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THE MULTIVARIATE FUNCTIONAL DE JONG CLT

CHRISTIAN DÖBLER, MIKOŁAJ KASPRZAK AND GIOVANNI PECCATI

Abstract. We prove a multivariate functional version of de Jong’s CLT (1990) yielding that, given a
sequence of vectors of Hoeffding-degenerate U-statistics, the corresponding empirical processes on [0, 1]
weakly converge in the Skorohod space as soon as their fourth cumulants in t = 1 vanish asymptotically
and a certain strengthening of the Lindeberg-type condition is verified. As an application, we lift to
the functional level the ‘universality of Wiener chaos’ phenomenon first observed in Nourdin, Peccati
and Reinert (2010).

Keywords: U-statistics, functional limit theorems, contractions, product formulae, Hoeffding decom-
positions, universality

AMS 2010 Classification: 60F17, 60D05, 62G20,

1. Introduction and (simplified) statements of main results

1.1. Motivation. Degenerate U -statistics (see Section 2 for definitions) are the fundamental com-
ponents of Hoeffding decompositions for generic random variables of the type f(X1, ...,Xn), with
X1, ...,Xn an independent sample, and are thus pivotal objects in stochastic analysis [Hoe48, Ser80,
KB94,ES81,LRR16]. A special case of degenerate U -statistic is given by homogeneous sums [MOO10,
NPR10a, Rot79], which are in turn the building blocks of Gaussian and Poisson Wiener chaoses
[PT11, NP12], as well as the basis of the Fourier-Walsh expansion of mappings defined on discrete
cubes [O’D14, GS15]. For future reference, we recall that a homogeneous sum of order p ≥ 1 is a
random variable Qn(fn,X) with the form

Qn(fn,X) =

n
∑

i1,...,ip=1

fn(i1, . . . , ip)

p
∏

l=1

Xil ,

where X = (Xi)i∈N is a sequence of independent, mean zero and unit variance random variables and
fn is a symmetric kernel (i.e. fn(i1, . . . , in) = fn(iπ(1), . . . iπ(n)) for all permutations π of {1, . . . , n}
and all 1 ≤ i1, . . . , in ≤ n) satisfying fn(i1, . . . , ip) = 0, whenever there are j 6= l such that il = ij .

In the landmark paper [dJ90], P. de Jong proved the following surprising result: If, for n ∈ N,
Wn is a (non-symmetric) normalized degenerate U -statistic of a fixed order p, then Wn converges in
distribution to a standard normal random variable Z, provided limn E[W 4

n ] = E[Z4] = 3 and a further
Lindeberg-Feller negligibility condition is satisfied.

De Jong’s theorem is the ancestor of the class of ‘fourth moment theorems’ established in the last
decade for elements of the Wiener chaos of Gaussian and Poisson random measures – see e.g. [NP12,
Chapter 5], as well as [DP18,DVZ18].

In [DP17], the authors used Stein’s method in order to establish quantitative uni- and multivari-
ate counterparts to de Jong’s theorem. The techniques introduced in [DP17] put forward several
combinatorial quantities that proved useful in further situations: for instance, as demonstrated by
the references [DP19,DKP21,Döb20] the technical findings of [DP17] allow one to derive quantitative
(functional) CLTs for symmetric U -statistics that are expressed in terms of purely analytical quantities,
that is, norms of so-called of contraction kernels.

The aim of the present paper is to prove a multivariate functional version – in the sense of weak
convergence in the Skorohod space of càdlàg mappings – of the main results of [dJ90, DP17], under
a slightly stronger Lindeberg condition (see Condition 1.2 below). As a direct application, in Section
1.4 we derive a functional version of the universality of Wiener chaos phenomenon first detected
in [NPR10a].

Date: January 22, 2022.
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2 CHRISTIAN DÖBLER, MIKOŁAJ KASPRZAK AND GIOVANNI PECCATI

Our main findings appear in Theorem 1.4 and Theorem 1.5 below. To the best of our expertise,
these statements are the first examples of fourth moment theorems for random elements taking value in
a metric space without a Hilbert space structure. See [BC20] for related results in a Dirichlet/Hilbert
setting.

Acknowledgments. This work is part of the first author’s habilitation thesis at Heinrich Heine
Universität Düsseldorf. The research leading to this paper was supported by the FNR grant FoRGES
(R-AGR-3376-10) at Luxembourg University. This work is also part of project Stein-ML that has
received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 101024264. We thank an anonymous referee for
several useful remarks. Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.

1.2. Setup and main theorems. We now introduce our objects of study, fix some notation and
conditions, and state our main results. For the sake of generality, and at the cost of a slightly heavier
notation than the one adopted in [dJ90,dJ89], from now on we will work in the framework of triangular
arrays.

Throughout this section, we fix positive integers d and 1 ≤ p1 < p2 < . . . < pd, where d always

denotes dimension. Form ∈ N, suppose thatX
(m)
1 , . . . ,X

(m)
nm are independent random elements, defined

on a suitable probability space (Ωm,Fm,Pm) and assuming values in the respective measurable spaces

(E
(m)
1 , E(m)

1 ), . . . , (E
(m)
nm , E(m)

nm ). We will denote by Em, Varm and Covm the expectation, variance and
covariance with respect to Pm, respectively. We will systematically assume that limm→∞ nm = +∞
and, to simplify the notation, we will sometimes suppress the dependence on m. For k = 1, . . . , d
and m ∈ N we assume that W (k) = W (m)(k) is a (completely) degenerate, non-symmetric

U-statistic of order pk based on X
(m)
1 , . . . ,X

(m)
nm , with the form

W (k) =W (m)(k) =
∑

J∈Dpk
(nm)

W
(m)
J (k) =

∑

J∈Dpk
(nm)

WJ(k) ,

where WJ(k) is a degenerate kernel depending on {Xn : n ∈ J} – see Section 2 below. Here and in
what follows, for p, n ∈ N, we write

Dp(n) := {J ⊆ [n] : |J | = p}
for the collection of all

(n
p

)

distinct p-subsets of [n] = {1, ..., n}.
W.l.o.g. we will assume that Varm(W (m)(k)) = 1 for all k = 1, . . . , d and all m ∈ N. By

W = W (m) we denote the vector W = (W (1), . . . ,W (d))T and, for t ∈ [0, 1] let Wt = W
(m)
t =

(W
(m)
t (1), . . . ,W

(m)
t (d))T be given by

(1) W
(m)
t (k) :=

∑

J∈Dpk
(⌊nmt⌋)

W
(m)
J (k) =

∑

1≤i1<...<ipk≤⌊nmt⌋

W
(m)
{i1,...,ipk}

(k) , k = 1, . . . , d,

where ⌊x⌋ denotes the integer part of the real number x. Then, for each m ∈ N, the process

(2) W(m) :=
(

W(m)(1), . . . ,W(m)(d)
)T

:= (W
(m)
t )0≤t≤1

is an element of the Skorohod space D([0, 1];Rd) of càdlàg functions from [0, 1] to Rd. As anticipated, in

this paper we provide sufficient conditions for the sequence W(m), m ∈ N, to converge in distribution
to a continuous Gaussian process Z = (Z(1), . . . ,Z(d))T with respect to the Skorohod topology on
D([0, 1];Rd) (see e.g. [Bil68, Sections 14–15] for details).

Note that, by degeneracy and since the pk’s are pairwise distinct, for 0 ≤ s ≤ t ≤ 1 and 1 ≤ l, k ≤ d
we have

Cov
(

W
(m)
t (l),W

(m)
t (k)

)

= Em

[

W
(m)
t (l)W

(m)
t (k)

]

= δk,l
∑

J∈Dpk
(⌊nms⌋)

Em

[

W
(m)
J (k)2

]

= δk,lσ
2
m,k

(

⌊nms⌋
)

,

where we set
σ2m,k(j) :=

∑

J∈Dpk
(j)

Em

[

W
(m)
J (k)2

]

, k = 1, . . . , d, 0 ≤ j ≤ nm .

2            
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FUNCTIONAL DE JONG THEOREMS 3

In particular, we have σ2m,k(0) = 0 and σ2m,k(nm) = Var(W (m)(k)) = 1.

We will now introduce and discuss the Conditions 1.1, 1.2 and 1.3 under which our main findings
(Theorems 1.4 and 1.5) are stated.

condition 1.1 (Convergence of time-changes). There are functions vk : [0, 1] → R, 1 ≤ k ≤ d, such
that the pointwise limits

(3) lim
m→∞

σ2m,k

(

⌊nms⌋
)

= vk(s) , s ∈ [0, 1] ,

exist.

Note that the vk are necessarily non-decreasing on [0, 1] and satisfy vk(0) = 0 as well as vk(1) = 1.
However, we need not assume any regularity of the functions vk.

In order to concretely relate Condition 1.1 to functional results, we let Z = (Z(1), . . . ,Z(d))T be
a centered Gaussian process with independent components, defined on a suitable probability space
(Ω,F ,P) and such that, for 1 ≤ k ≤ d, the covariance function of Z(k) = (Zt(k))t∈[0,1] is given by

(4) Cov
(

Zs(k),Zt(k)
)

= E
[

Zs(k)Zt(k)
]

= vk(s ∧ t) ,
implying that (Z1(1), . . . ,Z1(d))

T is a standard Gaussian vector in Rd. It is easily verified that the
d-dimensional process Z has the same distribution as

(

Bv1(t)(1), ...,Bvd(t)(d)
)

t∈[0,1]
,

where (B(1), ...,B(d)) is a standard Brownian motion (initialized at zero) in Rd. This yields in partic-
ular that Z has a.s.-P continuous paths if and only if the functions vk’s are continuous.

Following [dJ89,dJ90,DP17] we further introduce the quantities

̺2m,k := max
1≤i≤nm

∑

J∈Dpk
(nm):

i∈J

Em

[

W
(m)
J (k)2

]

and

Dm,k := sup
J∈Dpk

(nm):

Em[W
(m)
J (k)2]>0

Em[W
(m)
J (k)4]

Em[W
(m)
J (k)2]2

.

Note that, e.g. by Jensen’s inequality, one necessarily has that Dm,k ≥ 1.

condition 1.2 (Reinforced Lindeberg condition). For all 1 ≤ k ≤ d, limm→∞Dm,k̺
2
m,k = 0.

This condition roughly ensures that none of the individual random variables X
(m)
i , 1 ≤ i ≤ nm, has

an asymptotically dominant impact on the variance of W (m)(k), 1 ≤ k ≤ d.

The following condition is inherent to all de Jong type CLTs such as e.g. those proved in [dJ90,DP17].

condition 1.3 (Fourth moment condition). For all 1 ≤ k ≤ d we have limm→∞ Em

[

W (m)(k)4
]

= 3.

The forthcoming Theorems 1.4 and 1.5 are the main achievements of this work.

Theorem 1.4. Let the above definitions and notation prevail and suppose that Conditions 1.1- 1.3
hold. Then, the process Z has continuous paths and, as m → ∞, the distributions of the sequence
(W(m))m∈N weakly converge to the law of Z, with respect to both the Skorohod and uniform topologies.

An assumption such as Condition 1.1 does not appear in the finite-dimensional settings of [DP17,
dJ90]. It cannot be easily dispensed with without affecting the unicity of the limit in the previous

statement. The following result shows that, if Condition 1.1 is removed, then the sequence (W(m))m∈N

is still relatively compact, and each limit law is the law of a continuous Gaussian process.

Theorem 1.5. Suppose that the sequence (W(m))m∈N satisfies Conditions 1.2 and 1.3. Then, the
collection of their laws is tight, hence relatively compact, in the class of distributions on the Skorohod
space equipped with either the Skorohod or the uniform metric. Moreover, if the laws of a subsequence
(W(mj ))j∈N converge weakly, then the limit is the law of a continuous, d-dimensional centered Gaussian
process with independent components.

3            
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4 CHRISTIAN DÖBLER, MIKOŁAJ KASPRZAK AND GIOVANNI PECCATI

The detailed proofs of Theorems 1.4 and 1.5 are deferred to Section 3. We observe that the proof
of Theorem 1.5 implicitly shows that, if (W(m))m∈N satisfies Conditions 1.2 and 1.3, then from every

subsequence (W(mj ))j∈N one can extract a sub-subsequence (W(m′
j ))j∈N verifying Condition 1.1 for

some continuous functions vk, whose definition depends on the choice of the subsequence.

Some representative examples of kernels directly verifying the assumptions of Theorem 1.4 are
described in Example 1.12, yielding in particular that, for all p ≥ 3 and all integers a ∈ {2, ..., p −
1}, there exists a sequence of homogeneous sums whose associated empirical processes converge in
distribution to a multiple of B(tp/a), where B is a standard Brownian motion issued from zero. It
is important to notice that such a limit behaviour is in principle not achievable in the framework of
symmetric and degenerate U -statistics. Indeed, in [DKP21, Corollary 3.7] it is proved that, given a
sequence of symmetric and degenerate U -statistics of order p ≥ 2 verifying asymptotic relations that
are roughly equivalent to Conditon 1.3, the corresponding sequence of normalized empirical processes
always converges in distribution to a multiple of B(tp).

Remark 1.6. (a) Theorem 1.4 provides a strong functional extension of the finite-dimensional de
Jong type theorems from [dJ90, DP17] under very mild additional assumptions. As already ob-
served, Condition 1.1 and Condition 1.3 are indeed natural in this context [dJ90,DP17], so that
only Condition 1.2 might appear non-optimal, since —whenever there is a k such that Dk,m is
unbounded in m — it is strictly stronger than the usual negligibility condition demanding that
limm→∞ ̺2m,k = 0 for all 1 ≤ k ≤ d, see again [dJ90,DP17]. To address this issue, we observe first
that, in many instances, the Dk,m are in fact bounded in m for all 1 ≤ k ≤ d and in this case,
the two conditions are in fact equivalent. This happens in the case of homogeneous sums such
that the underlying sequence X has a uniformly bounded fourth moment (see Section 1.4 below).
Moreover, it is not clear whether the convergence of finite dimensional distributions of W to those
of Z would still hold, if one replaced Condition 1.2 with the weaker variant (see Subsection 3.1.1
for details). Some preliminary computations have indeed shown that, if one only assumed that
limm→∞ ̺2m,k = 0 for all 1 ≤ k ≤ d, one might have to replace Condition 1.3 with the assumption

that limm→∞ E[Wt(k)
4] = 3vk(t)

2 for all t ∈ [0, 1] and all 1 ≤ k ≤ d, which would be much more
complicated to verify than Condition 1.3.

(b) Note that Conditions 1.1- 1.3, implying the joint convergence of the random processes W(m)(k),
1 ≤ k ≤ d, are just the aggregation of the conditions for the componentwise convergence of these
processes.

(c) We find it remarkable that one uniquely has to take into account the behaviour of the fourth
moments of the components of W(m) at time 1 and not at other times t < 1.

(d) We compare our Theorem 1.4 to a few existing functional CLTs (FCLTs) for degenerate (symmetric
and non-symmetric) U -statistics in the scarce literature on this topic. In accordance with the uni-
variate case (see e.g. [DM83,Gre77,Ser80]), in order to satisfy a FCLT, a symmetric degenerate U -
statistic of order p > 1 must have a variable kernel, i.e. one that depends on the sequential param-
eter m. In the recent work [DKP21] we have proved FCLTs for this situation with sufficient condi-
tions for convergence that are expressed in norms of contraction kernels and, hence, are completely
analytical in nature. A more general class of statistics is given by the so-called weighted, degener-
ate U -statistics of order p. These have the form Un =

∑

1≤i1<...<ip≤n a(i1, . . . , ip)ψn(Xi1 , . . . ,Xip),

where X1, . . . ,Xn are i.i.d. elements of some space E, a(i1, . . . , ip), 1 ≤ i1, . . . , ip ≤ n is a sym-
metric array of real numbers that vanishes on diagonals (i.e. a(i1, . . . , ip) = 0 if il = ik for some
l 6= k) and ψn is a symmetric, canonical kernel, i.e. E[ψn(X1, . . . ,Xp)|X1, . . . ,Xp−1] = 0 a.s. In
particular, they constitute a strict subclass of the non-symmetric U -statistics investigated in the
present paper. In the case p = 2, [Mik93] derives functional limit theorems for weighted degenerate
U -statistics by using methods that heavily depend on the peculiarities of the case p = 2. In the
very recent paper [DK21] the first and the second author have introduced a functional version of
Stein’s method of exchangeable pairs and applied it to prove quantitative, multidimensional FCLTs
for degenerate weighted U -statistics. As explained in detail in [DK21, Subsection 1.5], the limit
theorems that build on the bounds of [DK21] rather involve third absolute moments and absolute
values of the coefficient arrays and, hence, are complementary to the present ones involving fourth
moment conditions. As to FCLTs for homogeneous sums, apart from our paper [DK21] we only
mention the two references [Mik91] and [Bas94], where, again, [Mik91] only considers the case

4            
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p = 2 of quadratic forms. The paper [Bas94] instead, considers homogeneous sums of arbitrary
order p but the results of this paper are in question. Indeed, we have found that the argument
leading to [Bas94, Theorem 1.1] is flawed, as carefully explained in part 2 of [DK21, Remark 5.6].

1.3. About our approach. Our method of proof turns out to be a combination of a quantitative,
multivariate CLT for vectors of degenerate U -statistics to obtain convergence of finite-dimensional
distributions (see Lemma 3.1 below), and a martingale representation, which we exploit via Doob’s
L4-inequality, in order to derive tightness. In order to conclude from Condition 1.3 that the fourth

cumulant of W
(m)
t (k), 1 ≤ k ≤ d, also converges to zero for all fixed t ∈ [0, 1) as m→ ∞, we elaborate

on a result from the monograph [dJ90] (see Lemma 3.2 below). Moreover, for the application of Lemma
3.1, we prove and make use of several new results about degenerate U -statistics and their Hoeffding
decompositions in Section 2, which are of independent interest.

Since in his original proof of the one-dimensional CLT [dJ89], de Jong made use of a classical
martingale CLT due to Heyde and Brown [HB70], it is a natural question whether one could similarly
apply a FCLT for martingales, like for instance [MPU19, Theorem 2.34], in order to derive Theorem
1.4. Indeed, adapting the computations beginning on page 286 of [dJ89] and using our Lemma 3.2, one
could verify that (an adaptation to deterministic time changes of) the “square bracket condition” (2.48)
in [MPU19] holds for all fixed t ∈ [0, 1]. Since the uniform negligibility condition (2.46) in [MPU19]
is satisfied for any sequence of normalized L2-martingales, [MPU19, Theorem 2.34] could be applied
to yield another proof of the one-dimensional version of Theorem 1.4. In order to derive the full
multidimensional result, one could try to similarly adapt a multivariate FCLT for martingales to our
setting, like for example [Whi07, Theorem 2.1]. However, the mixed square bracket condition (3)
in [Whi07] seems to be less amenable to analysis in the present setting than its univariate counterpart,
i.e. condition (2.48) in [MPU19]. Hence, adapting the techniques used in [dJ90] so as to obtain our
multivariate result appears considerably more difficult. One of the main reasons for this fact is that
de Jong’s arguments rely on a large collection of exact combinatorial identities, that one uses in order
to verify the square bracket condition evoked above. In contrast, our direct arguments merely use
probabilistic inequalities, which makes the structure of the proof significantly simpler and probably
also more robust. Finally, we mention that our arguments are in principle quantitative in nature and
that, via an elaboration of Stein’s method for diffusion approximation [Bar90,Kas20b,Kas20a,DK21],
one would be able to prove a quantitative version of Theorem 1.4. Since, at the time of writing, we
are only in the position to do this with respect to the stronger L1-topology on D([0, 1];Rd), we decide
to leave this point open for further investigation.

1.4. Application: universal FCLTS for homogeneous sums. We will now apply our main results
to the setting of homogeneous sums: as a consequence, in Theorem 1.10 we will establish functional
versions of the main findings of [NPR10a], where the authors proved the universality of Gaussian
Wiener chaos with respect to the normal approximation of homogeneous sums. Such a result roughly
states that, if a sequence of homogeneous sums with Gaussian arguments verifies a CLT, then so does
the sequence obtained by replacing the Gaussian input with an arbitrary collection of independent
random variables (see e.g. [NPR10a, Theorem 1.2] for a precise statement). The findings from [NPR10a]
have found applications e.g. in the analysis of disordered systems [CSZ17, CSZ20], mathematical
statistics [Koi19], random matrix theory and free probability [PN10,NPPS16].

In this subsection, we let (Ω,F ,P) denote a suitable probability space on which all random quantities
subsequently dealt with are defined. We will consider the following sequences of real random variables:

• X = (Xi)i∈N denotes a (generic) sequence of independent, mean zero and unit variance random
variables in L4(P);

• G = (Gi)i∈N is a sequence of independent standard normal random variables; and
• P = (Pi)i∈N is a sequence of independent, normalized Poisson random variables, i.e. there

are λi ∈ (0,∞) and independent Poisson random variables Ni with mean λi such that Pi =
Ni/

√
λi −

√
λi, i ∈ N.

On the sequence X, we will further impose the integrability condition that

(5) β := sup
i∈N

E|Xi|4 <∞.
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This is in particular satisfied if the random variables Xi, i ∈ N, are i.i.d, since we have assumed that
they are in L4(P). We observe that, in the case of the Poisson sequence P, condition (5) can be
equivalently re-expressed in terms of the coefficients λi. In fact, since E[P 4

i ] = 3 + λ−1
i , the sequence

P satisfies (5) if and only if inf i∈N λi > 0.

In what follows, we let nm = m and, for given arrays a
(m)
J (k), J ∈ Dpk(m), 1 ≤ k ≤ d, of real

numbers we suppose that W
(m)
J (k) = a

(m)
J (k)

∏

i∈J Xi is given as

W
(m)
J (k) = a

(m)
J (k)

∏

i∈J

Xi =: a
(m)
J (k)XJ .

Thus, for k = 1, . . . , d,

(6) W (m)(k) =
∑

J∈Dpk
(m)

a
(m)
J (k)

∏

i∈J

Xi

is a homogeneous sum or homogeneous multilinear form of order pk and, in particular, it is a non-
symmetric, degenerate U -statistic. As before, we will systematically assume that

Var
(

W (m)(k)
)

=
∑

J∈Dpk
(m)

a
(m)
J (k)2 = 1 , for k = 1, . . . , d.

Then, as in (1) and (2), we use these d homogeneous sums to define the random element W(m) =

(W(m)(1), . . . ,W(m)(d))T with values in D([0, 1];Rd).

Note that from (5), for 1 ≤ k ≤ d and all J ∈ Dpk(m) such that a
(m)
J (k) 6= 0, we have that

E
[

W
(m)
J (k)4

]

(

E
[

W
(m)
J (k)2

]

)2 =
a
(m)
J (k)4E

[

∏

i∈J X
4
i

]

a
(m)
J (k)4

(

E
[

∏

i∈J X
2
i

]

)2 =
∏

i∈J

E[X4
i ] ≤ βpk .

Hence, also

sup
m∈N

Dm,k ≤ βpk <∞ .

In this context, one would typically like to replace the fourth moment condition, Condition 1.3, by
a condition, which is rather expressed in terms of the coefficient arrays. To this end, let us first define

the symmetric functions f
(m)
k : [m]pk → R by

f
(m)
k (i1, . . . , ipk) :=

{

1
pk!
a
(m)
{i1,...,ipk}

(k) , if |{i1, . . . , ipk}| = pk ,

0 , otherwise.

Observe that the function f
(m)
k vanishes on diagonals, that is, f

(m)
k (i1, . . . , ipk) = 0 if two coordinates

of (i1, . . . , ipk) coincide. Then, we have

W (m)(k) = Qpk(m, f
(m)
k ,X) :=

m
∑

i1,...,ipk=1

f
(m)
k (i1, . . . , ipk)Xi1 · . . . ·Xipk

= pk!
∑

1≤i1<...<ipk≤m

f
(m)
k (i1, . . . , ipk)Xi1 · . . . ·Xipk

as well as

̺2m,k = max
1≤i≤m

∑

1≤j2<...<jpk≤m:
j2,...,jpk 6=i

a
(m)
{i,j2,...,jpk}

(k)2 = (pk!)
2 Infi

(

f
(m)
k

)

,

where

Inf i
(

f
(m)
k

)

=
1

(pk − 1)!

m
∑

j2,...,jpk=1

f
(m)
k (i, j2, . . . , jpk)

2 =
∑

1≤j2<...<jpk≤m

f
(m)
k (i, j2, . . . , jpk)

2
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denotes the influence of the random variable Xi on the variance of W (m)(k) (see [MOO10, GS15]).
Thus, we have shown that, under (5), Condition 1.2 is equivalent to

(7) lim
m→∞

max
1≤i≤m

Infi
(

f
(m)
k

)

= 0 for 1 ≤ k ≤ d.

For 1 ≤ k ≤ d and 1 ≤ r ≤ pk − 1, we define the contraction kernel f
(m)
k ⋆r f

(m)
k : [m]2pk−2r → R by

f
(m)
k ⋆r f

(m)
k (i1, . . . , ipk−r, j1, . . . , jpk−r)

:=

m
∑

l1,...,lr=1

f
(m)
k (i1, . . . , ipk−r, l1, . . . , lr)f

(m)
k (j1, . . . , jpk−r, l1, . . . , lr) .

Consider the following condition.

condition 1.7. For all 1 ≤ k ≤ d and all 1 ≤ r ≤ pk − 1 it holds that limm→∞‖f (m)
k ⋆r f

(m)
k ‖2 = 0.

Here, ‖f (m)
k ⋆r f

(m)
k ‖2 denotes the L2-norm of the contraction kernel f

(m)
k ⋆r f

(m)
k with respect to the

(2pk − 2r)-fold product of the counting measure on [m], i.e. with respect to the counting measure on
[m]2pk−2r.

Proposition 1.8. Suppose that (5) and Condition 1.7 hold and that pk ≥ 2 for all 1, . . . , d. Then,
Conditions 1.2 and 1.3 are satisfied as well.

Proof. We have already shown that Condition 1.2 holds if and only if (7) holds. Relation (7) however
holds true by virtue of Condition 1.7 and display (1.9) in [NPR10a]. That Condition 1.3 holds under
Condition 1.7 as well, follows from a combination of [NPR10a, Proposition 1.6] and the estimate (1.13)
in [NPR10a]. �

Note further that the functions σ2m,k(⌊nms⌋) from Condition 1.1 are in this situation more explicitly
given by

σ2m,k(⌊nms⌋) =
∑

J∈Dpk
(⌊nms⌋)

a
(m)
J (k)2 = pk!

⌊nms⌋
∑

i1,...,ipk=1

f
(m)
k (i1, . . . , ipk)

2 =: Sf
(m)
k (s) .(8)

Theorem 1.9. Suppose that the sequence X of independent, mean zero and unit variance random

variables satisfies (5). Moreover, assume that the sequences (Sf
(m)
k )m∈N, 1 ≤ k ≤ d, defined in (8),

satisfy Condition 1.1, that Condition 1.7 holds and that pk ≥ 2 for all k = 1, . . . , d. Then, the
sequence (W(m))m∈N of processes, defined through (2) and (6), converges in distribution with respect
to the Skorohod topology to the continuous, centered Gaussian process Z = (Z(1), . . . ,Z(d))T with
independent components, which is defined via (3).

Proof. This follows from Theorem 1.4 and Proposition 1.8. �

The proof of Theorem 1.9 (via the implicit use of Proposition 1.8) strongly relies on the techniques
developed in [NPR10a]. As anticipated, we will now prove a functional version of the universality
results from [NPR10a]. For completeness, we will also include the discussion of universality of Poisson
homogeneous sums, as provided by [PZ14,DVZ18].

Theorem 1.10 (Functional universality of homogeneous sums). With the above notation and defini-
tions, consider the following assumptions:

(A1) There are functions vk : [0, 1] → R such that limm→∞(Sf
(m)
k ) = vk pointwise, 1 ≤ k ≤ d.

(A2,X) As m→ ∞, (Qp1(m, f
(m)
1 ,X), . . . , Qpd(m, f

(m)
d ,X))T converges in distribution to a d-dimensional

standard normal vector.
(A3,X) The sequences Qpk(m, f

(m)
k ,X)m∈N, 1 ≤ k ≤ d, satisfy Condition 1.3.

(A4,X) The above defined sequence (W(m)(1), . . . ,W(m)(d))T , m ∈ N, of processes based on X, con-
verges in distribution with respect to the Skorohod topology to a continuous centered Gaussian
process Z = (Z(1), . . . ,Z(d))T with independent components, whose covariance function is given
by (3).

(A5) Condition 1.7 is satisfied.
(A6) One has inf i∈N λi > 0.
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Assume that Assumption (A1) holds and pk ≥ 2 for all k = 1, . . . , d. Then, the following implications
are in order:

(A3,P) ⇒ (A2,G) ⇔ (A3,G) ⇔ (A4,G) ⇔ (A5)(9)

⇒ ∀X satisfying (5) :
(

(A2,X) ∧ (A3,X) ∧ (A4,X)
)

.

If, additionally to (A1), also (A6) holds and pk ≥ 2 for all k = 1, . . . , d, then we have in fact that

(A3,P) ⇔ (A2,G) ⇔ (A3,G) ⇔ (A4,G) ⇔ (A5)(10)

⇒ ∀X satisfying (5) :
(

(A2,X) ∧ (A3,X) ∧ (A4,X)
)

.

Proof. Suppose first that (A1) holds. That (A2,G), (A3,G) and (A5) are all equivalent is a consequence
of [NPR10a, Proposition 1.6] (even without assuming (A1)). Of course, (A4,G) implies (A2,G). By
Theorem 1.9 applied to G, under (A1) we have that (A5) implies (A4,G), since G obviously satisfies
(5). Moreover, again by Theorem 1.9 and by Proposition 1.8, if the sequence X satisfies (5) and if (A5)
holds, then (since we have assumed (A1)), we can conclude that (A3,X) and (A4,X) hold, immediately
implying (A2,X) as well. Finally, [DVZ18, Theorem 1.11] ensures that (A3,P) implies (A2,G).

Suppose now that both (A1) and (A6) hold. Then, [DVZ18, Theorem 1.11] guarantees that (A2,G)
also implies (A3,P). �

Remark 1.11 (Removing condition (A1)). If Condition (A1) is removed, then the conclusions of
Theorem 1.10 continue to hold, provided condition (A4,X) is replaced by

(A′
4,X) The collection of distributions of the above defined sequence (W(m)(1), . . . ,W(m)(d))T , m ∈ N,

of processes based on X, is relatively compact with respect to the Skorohod topology, and
every converging subsequence admits as a limit a continuous centered Gaussian process with
independent components.

The proof of this fact follows the same lines as the proof of Theorem 1.5 (see Section 3.3); the details
are left to the reader.

example 1.12 (Fractional products). For every integer p ≥ 3 we will now demonstrate the existence
of a sequence of symmetric kernels f (m) : {1, ...,m}p → R, vanishing on diagonals and such that

Conditions 1.7 and (A1) in Theorem 1.10 (for d = 1) are satisfied, with v1(s) = v(s) = sp/a, for some

integer 2 ≤ a ≤ p − 1. The definition of f (m) is based on a slight variation of the construction of
fractional cartesian products, as described in [Ble01, Chapter XIII], as well as in [BJ04,NPR10b]. Fix
a, p as above, and consider an injective mapping ϕ : Na 7→ N with the properties that, for all k ≥ 1,
(a) ϕ([k]a) ⊂ [ka] , and (b) ϕ([k + 1]a)\ϕ([k]a) ⊂ [(k + 1)a]\[ka]. Such a mapping is easily defined
by recursion on k. Observe in particular that Property (a) implies that, for all N ≥ 1, the image of

the restriction of ϕ to [⌊N1/a⌋]a is contained in [N ]. Consider in addition a collection {S1, ..., Sp} of
non-empty distinct subsets of [p], satisfying the properties that (i) |Si| = a, and (ii) each index i ∈ [p]
appears in exactly a of the sets Si (yielding in particular [p] = ∪iSi). For every i and every vector
t = (t1, ..., tp), we set πSit = (tk : k ∈ Si), where the indices belonging to Si are implicitly listed in
increasing order. Our aim is to use the mapping ϕ and the sets Si in order to define a sparse subset Fm

of [m]p for every integer m > pa (this last relation is required in order to ensure that [⌊m1/a⌋] contains
at least p elements): the nature of the sparsity of Fm will be encoded by the ratio p/a, corresponding
to its fractional dimension [Ble01,BJ04]. For every m ≥ 1 we start by setting

F 0
m :=

{

k = (k1, ..., kp) : k = (ϕ(πS1t), ..., ϕ(πSpt)), for some t ∈ ∆p

⌊m1/a⌋

}

⊂ [m]p.

where, the symbol ∆p
N indicates the class of all vectors (t1, ..., tp) such that 1 ≤ t1 < · · · < tp ≤ N ;

when m ≤ pa, F 0
m can be empty. The injectivity of ϕ readily implies that, when m > pa, the entries of

any k = (k1, ..., kp) ∈ F 0
m are pairwise distinct, and also that, if k 6= k′ belong to Fm

0 , then k cannot
be obtained from k′ via a permutation of its entries. We eventually set

Fm := sym(F 0
m) ⊂ [m]p, m ≥ 1,

that is, Fm is the class of those (k1, ..., kp) such that (kσ(1), ..., kσ(p)) ∈ F 0
m for some permutation σ.

Immediate combinatorial considerations imply that there exists a finite constant b > 0 such that, as

8            
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N → ∞, |FN | ∼ b ·Np/a. For m > pa, we define

f (m)(i1, ..., ip) :=
1

(p!|Fm|)1/21Fm(i1, ..., ip), (i1, ...ip) ∈ [m]p.

The computations in [NPR10b, Section 6.2 and Section 6.3] readily imply that f (m) verifies Condition
1.7. Moreover, since

(11) |Fm ∩ [⌊tm⌋]p| ∼ |F⌊tm⌋| ∼ b · tp/amp/a,

we deduce that Assumption (A1) in Theorem 1.10 is satisfied with v(t) = tp/a. Using the chain of
implications (9), we infer that, given a sequence X of centred unit variance random variables verifying

(5), the corresponding empirical process W (m), defined via (1), converges in distribution to {Btp/a :
t ∈ [0, 1]}, where B is a standard Brownian motion. Selecting pairwise distinct integers p1, ..., pd yields
examples of d-dimensional sequences verifying Conditions 1.7 and (A1) in Theorem 1.10. For the sake
of completeness, a proof of (11) is sketched in Section 3.4.

Remark 1.13. In the finite-dimensional setting considered in [NPR10a] (see, in particular Theorem
1.2 therein), universality of Gaussian homogeneous sums is established under the weaker condition that
supi∈N E|Xi|3 < ∞ (of course without implying (A3,X), in this case). This is not possible following
our method of proof in the functional situation, since it is based on Theorem 1.4, which is a genuine
fourth moment theorem. On the contrary, the proofs in [NPR10a] rely on a combination of Malliavin
calculus on Gaussian spaces and an invariance principle for multilinear forms, proved in [MOO10] via
an elaboration of the Lindeberg swapping trick. Since this invariance principle only requires finite
third moments, it is possible to dispense with fourth moment conditions on X in that framework. See
also [CSZ17, Theorem 4.2].

Remark 1.14. Proposition 1.8 and Theorems 1.9 and 1.10 all require that pk ≥ 2 for all k = 1, . . . , d.
This is because display (1.9) in [NPR10a] used in their proofs relies on this assumption. Relation (7),

however, still implies Condition 1.2, even if p1 = 1. In this case, writing a
(m)
i (1) for a

(m)
{i} (1), we have

Inf i
(

f
(m)
1

)

= a
(m)
i (1)2. Moreover, a straightforward computation shows that, for p1 = 1, item a) below

implies Condition 1.3. Therefore, by part b) of Remark 1.6, if p1 = 1 and (5) and all of the following
hold:

a) lim
m→∞

max
1≤i≤m

a
(m)
i (1)2 = 0;

b) lim
m→∞

∑⌊nms⌋
i=1 a

(m)
i (1)2 = v1(s) for some v1 : [0, 1] → R;

c) the assumptions of Theorem 1.9 are satisfied for the (d − 1)-dimensional sequence of processes
(

Qp2(m, f
(m)
2 ,X), . . . , Qpd(m, f

(m)
d ,X)

)

m∈N
substituted in place of (Wm)m∈N,

then the whole d-dimensional sequence
(

Qp1(m, f
(m)
1 ,X), . . . , Qpd(m, f

(m)
d ,X)

)

m∈N
converges in dis-

tribution with respect to the Skorohod topology to the continuous, centered Gaussian process Z =
(Z(1), . . . ,Z(d))T with independent components, which is defined via (3).

2. Degenerate U-statistics and Hoeffding decompositions

In this section we prove and collect useful auxiliary results about degenerate U -statistics based on an
independent sample. For reasons of simplicity, we abandon the setup of triangular arrays in this section.
Thus, we let (Ω,F ,P) be a generic probability space, on which independent random elements X1,X2 . . .
are defined that have values in the respective measurable spaces (E1, E1), (E2, E2), . . . . Moreover, for
n ∈ N fixed we let [n] := {1, . . . , n} and, for J ⊆ [n], we define FJ := σ(Xi, i ∈ J). Note that, whenever

f :
n
∏

j=1

Ej → R is
n
⊗

j=1

Ej − B(R) - measurable

such that

Y := f(X1, . . . ,Xn) ∈ L1(P) ,

9            
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then there is a P-a.s. unique representation of the form

(12) Y =
∑

M⊆[n]

YM =

n
∑

s=0

(

∑

M⊆[n]:
|M |=s

YM

)

where, for each M ⊆ [n], the summand YM is measurable with respect to FM and, furthermore,

E[YM | FJ ] = 0 holds, whenever M * J .

Note that, in particular, there are measurable functions

fM :
∏

j∈M

Ej → R , M ⊆ [n] ,

such that YM = fM(Xj , j ∈M). The representation (12) is the celebrated Hoeffding decomposition
of Y . The following well-known explicit formula for the Hoeffding components YM , M ⊆ [n], is
easily deduced from the exclusion-inclusion principle:

(13) YM =
∑

J⊆M

(−1)|M |−|J |E[Y | FJ ] ,

yielding in particular that Y∅ = E[Y ] a.s.-P. Equation (13) directly implies the linearity of the Ho-
effding decomposition. It should also be noted that, whenever Y ∈ Lp(P) for some p ∈ [1,∞], then
automatically YM ∈ Lp(P) for all M ⊆ [n]. Moreover, if Y ∈ L2(P), then its Hoeffding components
are mutually orthogonal in L2(P).

For p ∈ [n], we call Y a (completely) degenerate U-statistic of order p, based on X1, . . . ,Xn,
if its Hoeffding decomposition (12) is of the form

(14) Y =
∑

J∈Dp(n)

YJ ,

i.e. if YM = 0 P-a.s. whenever |M | 6= p. Here and in what follows we write

Dp(n) := {J ⊆ [n] : |J | = p}
for the collection of all

(n
p

)

different p-subsets of [n].

Now suppose that we are given two positive integers m and n, as well as p ∈ [n] and q ∈ [m] and
consider two degenerate U -statistics V based on X1, . . . ,Xm and W based on X1, . . . ,Xn of respective
orders q and p. Hence, we have the respective Hoeffding decompositions

V =
∑

J∈Dq(m)

VJ and W =
∑

J∈Dp(n)

WJ .

We further assume that E|W |4,E|V |4 <∞. Moreover, for l ∈ [m] and k ∈ [n] let us define

̺2l,V := max
1≤j≤l

∑

J∈Dq(l):
j∈J

E[V 2
J ] and ̺2k,W := max

1≤j≤k

∑

J∈Dp(k):
j∈J

E[W 2
J ]

as well as

σ2l,V :=
∑

J∈Dq(l)

E[V 2
J ] and σ2k,W :=

∑

J∈Dp(k)

E[W 2
J ] .

In particular, we have σ2m,V = E[V 2] and σ2n,W = E[W 2] as well as the inequalities

(15) σ2k,W ≤ σ2n,W and ̺2k,W ≤ ̺2n,W

and analogous ones for V in place of W . Note that VW is an integrable function of X1, . . . ,Xn∨m.
Hence, it follows from (13) and the assumptions on V and W that it has a Hoeffding decomposition
of the form

V W =
∑

M⊆[n∨m]:
|M |≤p+q

UM (V,W ) .
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For simplicity, we write UM (W ) for UM (W,W ) and UM (V ) for UM (V, V ) so that

V 2 =
∑

M⊆[m]:
|M |≤2q

UM (V ) and W 2 =
∑

N⊆[n]:
|N |≤2p

UN (W )

are the Hoeffding decompositions of V 2 and W 2, respectively. We will use the conventions UM (V ) = 0
and UN (W ) = 0 implicitly, whenever M 6⊆ [m] and N 6⊆ [n], respectively. Let us define the collection
S0 := S0(m,n, q, p) of all quadruples (I, J,K,L) ∈ Dq(m)2 ×Dp(n)

2 such that

(i) I ∩K = J ∩ L = ∅,
(ii) ∅ 6= I ∩ J = I \ (I ∩ L) 6= I,
(iii) ∅ 6= J ∩ I = J \ (J ∩K) 6= J ,
(iv) ∅ 6= K ∩ J = K \ (L ∩K) 6= K and
(v) ∅ 6= L ∩ I = L \ (L ∩K) 6= L.

Similarly, we denote by S1 := S1(m,n, p) the collection of all quadruples (I, J,K,L) ∈ Dp(m ∧ n)4

such that

(i) I ∩ J = K ∩ L = ∅,
(ii) ∅ 6= I ∩K = I \ (I ∩ L) 6= I,
(iii) ∅ 6= J ∩K = J \ (J ∩ L) 6= J ,
(iv) ∅ 6= K ∩ J = K \ (I ∩K) 6= K and
(v) ∅ 6= L ∩ I = L \ (L ∩ J) 6= L.

Moreover, we define the quantities

S0(V,W ) =
∑

(I,J,K,L)∈S0

E
[

VIVJWKWL

]

and, if p = q ,

S1(V,W ) =
∑

(I,J,K,L)∈S1

E
[

VIVJWKWL

]

.

In particular, we have S0(W,W ) = S1(W,W ). More generally, if p = q, m ≤ n and VJ = WJ for all
J ∈ Dp(m), then S1(V,W ) = S0(V, V ).

Remark 2.1. The quadruples (I, J,K,L) ∈ S0 play a crucial role in all proofs of de Jong type CLTs
via the quantities S0(V,W ) (see [dJ90,DP17]). Note that these quadruples are all bifold, meaning that
each element i ∈ I ∪ J ∪K ∪ L lies in exactly two of the sets I, J,K,L. In particular, there can be
no free index, which is an element that appears in only one of the sets I, J,K,L. Moreover, no two of
the sets I, J,K,L can be the same and each of these sets is disjoint to precisely one other among these
sets. An analogous remark applies to the quadruples (I, J,K,L) ∈ S1. Note further that the existence
of a free index for a quadruple (I, J,K,L) necessarily implies E[VIVJWKWL] = 0 by degeneracy. This
fact will be tacitly exploited throughout the following.

Lemma 2.2. There exists a finite constant Cp,q, only depending on p and q, such that

S0(V,W ) ≥ −Cp,q max
(

σ2m,V ̺
2
n,W , σ

2
n,W̺

2
m,V

)

.

Proof. This follows from a straightforward generalization of Propositions 3.5 and 3.6 of [DP17] to the
situation of possibly different m and n and possibly non-unit variances . We omit the details here. �

Lemma 2.3. We have that

S0(W,W ) ≤ E[W 4]− 3σ4n,W + 2pσ2n,W̺
2
n,W .

Proof. This follows from the first inequality in equation (2.13) of [DP17] by noticing that the left hand
side of this inequality is nonnegative and by taking into account that Var(W ) = σ2n,W is not necessarily
equal to 1, here. �

The next two lemmas will be of vital importance for proving convergence of finite dimensional
distributions. Lemma 2.5 is an extension of results and techniques provided in [DP17, Section 3],
whereas Lemma 2.4 is taken directly from there.
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Lemma 2.4 (Lemma 2.10 of [DP17]). There is a finite constant κp only depending on p such that
∑

M⊆[n]:
1≤|M |≤2p−1

Var
(

UM (W )
)

≤ E[W 4]− 3σ4n,W + κpσ
2
n,W̺

2
n,W .

Lemma 2.5. (i) If p = q, then
∑

M⊆[n∨m]:
|M |≤2p−1

Var
(

UM (V,W )
)

≤ pmin
(

̺2n,Wσ
2
m,V , ̺

2
m,V σ

2
n,W

)

+ p̺m∧n,V ̺m∧n,Wσm∧n,V σm∧n,W

+

(

∑

M⊆[m∧n]:
1≤|M |≤2p−1

Var
(

UM (V )
)

)1/2

·
(

∑

M⊆[m∧n]:
1≤|M |≤2p−1

Var
(

UM (W )
)

)1/2

+ S1(V,W )− S0(V,W ) .

(ii) If p 6= q, then
∑

M⊆[n∨m]:
|M |≤p+q−1

Var
(

UM (V,W )
)

≤ min
(

q̺2n,Wσ
2
m,V , p̺

2
m,V σ

2
n,W

)

− S0(V,W )

+

(

∑

M⊆[m∧n]:
1≤|M |≤2(p∨q)−1

Var
(

UM (V )
)

)1/2

·
(

∑

M⊆[m∧n]:
1≤|M |≤2(p∨q)−1

Var
(

UM (W )
)

)1/2

.

Proof. We begin with some computations that are valid in all different cases.
∑

M⊆[n∨m]:
|M |≤p+q−1

Var
(

UM (V,W )
)

= Var(VW )−
∑

M⊆[n∨m]:
|M |=p+q

Var
(

UM (V,W )
)

= Var(V W )−
∑

M⊆[n∨m]:
|M |=p+q

Var
(

∑

J∈Dq(m),K∈Dp(n):
J∪K=M

VJWK

)

= Var(V W )−
∑

M⊆[n∨m]:
|M |=p+q

∑

I,J∈Dq(m),
K,L∈Dp(n):

I∩K=J∩L=∅,
I∪K=M=J∪L

E
[

VIVJWKWL

]

= Var(V W )−
∑

I,J∈Dq(m),
K,L∈Dp(n):
I∩K=J∩L=∅

E
[

VIVJWKWL

]

= Var(V W )−
∑

I∈Dq(m),
K∈Dp(n):
I∩K=∅

E
[

V 2
I

]

E
[

W 2
K

]

−
∑

I,J∈Dq(m),
K,L∈Dp(n):

I∩K=J∩L=∅,
∅6=I∩J=I\(I∩L)6=I,
∅6=J∩I=J\(J∩K)6=J

E
[

VIVJWKWL

]

− δp,q
∑

I,K∈Dq(m∧n):
I∩K=∅

E
[

VIWI

]

E
[

VKWK

]

Noting that

Var(V W ) = Cov(V 2,W 2) + E[V 2]E[W 2]− E[VW ]2

and also, for reasons of degeneracy, that
∑

I,J∈Dq(m),
K,L∈Dp(n):

I∩K=J∩L=∅,
∅6=I∩J=I\(I∩L)6=I,
∅6=J∩I=J\(J∩K)6=J

E
[

VIVJWKWL

]

= S0(V,W )
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we hence obtain that
∑

M⊆[n∨m]:
|M |≤p+q−1

Var
(

UM (V,W )
)

= Cov(V 2,W 2) + E[V 2]E[W 2]− E[VW ]2

−
∑

I∈Dq(m),
K∈Dp(n):
I∩K=∅

E
[

V 2
I

]

E
[

W 2
K

]

− S0(V,W )− δp,q
∑

I∈Dq(m),
K∈Dp(n):
I∩K=∅

E
[

VIWI

]

E
[

VKWK

]

.(16)

We now deal with the individual terms appearing on the right hand side of (16).
∑

I∈Dq(m),
K∈Dp(n):
I∩K=∅

E
[

V 2
I

]

E
[

W 2
K

]

=
∑

I∈Dq(m),
K∈Dp(n)

E
[

V 2
I

]

E
[

W 2
K

]

−
∑

I∈Dq(m),
K∈Dp(n):
I∩K 6=∅

E
[

V 2
I

]

E
[

W 2
K

]

= E[V 2]E[W 2]−
∑

I∈Dq(m),
K∈Dp(n):
I∩K 6=∅

E
[

V 2
I

]

E
[

W 2
K

]

.

Hence,
∑

M⊆[n∨m]:
|M |≤p+q−1

Var
(

UM (V,W )
)

= Cov(V 2,W 2)− E[V W ]2

+
∑

I∈Dq(m),
K∈Dp(n):
I∩K 6=∅

E
[

V 2
I

]

E
[

W 2
K

]

− S0(V,W )− δp,q
∑

I,K∈Dq(m∧n):
I∩K=∅

E
[

VIWI

]

E
[

VKWK

]

.

Moreover, if p = q then
∑

I,K∈Dp(m∧n):
I∩K=∅

E
[

VIWI

]

E
[

VKWK

]

=

(

∑

I∈Dp(m∧n)

E
[

VIWI

]

)2

−
∑

I,K∈Dp(m∧n):
I∩K 6=∅

E
[

VIWI

]

E
[

VKWK

]

= E[VW ]2 −
∑

I,K∈Dp(m∧n):
I∩K 6=∅

E
[

VIWI

]

E
[

VKWK

]

.

Hence, using that E[VW ] = 0 if p 6= q, we obtain that
∑

M⊆[n∨m]:
|M |≤p+q−1

Var
(

UM (V,W )
)

= Cov(V 2,W 2)− 2δp,qE[VW ]2

+
∑

I∈Dq(m),
K∈Dp(n):
I∩K 6=∅

E
[

V 2
I

]

E
[

W 2
K

]

− S0(V,W ) + δp,q
∑

I,K∈Dp(m∧n):
I∩K 6=∅

E
[

VIWI

]

E
[

VKWK

]

.(17)

In particular, if p 6= q, then
∑

M⊆[n∨m]:
|M |≤p+q−1

Var
(

UM (V,W )
)

= Cov(V 2,W 2) +
∑

I∈Dq(m),
K∈Dp(n):
I∩K 6=∅

E
[

V 2
I

]

E
[

W 2
K

]

− S0(V,W ) .(18)

Now,
∑

I∈Dq(m),
K∈Dp(n):
I∩K 6=∅

E
[

V 2
I

]

E
[

W 2
K

]

=
∑

I∈Dq(m)

E[V 2
I ]
∑

i∈I

∑

K∈Dp(n):
max(K∩I)=i

E[W 2
K ]
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≤ q̺2n,W
∑

I∈Dq(m)

E[V 2
I ] = q̺2n,WE[V ]2 = q̺2n,Wσ

2
m,V ,

and, analogously,
∑

I∈Dq(m),
K∈Dp(n):
I∩K 6=∅

E
[

V 2
I

]

E
[

W 2
K

]

≤ p̺2m,V E[W ]2 = p̺2m,V σ
2
n,W .

Hence,
∑

I∈Dq(m),
K∈Dp(n):
I∩K 6=∅

E
[

V 2
I

]

E
[

W 2
K

]

≤ min
(

q̺2n,Wσ
2
m,V , p̺

2
m,V σ

2
n,W

)

.(19)

We have
∣

∣

∣

∑

I,K∈Dp(m∧n):
I∩K 6=∅

E
[

VIWI

]

E
[

VKWK

]

∣

∣

∣
≤

∑

I∈Dp(m∧n)

∣

∣E
[

VIWI

]∣

∣

∑

K∈Dp(m∧n):
I∩K 6=∅

∣

∣E
[

VKWK

]∣

∣

=
∑

I∈Dp(m∧n)

∣

∣E
[

VIWI

]
∣

∣

∑

i∈I

∑

K∈Dp(m∧n):
max(I∩K)=i

∣

∣E
[

VKWK

]
∣

∣

≤
∑

I∈Dp(m∧n)

∣

∣E
[

VIWI

]∣

∣

∑

i∈I

(

∑

K∈Dp(m∧n):
max(I∩K)=i

E[V 2
K ]
)1/2

·
(

∑

K∈Dp(m∧n):
max(I∩K)=i

E[W 2
K ]
)1/2

≤ p̺m∧n,V ̺m∧n,W

∑

I∈Dp(m∧n)

∣

∣E
[

VIWI

]
∣

∣

≤ p̺m∧n,V ̺m∧n,W

(

∑

I∈Dp(m∧n)

E[V 2
I ]
)1/2

·
(

∑

I∈Dp(m∧n)

E[W 2
I ]
)1/2

= p̺m∧n,V ̺m∧n,Wσm∧n,V σm∧n,W .

Hence, we obtain the inequalities

−p̺m∧n,V ̺m∧n,Wσm∧n,V σm∧n,W ≤
∑

I∈Dp(m),
K∈Dp(n):
I∩K 6=∅

E
[

VIWI

]

E
[

VKWK

]

≤ p̺m∧n,V ̺m∧n,Wσm∧n,V σm∧n,W(20)

We estimate the term Cov(V 2,W 2) seperately according to whether p = q or not. First assume that
p = q. Then, due to the orthogonality of Hoeffding components we have

Cov(V 2,W 2) =
∑

M⊆[m],
N⊆[n]:

1≤|M |,|N |≤2p

E
[

UM (V )UN (W )
]

=
∑

M⊆[m∧n]:
1≤|M |≤2p

E
[

UM (V )UM (W )
]

=
∑

M⊆[m∧n]:
1≤|M |≤2p−1

E
[

UM (V )UM (W )
]

+
∑

M⊆[m∧n]:
|M |=2p

E
[

UM (V )UM (W )
]

=: T1 + T2 .

Using the Cauchy-Schwarz inequality twice we can estimate

|T1| ≤
∑

M⊆[m∧n]:
1≤|M |≤2p−1

√

Var
(

UM (V )
)

√

Var
(

UM (W )
)
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≤
(

∑

M⊆[m∧n]:
1≤|M |≤2p−1

Var
(

UM (V )
)

)1/2

·
(

∑

M⊆[m∧n]:
1≤|M |≤2p−1

Var
(

UM (W )
)

)1/2

.

On the other hand, we have

T2 =
∑

M⊆[m∧n]:
|M |=2p

∑

I,J∈Dp(m),
K,L∈Dp(n):

I∪J=K∪L=M

E
[

VIVJWKWL

]

=
∑

I,J∈Dp(m),
K,L∈Dp(n):

I∩J=K∩L=∅,
I∪J=K∪L

E
[

VIVJWKWL

]

=
∑

I,J∈Dp(m),
K,L∈Dp(n):
I∩J=K∩L=∅

E
[

VIVJWKWL

]

= 2
∑

I,J∈Dp(m∧n):
I∩J=∅

E
[

VIWI

]

E
[

VJWJ

]

+
∑

I,J∈Dp(m),
K,L∈Dp(n):

I∩J=K∩L=∅,
∅6=I∩K=I\(I∩L)6=I

E
[

VIVJWKWL

]

= 2
∑

I,J∈Dp(m∧n):
I∩J=∅

E
[

VIWI

]

E
[

VJWJ

]

+ S1(V,W )

= 2E[V W ]2 − 2
∑

I,J∈Dp(m∧n):
I∩J 6=∅

E
[

VIWI

]

E
[

VJWJ

]

+ S1(V,W ) ,

where we have used that, due to degeneracy,

∑

I,J∈Dp(m),
K,L∈Dp(n):

I∩J=K∩L=∅,
∅6=I∩K=I\(I∩L)6=I

E
[

VIVJWKWL

]

=
∑

I,J,K,L∈Dp(m∧n):
I∩J=K∩L=∅,

∅6=I∩K=I\(I∩L)6=I

E
[

VIVJWKWL

]

=
∑

I,J,K,L∈Dp(m∧n):
I∩J=K∩L=∅,

∅6=I∩K=I\(I∩L)6=I,
∅6=J∩L=J\(J∩K)6=J

E
[

VIVJWKWL

]

= S1(V,W ) .

Hence, if p = q then we obtain that

Cov(V 2,W 2) ≤
(

∑

M⊆[m∧n]:
1≤|M |≤2p−1

Var
(

UM (V )
)

)1/2

·
(

∑

M⊆[m∧n]:
1≤|M |≤2p−1

Var
(

UM (W )
)

)1/2

+ 2E[V W ]2 − 2
∑

I,K∈Dp(m∧n):
I∩K 6=∅

E
[

VIWI

]

E
[

VKWK

]

+ S1(V,W ) .(21)

Altogether, in the case p = q, we obtain from (17)-(21) that

∑

M⊆[n∨m]:
|M |≤p+q−1

Var
(

UM (V,W )
)

≤ pmin
(

̺2n,Wσ
2
m,V , ̺

2
m,V σ

2
n,W

)

+ p̺m∧n,V ̺m∧n,Wσm∧n,V σm∧n,W + S1(V,W )− S0(V,W )

+

(

∑

M⊆[m∧n]:
1≤|M |≤2p−1

Var
(

UM (V )
)

)1/2

·
(

∑

M⊆[m∧n]:
1≤|M |≤2p−1

Var
(

UM (W )
)

)1/2

,
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proving part (i). Let us now assume that p 6= q. Let r := p ∧ q < p ∨ q =: s. In this case, clearly,
E[V W ] = 0. Moreover, similarly as before, we have

Cov(V 2,W 2) =
∑

M⊆[m], N⊆[n]:
1≤|M |≤2q,
1≤|N |≤2p

E
[

UM (V )UN (W )
]

=
∑

M⊆[m∧n]:
1≤|M |≤2r

E
[

UM (V )UM (W )
]

=
∑

M⊆[m∧n]:
1≤|M |≤2s−1

E
[

UM (V )UM (W )
]

≤
∑

M⊆[m∧n]:
1≤|M |≤2s−1

√

Var
(

UM (V )
)

√

Var
(

UM (W )
)

≤
(

∑

M⊆[m∧n]:
1≤|M |≤2s−1

Var
(

UM (V )
)

)1/2

·
(

∑

M⊆[m∧n]:
1≤|M |≤2s−1

Var
(

UM (W )
)

)1/2

.(22)

This finishes the proof of (ii). �

Corollary 2.6. In the situation of Lemma 2.5 (i) assume that, additionally, m ≤ n and VJ = WJ

hold for all J ∈ Dp(m). Then, we have
∑

M⊆[n∨m]:
|M |≤2p−1

Var
(

UM (V,W )
)

≤ E[V 4]− 3σ4m,V + 2pσ2m,V ̺
2
m,V +

(

Cp,q + 2p
)

̺2n,Wσ
2
n,W

+

(

E[V 4]− 3σ4m,V + κpσ
2
m,V ̺

2
m,V

)1/2

·
(

E[W 4]− 3σ4n,W + κpσ
2
n,W̺

2
n,W

)1/2

where κp is a finite constant depending only on p.

Proof. Since S1(V,W ) = S0(V, V ) in this case, the result follows immediately from Lemmas 2.5 (i),
2.4, 2.2, 2.3 and (15). �

Corollary 2.7. If, in the situation of Lemma 2.5 (ii), we additionally have p < q, then
∑

M⊆[n∨m]:
|M |≤p+q−1

Var
(

UM (V,W )
)

≤
(

Cp,q + q
)

max
(

σ2m,V ̺
2
n,W , σ

2
n,W̺

2
m,V

)

+
(

E[V 4]− 3σ4m,V + κqσ
2
m,V ̺

2
m,V

)1/2
·
(

E[W 4]− σ4n,W

)1/2
,

where κq is a finite constant depending only on q.

Proof. This follows from Lemma 2.5 (ii), Lemma 2.4 (applied to V ) and from the obvious facts that
∑

M⊆[m∧n]:
1≤|M |≤2(p∨q)−1

Var
(

UM (V )
)

≤
∑

M⊆[m]:
1≤|M |≤2q−1

Var
(

UM (V )
)

,

∑

M⊆[m∧n]:
1≤|M |≤2(p∨q)−1

Var
(

UM (W )
)

≤
∑

M⊆[n]:
1≤|M |≤2p

Var
(

UM (W )
)

= Var(W 2) = E[W 4]− σ4n,W .

�

3. Proofs

In this Section we provide detailed proofs of Theorem 1.4, Theorem 1.5 and relation (11).

3.1. Proof of Theorem 1.4. The proof of Theorem 1.4 will follow the classical two-step procedure
(see [Bil68, Section15]) of establishing convergence of finite dimensional distributions and checking
tightness.
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3.1.1. Convergence of finite dimensional distributions. We fix time points 0 ≤ t1 < t2 < . . . < tl ≤ 1
and, with r := ld, consider the random vector V = V (m) = (V1, . . . , Vr)

T ∈ Rr of degenerate U -
statistics, defined as follows. Given an integer 1 ≤ i ≤ r, write i = al + b with integers 0 ≤ a ≤ d− 1
and 1 ≤ b ≤ l and define

Vi := W
(m)
tb

(a+ 1) .

In other words, we have

V =
(

W
(m)
t1 (1), . . . ,W

(m)
tl

(1),W
(m)
t1 (2), . . . ,W

(m)
tl

(2), . . . ,W
(m)
t1 (d), . . . ,W

(m)
tl

(d)
)T
.

Moreover, for the same i we write nm(i) := ⌊nmtb⌋, σm(i)2 := Var(Vi), qi := pa+1 and

ϕm(i)2 := max
1≤j≤nm

∑

J∈Dpa+1(nm(i)):
j∈J

E
[

W
(m)
J (a+ 1)2

]

.

Then, we have the straightforward inequalities

σm(i)2 ≤ 1 and ϕm(i)2 ≤ ̺2m,a+1 ≤ max
1≤k≤d

̺2m,k .(23)

Let Σm = (s
(m)
i,k )1≤i,k≤r ∈ Rr×r denote the covariance matrix of V . Then, for 1 ≤ i ≤ k ≤ r, such that

(24) i = al + b, k = a′l + b′, where 0 ≤ a ≤ a′ ≤ d− 1 and 1 ≤ b, b′ ≤ l ,

we have

s
(m)
i,k = Em

[

W
(m)
tb

(a+ 1)W
(m)
tb′

(a′ + 1)
]

= δa,a′Em

[

W
(m)
tb

(a+ 1)2
]

= δa,a′σ
2
m(i) .

In particular, the diagonal elements of Σm are given by s
(m)
i,i = σ2m(i), 1 ≤ i ≤ r. Thus, thanks to

Condition 1.1 we have that Σm converges to the covariance matrix Σ = (si,k)1≤i,k≤r, whose elements
are given by

(25) si,k = δa,a′ lim
m→∞

σ2m(i) = δa,a′va+1(tb) ,

if again i and k are as in (24). Finally, we denote by N (m) = (N
(m)
1 , . . . , N

(m)
r )T and N = (N1, . . . , Nr)

T

centered Gaussian vectors on (Ω,F ,P) with covariance matrices Σm and Σ, respectively.
Next we make use of the well-known fact that the collection H3 of all functions h ∈ C3(Rr), each

of whose partial derivative of order ≤ 3 is uniformly bounded, is convergence determining for weak
convergence on R3. Then, by the triangle inequality we have

∣

∣Em[h(V )]− E[h(N)]
∣

∣ ≤
∣

∣Em[h(V )]− E[h(N (m))]
∣

∣+
∣

∣E[h(N (m))]− E[h(N)]
∣

∣ .(26)

Note that the second term on the right hand side of (26) converges to zero as m → ∞, since
limm→∞Σm = Σ.

In order to deal with the first term as well, we apply the following central lemma, which is a slightly
modified version of [DP19, Lemma 4.1 (a)], adapted to the present notation. The main difference is
that in the statement of the result in [DP19], the term ϕm(i)2 has already been replaced with the more
concrete term qi/nm(i), which is its value in the particular case of symmetric U -statistics. The proof
given in [DP19], however, works in the more general present situation as well.

In what follows, for 1 ≤ i, k ≤ r, we let

ViVk =
∑

M⊆[nm(i)∨nm(k)]:
|M |≤qi+qk

UM (i, k)

denote the Hoeffding decomposition of ViVk.

Lemma 3.1. Under the above assumptions, there are constants κqi ∈ (0,∞), only depending on qi,
1 ≤ i ≤ r, such that the following holds: For any h ∈ H3, there are constants C1(h), C2(h) ∈ [0,∞)
such that

∣

∣Em[h(V )]− E[h(N (m))]
∣

∣ ≤ C1(h)

4q1

r
∑

i,k=1

(qi + qk)

(

∑

M⊆[nm(i)∨nm(k)]:
|M |≤qi+qk−1

Varm
(

UM (i, k)
)

)1/2

17            
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+
2C2(h)

√
r

9q1

r
∑

i=1

qiσm(i)

(

∑

M⊆[nm(i)]:
|M |≤2qi−1

Varm
(

UM (i, i)
)

)1/2

+

√
2rC2(h)

9q1

r
∑

i=1

qi
√
κqiσm(i)3ϕm(i) .(27)

We will also rely on the following crucial lemma, which essentially goes back to de Jong’s monograph
[dJ89].

Lemma 3.2. Under Conditions 1.2 and 1.3 and with the notation of this subsection, we have that

lim
m→∞

E[V 4
i ]− 3σ4m(i) = 0

for all 1 ≤ i ≤ r.

Proof. Fix 1 ≤ i ≤ r given as in (24). Then, we have

Vi =
∑

J∈Dpa+1(nm(i))

W
(m)
J (a+ 1) =

∑

J∈Dpa+1(nm)

bJW
(m)
J (a+ 1) ,

where, for J ∈ Dpa+1(nm), we let

bJ =
∏

j∈J

1{1≤j≤nm(i)} .

This ensures that the coefficient sequence (bJ )J∈Dpa+1(nm) is of rank one in de Jong’s terminology

(see [dJ89, Subsection 4.1] and Remark 3.3 (b), below) and we obviously have 0 ≤ 1{1≤j≤nm(i)} ≤ 1

for all 1 ≤ j ≤ nm. Hence, by [dJ89, Proposition 4.1.2.] we have limm→∞ E[V 4
i ]− 3σ4m(i) = 0. �

Remark 3.3. (a) We mention that the statement of [dJ89, Proposition 4.1.2.] actually only implies
the statement limm→∞ E[V 4

i ]− 3σ4m(i) = 0 of Lemma 3.2 under the stronger condition that Dk,m

is bounded in m for each 1 ≤ k ≤ d. However, as can be seen from the proof of [dJ89, Proposition
4.1.2.], the result remains true under the more relaxed Condition 1.2, since the quantities τ ′ and
(τ ′)∗ appearing there still converge to zero, thanks to the inequality

(τ ′)∗ ≤ Dmτ
′ . Dm̺

2
m ,

the second part of which holds true by virtue of [DP17, Proposition 2.9]. The first (and easy) part
of it is proved in [dJ89].

(b) In [dJ89] the following definition of a rank one coefficient sequence (aJ )J∈Dp(nm) is given: One has
|aJ | ≤ 1 for all J ∈ Dp(nm) and there is a sequence (cj)1≤j≤nm such that aJ =

∏

j∈J cj for all

J ∈ Dp(nm).

In order to prove that the first term on the right hand side of (26) converges to zero, we will make
sure that the right hand side of (27) goes to zero as m→ ∞. By (23) and the assumption of Theorem
1.4, for the last term we have

(28) lim
m→∞

√
2rC2(h)

9q1

r
∑

i=1

qi
√
κqiσm(i)3ϕm(i) = 0.

In order to deal with the first two terms, we invoke Corollaries 2.6 and 2.7. Thus, suppose again
that 1 ≤ i ≤ k ≤ r are given by (24).

Case 1: a < a′: In this case, we have qi = pa+1 < pa′+1 = qk and, hence, we are in the situation of
Corollary 2.7. Thus, we have that

∑

M⊆[nm(i)∨nm(k)]:
|M |≤qi+qk−1

Varm
(

UM (i, k)
)

≤
(

Cqi,qk + qk
)

max
(

σ2m(i)ϕ2
m(k), σ2m(k)ϕ2

m(i)
)

+
(

E[V 4
k ]− 3σ4m(k) + κqkσ

2
m(k)ϕ2

m(k)
)1/2

·
(

E[V 4
i ]− σ4m(i)

)1/2

≤
(

Cqi,qk + qk
)

max
1≤u≤d

̺2m,u
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+
(

E[V 4
k ]− 3σ4m(k) + κqk max

1≤u≤d
̺2m,u

)1/2
·
(

E[V 4
i ]
)1/2

,(29)

where we have applied (23) for the second inequality and used κqk to denote a finite constant depending
only on qk. By Lemma 3.2 and Condition 1.2, the right hand side of (29) thus converges to zero as
m → ∞.

Case 2: a = a′: In this case, we have qi = pa+1 = pa′+1 = qk and, hence, we are in the situation of
Corollary 2.6. Thus, we have that

∑

M⊆[nm(i)∨nm(k)]:
|M |≤qi+qk−1

Varm
(

UM (i, k)
)

=
∑

M⊆[nm(k)]:
|M |≤qi+qk−1

Varm
(

UM (i, k)
)

≤ E[V 4
i ]− 3σ4m(i) + 2qiσ

2
m(i)ϕ2

m(i) +
(

Cqi,qi + 2qi
)

ϕ2
m(k)σ2m(k)

+

(

E[V 4
i ]− 3σ4m(i) + κqiσ

2
m(i)ϕ2

m(i)

)1/2

·
(

E[V 4
k ]− 3σ4m(k) + κqkσ

2
m(k)ϕ2

m(k)

)1/2

≤ E[V 4
i ]− 3σ4m(i) + 2qi max

1≤u≤d
̺2m,u +

(

Cqi,qi + 2qi
)

max
1≤u≤d

̺2m,u

+

(

E[V 4
i ]− 3σ4m(i) + κqi max

1≤u≤d
̺2m,u

)1/2

·
(

E[V 4
k ]− 3σ4m(k) + κqk max

1≤u≤d
̺2m,u

)1/2

,(30)

where we have again applied (23) for the second inequality and used κqk and κqi to denote finite
constants depending only on qk and qi, respectively. Again, by Lemma 3.2 and Condition 1.2, the right
hand side of (30) thus converges to zero as m→ ∞.

From (27),(23), (28), (29) and (30) we thus conclude that

lim
m→∞

∣

∣Em[h(V )]− E[h(N (m))]
∣

∣ = 0

and, thus, by (26) that

lim
m→∞

∣

∣Em[h(V )]− E[h(N)]
∣

∣ = 0

for each h ∈ H3. Note further that, by the definition of Σ, we have the distributional identity

N
D
=
(

Zt1(1), . . . ,Ztl(1), . . . ,Zt1(d), . . . ,Ztl(d)
)T
.

Hence, we have established the convergence of the finite dimensional distributions of W to those of Z.

3.1.2. Conclusion of the argument. We will now finish the proof of Theorem 1.4 by proving tightness
of the sequence (W(m))m∈N in D[0, 1]. This will be done by verifying that

(31) ω
(

W(m), δ
) Pm−→ 0 , as m→ ∞ ,

where, for x ∈ D[0, 1] and δ > 0,

ω(x, δ) := sup{|x(t) − x(s)| : s, t ∈ [0, 1] , |t − s| < δ}

denotes the modulus of continuity of x. Since W
(m)
0 = 0 for all m ∈ N and by the finite-dimensional

distribution convergence established in Subsection 3.1.1, this will imply Theorem 1.4 by the Corollary
to [Bil99, Theorem 13.4]. Let us introduce the following notation: Fix 1 ≤ l ≤ d that we will
from now on suppress from the notation whenever convenient, and, for m ∈ N and 0 ≤ j ≤ nm,

define ∆
(m)
j := W

(m)
j

nm

(l) − W
(m)
j−1
nm

(l), F (m)
j := σ(X

(m)
1 , . . . ,X

(m)
j ) and S

(m)
j :=

∑j
i=1∆

(m)
i . Then,

by degeneracy, for each m ∈ N, (S
(m)
j )1≤j≤nm is an (F (m)

j )0≤j≤nm- martingale. Note that with this

notation at hand, we have W
(m)
t = S

(m)
⌊nmt⌋ for each t ∈ [0, 1] and [Bil68, Theorem 8.4] and the Corollary

to [Bil99, Theorem 13.4] together imply that (31) holds, if, for each k ∈ N we have

(32) lim
λ→∞

lim sup
m→∞

λ2Pm

(

max
0≤i≤nm−k

∣

∣S
(m)
k+i − S

(m)
k

∣

∣ ≥ λ
)

= 0 .

Note that the additional
√
n appearing in the statement of [Bil68, Theorem 8.4] does not appear here,

since our processes are already normalized at time t = 1. Let us thus fix k ∈ N. Then, the sequence
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(S
(m)
k+i − S

(m)
k )0≤i≤nm−k is an (F (m)

k+i )0≤i≤nm−k- martingale. Thus, by first applying Markov’s and then

Doob’s L4-inequality, we have that

λ2Pm

(

max
0≤i≤nm−k

∣

∣S
(m)
k+i − S

(m)
k

∣

∣ ≥ λ
)

≤ Em

[(

max
0≤i≤nm−k

∣

∣S
(m)
k+i − S

(m)
k

∣

∣

)2
1
{max0≤i≤nm−k |S

(m)
k+i−S

(m)
k |≥λ}

]

≤ 1

λ2
Em

[(

max
0≤i≤nm−k

∣

∣S
(m)
k+i − S

(m)
k

∣

∣

)4]

≤
(4

3

)4 1

λ2
Em

[

∣

∣S(m)
nm

− S
(m)
k

∣

∣

4
]

≤
(4

3

)4 8

λ2

(

Em

∣

∣S(m)
nm

∣

∣

4
+ Em

∣

∣S
(m)
k

∣

∣

4
)

.(33)

Now, firstly, by Condition 1.3, we have

(34) lim
m→∞

Em

∣

∣S(m)
nm

∣

∣

4
= lim

m→∞
Em

[

W (m)(l)4] = 3 .

Secondly, using the inequality |∑n
i=1 ai|4 ≤ n3

∑n
i=1 |ai|4, and by Condition 1.2 we obtain that

Em

∣

∣S
(m)
k

∣

∣

4
= Em

∣

∣

∣

∑

J∈Dpl
(k)

W
(m)
J (l)

∣

∣

∣

4
≤
(

k

p

)3
∑

J∈Dpl
(k)

Em

∣

∣W
(m)
J (l)

∣

∣

4

≤
(

k

pl

)3

Dm,l

∑

J∈Dpl
(k)

(

Em

∣

∣W
(m)
J (l)

∣

∣

2
)2

≤
(

k

pl

)3

Dm,l̺
2
m,l

∑

J∈Dpl
(k)

Em

∣

∣W
(m)
J (l)

∣

∣

2

≤
(

k

pl

)3

Dm,l̺
2
m,l

m→∞−→ 0 ,(35)

where we have used the fact that Em

∣

∣W
(m)
J (l)

∣

∣

2 ≤ ̺2m,l for all J ∈ Dpl(k). Thus, (33)-(35) imply that

lim sup
m→∞

λ2Pm

(

max
0≤i≤nm−k

∣

∣S
(m)
k+i − S

(m)
k

∣

∣ ≥ λ
)

≤
(4

3

)4 24

λ2
=

2048

27

1

λ2

for each λ > 0 and k ∈ N fixed, so that (32) is indeed satisfied. This finishes the argument for tightness.

3.2. An additional argument explaining the continuity of the limiting process Z. Note that,
by [Bil99, Theorem 13.4] our conditions necessarily entail the remarkable fact that the limiting Gaussian
process Z has continuous paths, which might be quite surprising at first glance. Thus, we will now
give another argument for this fact, which additionally explains why it is true. To this end, define the
vector V(m) = (V(m)(1), . . . ,V(m)(d)) of continuous processes, defined by linear interpolation, i.e. for
1 ≤ l ≤ d we let

V
(m)
t (l) := W

(m)
i−1
nm

(l) +
(

nmt− (i− 1)
)(

W
(m)
i

nm

(l)−W
(m)
i−1
nm

(l)
)

,
i− 1

nm
≤ t <

i

nm
,

and V
(m)
1 (l) = W

(m)
1 (l) =W (m)(l). Then, for fixed 1 ≤ l ≤ d and with the same notation as above, it

is easy to see that

‖V(m)(l)−W(m)(l)‖∞ = max
1≤i≤nm

∣

∣∆
(m)
i

∣

∣ .

Thus, using e.g. [IS02, Theorem 3] in the third inequality below, for ε > 0 we can bound

Pm

(

‖V(m)(l)−W(m)(l)‖∞ > ε
)

= Pm

(

max
1≤i≤nm

∣

∣∆
(m)
i

∣

∣ > ε
)

≤
nm
∑

i=1

Pm

(
∣

∣∆
(m)
i

∣

∣ > ε
)

≤ ε−4
nm
∑

i=1

Em

∣

∣

∣

∑

J∈Dpl
(i):

i∈J

W
(m)
J (l)

∣

∣

∣

4
≤ B(pl)ε

−4
nm
∑

i=1

Em

[(

∑

J∈Dpl
(i):

i∈J

W
(m)
J (l)2

)2]
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= B(pl)ε
−4

nm
∑

i=1

∑

J,K∈Dpl
(i):

i∈J∩K

Em

[

W
(m)
J (l)2W

(m)
K (l)2

]

≤ B(pl)ε
−4

nm
∑

i=1

∑

J,K∈Dpl
(i):

i∈J∩K

(

Em

[

W
(m)
J (l)4

]

Em

[

W
(m)
K (l)4

]

)1/2

≤ B(pl)ε
−4Dm,l

nm
∑

i=1

∑

J,K∈Dpl
(i):

i∈J∩K

Em

[

W
(m)
J (l)2

]

Em

[

W
(m)
K (l)2

]

= B(pl)ε
−4Dm,l

nm
∑

i=1

(

∑

J∈Dpl
(i):

i∈J

Em

[

W
(m)
J (l)2

]

)2

≤ B(pl)ε
−4Dm,l̺

2
m,l

nm
∑

i=1

∑

J∈Dpl
(i):

i∈J

Em

[

W
(m)
J (l)2

]

= B(pl)ε
−4Dm,l̺

2
m,l

m→∞−→ 0 ,

where B(pl) is a finite constant only depending on pl, see [IS02, Theorem 3]. Thus, we have proved

that, for each 1 ≤ l ≤ d, ‖V(m)(l) −W(m)(l)‖∞ and, a fortiori their Skorohod distance, converges to

zero in probability as m → ∞, so that [Bil99, Theorem 3.1] implies that the processes V(m)(l) and
W(m)(l) must indeed have the same distributional limit, if any.

3.3. Proof of Theorem 1.5. Suppose that Conditions 1.2 and 1.3 hold for the sequence (W(m))m∈N.
Since the above argument for tightness does not make use of Condition 1.1, tightness still holds.
Let (W(ml))l∈N be a given subsequence. By relative compactness, there is a further subsequence

(W(mlk
))k∈N that converges in distribution to some process Z. Again by [Bil99, Theorem 13.4] we

can conclude that Z has values in C([0, 1];Rd). Thus, the projections πt : D([0, 1];Rd) → Rd, x 7→
x(t), t ∈ [0, 1], are PZ-a.s. continuous, where PZ denotes the law of Z on D([0, 1];Rd). Hence, the

continuous mapping theorem implies that the finite-dimensional distributions of (W(mlk
))k∈N converge

to those of Z and, e.g. by a uniform integrability argument, one makes sure that the covariance

matrices of the finite dimensional distributions of (W(mlk
))k∈N also converge to the respective ones of

Z. Thus, the argument leading to (25) goes through with the right hand side replaced by the variance
of the corresponding coordinate of Z at tb. Now, since Lemma 3.2 applies under Conditions 1.2 and
1.3, the same reasoning as in Subsubsection 3.1.1 ensures that the finite dimensional distributions of

(W(mlk
))k∈N have a Gaussian limit, implying that Z is indeed a continuous, centered Gaussian process.

The non-correlation, and therefore the independence, of the components of Z follows from the fact that
Hoeffding degenerate U -statistics of distinct orders are orthogonal in L2. The proof is complete.

3.4. Proof of relation (11). We fix p ≥ 3 and 2 ≤ a ≤ p − 1 as in Example 1.12, and adopt the
notation introduced therein. It is sufficient to show that

(36) |F 0
m ∩ [⌊tm⌋]p| ∼ |F 0

⌊tm⌋|,

a relation that is implied by the next statement.

Lemma 3.4. Consider a nondecreasing integer-valued sequence (ℓ(m))m≥1 such that, as m → ∞,
ℓ(m) ∼ α ·m, for some α ∈ (0, 1). Then

|F 0
m ∩ [ℓ(m)]p| ∼ |F 0

ℓ(m)|.

Proof. For every ℓ ≥ 1 we write k = k(ℓ) to denote the unique integer such that ℓ ∈ [ka, (k + 1)a), in
such a way that Fℓ = Fka(ℓ). We have that

|F 0
m ∩ [ℓ(m)]p| = |F 0

ℓ(m)|+ |(F 0
m ∩ [ℓ(m)]p)\F 0

ka(ℓ(m))|.
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Using the relations

|(F 0
m ∩ [ℓ(m)]p)\F 0

ka(ℓ(m))| ≤ |F 0
(k(ℓ(m))+1)a | − |F 0

ka(ℓ(m))| ∼ k(ℓ(m))p−1 ≤ ℓ(m)(p−1)/a = o(mp/a),

we immediately deduce the desired conclusion.
�
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