY +o 2 ~ZMY ar - AV +

a r n

2%

2) Av = AL
v, m

(3.8)



~ 2KMr KMf_

Be Af -——— AT +AV - —— AV = Li
r V rV Vr
nn nn nn

3.9)

The lift and drag forces are defined in the following way

Z

AV pC,
m

t
13

i

2

1 AVPSp
D5 m

(3. 10)

(3.11)

where Cr and Ch are lift and drag coefficients, respectively. The density is

defined by equation (2. 19)

0 -—n D .
TY

(3 2)

As the reentry vehicle is a constant trim lifting vehicle the CL and Ch will

remain constant during the flight. Substituting equations (3.7) and

al 1 » \ 13

into equations (3.10) and (3.11) gives the deviations of L and D

2L
n

AL =v_ 4 BL Ah + AF,

2D_
AD = voy - AD Ah - AF

(3. 3)

(3.14)

(3. 15)

To equations (3.14) and (3. 15) have been added AF and AF, which represent

additional forces along nominal L and V directions. They may be forces,

caused by the control system, to correct the flight path. The choice of sub-

scripts will be obvious in the next section.



Substituting equations (3.14) and (3. 15) into equations (3. 8) and (3.9),

respectively, and remembering that Ar = Ah, gives the perturbation equations

in the following form

2 .

Vv Vv BL T
n _ . n 2KM n n  .oid EM, 2) ar v AVH
n Tr Tr n

n n

, AA 2v. 2L AF,
fol mg = ets = pine J AY @ i2 )L Vv’ r vm m

4

2KMr BD
SMa (2 2) Ar + AV +4
r V rV
nn nn

KMr 2D AF
[ n n x

“22 vm) Tm
\ vir n

nn

(3. 16)

(3.17)

Treating the coefficients of equations (3. 16) and (3.17) as constants, the two

equations can be solved simultaneously. The characteristics of the nominal

trajectory have been calculated earlier in section 2.4 and are now substituted

into the coefficients of equations (3.16) and (3.17) together with KM/ r’ = g.

Several terms in the coefficients are very small and can be neglected compared

0 others. If this is done, the simplified solutions come out as follows:

g(1-V?) _, AF,
2p AY + Bg(l -VO)AT = — + —E

VV (5) " my (E)Sn Dn s Dn
) .

"AF AF
Zz Tx
mop Em

Dn n

A

A
: &gt; ° S35

: WJ m
-

AF
 Vv

(3. 18)



—Z
see g(1 -V)) 0 —2 * AF

AV + —————AV+Bg(l-V_)AV=—=+= LL n m

VV(z)sn Dn

-—2 .
g(l -V) AF _, AF

MXa-Vh2
VV (Ly m n m
sn Dn

AF . AF

=, ! = Zz 5, —Z
—=2 m — m

VarR (5), YY
AF

FP gv =
(2) momDn

(3.19)

The coefficients that are most important when deriving equations (3. 18) and

(3.19) are those connected to the altitude or density change.

By using Laplace transform technique on equations (3.18) and (3.19)

‘hese equations are transformed into

) g(1-2) _y ) 1-72 AF,
ss + ———— s+ Bg(1l-V )| ax s¢ —B—. | =

VV (©) n ve ov o4om
snD'n Ss Dn n

2
—2.1,

tBV_(35)

- L, = LUA

£-Y, 05), |= (3. 20)

—2 2

[ 9 g(1-V_) _9 5 8( Vv)
s|s t——1 s+Bg(1-V.) AV =|s +t «S++

\AA ( D hy Ve¥a GS ),

AF
—-2 X 2

n Dn

AF
rp” F075 | —=

2 1 —- Lk
&lt; =) VV(5), 8 +

(3. 21)



The natural frequency, w and relative damping, ¢, at local points along

the equilibrium glide trajectory are:

Natural frequency

2 =2
w= hBg(l -V ) (3.22)

Relative damping

[1-32
J a e——— —— Lyn
? I =

NEBr (3) vu
(3.23)

[t is seen from equation (3.22) and (3. 23) that the spring constant w” is positive

and ¢ &gt; 0, thus, the system is stable. The natural frequency is increasing with

decreasing dimensionless velocity V. The damping is very small and increasing

with decreasing velocity, but, always less than 0.05 for v &gt;0.2 and L/D =0.5.

Thus, the damping can be neglected in most applications. To make the handling

of equations (3.20) and (3. 21) easier the following notations are introduced

AT = G,(s) - AF, +G,(s) - AF,

AV=G,(s)*AF +G,(s)© AF,

(3.24)

(3.25)

where

4

of

—2
1-v

| g+—280]
L Vv (L/D), vo
—t BTgl-Vv_) gy

CT st Bg(1 3)
VV (=)
sn D'n

(3. 26)

1d



LL. = |[5 VEE,
Gps) =—— _, [— *~ 5

YUomemVAE), pr, s1-V)
oleh ype -V |

- VIE) ?
sn Dn

- (3.27)

21, = i 2-2 =2

s 2 AV Va Bhs 2 Tgp vt Vi)
G,(s)=— .

3 =2 L —2

m BV (ZF) [2 g(1 Vv.) —9s|s + ————s+ Pg(l-V))
VV (2) n°
sn Dn

1 1
G,(s) = ms

(3.28)

(3. 29)

3.3 The Vehicle Transfer Functions

Equation (2. 18) shows that the range to go for the vehicle is proportional

to L/D, or perhaps, more specific (L/ D)_ which is the vertical component of

L/D. By controlling the vertical component of the ratio lift-to-drag, it is thus

possible to control the range of the vehicle. The control of (L/ D)_ can be

done by rolling the vehicle to an angle so that the lift vector points out from the

vertical plane. Variation of the roll angle will then increase or decrease the

ratio (L/D) .

When the vehicle is oscillating about the nominal flight path the

velocity vector V will tilt a small angle, €, from the nominal velocity vector

V_. This tilts, also, the lift and drag vector introducing further forces besides

those earlier studied along the L_ and Vv directions. The ordinary control



forces are coming from small changes of the roll angle and those forces will

keep the vehicle close to the nominal trajectory.

If the tilting of the velocity vector about the nominal direction is small,

it may be possible to neglect the additional forces it introduces. The following

calculations will give the answer to that question and present the transfer

functions of the vehicle from roll angle changes to the variables describing the

motion of the vehicle.

The nominal flight path defines a coordinate system Xyz in such a way

that x falls along A and the xz-plane lies in the vertical plane. See Fig. 3.1.

Fig. 5.1 The xyz-Coordinate System

Another coordinate system XYZ is defined by the actual velocity V and lift

force L as indicated in Fig. 3.2. The relations between the two coordinate

systems can be derived in two steps. An intermediate coordinate system is

rotated from the xvz-system the small angle €, which has the components OQ,

© ¢ . The relations between the intermediate coordinate system, here called

X.Y.2Zy5 and the original xyz-system are as follows, if the small angle

assumption is applied.



X

X, =X

Fig. 3.2 The Coordinate Systems XYZ and xyz.

(3. 30)

The intermediate coordinate system is related to the XYZ-system by a rotation

¢ about the X, -axis. Transformations between the XY 121 -system and the

XYZ -system are described by

5 J

sin ©

-sin@ cos ww

(3.31)

The relation between the XYZ -system and the xyz-system can be solved from

equations (3.30) and (3.31). The result is

"fF cos@+ € sin ¢) (€, sing + % cos @)
COS ©@ ~Sin @

sin @ 08S @ 7

(3.32)



Introducing the nominal values for lift and drag in the XYZ -system

yields

+ ==D
n

FN

= sec ¢_Yn

(3.33)

where vertical component and roll angle have been used to define lift. The forces

F F ,F_ in the xyz-system caused by the forces of equation (3.33) are

F = D_ + Lo sec ¢ (€, sin +

o= € = i

Fy D, ” Lo sec ? sin @

=D €F D, v + L seco cos @

=o P)

{3 14)

The effect of small variations of ¢ and ¢ can be found by differentiation of

equation (3.34). If the partial derivatives are calculated for € , = ™ 0 and

@ = @ , the differentiation gives

AF =1L A¢ +L tan@ Ac
* VIL y vn nz

AF = -D Ae -L Ao
Vv n z vin

AF =D Ae -L tang Ao
n v v1 21

(3.35)

(3.36)

{3.37)

The e€-angles depend upon the velocities in y and z directions

A€

AC

SAY

Ay

(3.38)

(3.39)

The force differences AF and 2F correspond to the differences of equations



(3.24) and (3.25). Substituting equations (3.38) and (3.39) into (3.35) and (3.37)

gives

AF=~
“vn Lo tan ?
vo SAT + —v * sAy

n n

D
HWoo= =_n . - o

AL , V_ SAr Lo tan @ AQ

(3. 40)

(3.41)

A block diagram for equations (3.24), (3.40), and (3.41) has been drawn in Fig. 3.3

to show how Ar is influenced by A¢ and Ay. The feedback in the upper half of the

figure can be neglected as

Loms . ~ 6,| &lt;&lt; 1]
n s=jw

(3.42)

and the block diagram is redrawn in Fig. 3.4. The transfer function from A¢

lo Ar is

G
I -IL. tang TT L
AY vn n Dp

1+s "To G,
n

(3.43)

Substituting equations (2. 39), (2.40), and (3. 26) into equation (3.43) gives the

following transfer function

Ar 2
ro = g(1-V™) tan ?

| 2 1 - Vo

ezVs (Bn “a -
J —) — (3.44)

9 9 Lv, —9 2 1-v,sls +EDotBeV(r—le2%
ve ov I

Ss Dvn n s' Dvn n
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“ig. 3.3 Block Diagram for Ar.
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Fig. 3.4 Simplified Ar-Block Diagram.



Here (L/D) of Chapter 2 has been used as (L/D), as the lift vector is rolled to

an angle. The damping of equation (3.44) is twice as much as that one of

equation (3.26) but is still very small. The natural frequency of equation (3. 44)

has increased compared to the natural frequency of equation (3.26) but the

increase is less than 11% for v &gt;0.2 and (L/D) __ = (0.5. Equation (3.44) may

therefore be approximated to

Ar —2
— - 1 orAQ g(l-V )tan ¢

- 2 1-V2-
s+ —F— =vey Vy

s Dvn ]

2 —9of s + Bg(1 - vo 0
(3. 45)

[n a similar way, as above, a block diagram for AV can be drawn starting from

equation (3.25) and also using equations (3.40), (3.41) and (3.45). The resulting

block diagram is shown in Fig. 3.5. Analyzing the paths from A¢ to AV itis

found that the upper path

A
—

T

~- L tan ? : Gj, AQ (3.46)

is the dominating one except for the resonance frequency of Ar/A¢. It is there-

fore possible to redraw the block diagram as shown in Fig. 3.6. Substituting

equations (2.40) and (3. 28) into equation (3.46) gives the transfer function from

AY to AV.

— _ 1 _ 9

—2 2-1 VV &amp;) s+-rg 25201v%
1-v 2 s nDwvn 2 n n

AV _ _2gtan¢p ,_ n, -—

THLE ol s pe + —L 51 Bp(1-V |
s ‘Dvn n

(3.47)

3)



A similar approximation as above can be applied to equation (3.47) for the

interesting frequency range, w&lt; 5 rad/sec.

4

AV AY _ghng, . 1-v%?.
Ag (L/D) m9 —9

ss +hg(1=V) |
(3.47)

The influence of sAy will not be treated here.

When designing the range control, transfer functions from (L/ D), to Ar

and AV will be useful. The (L/ D)_ as controlled by the roll angle is given by

(Ly SL wm cos
Dv D COS @ ¢

n n

(3. 49)

Differentiation of equation (3. 49)

L L
AT) = (5) B09, AN

Substituting equation (3.50) into (3.45) and (3. 48) yields

- ) 1-v2

v(L v52 S( =) nJar _gd-vi)  SDvn
L (L/D) “1
a 2 a

Al D )y vi ols + Bg(1 V2) |

AGE), WD ry, pq
sl s +hg(1-V ) |

(3.50)

(3.51)

(3.52)
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These equations describe the long period motion of the vehicle. Both functions

are without damping. The time constant of the nominator of equation (3.51) is

very big so that the dynamic difference between Ar and Av is an integration.



CHAPTER 4

DELTA -MODULATED ACCELEROMETER AND
DIGITAL DIFFERENTIAL ANALYZER

3.1 Introduction

The application of delta modulation to inertial instruments first took

place in 1957, and development work has continued so that these instruments

are now a very attractive choice for inertial systems and guidance. The

accuracy is high and the output is in a form which can be used to feed computers

of the digital type.

Most of the theoretical attention has been paid to the zero-input behaviour

of delta modulated loops. Several authors, i.e., Ref. (17), used the phase

plane method in their studies and an extended describing function was used by

Chow, Ref. (14), to eliminate limit cycles in delta modulated loops by

adjusting the zero level width of a three level relay. In 1960 an exact method for

testing the possibility of modes in a loop of any order was presented by Torng

and Meserve, Ref. (12), and the z-transform equivalent of this method was

suggested by Bergen in his discussion of their paper, Ref. (13). Wiener has

ipplied their method on delta modulated accelerometers, Ref. (3).

This thesis is concerned with the question, if the delta modulated

accelerometer will cause a limit cycle in the range control loop. Therefore a

non-linear model of the delta modulated accelerometer for sinusoid inputs will



be derived in this chapter.

The overall mission of a space vehicle would require a general purpose

digital computer, but in this thesis the reentry control is treated as a special

problem and a DDA =computer will be used for the control calculations. The

DDAhas been described as a computer with the speed of an analog computer

and the accuracy of a digital computer. It has the advantage of not requiring

time to be the independent variable of integration. The DDA is described in

the literature, Ref. (4), (5), and (6), and only a very short review will be given

in this chapter.

4,2 Delta-Modulated [oops

4.2.1 Description of the Loop

Delta modulated loops are shown in Fig. 4.1 and 4.2 with a two

level and a three level relay, respectively. The input is translated into a

sequence of pulses, each having the same value, but with either polarity being

possible. One of the linear plants may be unity. When the loop is used for

transmission, the linear plant in the forward path is usually unity, while in

instrumentation applications the feedback plant usually contains a zero-order

hold. Usually there is an integration in the loop to assure zero average error.

The mathematical model for the sampler is an impulse modulator synchronized

with a clock. Each impulse appearing at the output represents a unit change in

the input or one of its integrals or derivatives. This representation of a

signal in terms of increments leads to the name "delta modulation.” If the

integration appears in the forward path, each output pulse represents a change

in the integral of the input. If the integration appears in the feedback path, each

pulse represents a change in the input itself.
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4,2.2 Describing Function Analysis

Without input, a loop with a two-level relay will experience

self-exited oscillation or limit cycle, and if the zero level is narrow enough,

a loop with a three-level relay may also have a limit cycle. From physical

considerations it is clear that the periods of these limit cycles are integral

multiples of the sampling period. Further, if the linear plant contains an

integration, the number of positive pulses in a cycle will be equal to the number

of negative pulses. The delta-modulated loop may have several limit cycles,

and which one of them the system falls into depends on the initial condition.

Each limit cycle is characterized by the sequence of output pulses and are

usually referred to as a certain mode. A sequence of one positive pulse followed

by a negative pulse is called a 1-1 mode. Similarly two positive pulses followed

by two negative is called a 2-2 mode. An approximate idea of the possible

modes can be obtained by using an extended version of the describing function

technique developed by Chow, Ref. (14), and Russell, Ref. (15), who were

interested in adjusting the width of the zero level in a three-level relay to

eliminate limit cycles. When using a 2 level relay the only difference from the

standard describing function is the addition of a variable phase or delay due to

sampling. Fig. 4.3 explains the delay for a 1-1 mode.

The output of the sampler is still the same despite the fact that the

input sinusoid is delayed up to a full sampling period T.. The maximum

phase shift due to sampling, ¢ , for the different modes is given by

T
=) T = —? n S n (4, 1)

The notation n stands for the number of the mode, thus n=1 means mode 1-1
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fig. 4.3 Sampler Output for a Delayed Sinusoid Input.

and w, is the frequency of the same mode.

The describing function analysis is carried out by graphical solution of

the equation

i + G(jw)N(A,w)=0 (4. 2)

where G(jw) is the transfer function of the linear part of the system and N(A, w)

is the describing function for the non-linear element. A denotes, as usual,

the amplitude of the input to the non-linearity. When drawing the curves the

phase shift ¢ is added to the linear transfer function at frequencies

corresponding to the modes.

The method is illustrated with the classical delta modulated loop shown

in Fig. 4.4. . The "moding plot" of the delta-modulated loop in Fig. 4.4 is

drawn in Fig. 4.5 and indicates that 1-1, 2-2 and 3-3 modes are possible. If

any of the modes have to be eliminated, the frequency curve of Fig. 4.4 must
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be moved to the right by using compensation. However, there exists a second

alternative when eliminating modes. The two-level relay can be exchanged for

-1
a three-level relay whose describing function has a maximum and N ~ in Fig.

-1
4.5 thus gets a minimum. If N = has its minimum above the 3-3 mode, the

system will not experience a limit cycle. The added phase lags are for the

three-level relay case only approximate but give a good idea of the behaviour

of the loop.

4.3  Delta-Modulated Accelerometer

The accelerometer, when behaving in an ideal manner, is described by

the following differential equation

JA + CAG, =Pay, +M (4 3)

where the symbols are

moment of inertia about output axis
r—~

3 damping coefficient of fluid damper
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pendulosity of accelerometer

Mtg

A
OA

ST

torque applied to the instrument float by the torque generator

angle through which the float has turned with respect to the case
about the instrument output axis

non-gravitational acceleration of the instrument with respect to
inertial space along the input axis.

Equation (4.3) may be rewritten as follows:

: p Mig
"Aon Toa cin TC (4.4)

so that the time constant 7 can be introduced. It is related to the previous

equation by

oL
—

3

(4. 5)

A simplified picture of an accelerometer is shown in Fig. 4.6. The

torque generators are fed from a constant current source, with the current

switched between two opposing windings to produce torque of different signs.

or switched to a dummy load or off to produce zero torque. The required sign

of the torque is determined at sampling times and is either opposite to the sign

of the float angle or zero depending on the logic of the loop. Therefore, the

torque generator acts as a zero-order hold in the feedback path. A block-

diagram of the delta -modulated accelerometer takes the form shown in Fig.

4,7. The new symbol M stands for the torque level of the torque generator.

In this investigation the parameters for a non-limit cycling accelero-

meter will be derived and the following calculations will show how the limit

cycles can be removed by using a three level relay. A limit cycling accelero-

meter often introduces error in the following guidance computer calculations as
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pointed out by Wiener in Ref. (3), thus, the choice of a non limit cycling

accelerometer is very attractive.

4.4 Delta ~-Modulated Accelerometer with Three -Level Relay

A delta-modulated accelerometer with a three-level relay is shown

 nN Fig. 4.8
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Fig. 4.8 Delta-Modulated Accelerometer with Three -Level Relay

As explained in Ref. (3) there are two energy regions to be considered when



eliminating the limit cycles for zero accelerometer inputs. The same is true

for small input signals of magnitude less than about half of the design

maximum. One is the low-energy region for which a transient analysis is

used and the other is the high-energy region which can be handled by describing

function analysis. Each analysis gives a lower limit on the zero-level and the

larger is chosen as the size to be used.

The low frequency oscillations are analyzed with the low-energy method

which assumes that the linear plant output is at the edge of the zero level with

zero derivative and that one clock pulse occurs to drive the plant back to null.

The zero level has to be chosen so wide so that in an infinite time the other

edge of the zero level is not reached. As the linear plant only has an integration

plus a time constant the final change of A caused by a pulse will be the

integral of the pulse. The zero level should therefore be larger than half of

the total change caused by one pulse

I MT_
A" TE (4.6)

The delta-modulated accelerometer vields pulses which are incremental

changes of the velocity. The incremental change of velocity 8V is given by

MT_
 WV = —— (4 /"

Substituting equation (4. 7) into (4.6) yields

LP
A &gt;=OV (4. 8)

The high-energy analysis makes use of the describing function

‘echnique. A three-level relay has the following describing function



TA.
(4.9)

This function has a maximum for A =N22 A C

2f = N(N {5 mene
NA) ax (V2 Ag) TA ~ (4. 10)

and -1/N will get a minimum. If the width of the zero. level is chosen big

enough there will be no intersection between -1/N and the extended plot of the

linear plant G(jw). The magnitude of the linear plant for a n-n mode, whose

frequency is w_/2n, is given bv

“s
|G(] 5)! = ——

Vi
MT °'n
 Ss

2 ” } TT 21
2 — 2 ———— 1 ————.Clim (+r 50) on] Gr) |

(4.11)

T'o avoid modes of order n-n and lower the following must hold

X 1

65&lt; 1-11 (4.12)

Substituting equations (4. 10) and (4. 11) into (4.12) yields

1

ssh ls [dn E ( ? | icr oc’ 2 nT,
(4.13)

MT
1

The factor multiplying 5 —= determines if the low or high-energy analysis

gives the largest zero level width. Only the 1-1 and 2-2 modes are possible if

(4. 14)

and this is often the case as accelerometers have time constants of the order



10 4 sec. If equation (4.14) holds and the input to the accelerometer is small,

the low-energy analysis defines the smallest width of the three level relay and

equation (4.6) gives the size.

4.5 Increment Size and Clock Frequency

An appropriate way to determine the increment size is to analyze a

"worst possible” case. If a delta-modulated accelerometer of the type

1
described in Section 4.4 is used the maximum velocity error will be 5 OV.

If the allowable error in position is E and the total flight time of the

navigation T, then the incremental size is determined by

L
&gt; OV.T_=E (4. 15)

The clock frequency f is calculated from the maximum acceleration a

a

max

37 (4.14)

The sampling period is given by

iL

(4.17)

Appropriate numbers for the reentry are

2
A ax © 10g = 322 ft/sec

T = 36 min
n

E = lnm (4.18)

Substitution gives

=



OV = 5.6 — 5.0 ft/sec

f= 64.4—70cps

T =1.43 102 gsc (4. 19)

An accelerometer with that clock frequency can easily be adapted to a DDA-

computer which has a bit rate of several megacycles.

4.6 A Non-Linear Model for the Delta -Modulated Accelerometer

The sampling time derived in the preceeding section is of such order of

magnitude that equation (4. 14) holds and the accelerations during the control

will be less than half of the maximum acceleration for the accelerometer. It

is therefore possible to use equation (4.6) when designing the three level relay

for the accelerometer to be used in the range and lateral control systems.

The zero level should be chosen as small as possible and A o will therefore

be kept at the edge of what equation (4.6) accepts. That means that 2A Cc will

correspond to the final angular change caused by a pulse.

For the upcoming analysis of the range control with respect to limit

cycles, it would be very handy if there was a simple model for the delta-

modulated accelerometer. The model need only hold for frequencies less than

l rad/sec. as will be shown later. In Fig. 4.9 the delta modulated accelero-

meter is redrawn to make it easier to explain the non-linear model of the

accelerometer. The blocks inside the dotted line will be replaced by the

model.

The time constant 7 is much smaller than T_

Sx 143 (4.20)
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Fig. 4.10 Low Frequency Model of Delta-Modulated Accelerometer.



so T may be neglected in the following. Every change in Vin of magnitude

OV will show up at the input to the relay as a change of 2A c The same is

also true at the end of a sample for a pulse initiated by the impulse modulator.

Further, the number of sample periods that occurs during one period for the

frequency w = 1 rad/sec. are

==a0S 1°-1.43 "10
(4.21)

The resolution due to sampling will therefore be very good for input signals

with frequencies less than 1 rad/sec. and amplitudes within the limits for the

accelerometer. The input to output relation of the block,indicated with the

dotted lines in Fig. 4.8 may thus be represented by a quantizer of the form

shown in Fig. 4.10.

The describing function of the non-linear model in Fig. 4.10 with

input amplitude A is as follows

NY ~ a

BR =)

20V J, } (y
TA 2A

20V
TA

[ [ 36v.2|I 1-(0) + 1-(53) |

1
vhen A&lt;506V

1 3

3 5
SO0V&lt;A &lt;50V (4.22)

or shorter

2p+l 6V.2Vy Ji-@tl )BAY = 2 i

pt] sen

(4. 23)
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p=0,1,2,3,...

Equation (4.23) is calculated and drawn in Fig. 4.11 and will be very useful

when analyzing the range control system for limit cycles.

4.7  DDA-Computer

The computer chosen to perform the calculations of the control systems

is a DDA -computer. The DDA -computer is described in most textbooks on

digital computers so only a very short review of some basics will be given here.

The basic element of a DDA -computer is the DDA integrator, usually

shown as in Fig. 4.12. The blocks labelled R and Y are storage registers.

The line labelled AY carries pulses representing a change in the least

significant bit in Y. The pulse may be positive or negative according to the

sign of the change. The AX line carries pulses representing equal increments

in X. When a AX pulse occurs, the content of the Y register is added into

the R register or subtracted from the R register, depending on the sign

associated with the AX pulse. The content of the Y register is left unchanged

by this operation. The AZ line carries overflow pulses from the R register

representing a change in the least significant bitin Z. The AZ pulses may

be used as AX or AY pulses in another integrator. The increase of R is

related to X and Y by

(4. 4)

which is an increment of a rectangular integration and has given the unit its

name "integrator." The computer works in binary code and if the R register

. . th . x n

is n bits long, the carry from the n position represents the number 2 * AXAY.
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Fig, 4.15 DDA -Symbol for Multiplication by a Constant.



The usual schematic representation for a DDA integrator is shown in Fig. 4.13

The symbol for incremental addition is shown in Fig. 4.14 and

multiplication by a constant in Fig. 4.15

~



CHAPTER 5

RANGE CONTROL

5.1 Introduction

To guide the vehicle during the Landing Phase so that it will reach the

destination area, a range control system is used to force the vehicle to follow a

reference or nominal trajectory. The nominal trajectory is generated with time

as the independent variable.

The range control is first stabilized for continuous signals. Then, a

delta modulated accelerometer and a DDA is introduced in the control system

and analysis is carried out to find if the delta modulated accelerometer gives

rise to any limit cycles.

5.2 The Range Control System and Its Stabilization

To guide the vehicle to the desired landing point on the earth the

difference between actual distance to go and nominal flight distance can be used

as an error signal in a control system operating on the ratio (L/D) . To
x7

stabilize the range control system it is also necessary to include other

correction signals. In this paper the errors in V,V and R away from the

nominal trajectory and an electrical compensation network will be used to

govern the lift as shown in Fig. 5.1. The block called Nominal trajectory

generates the equations derived in Chapter 2 using t as independent variable.
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“i... 5.1 Range Control System.

The nominal value of (L/D) is a constant and so-are the feedback gains

K, KK, and K .

The guidance law for the system is

L L
(5), = (Fy, + Kis +K)AV+KAV+KAR... (5. 1)

where the A-quantities represent the variations of the measured variables from

the nominal values along the trajectory.

The transfer functions for the trajectory dynamics are derived in

Chapter 3 giving equation (3.52). For convenience introduce the following

notations.

gr ke
 oN

re

A(R), 5% + wr
(5.2)
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Using the notations of equation (5. 2)-(5. 4) a block diagram of the range

control system is drawn in Fig. 5.2.

AG), “0
2 2

s ++ wo

AR
. ”

Ks +K,

KF |

x, f-
Fig. 5.2 Block Diagram of Range Control System.

T'o stabilize the range control system Root-locus technique is applied. First

the inner loop of Fig. 5.2 containing the compensation network is stabilized.

Fig. 5.3 shows the inner loop itself. The characteristic function of the inner

loon iS

Choosing K, and &lt;

Ky
K (K.s +K.) KoKy (s+ 7)

Coots TRY PH
52+ 2 24“n S wn

(5.5)

; ; -2 :

a1egative and the ratio K_/X. =3- 10 = gives root-loci
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Fig. 5.3 Inner Loop.

of the form shown in Fig. 5.4 and 5.5, which are for V=0.3 and 0.9. The

closed inner loop gets poles shown as &amp; in the figures for K, =-1.05. The

corresponding K, is K,=-3.15. 10

Fig. 5.4

jw
0.05

4

er pn.=
-0.1 -0.05 Ky

KS

10. 05

Root-Locus for Inner Fig. 5.5
Loop, V= 0.30.

Root-Locus for Inner
Loop, V=0.90.

jw
: 0.05

t-0. 05

The inner loop is thus stable. The overall range control system of Fig. 5.2

can now be treated as a system containing the inner loop as a single block.



Further, the two feedback loops with the constants Kg and K 4 may be

lumped together into one single feedback loop. Redrawing the control system

of Fig. 5.2 in that way transforms it into Fig. 5.6.

8
i

Inner Loop
Fig. 5.3

av I -L
 2

AR

Ky ~ Kgs

Fig. 5.6 Outer Loop

The root locus of the overall system is shown in Fig. §.7 and 5.8 for V=0.3

and 0.9, respectively. The constructions are made for K J Kq =-6 10 3 and

Ky as variable gain and always negative. K is assumed to be positive. The

final choice of K, is K,=-3 .10™* which determines that K ,=1.8 107°

The poles of the overall range control system with these values of the constants

are shown as U in Fig. 5.7 and 5.8.

The figures show that the range control system is stable with the

values that have been chosen for KKK, and K 4 At the beginning of the

landing maneuver the damping is not very good but gets better during the

approach to the landing point. No analysis of the signal amplitudes due to

initial errors will be carried out in this report.

The range control system designed in this section is of the form shown

in Fig. 5.1 and 5.2. The values of the feedback constants that have been
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chosen are as follows

Ky= -1.05 1/fps”

3.15 - 10°K,=-3.15 -

”
K, = 3-10

1/fps”
1/fps

1.
A (5. 6)

5.3 Introduction of a Delta -~Modulated Accelerometer and a DDA ~-Computer

in the Range Control Loop

Introducing a delta modulated accelerometer for acceleration

measurements and a DDA for the computations in the range control system of

Fig. 5.2 changes the picture of the loop. Figure 5.9 shows the new setup

with a zero order hold following the DDA. The delta modulated accelerometer

is abbreviated DMA and the A's have been dropped. The Laplace transforms

that the DDA should give is defined by Fig. 5.2 and are as follows

Ky 2
C(s) = (= - K, -K.s -K_.s)V(s)

V(s) = 3 6V(s)

(5.7)

(5S. 3)

There is no reason to design the DDA from any other transforms to compensate

for the stepping as the sampling period is very short compared to the band-

width of the range control system. . A DDA that will approximate equations

(5.7) and (5. 8) very well is shown in Fig. 5.10. A z-transform will describe

the behaviour of the computer if the quantization in the computer is neglected,

which is possible as the steps may be done very small. The z-transform

can be derived from the difference equations that the computer solves. The

clock frequency of the computer is several megacycles and the sampling time
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is T, = 1.43. 107“ sec., thus there is no need for delays between the

operations of the computer. The derivatives are calculated by taking the

difference between a variable of present time and a delayed value of the same

variable and divide by the time difference between the samples. The difference

equations are as follows if the notations of Fig. 5.10 are used.

V(n) = V(n-1) + 6V(n)

AR(n) = Tg V(n-1)

R(n) = R(n-1) + AR(n)

C,m) = K, R(n)

Cs(n) mo Ky V(n)

V(n) = 1/mT_ [V(n)-V(n-m)]

C,@m) = -K, V(n)

V(n) = 1/pT_[V(n) - V(n-p)]

C,@) = “K, V(n)

C(n) = C,(n)+ C,(m)+C (n)+C (n)

(ntroducing the z-variable as

/
YY

5T
S

(5. 10)

and solving equation (5.9) for C(z) gives

T
S 1 -m

oe) = |x, — -K, -K, mT, 7? TY +

x, —1_ (1-z Py 2 | Z_ §V(z)l 2 z-1
pmT_

(5.11)

The z-transform of the computer D(z) is thus



T
lk =ck ck —L (1pm

pe) = x, 2-1 K37Ky mT, (tz =)

X, 1 (1-z P) a=" | Z_2 z-1
pmT_

(5.12)

To eliminate noise from the quantizing of the accelerometer a filter should be

included in the computer to attenuate high frequencies. A sharp filter with a

bandwidth of about 1 rad/sec. should probably work well, but will not be

designed here.

The Laplace -transform for the zero order hold is of the form

-sT
S

i

Ao
L -e

(5.13)

The delta modulated accelerometer has already been discussed in the

preceeding chapter and the range system can now be analyzed for limit cycles.

5.4 Limit Cycles

When analyzing the range control system with respect to limit cycles,

Fig. 5.11 will be used. The inner loop is the accelerometer loop and the outer

loop is the range control loop. The analysis will be performed in two steps. In

the first step high frequencies will be discussed and in the second step low

frequencies.

When analyzing the system for high frequency limit cycles the gain of the

two loops will first be compared between point 1 and 2 in Fig. 5.11. If leaving

out the zero order holds which appear in both loops the following unequality is

true for high frequencies.

,
N
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Ss = jw

A
“s

when —==w &gt; 1 (5. 14)

The inner loop will therefore dominate the dynamics at these frequencies. The

highest frequency at which a limit cycle can appear is at w /2 as shown in

Section 4. 2. 2. However, the accelerometer is designed to be non-limit cycling

for small input signals and thus there can be no high frequency limit cycle in the

range control loop due to the accelerometer.

For low frequencies, w&lt;1 rad/sec., a different approach will be carried

out making use of the non-linear model of the accelerometer derived in Section

4.6. Equation (5.9) can be solved for V(z) as input and the result is

(z) =
Ts 1 -m

&lt;1 Kg oKy mr,2 0

K, 12 Pa
pmT_

V(z) = D_(2)V(z)
App

(5. 15)

jwT
Substituting z with e . ® transforms equation (5.15) into the following transfer

function

y= Cw) _

D(¢) = Vio)
T, Le JmwT

Ky ToT “Kg oKy ToT
~ sy S

-jpwT -jmwT
(l-e s, (1-e S y

2
pmT_

 ”

(5. 16)

Trigonometric relations give



D_(jw) =K,

wT

f ee
T e 2

8

mwT
qi —E

. 2 mwT

-K, -K, —2.e sin —=—+
ST 3 2 mT 2

. S 9

2j sin ——

wT,
-j —— (m+p) mwT pwT

FK NO. z = sin ——gin——
 1 2 2 2

pmT
(5.17)

The constants m and p have not yet been chosen. If they are given integers

less than 10 the following holds

ri m+p «&lt;1 when ww .1 rad/sec (5.18)

Equation (5.17) can therefore be approximated as follows

K
 TU. 2 .

D (jw) = Kq K, jwt+K,w when w &lt;1 rad/sec (5.19)

This expression is the same as equation (5.7) when s = jw.

The low frequency model of the system is shown in Fig. 5.12 using the

non-linear model of the delta -modulated accelerometer from Section 4. 6 and the

transform D, derived in equation (5.19). In this case the zero order hold can

be left out due to the form of the input to the computer. The describing function

is determined by equation (4. 23) and Fig. 4. 10.

Graphical solution of the following equation gives the limit cycles.

K
0 1

2 2 jo  Doli®)
Ww, ~w

N(A) = 0 (5. 20)

Equation (5. 20) is solved for the two cases V=0.9 and V=0.3 in Fig. 5.13 and

5.14. respectivelv
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Fig. 5.12 Low Frequency Model of Range Control Loop.

Figure 5.13, V=0.9, has one stable limit cycle at w=1.75 - 1072 rad/sec

and A = 0.516V = 2.55 ft/sec. Figure 5.14, V=0.3, has no limit cycles at all

and is stable.

The amplitude of (L/ D)_ at the limit cycle is calculated from

Ly s 5 Loa
Dv 2 2 Ww

W.-W
(5.21)

and gives the answezx

L
(£),=3.3 +1 (5.22)

The relative amplitude for (L/ D)__ = 1/2 is thus

L
(3) -

PY _7.10

(£)D’vn

(5. 23)

This amplitude is acceptable and will cause no harm to the system. The
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conclusion is that the range control system will experience a limit cycle in the

beginning of the Landing Phase but will settle down before V = 0. 3, so there

will be no range errors at all due to limit cycling.



CHAPTER 6

LATERAL CONTROL

6. 1 Introduction

With a lifting vehicle it is possible to move laterally out of the vertical

trajectory plane by tilting the lift vector. The tilt is obtained by rolling the

vehicle by means of small control jets. As the range is also controlled by

tilting the lift vector to get the right (L/D) for the range, lateral control has
AY

to be done by two -position control of the lift vector. The lift vector is first

banked at an angle B to give a correct (L/D) v for the range. The lateral

control system will then continuously predict the cross range error at the

landing point and when the maximum tolerable cross range error is reached

the lift vector will immediately be rolled over to the opposite side and the bank

angle -B, giving the same (L/D) as before. The control system will continue
AY

to predict cross range error and when the other limit of tolerable cross range

error is reached the lift vector will be rolled back to its first position. The

procedure is then repeated thus keeping the landing point inside the limits of

the cross range error.

6.2 The Lateral Control System

When calculating the lateral motion of the vehicle, usually some type

of approximation has to be introduced to get useful expressions. Eggers and



Slye, Ref. (16) and (2), respectively, make use of a "cylindrical" earth. The

plane which contains the nominal flight trajectory is perpendicular to the

cylinder, which has the same diameter as the earth. The approximation does

not give extreme accuracy if the flight path deviates widely from the nominal

trajectory. The accuracy of the approximation has been discussed by

Rosenbaum, Ref. (1). When the lateral motion of the vehicle is controlled, the

actual flight path will be close to the nominal path and thus, the approximation

will be very good. In Fig. 6.1 the flight path is depicted as seen from above

looking down towards the center of the earth

Actual

flight path

-

it
— Nominal

trajectory

Fig. 6.1 Lateral Flight Path

The angle ¥ is the bearing angle of the velocity vector with respect to the

nominal trajectory. The vector 4 is a unit vector of £ perpendicular to the

nominal flight path. The acceleration in 4-direction is

/
1, ) v A

«rns y cos {, (6
o

Making the small angle approximation gives

(6. &gt;)



in the same way the horizontal component of lift L is given by the bank angle

. = 1,taL, =L nB ‘6 3)

I'he equations of motion perpendicular to the nominal trajectory are

~~3

 mM i

m+: 1.

ran

ten

 83

3

(6. 4)

(6. 5)

The rate of change of the bearing angle is found from equation (6. 4)

J
. tan B

~%T
(6 9)

and the lateral position from equation (6.5)

LL tanB 9
? (fr dt

m
(6.7)

The cross range error at the landing point for a vehicle which is not banked is

shown in Fig. 6.2 as Le The distance from the vehicle to nominal trajectory

at the initial point is called 4 and the range to go is S, equation (2. 16).

Nominal trajectory Desired Landing Point
- 7

?,

Fig. 6.2 Prediction of Cross Range Error



Figure 6. 2 gives the following equation for the cross range error at the landing

Q0int

, = ++ 0 '§ 3)

if, again, the small angle approximation is used.

The cross range error 7 of equation (6. 8) can be used to control the

bank angle of the vehicle. When 4 ¢ has increased to the maximum tolerable

Cross range error t, the lift vector is rolled over to the other side where it

stays until the ails limit is reached. The rolling of the vehicle is obtained by

control jets which can roll the vehicle from -90° to 90° in 10 seconds. The

time between two successive changes of the bank angle will be about 1 minute

or more and the bank angle used will be about 30°. The switching of the bank

angle from one side to the other will therefore be very fast compared to the time

between two switches of the bank angle and can be approximated to be instan-

taneous. If that approximation is used, the analytic model of the lateral control

system for different points along the flight path is of the form shown in Fig.

A ~

T
m m

-1

 fe
LL tan B'
van

 TM

Is, 1
Vs

n

A
2

S

PS
n

 yr

£L.

Fig. 6.3 Lateral Control System



In Fig. 6.3 the subscript n denotes values along the nominal trajectory

and the point where the lateral control system is being analyzed. The notation

e has the value +1 or -1 and s is the Laplace operator.

[t is of interest to know if the lateral control system has a limit cycle

or not and if all initial conditions will give the limit cycle if the system has one.

The usual way of analyzing the system is to use describing function technique.

However, that cannot be used for this control system as the filtering of the

linear part of the system is not enough. The phase-plane method will, instead,

give information about transients and limit cycles. To get the control system

in a form suitable for phase-plane analysis, Fig. 6.3 has been redrawn in

Fig. 6.4.

Banc
“n

1 i
ty S

n | 11,

te

or’

I. tanB
 vn 1

m 2
Q

m ~. 0.4 Block Diagram For Phase Plane Analysis

The first step in constructing the phase -plane is to write the

differential equation describing the relation between e and £4

dt } Lyn tan B

12 m
+ B f

A.

The usual procedure of normalizing time will be applied here. Make the

following change in the time scale



 TF = Wt d7 = w, dt (6. 10)

Choosing wy, close to the limit cycle frequency will make the drawing of the

phase-plane easier as the limit cycle curve will be almost circular. The time

scaling transforms equation (6.9) into

 2_ 1 tm®P
A) m

dr “q
(6.11)

For convenience, and to conform with standard usage, the following phase

variables are defined

¢c 24

Ad
2 dT

(6.12)

(6.13)

With the change in variables, equation (6.11) becomes

 Po _1 tam®P
dr 2 m

0

(6.14)

Dividing equation (6. 14) by x, gives

By, 1 Lyte .
dx, 2 m

2

(6. 15)

For the construction of the phase-plane equation (6.15) is rearranged to yield

L tanB
S/S

Z m dx

Wo =
1

¢

which is the equation for the isoclines or loci of constant slope dx. /dx..

(6. 16)

Tl



this case the isoclines are horizontal lines.

The value of e is determined by Les which is a function of X, and Xe

The first block of Fig. 6.4 gives

S
dtL mld wi

TETY Ta
n

(6.17)

Substituting equations (6. 12) and (6. 13) into equation (6. 17)

v.

S
¥. tw 2x
i Ov "2

n

(6.18)

The value of e is then given by

LL
f m

1 &gt;4 -&amp; and dt/dt &gt;0m f m

(6. 19)

Xo
Jur 1,

AL  * 4

m

V4 &gt;4 &gt;-% and dt /dt &lt;0
m m

By use of equations (6.16), (6.18), and (6.19), it is now possible to construct

phase -plane portraits for any point along the trajectory. Two points have been

selected V=0.90 and V=0.30 and phase-plane curves have been drawn to

show the limit cycles. The curves are shown in Fig. 6.5 and 6.6. The bank

angle has been chosen so that tan B = 0.5 and the maximum allowable cross

range error at the landing point has been set to to = Snm.

The two phase planes in Fig. 6.5 and 6.6 have the important

characteristic that the lateral control system always will settle down to the

same stable limit cvcle independent of initial conditions. A second important
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characteristic is that the limit cycle always keeps the cross range error within

the limits +4 and 4 As the phase planes for points along the trajectory

all are of the same type as Fig. 6.5 and 6.6 the control system will always be

stable to a limit cycle for all points along the trajectory.

The conclusion that the lateral control system is stable to a limit cycle

may therefore be made. This is, in fact, the situation and can be explained in

the following way. When the velocity vector points at a cross range error limit

the lift vector is switched over and the velocity vector starts immediately to move

in direction to the other cross range error limit. The cross range error will

thus be kept within the limits experiencing a limit cycle.

The period T of the limit cycles can be calculated from the phase planes.

By definition, equations (6.13) and (6. 10),

_

RT

TT = w,t

(6. 20)

(6.21)

Thus, for small increments

x i! 0 pre
DT Ar TATE

(6.22)

where X, is the average value during the increment.

The period is the sum of increments during one cycle

r=L ar
“0

one

cvcle

(6.23)

Applying equation (6.23) to Fig. 6.5 and 6.6 gives T = 183 sec. and



T = 145 sec. for V=0.30 and V= 0.90, respectively. It is surprising that the

periods are so close as the control system is working under very different

conditions. For points between V=0.90 and V=0.30 the periods are also of

the same order.

Periods of the order, mentioned above, should fit the overall re-entry

control system very well.

6.3 ~~ Maximum Initial Errors That Can Be Corrected

It is of interest to know what initial errors that can be corrected by the

lateral control system. Using the approximation for a "cylindrical" earth,

expressions can be derived which will be accurate enough to develop a good feeling

for the capacity of the lateral control system. That knowledge will then be useful

when setting requirements on the guidance controlling the vehicle to the point

where the Landing Phase starts and the lateral control system, discussed in this

chapter, takes over.

The lateral control is achieved by tilting the lift vector to one side until

the velocity vector points to the cross range error limit on the same side as the

lift vector, whereupon the vehicle approaches the landing point oscillating in such

a way that the velocity vector never overswings the accepted cross range landing

area. The approach may look like Fig. 6.7.

The maximum cross range correction that can be made is granted if the

lift vector is on the same side all the time. Eggers has derived an expression

for this using the "cylindrical" earth approximation and integrating between

V, =1 and V, = (0. The maximum lateral correction denoted by Y is given by

2
L.2£2 a IT . -_n= 2a (5) tan B 14)
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Fig. 6.7 Lateral Trajectory.

The cross range error that an unbanked vehicle would give at the landing point

with the initial condition . and Py. at the beginning of the Landing Phase is

shown in Fig. 6.8.

Nominal trajectory

 mn

’

Fig. 6.8 Cross Range Error Due to Initial Errors.

Figure 6. 8 gives the following predicted cross range error

- SY (6.25)

J



The initial conditions that can be corrected by the lateral control system

are then

&lt; 2,14 +osl = +4 (6-76)

Substituting equations (2. 16) and (6. 24) into equation (6. 26) yields

2
i Ioky ant |= TL rELg (pt i tot22Tg),tan[Bl

i

(6.27)

Equation (6.27) is graphically shown in Fig. 6.9 using the following values for

the constants

r=2.12 - 10°ft

L
(5), =0:5

tan |B =0.5

V, =0.99

© = 3 10 fe

nm

nn

D
i

- 7 degrees

-100 .
Initial errors that

 0) can be corrected

300

4-400

Fig. 6.9 Acceptable Initial Errors.



Initial errors in position and direction that can be corrected by the lateral

control are in the area between the two straight lines in Fig. 6.9. That gives

the requirements on the control before the Landing Phase.

Inmost guidance systems the position error is less important than the

direction error of the velocity vector. The cross range limit to is also small

compared to Yor If t, and to are neglected, equation (6.27) is transformed

into the following handy formula

L
2 (=)

Dvlp. )]=Z —=Ytan|B|
i 12 20 1

qq =

(6.29)

The upper limit for the initial angle error is proportional to the vertical

component of the ratio lift to drag and the tangent of the bank angle.
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CHAPTER 7

SUMMARY AND CONCLUSIONS; SUGGESTIONS FOR FURTHER STUDY

7.1 Summary and Conclusions

This work has been concerned with the problem of controlling a lifting

reentry vehicle through the atmosphere after the velocity has decreased to sub-

circular. A simple approximate expression for the range is derived for a constant

./D ratio assuming that the trajectory is in a plane including the center of the

earth. The range to go is shown to be proportional to the vertical component of

the lift-to-drag ratio.

The control problem is divided into two problems. The range control

and the lateral control.

To design the range control system the long period motions of the vehicle

must be known. In this case the long period motions have been derived in

Chapter 3 using linearization at local points along the nominal trajectory. The

final expressions give motions along the nominal flight path and in the vertical

direction with the vertical SOD ORent of the lift-to-drag ratio as input. The

Laplace -transforms show thatthe differential equations describing the motions

have a second order factor with almost no damping at all. The range control

loop is closed in Chapter 5 using the nominal trajectory as a reference with time

as independent variable. The differences between actual state and reference state



are used to control the vertical component of the lift-to-drag ratio. The

acceleration and velocity along the flight path are included to damp and

stabilize the system.

The delta -modulated accelerometer is described in Chapter 4. Its output

consists of pulses each of them representing an incremental increase of

measured velocity. The two-level and three-level relay accelerometer is

analyzed for modes and finally a non limit cycling delta-modulated accelero=

meter is designed for use in the range control loop. When eliminating the

modes of the delta -modulated accelerometer both the high energy and the low

energy regions are analyzed. It is found that the low energy region defines the

width of the zero level of the three level relay in accelerometers with small

T/ T.- Further, a non-linear model is derived describing the low frequency

behaviour of the accelerometer.

The delta -modulated accelerometer is applied to the range control loop.

The loop is then analyzed for limit cycles caused by the output character of the

accelerometer. Only at the beginning of the Landing Phase does the range

control loop experience a limit cycle. There will, therefore, be no range errors

caused by the limit cycling analyzed.

The lateral control system is described in Chapter 6 and switches the

lift vector fast from one side to the other every time the velocity vector of the

vehicle points towards one of the limits for the cross range error at the landing

point. The lift vector has from the stand point of the lateral control system

only two positions. To the left or right of the vertical plane with the same

vertical component of lift. The magnitude of the vertical component is

determined by the range control system and is close to the nominal value. Thus.



the lateral control system acts as an on-off system and the limit cycles have

been analyzed using the phase plane method.

7.2 Suggestions for Further Study

The work in this thesis has been directed towards limit cycle analysis

and the next step on that way is to include the roll angle control and the

quantization of the DDA computer in the analysis.

The cross coupling between the lateral and range control systems should

also be added to the study of a reentry control system. A complete design of

a reentry control also requires a study of the initial errors that the control

system can handle without exceeding the limits of the vehicle and what the crew

can stand.

A comparison of a range control system using time as independent

variable and one using velocity as independent variable could give useful

information about which choice is the best. Other methods for the range

control system should be tried.
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