
MIT Open Access Articles

DreamCoder: Bootstrapping Inductive Program
Synthesis with Wake-Sleep Library Learning

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ellis, Kevin, Wong, Catherine, Nye, Maxwell, Sablé-Meyer, Mathias, Morales, Lucas et
al. 2021. "DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library
Learning."

As Published: https://doi.org/10.1145/3453483.3454080

Publisher: ACM|Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation

Persistent URL: https://hdl.handle.net/1721.1/145949

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145949

DreamCoder: Bootstrapping Inductive Program
Synthesis with Wake-Sleep Library Learning

Kevin Ellis
Cornell, USA

kellis@cornell.edu

Catherine Wong
MIT, USA

zyzzyva@mit.edu

Maxwell Nye
MIT, USA

mnye@mit.edu

Mathias Sablé-Meyer
PSL/Collège de France & NeuroSpin,

France
mathias.sable-meyer@ens-cachan.fr

Lucas Morales
MIT, USA

lucas@lucasem.com

Luke Hewitt
MIT, USA

lbh@mit.edu

Luc Cary
MIT, USA

luc.cary@gmail.com

Armando Solar-Lezama
MIT, USA

asolar@csail.mit.edu

Joshua B. Tenenbaum
MIT, USA

jbt@mit.edu

Abstract

We present a system for inductive program synthesis called
DreamCoder, which inputs a corpus of synthesis problems
each specified by one or a few examples, and automatically
derives a library of program components and a neural search
policy that can be used to efficiently solve other similar syn-
thesis problems. The library and search policy bootstrap each
other iteratively through a variant of łwake-sleepž approxi-
mate Bayesian learning. A new refactoring algorithm based
on E-graph matching identifies common sub-components
across synthesized programs, building a progressively deep-
ening library of abstractions capturing the structure of the
input domain. We evaluate on eight domains including clas-
sic program synthesis areas and AI tasks such as planning, in-
verse graphics, and equation discovery. We show that jointly
learning the library and neural search policy leads to solving
more problems, and solving them more quickly.

CCS Concepts: · Software and its engineering → Soft-

ware notations and tools; · Computing methodologies

→Machine learning.

Keywords: synthesis, neural, learning, refactoring

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454080

ACM Reference Format:

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer,

Lucas Morales, Luke Hewitt, Luc Cary, Armando Solar-Lezama,

and Joshua B. Tenenbaum. 2021. DreamCoder: Bootstrapping In-

ductive Program Synthesis with Wake-Sleep Library Learning. In

Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI ’21), June

20ś25, 2021, Virtual, Canada. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3453483.3454080

1 Introduction

Inductive program synthesis ś synthesizing programs given
one or more examples of their behavior ś has emerged as
both a practical tool for automating end-user programming
tasks [20, 43, 51], and a route to building more robust, inter-
pretable, generalizable and sample-efficient learning systems
in artificial intelligence (AI) [27, 29, 37]. A key insight behind
many of these advances is to simplify the synthesis problem
significantly by providing a suitable structure hypothesis [46].
This structure hypothesis may take the form of a program
sketch, or a restricted domain specific language (dsl), but the
general idea is the same: making program search tractable
by restricting it to a limited space of possible expressions.

Unfortunately, the need for a strong structure hypothesis
also limits the value of synthesis systems. Many success sto-
ries in inductive synthesis rely on specialized dsls designed
specifically for one task domain (e.g. FlashFill [20]). Even
general-purpose synthesis tools such as Synquid [41] require
the user to provide a carefully targeted library of components
in order to restrict search. The expertise required to design
such libraries and dsls limits the applicability of inductive
synthesis in novel real-world domains, and also limits its
scalability as a means of general-purpose learning in AI.
Here we present DreamCoder, a program synthesizer

which learns its own structure hypothesis in the form of a
library of components. DreamCoder follows the learning-
to-synthesize paradigm [2, 13], where a corpus of synthesis

835

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1145/3453483.3454080

PLDI ’21, June 20ś25, 2021, Virtual, Canada K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A. Solar-Lezama, J. Tenenbaum

Figure 1. (A): Eight problem-solving domains DreamCoder is applied to. (B): Given initial primitives (left), DreamCoder
iteratively builds a library of more advanced functions (middle) and uses this library to solve problems too complex to be
solved initially. Each learned function can call functions learned earlier (arrows), forming hierarchically organized layers of
functions. A typical solution to ‘Sort List’ (right), discovered after six iterations of learning is found in less than 10 minutes
of search. At bottom the model’s solution is re-expressed in terms of only the initial primitives, yielding a long and cryptic
program with 32 function calls, which would take in excess of 1072 years of brute-force search to discover.

problems is used to train a neural search policy that can then
be used to efficiently search for solutions to similar prob-
lems. We go further by learning the library of components
that defines the search space in tandem with training the
search policy. The learned library is embodied in a proba-
bilistic grammar for programs: a generative model that is
used both to score candidate programs (to find the most
probable solution to each task, in a Bayesian sense), and also
to sample random tasks for training the neural search policy.
Yet a dsl is more than a library: it also carefully constrains
the ways in which library components can combine. Our
search policy, trained alongside the learned library and scal-
ing with it, approximates these constraints by learning to
break syntactic symmetries in the search over programs.

DreamCoder draws on prior work in library learning [10,
14, 21, 31]. A key novelty in the DreamCoder system is
an automatic refactoring algorithm that is able to take a
collection of synthesized programs and extract from them
a set of components that can be used to more compactly
represent each of these programs. The algorithm leverages
E-graph matching [11] to identify rewrites to the original
programs that may expose more common patterns. As the
library grows, the learned neural search policy is trained to

guide synthesis while breaking new symmetries in search
introduced by the new library components.
The resulting system has wide applicability. We describe

applications to eight domains including classic program syn-
thesis challenges, more creative visual drawing and building
problems, and finally, library learning that captures the basic
languages of recursive programming, vector algebra, and
physics (Fig. 1A). All of our tasks involve inducing programs
from very minimal data, e.g., 5-10 examples of a new concept
or function, or a single image or scene depicting a new object.
The learned languages span deterministic and probabilistic
programs, and programs that act both generatively (e.g., pro-
ducing an artifact like an image or plan) and conditionally
(e.g., mapping inputs to outputs). In total, we contribute the
following: (1) a new approach to mining reusable program
components based on E-graph matching; (2) a new system
that learns a library and a recognition model from a corpus of
synthesis problems; and (3) an evaluation across 8 domains.

2 Background and Overview

This section provides a high-level overview of DreamCoder.
We largely follow the architecture of the EC2 system [14],

836

DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning PLDI ’21, June 20ś25, 2021, Virtual, Canada

which DreamCoder’s structure is based on. In this section,
such structure is shared unless otherwise noted.
DreamCoder inputs a training corpus of synthesis prob-

lems and a base language. The base language should be low-
level yet expressive enough to solve all the training problems,
at least in principle. The corpus should contain problems
with varying degrees of difficulty, ranging from problems
that can be solved with very small programs in the base
language to problems that require more complex programs.
The programs in the corpus should also make up a consistent
domain, meaning that the same abstractions should be useful
in solving problems across the difficulty spectrum. A corpus
with easy list manipulations but hard graph manipulations
would not be suitable because the system will not be able to
use the abstractions it learns from solving the easy problems
in order to solve the hard problems.

The output of DreamCoder consists of a library of func-
tions built from the base language or from other functions in
the library, together with a neural search policy that can be
used to efficiently solve similar synthesis tasks in the future.
For example, in Fig. 1B,DreamCoder synthesized a function
to sort sequences of numbers by invoking a learned library
component Ð take the 𝑛𝑡ℎ largest element Ð and this com-
ponent in turn calls lower-level learned concepts: maximum,
and filter. In principle equivalent programs could be written
in the base language, but those produced by the final learned
language aremore interpretable andmuch shorter. Expressed
only in the initial primitives, these programs would be so
complex as to be effectively out of the system’s reach: they
would never be found during a reasonably bounded search.

2.1 The DreamCoder Algorithm

DreamCoder is inspired by the original wake-sleep algo-
rithm of Hinton, Dayan and colleagues [23] (hence the name
DreamCoder). Traditional wake-sleep learning is an un-
supervised method for training latent variable generative
models. It iterates between wake and sleep phases: waking
trains the generative model by proposing latent variables via
an auxiliary neural net called a recognition network, while
sleeping trains this recognition network on samples from the
generative model. Porting this idea to program synthesis, our
generative model is a probability distribution over programs
(the latent variables), while the recognition network learns
to map from specifications to programs.
Concretely, the waking phase of DreamCoder uses the

current dsl (generative model) and neural search policy
(recognition network) to solve as many problems from the
corpus as it can. Unlike a traditional wake-sleep algorithm,
however, our algorithm uses two distinct sleep phases. The
first sleep phase, abstraction sleep, grows the dsl by con-
solidating new code abstractions from programs synthesized
during waking (Fig. 3 left). The second sleep phase, dream
sleep, improves the system’s synthesis skills by training the
neural network to help search for programs. The network

(Y (λ (r l) (if (nil? l) nil

(cons (+ (car l) (car l))

(r (cdr l))))))

((λ (f) (Y (λ (r l) (if (nil? l)

nil

(cons (f (car l))

(r (cdr l)))))))

(λ (z) (+ z z)))

(Y (λ (r l) (if (nil? l) nil

(cons (- (car l) 1)

(r (cdr l))))))

((λ (f) (Y (λ (r l) (if (nil? l)

nil

(cons (f (car l))

(r (cdr l)))))))

(λ (z) (- z 1)))

refactor
(1014 refactorings)

refactor
(1014 refactorings)

(map (λ (z) (+ z z))) (map (λ (z) (- z 1)))

map = (λ (f) (Y (λ (r l) (if (nil? l) nil

(cons (f (car l))

(r (cdr l))))))

Compress (MDL/Bayes objective)

Task: [1 2 3]→[2 4 6]

[4 3 4]→[8 6 8]

Wake: program search

Task: [1 2 3]→[0 1 2]

[4 3 4]→[3 2 3]

Wake: program search

Sleep: Abstraction

Figure 2. Programs synthesized during waking are refac-
tored during abstraction sleep to expose new candidate prim-
itives. Two refactorings shown, with a common subexpres-
sion highlighted in orange. This particular refactoring hinges
on new methods introduced in Section 2.2

.

trains on replayed experiences as well as ‘dreams’, or random
programs built from the learned library (Fig. 3 right).

This 3-phase inference procedure works through two dis-
tinct kinds of bootstrapping. During each sleep cycle the
next library bootstraps off the functions learned during ear-
lier cycles. Simultaneously the generative and recognition
models bootstrap each other: A more finely tuned library
yields richer dreams for the recognition model to learn from,
while a more accurate recognition model solves more tasks
during waking which then feed into the next library. Both
sleep phases also serve to mitigate the combinatorial ex-
plosion of search. Higher-level library routines allow tasks
to be solved with fewer function calls, effectively reducing
the depth of search. The neural recognition model down-
weights unlikely trajectories through the search space of all
programs, effectively reducing the breadth of search.

2.2 Abstraction Sleep: Growing the Library

The key novelty in this paper is the abstraction sleep phase
which discovers common components that can be used to
more succinctly represent the programs discovered during
the waking phase. The challenge is illustrated in Fig. 2. In this
example, two different recursive solutions to two different
tasks (expressed using the Y combinator) appear to have
very few meaningful common subexpressions. However,
DreamCoder uses a new data structure based on equiva-
lence graphs [11] and constructed via dynamic programming
which can summarize a large number of possible refactorings
to the original programs. One of those refactorings exposes
a common sub-expression that corresponds to the function

837

PLDI ’21, June 20ś25, 2021, Virtual, Canada K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A. Solar-Lezama, J. Tenenbaum

Objective: For each task x in X, find best program ρx solving x under current prior (D, θ)

Neurally guided search
Propose programs ρ in
decreasing order under Q(·|x)
until timeout

Library D, weights θ

f1(x) =(+ x 1)

f2(z) =(fold cons

(cons z nil))

· · · · · · · · ·

Task x

[7 2 3]→[4 3 8]

[3 8]→[9 4]

[4 3 2]→[3 4 5]

Recognition

Model Q(·|x)

Best programs Bx for task x

(map f1 (fold f2 nil x))

· · ·

Choose ρ’s that maximize:
P [ρ|x, (D, θ)] ∝ P [x|ρ]P [ρ|D, θ]

Wake

Objective: Grow library D to compress
programs found during waking

program for task 1
(+ (car z) 1)

program for task 2
(cons (+ 1 1))

+ 11

cons
+ 1

car z

Refactoring
Propose new library routines from
subtrees of refactorings of programs

New library D
w/ routine

(+ x 1)

+ 1

Expand D w/
the routine that
maximizes:
∫
P[D, θ]

∏
x∈X

∑
ρ∈Bx

P [x|ρ]P [ρ|D, θ] dθ

Sleep: Abstraction

Objective: Train recognition model Q(ρ|x)
to predict best programs ρx for typical
tasks x and current prior (D, θ)

Fantasies

2. set task x

to output of
executing ρ

1. draw
programs

ρ from
prior (D, θ)

sa
m
p
le

Replays

2. set program
ρ to retrieved
solution ρx

1. recall
tasks x
solved in
waking

sa
m
p
le

Train network on x,ρ pairs

Task
x

Program
ρ

Gradient step in parameters of Q

to maximize logQ(ρ|x)

Sleep: Dreaming

Repeat
until no
increase
in score

Train
until

converged

Library

prog

task

prog

task

prog

task

is

Figure 3. DreamCoder per-
forms approximate Bayesian in-
ference for the graphical model in
the middle: inputting synthesis
tasks, which it explains with la-
tent programs, and infers a latent
library capturing cross-program
regularities. A neural net, called
the recognition model (red ar-
rows) is trained to infer programs
with high posterior probability.
Waking (top) infers programs
while holding the library and
recognition model fixed. Abstrac-
tion (left) updates the library
while holding the programs fixed
by refactoring programs found
during waking and abstracting
out common components (high-
lighted in orange). Dreaming
(right) trains the recognition
model on ‘Fantasies’ (programs
sampled from library) & ‘Replays’
(programs found during waking).

map, which can then be used to represent both functions
concisely. The use of this data structure results in substantial
efficiency gains: A graph with 106 nodes, calculated in min-
utes, can represent the 1014 refactorings in Fig. 2 that would
otherwise take centuries to explicitly enumerate and search.

2.3 Dream Sleep: Training a Recognition Model

During dreaming, the system trains its recognition model,
which later guides the search for programs during waking.
Like EC2,DreamCoder trains a recognition network on (pro-
gram, task) pairs drawn from two sources of self-supervised
data: replays of programs discovered during waking, and
fantasies, or random programs assembled from members
of the learned library. Replays ensure that the recognition
model is trained on the actual tasks it needs to solve, and
does not forget how to solve them, while fantasies provide a
large and highly varied dataset to learn from, and are crit-
ical for data efficiency: becoming a domain expert is not a
few-shot learning problem, but nor is it a big data problem.
The input corpus to DreamCoder typically contains 100-200
tasks, which is too few examples for a high-capacity neural
network. But after the model learns a library customized to
the domain, it can draw unlimited samples or ‘dreams’ to
train the recognition network, facilitating sample-efficient
learning. Unlike EC2 and other prior works, we parameterize
and train our network in new ways which teach it to restrict

the search over program space via learning to break syntactic
symmetries.

2.4 A Bayesian View

In this section, we summarize the original formalization of
Ellis et al. [14] of the wake sleep approach as a probabilistic
inference problem in the context of DreamCoder. The input
to the algorithm is a set of tasks, written 𝑋 , and the output is
both a set of programs {𝜌𝑥 } solving each task 𝑥 ∈ 𝑋 , as well
as a prior distribution over programs likely to solve tasks in
the domain (Fig. 3 middle). This prior is encoded by a library,
written D, which when equipped with a real-valued weight
vector, written 𝜃 , defines a distribution over programs, writ-
ten P[𝜌 |D, 𝜃]. The library D is a set of typed 𝜆-calculus
expressions, while the weight vector 𝜃 acts similarly to the
production probabilities of a probabilistic context free gram-
mar, with each single element of 𝜃 controlling the probability
of using a single element ofD. Appendix 6 formally specifies
P[𝜌 |D, 𝜃] via a probabilistic program which stochastically
generates well-typed expressions obeying variable scoping
rules. Using this notation, the joint distribution, 𝐽 , over the
observed tasks and the latent variables is

𝐽 (D, 𝜃) ≜ P[D, 𝜃]
∏

𝑥 ∈𝑋

∑

𝜌

P[𝑥 |𝜌]P[𝜌 |D, 𝜃] (1)

where P[D, 𝜃] is a prior distribution over languages and
parameters and P[𝑥 |𝜌] scores the likelihood of a task 𝑥 ∈

838

DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning PLDI ’21, June 20ś25, 2021, Virtual, Canada

𝑋 given a program 𝜌 .1 The solution to the DreamCoder

problem is then the optimal language and weight vector

D∗
= argmax

D

∫
𝐽 (D, 𝜃) d𝜃 𝜃 ∗ = argmax

𝜃

𝐽 (D∗, 𝜃)

(2)

Evaluating Eq. 1 entails marginalizing over the infinite set
of all programs ś which is impossible. We make a particle-
based approximation to Eq. 1 and instead marginalize over
a finite beam of programs, with one beam per task, collec-
tively written {B𝑥 }𝑥 ∈𝑋 . This particle-based approximation
is writtenℒ(D, 𝜃, {B𝑥 }) and acts as a lower bound on the
joint density: 𝐽 (D, 𝜃) ≥ ℒ, whereℒ is

ℒ(D, 𝜃, {B𝑥 }) ≜ P[D, 𝜃]
∏

𝑥 ∈𝑋

∑

𝜌∈B𝑥

P[𝑥 |𝜌]P[𝜌 |D, 𝜃] (3)

In all of our experiments we set the maximum beam size
|B𝑥 | to 5. Wake and sleep phases correspond to alternate
maximization of ℒ w.r.t. {B𝑥 }𝑥 ∈𝑋 , D, and 𝜃 .
Wake: Maxing ℒ w.r.t. the beams. Here (D, 𝜃) is fixed
and we want to find new programs to add to the beams
so that ℒ increases the most (and therefore best approxi-
mates 𝐽 (D, 𝜃)).ℒmost increases by finding programswhere
P[𝑥 |𝜌]P[𝜌 |D, 𝜃] ∝ P[𝜌 |𝑥,D, 𝜃] is large, i.e., programs with
high posterior probability, which we use as the search objec-
tive during waking. Unlike EC2, during each wake cycle we
sample a random minibatch of tasks to try to solve, rather
than trying to solve every task at each wake.
Sleep (Abstraction): Maxing ℒ w.r.t. the library. Here
{B𝑥 }𝑥 ∈𝑋 is held fixed and the problem is to search the dis-

crete space of libraries and find one maximizing
∫
ℒ d𝜃 ,

and then update 𝜃 to argmax𝜃 ℒ(D, 𝜃, {B𝑥 }).
Finding programs solving tasks is difficult because of the

infinitely large, combinatorial search landscape. We ease this
difficulty by training a neural recognition model, 𝑄 (𝜌 |𝑥),
during the Dreaming phase: 𝑄 is trained to assign high
probability to programs which score highly under the poste-
rior P[𝜌 |𝑥, (D, 𝜃)] ∝ P[𝑥 |𝜌]P[𝜌 | (D, 𝜃)]. Thus training the
neural network amortizes the cost of finding programs with
high posterior probability.
Sleep (Dreaming): tractablymaxingℒw.r.t. the beams.

Here we train𝑄 (𝑝 |𝑥) to assign high probability to programs
𝑝 where P[𝑥 |𝜌]P[𝜌 |D, 𝜃] is large, because incorporating
those programs into the beams will most increase ℒ. In the
sections that follow, we elaborate on how these phases are
realized.

3 Abstraction Sleep

During the abstraction phase of sleep, the model grows its
library with the goal of discovering specialized library rou-
tines that allow it to easily express solutions to the tasks

1For example, for list processing, the likelihood is 1 iff the program predicts

the correct outputs on the observed inputs. For probabilistic programs, the

likelihood is the probability of the program sampling the observation.

at hand. Ease of expression translates into a preference for
libraries that best compress programs found during waking,
namely the programs in the beams {B𝑥 }𝑥 ∈𝑋 .

In order to do this, however, we need to address a problem
with the beam approximation in Eq. 3: the beam contains
programs found in the previous waking phase, but those pro-
grams will not be written in terms of the new routines that
we may want to consider in D, so there will be a missalign-
ment between the programs in B𝑥 , and the proposed D.

There is also a second challenge: integration over 𝜃 (Eq. 2)
is intractable when 𝜃 is high dimensional. Hence we ap-
proximate the abstraction sleep objective using the Akaike
Information Criterion (AIC: [3]).2 The AIC is a model selec-
tion criterion which replaces integration with maximization,
and penalizes the number of continuous degrees of freedom
(here, the dimensionality of 𝜃).

We address both of these challenges by refining the opti-
mization objective to the formula below.

log P[D] + argmax
𝜃

∑

𝑥 ∈𝑋

log
∑

𝜌∈B𝑥

P[𝑥 |𝜌] max
𝜌′−→∗

𝛽
𝜌
P[𝜌 ′ |D, 𝜃]

+ log P[𝜃 |D] − |𝜃 |0 (4)

We define P [D] ∝ exp
(
−𝜆

∑
𝜌∈D size(𝜌)

)
using a hyper-

parameter 𝜆 so that it minimizes the size of each library
function inD. We place a symmetric Dirichlet prior over the
weight vector 𝜃 to define P [𝜃 |D]. But the most important
aspect of this objective is that instead of considering only the
programs in the beam, it also considers any of their refactor-
ings. By refactoring, we mean any program which is equiva-
lent up to 𝛽-reduction (i.e., function application/variable sub-
stitution [39]). We write 𝜌 −→𝛽 𝜌 ′ to mean that 𝜌 rewrites
to 𝜌 ′ in one step of 𝛽-reduction, and write 𝜌 −→∗

𝛽
𝜌 ′ for the

transitive reflexive closure of 𝜌 −→𝛽 𝜌 ′.
Because infinitelymany programsmay 𝛽-reduce to a given

expression,DreamCoder bounds the number of 𝛽-reduction
steps separating a program from its refactorings. Yet this
now-bounded set of refactorings grows exponentially, moti-
vating the techniques described next.

3.1 Efficient Refactoring

We tame the combinatorial explosion associated with refac-
toring using machinery that draws primarily on the ideas
of an E-graph and a version space. A version space is a data
structure that compactly represents a large set of programs
and supports efficient set operations like union, intersec-
tion, and membership checking. An E-graph, in turn, is a
data-structure that leverages sharing to compactly represent
many alternative versions of the same program. The two
ideas are quite closely related, and in fact, prior systems

2The AIC is only one such possible model selection criterion. Other choices,

such as Variational Bayes [26], may more closely approximate the marginal

over 𝜃 , but are more complex and come at greater computational expense.

839

PLDI ’21, June 20ś25, 2021, Virtual, Canada K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A. Solar-Lezama, J. Tenenbaum

such as FlashFill have used E-graph-like representations to
represent version spaces compactly [20].

Version space. The purpose of a version space is to com-
pactly represent a set of programs. Our basic language will be
𝜆-calculus with some additional primitives. We use deBuijn
notation to simplify the treatment of bound variables.

Definition 3.1. A version space is either

• A deBuijn index: written $𝑖 , for 𝑖 a natural number
• A primitive, such as the number 42, or the function map

• An abstraction: written 𝜆𝑣 , where 𝑣 is a version space
• An application: written (𝑓 𝑥), where both 𝑓 and 𝑥 are
version spaces

• A union: ⊎𝑉 , where 𝑉 is a set of version spaces
• The empty set, ∅
• The set of all 𝜆-calculus expressions, Λ

By a leaf we mean either a primitive or a deBuijn index.

The union operator (⊎), which, intuitively, represents a
nondeterministic choice between a collection of alternatives,
allows the notation above to compactly represent large sets of
programs. For example, the version space (𝜆⊎{$0, 7})(⊎ {4, 9})
encodes four different expressions: (𝜆$0)4, (𝜆$0)9, (𝜆7)4, and
(𝜆7)9. We refer to the set of expressions encoded by a version
space as its extension:

Definition 3.2. The extension of a version space 𝑣 is writ-
ten ⟦𝑣⟧ and is defined recursively as:

⟦𝜌⟧ = {𝜌} , if 𝜌 a leaf ⟦Λ⟧ = Λ ⟦∅⟧ = ∅

⟦𝜆𝑣⟧ = {𝜆𝑒 : 𝑒 ∈ ⟦𝑣⟧} ⟦⊎𝑉⟧ = {𝑒 : 𝑣 ∈ 𝑉 , 𝑒 ∈ ⟦𝑣⟧}

⟦(𝑣1 𝑣2)⟧ = {(𝑒1 𝑒2) : 𝑒1 ∈ ⟦𝑣1⟧, 𝑒2 ∈ ⟦𝑣2⟧}

The data structures we use to represent version spaces
also support efficient membership checking, which we write
as 𝑒 ∈ ⟦𝑣⟧. Important for our purposes, it is also efficient
to extract the smallest member of a version space’s exten-
sion in terms of a new libraryśi.e., extracting the most com-

pressive member of a version space given a new library. We
define extract(𝑣 |D) as calculating argmin𝜌∈⟦𝑣⟧ size(𝜌 |D),

where size(𝜌 |D) for program 𝜌 and library D is the size of
the syntax tree of 𝜌 , when members of D are counted as
having size 1 (Fig. 5A).

Inverse 𝛽-reduction. Our next goal is to define an oper-
ator over version spaces which calculates the set of 𝑛-step
refactorings of a program 𝜌 . We call this operator 𝐼 𝛽𝑛 , be-
cause it inverts 𝛽-reduction 𝑛 times, writing 𝐼 𝛽𝑛 (𝜌) for a
version space encoding 𝑛-step refactorings of program 𝜌 .
This operator should satisfy:

⟦𝐼 𝛽𝑛 (𝜌)⟧ =

{
𝜌 ′ : 𝜌 ′ −→𝛽 𝜌 ′′ −→𝛽 · · · −→𝛽

︸ ︷︷ ︸
≤ 𝑛 times

𝜌
}

(5)

We define 𝐼 𝛽𝑛 in terms of another operator, 𝐼 𝛽 ′, which per-
forms a single step of refactoring (Fig. 5B); in particular, we

want to define 𝐼 𝛽 ′ so that its extension obeys

⟦𝐼 𝛽 ′(𝑣)⟧ =

{
𝜌 ′ : 𝜌 ′ −→𝛽 𝜌 ∀𝜌 ∈ ⟦𝑣⟧

}
(6)

Here we will define and explain 𝐼 𝛽 ′ intuitively but the appen-
dix proves that these definitions are consistent (Theorem G.5)
and complete (Theorem G.6). Consistency means that only
valid refactorings are output (every program in ⟦𝐼 𝛽 ′(𝑣)⟧
does actually 𝛽-reduced to a program in ⟦𝑣⟧), while com-

pleteness means that every valid refactoring is output (every
program which 𝛽-reduces to an expression in ⟦𝑣⟧ is present
in ⟦𝐼 𝛽 ′(𝑣)⟧). Consistency and completeness imply Eq. 6.

Constructing 𝐼 𝛽 ′ depends on careful consideration of the
𝛽-reduction operator we aim to invert (see [39] and Appen-
dix F). The operator 𝐼 𝛽 ′ builds both top-level redexes and
also recurses to build redexes within the body of an expres-
sion. Fig. 5C defines 𝐼 𝛽 ′ as the union of an operator 𝑆 , which
constructs these top-level substitutions, along with recur-
sive invocations of 𝐼 𝛽 ′. The 𝑆 operator (Fig. 5D) takes as
input a version space 𝑢 and then returns a version space
whose extension contains programs of the form (𝜆𝑏)𝑣 where
substituting the value 𝑣 into the body 𝑏 (i.e. performing 𝛽

reduction) gives an expression in ⟦𝑢⟧. The definition of 𝑆 is a
bit involved both because of the different ways in which one
can introduce additional abstraction into a lambda expres-
sion as well as because of the need to keep track of deBuijn
indices. Index tracking is done by parameterizing 𝑆 by an in-
dex 𝑘 , so 𝑆 (𝑣) is defined as 𝑆0 (𝑣), but every time 𝑆𝑘 is applied
to an expression of the form 𝜆𝑏, the body 𝑏 must be handled
by 𝑆𝑘+1 to keep track of the fact that the body is inside an
additional 𝜆.
We now define how these version spaces aggregate into

a single data structure, one for each program, tracking ev-
ery equivalence revealed by 𝐼 𝛽𝑛 . Observe that every time
we calculate 𝐼 𝛽𝑛 (𝜌), we obtain a version space containing
expressions semantically equivalent to program 𝜌Ðand also
we obtain 𝐼 𝛽𝑛 for any subexpressions of 𝜌 . In order to al-
low these subexpressions to be refactored independently,
we track the equivalences exposed by 𝐼 𝛽𝑛 and compile all
these equivalencies together. For example, when refactoring
(* (+ 1 1) (+ 5 5)), the 𝐼 𝛽1 operator, which inverts 1 step
of 𝛽-reduction, will identify that (+ 1 1) can be rewritten
as (double 1) while (+ 5 5) can be rewritten as (double 5),
where double = (lambda (x) (+ x x)). However, 𝐼 𝛽1 will not
discover that (* (+ 1 1) (+ 5 5)) can be rewritten as (* (double

1) (double 5)), because this requires inverting 2 steps of 𝛽-
reduction. Yet this rewrite is clearly licensed by the semantic
equivalences exposed by 𝐼 𝛽1.

Inspired by the E-graph equality saturation approachwithin
program analysis [53], we build a graph tracking the equiva-
lences exposed by 𝐼 𝛽𝑛 , and finally return a single structure
for each program compiling all of these equivalences. This
allows e.g. refactoring (* (+ 1 1) (+ 5 5)) into (* (double

1) (double 5)) without considering more than 1 step of 𝛽-
reduction. Concretely, for each program 𝜌 , we calculate a

840

DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning PLDI ’21, June 20ś25, 2021, Virtual, Canada

5
+ 5

x
+ 5

λx 5

5
+ x

λx 5

x
+ x

λx 5

5
+ 5

λx 5

legend

semantic equivalence

⊎ nondeterministic choice

(A) Four refactorings of (+ 5 5) w/ common structure

(B) Those refactorings reexpressed w/ version space ⊎, plus more refactorings

5
+ 5

⊎

5 x
+ ⊎

5 x

λx 5

︸ ︷︷ ︸

refactorings in (A)

5

⊎

+ y

5

λy +

λz 5

⊎

5 z

Example program encoded by data structure in (B):
((λ (y) (y 5 ((λ (z) z) 5))) +)

Figure 4. Inverting 𝛽-reduction by one step using the ⊎
version space operator and equivalence tracking. (A): four
refactorings of (+ 5 5), each semantically equivalent to the
original expressionś notated with a dashed orange lineśby
abstracting out the number 5. Because there are two 5s, and
each can be either left as 5 or replaced with a variable, we
have four possibilities. The rightmost tree in (B) collapses
all four such refactorings into a single tree via ⊎ and shows
several other portions of the data structure, but ellides others
for clarity.

version space 𝐼 𝛽 (𝜌) defined as

𝐼 𝛽 (𝜌) = 𝐼 𝛽𝑛 (𝜌) ⊎

𝐼 𝛽 (𝑓) 𝐼 𝛽 (𝑥) if 𝜌 = (𝑓 𝑥)
𝜆𝐼𝛽 (𝑏) if 𝜌 = 𝜆𝑏

∅ if 𝜌 is a leaf

where 𝑛, the amount of refactoring, is a hyper parameter.
We set 𝑛 to 3 for all experiments unless otherwise noted.
Figure 4 diagrams a subset of the refactoring data structure
when 𝑛 = 1 and the refactored expression is (+ 5 5).

3.2 Putting Together the Pieces

Algorithm 2 (Appendix) specifies our library learning proce-
dure, which is exponential in the amount of refactoring but
polynomial in program size. Naively, the number of candi-
date new library routines grows linearly with the number
of programs, and each candidate must be scored against all
other programs, giving quadratic dependence on the number

of programs. In practice we found this quadratic dependence
prohibitive. So, for each version space 𝑣 , we perform a beam
search to approximately calculate the top 106 candidate li-
braries D minimizing the size of extract(𝑣 |D).

4 Dream Sleep

Our dream phase works differently from a conventional
wake-sleep [23] dream phase in the following way: we think
of dreaming as creating an endless stream of random prob-
lems, whichwe then solve during sleep, and train the recogni-
tion network to predict the solution conditioned on the prob-
lem. The classic wake-sleep algorithm would instead sample
a random program, execute it to get a task, and train the
recognition network to predict the sampled program from
the sampled task. Specifically, we train𝑄 to performMAP in-

ference by maximizing E
[
log𝑄

((
argmax𝜌 P[𝜌 |𝑥, 𝐿]

)
|𝑥

)]
,

where the expectation is taken over tasks. Taking this expec-
tation over the empirical distribution of tasks trains 𝑄 on
replays; taking it over samples from the generative model
trains 𝑄 on fantasies. To clarify this departure from clas-
sic wake/sleep, we define a pair of alternative objectives for
the recognition model,Lpost. andLMAP, which (respectively)
train𝑄 to perform full posterior inference (as in EC2 [14] and
classic wake/sleep), or MAP inference (as in DreamCoder):

Lpost.
= L

post.

Replay
+ L

post.
Fantasy LMAP

= LMAP
Replay + LMAP

Fantasy

L
post.

Replay
= E𝑥∼𝑋

∑

𝜌∈B𝑥

P [𝑥, 𝜌 |D, 𝜃]
∑

𝜌′∈B𝑥
P [𝑥, 𝜌 ′ |D, 𝜃]

log𝑄 (𝜌 |𝑥)

LMAP
Replay = E𝑥∼𝑋

[

log𝑄

(

argmax
𝜌∈B𝑥

P[𝜌 |𝑥,D, 𝜃]

���� 𝑥

)]

L
post.
Fantasy = E(𝜌,𝑥)∼(D,𝜃) [log𝑄 (𝜌 |𝑥)]

LMAP
Fantasy = E𝑥∼(D,𝜃)

[
log𝑄

(
argmax

𝜌
P[𝜌 |𝑥,D, 𝜃]

���� 𝑥
)]

Evaluating LFantasy involves drawing programs from the
current library, running them to get their outputs, and then
training 𝑄 to regress from the input/outputs to the program.
Since these programs map inputs to outputs, we need to
sample the inputs as well. We simply sample the inputs
from the empirical observed distribution of inputs in 𝑋 . The
LMAP

Fantasy objective also involves finding the MAP program

solving a task drawn from the library. To make this tractable,
rather than sample programs as training data for LMAP

Fantasy,

we enumerate programs in decreasing order of their prior
probability, tracking, for each dreamed task 𝑥 , the set of
enumerated programs maximizing P[𝑥, 𝜌 |D, 𝜃] (Appendix
Algorithm 3).

We chose to have DreamCoder maximize LMAP rather
than Lpost. because, when, combined with our parameteriza-
tion of𝑄 , described next, wewill show thatLMAP encourages
the recognition model to break syntactic symmetries.

841

PLDI ’21, June 20ś25, 2021, Virtual, Canada K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A. Solar-Lezama, J. Tenenbaum

(A) extract smallest program

extract(𝑣 |D) =

{
𝑒 , if 𝑒 ∈ D and 𝑒 ∈ ⟦𝑣⟧

extract
′ (𝑣 |D) , otherwise.

extract
′ (𝑒 |D) = 𝑒 , if 𝑒 is a leaf

extract
′ (𝜆𝑏 |D) = 𝜆extract(𝑏 |D)

extract
′ (𝑓 𝑥 |D) = extract(𝑓 |D) extract(𝑥 |D)

extract
′ (⊎𝑉 |D) = argmin

𝑒∈{extract(𝑣 |D) : 𝑣∈𝑉 }
size(𝑒 |D)

(B) invert 𝑛 steps of 𝛽-reduction

𝐼 𝛽𝑛 (𝑣) = ⊎

𝐼 𝛽′ (𝐼 𝛽′ (𝐼 𝛽′ (· · ·
︸ ︷︷ ︸

𝑖 times

𝑣))) : 0 ≤ 𝑖 ≤ 𝑛

(C) invert 1 step of 𝛽-reduction

𝐼 𝛽′ (𝑢) = ⊎(𝑆 (𝑢)) ∪

if 𝑢 leaf or ∅: ∅

if 𝑢 is Λ: {Λ}

if 𝑢 = 𝜆𝑏: {𝜆𝐼𝛽′ (𝑏) }

if 𝑢 = (𝑓 𝑥) : {(𝐼 𝛽′ (𝑓) 𝑥), (𝑓 𝐼 𝛽′ (𝑥)) }

if 𝑢 = ⊎𝑉 : {𝐼 𝛽′ (𝑢′) | 𝑢′ ∈ 𝑉 }

(D) build top-level redex (i.e. a substitution)

𝑆 (𝑣) = 𝑆0 (𝑣) 𝑆𝑘 (𝑣) =
{
(𝜆$𝑘) (↓𝑘0 𝑣)

}
∪ 𝑆′𝑘 (𝑣)

𝑆′𝑘 (𝑣) =

if 𝑣 is primitive: {(𝜆𝑣)Λ}

if 𝑣 = $𝑖 and 𝑖 < 𝑘 : {(𝜆 $𝑖)Λ}

if 𝑣 = $𝑖 and 𝑖 ≥ 𝑘 : {(𝜆 $(𝑖 + 1))Λ}

if 𝑣 = 𝜆𝑏: {(𝜆𝜆𝑏′)𝑣′ : (𝜆𝑏′)𝑣′ ∈ 𝑆𝑘+1 (𝑏) }

if 𝑣 = (𝑓 𝑥) :

{(𝜆 𝑓 ′ 𝑥′) (𝑣1 ∩ 𝑣2) :

(𝜆𝑓 ′)𝑣1 ∈ 𝑆𝑘 (𝑓), (𝜆𝑥′)𝑣2 ∈ 𝑆𝑘 (𝑥)

if 𝑣 = ⊎𝑉 :
⋃

𝑣′∈𝑉 𝑆𝑘 (𝑣
′)

if 𝑣 is ∅: ∅

if 𝑣 is Λ: {(𝜆Λ)Λ}

(E) downshift utility used by (D)

↓𝑘𝑐 $𝑖 =

$𝑖 , if 𝑖 < 𝑐

$(𝑖 − 𝑘) , if 𝑖 ≥ 𝑐 + 𝑘

∅, if 𝑐 ≤ 𝑖 < 𝑐 + 𝑘

↓𝑘𝑐 𝑣 = 𝑣, if 𝑣 is a primitive or ∅ or Λ

↓𝑘𝑐 𝜆𝑏 = 𝜆 ↓𝑘𝑐+1 𝑏 ↓𝑘𝑐 (𝑓 𝑥) = (↓𝑘𝑐 𝑓 ↓𝑘𝑐 𝑥) ↓𝑘𝑐 ⊎𝑉 = ⊎
{
↓𝑘𝑐 𝑣 | 𝑣 ∈ 𝑉

}

Figure 5. Definitions of core refactoring operations. We write these recursively, but actually implement them using a dynamic
program: we hash cons each version space, and only calculate the operators 𝐼 𝛽𝑛 , 𝐼 𝛽

′, and 𝑆𝑘 once per each version space.

Parameterizing 𝑄 . Mathematically, the neural recognition
model 𝑄 assigns a probability to every possible program.
Mechanically, how should we parameterize this probability
distribution? Because 𝑄 acts as a (task-conditioned) prob-
abilistic language model over program syntax trees, this is
equivalent to asking what kind of language model𝑄 ’s output
should embody.
The simplest such parameterization is a unigram distri-

bution over library components. This approachśdeveloped
in [34] and employed by EC2 śpredicts the probability of
each library component independently of what other com-
ponents are present in the program. Unigram probabilities
are fast to compute and fast to query, so at test time, the
synthesizer is not bottlenecked by neural network calcula-
tions. Recall though that effective domain-specific synthe-
sizers not only expose high-level building blocks, but also
carefully restrict the ways in which those building blocks
are allowed to compose: e.g. disallowing adding zero, or
forcing right-associative addition. Unigrams render these
symmetry-breaking restrictions impossible, because the pa-
rameterization cannot exclude certain primitives based on
their local syntactic context (e.g. disallowing zero as the child
of addition).

At the other end of the spectrum are autoregressive neural
language models (e.g. recurrent networks [13] and transform-
ers [48]). By conditioning on the entirety of a partially gen-
erated program, these models can break arbitrary syntactic
symmetriesśbut at the cost of heavyweight neural network
computations at test time. Thus they are incompatible with
rapid enumerative search.

A bigram parameterization strikes a middle ground which
both breaks symmetries and is synthesizer friendly. Just as

the familiar bigram distribution over sequences conditions
only on the immediately preceding token, our bigram distri-
bution over syntax trees conditions on the immediate ances-
tor in the syntax tree. This can break many symmetries: if
the immediate ancestor is multiplication, a bigram can condi-
tion on this fact and assign zero probability to its child being
zero, and so rule out multiplication by zero. Yet the neural
net need only run once per task to get a bigram transition
matrix, so bigram-guided enumerative search is not slowed
down by the neural network.
Note though that 𝑛-gram models cannot break all sym-

metries: e.g. breaking commutativity requires ordering argu-
ments lexicographicly.
Our bigram model conditions not just on the immediate

ancestor, but also conditions on which child is being gener-
ated as its argument. This allows more symmetry breaking:
e.g. prohibiting one as the second child of division (don’t
divide by one), but allowing it as the first child (allowed to
divide one by something). Thus, 𝑄 outputs a bigram transi-
tion matrix that is actually a 3-index tensor: indices for the
parent and child library components, and an index for which
argument of the parent is being generated. Fig. 6 (top) dia-
grams how this 3-index tensorśwritten 𝑄𝑖 𝑗𝑘śstochastically
generates a syntax tree. Here 𝑖 indexes possible children
(𝑖 ∈ D ∪ {var}, with ‘var’ for variables), 𝑗 indexes possible
parents (𝑗 ∈ D ∪ {start, var}, with ‘start’ for no parent), and
𝑘 indexes which argument of the parent is being generated
(1 ≤ 𝑘 ≤ 𝐴, with 𝐴 the arity of the parent).

Together, this bigram parameterization interacts withLMAP

to learn to break symmetries. This interaction occurs because
the bigram parameterization can disallow library routines
depending on their local syntactic context, while the LMAP

842

DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning PLDI ’21, June 20ś25, 2021, Virtual, Canada

𝜆 (a)

+

9 *

aa

𝑄start,+,1

𝑄 +,9
,1

𝑄
+,*,2

𝑄
*,var,2𝑄 *,

va
r,1

Unigram Bigram

L
p
o
st
.

Three samples:

(+ 1 0)

(+ (+ 0 0)

(+ 1 0))

(+ 1 1)

63.0% right-associative

37.4% +0’s

Three samples:

0

(+ (+ (+ 0 0)

(+ 0 1)) 1)

1

55.8% right-associative

31.9% +0’s

L
M
A
P

Three samples:

1

(+ 1 (+ 1 (+ (+ 1

(+ 1 1)) 1)))

(+ (+ 1 1) 1)

48.6% right-associative

0.5% +0’s

Three Samples:

(+ 1 (+ 1 (+ 1

(+ 1 (+ 1 1)))))

0

(+ 1 (+ 1 (+ 1 1)))

97.9% right-associative

2.5% +0’s

Figure 6. Top: Syntax tree annotated with bigram proba-
bilities from recognition network. Bottom: Breaking sym-
metries requires both bigrams and LMAP objective. Model
learns to associate addition to the right and avoiding adding
zero. % right-associative over 500 samples. LMAP/Unigram
incorrectly learns to never generate programs with 0’s, while
LMAP/Bigram correctly learns that 0 should only be disal-
lowed as an argument of addition.

objective forces all probability mass onto a single member
of a set of syntactically distinct but semantically equiva-
lent expressions. We experimentally confirm this symmetry-
breaking behavior by training recognition models to mini-
mize either LMAP/Lpost. and to use either a bigram/unigram
parameterization. Figure 6 (bottom) shows the result of train-
ing𝑄 in these four regimes and then sampling programs. On
this particular run, the combination of bigrams and LMAP

learns to avoid adding zero and associate addition to the right
Ð different random initializations lead to either right or left
association. Appendix H proves that any global optimizer of
LMAP breaks symmetries, while Appendix I gives our neural
network training details and architectures.

5 Evaluation

We study DreamCoder across synthesis domains with the
goal of answering three questions: (1) whether combining

abstraction learning and recognition model training yields
faster solving of more held-out problems than either alone;
(2) whether recognition model training influences the struc-
ture of the learned libraries; and (3) whether refactoring
proves necessary for generalization to new synthesis prob-
lems. To answer these questions we evaluate across the fol-
lowing six domains:

• List processing: functional programming problems taken
from [14], specified via input/outputs, split 50/50 test/train.
We further increased test-set difficulty by excluding 31 test
problems which were solvable within 10 minutes via enu-
merative search (making our list processing results not
directly comparable with [14]: our list results would be im-
proved on the original data). The system is initialized with
functional programming primitives (map, fold, cons, car, cdr,
if, length, index, =, +, -, 0, 1, cons, car, cdr, nil, and is-nil)
and numerical routines (mod, *, >, is-square, and is-prime).

• Text editing: in the style of FlashFill [20], testing on 108
2017 SyGuS problems [1] and training on text editing prob-
lems from [14]. This system is initialized with the same
functional programming primitives as above but also in-
cluding character and string constants.

• LOGO graphics: inverse graphics where each synthesis
problem is specified by a raster image, and solved by syn-
thesizing a program in LOGO Turtle [54] graphics. These
programs control a simulated ‘pen’ as it moves over a can-
vas. The base language includes ‘for’ loops, a stack for
saving/restoring the pen state, and arithmetic on angles
and distances.

• Blocks towers: a planning domain where each synthesis
problem is a tower built on a simulated ‘stage’ and the
system must write a program planning how to control a
simulated ‘hand’ to build the target tower. The base lan-
guage includes the same control flow as in LOGO graphics.

• Generative regular expressions: a probabilistic program-
ming domain where the system infers a probabilistic gen-
erative modelśencoded as a regexśfrom only positive ex-
amples of strings. Data taken from [22], which crawled
the web for CSV files.

• Symbolic regression: synthesizing programs with real-
valued parameters. The system is given input/outputs of
polynomials and rational functions, and tasked with writ-
ing a program fitting those inputs/outputs, following [14].
The recognition model additionally observes an image of
the function’s graph, processed via a convolutional neural
network. We fit continuous parameters of the symbolic
function via an inner loop of gradient descent.

We compared our full system on held out test problems with
ablations missing either the neural recognition model (the
łdreamingž sleep phase) or ability to form new library rou-
tines (the łabstractionž sleep phase). To isolate the role of
refactoring, we construct two Memorize baselines. These
baselines incorporate every task solution wholesale into the

843

PLDI ’21, June 20ś25, 2021, Virtual, Canada K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A. Solar-Lezama, J. Tenenbaum

library, thereby memorizing the best solutions found during
waking (cf. [8]). We evaluate memorize variants both with
and without recognition models. To further probe refactor-
ing, we compare with Exploration-Compression (EC [10]) and
EC2 [14]. We modify EC2 to randomly minibatch tasks, as
DreamCoder does, and reimplement EC by running abstrac-
tion sleep without any refactoring while disabling our neural
recognition model. We compare with two other baselines:
Neural Program Synthesis, which trains RobustFill [13] on
samples from the initial library; and Enumeration, which
performs type-directed enumeration [17] for 24 hours per
task, generating up to 400 million programs for each task.

In every domain, our model always solves at least as many
problems as the best alternative approach on that domain
(Fig. 7A-B). It also generally solves these problems in the
least time (mean 54.1sec; median 15.0sec; Appendix Fig. 20).
These results establish that each of DreamCoder’s core com-
ponents ś library learning in the sleep-abstraction phase,
and recognition model training in the sleep-dreaming phase
ś contributes significantly to its overall performance. The
synergy between these components is especially clear in
the more creative, generative structure building domains,
LOGO graphics and tower building, where neither ablation
ever solves more than 60% of held-out tasks while Dream-
Coder learns to solve nearly 100% of them (Fig. 7A). The time
needed to train DreamCoder to convergence varies across
domains, but typically takes around a day using moderate
compute resources (20-100 CPUs; Appendix J).

Compared to EC2 on its own domainsślist, text and sym-
bolic regressionśDreamCoder converges with far less com-
pute, owing to its random minibatching of tasks during wak-
ing. DreamCoder converges after 10 wake/sleep cycles for
list and text, with a synthesis timeout of 12 min (on 64 CPUs),
while EC2’s nonbatched approach requires 3 wake/sleep cy-
cles with a timeout of 120 minutes (on 128 CPUsśsee [14]):
thus batching buys a speedup of 6×. A similar calculation
shows a 15× speedup on symbolic regression.

Thus, to make the comparisonmore fair yet alsomore chal-
lenging, we evaluate against EC2 modified to use the same
random batching scheme that we found to accelerate con-
vergence with DreamCoder. This also better illustrates the
consequences of our core improvements over EC2, namely
refactoring and symmetry breaking during abstraction and
dream sleep, respectively. However, as a consequence our
results are no longer directly comparable to the results pre-
sented in [14]: doubly so for list processing, where we made
the test set harder. Fig. 7B compares against this new, ran-
domly minibatched version of EC2. Unsurprisingly our new
refactoring algorithm helps the most for functional program-
ming (list processing), but we also get modest gains for con-
struction tasks (LOGO/towers).

Examining how the learned libraries grow over time, both
with and without learned recognition models, reveals func-
tionally significant differences in their depths and sizes. Across

domains, deeper libraries correlate well with solving more
tasks (𝑟 = 0.79), and a recognition model leads to better per-
formance at all depths. The recognition model also leads to
deeper libraries by the end of learning, with correspondingly
higher asymptotic performance levels (Fig. 7C-D). Similar but
weaker relationships hold between the size of the learned li-
brary and performance. Thus the recognition model appears
to bootstrap łbetterž libraries, where łbetterž correlates with
both depth and breadth.

5.1 Qualitative Results

We qualitatively discuss DreamCoders behavior, focusing
here on the more creative, generative problems: synthesizing
images, plans, and text. In inspecting DreamCoders learned
LOGO graphics library, we find parametric drawing routines
corresponding to the families of visual objects in its training
data, like polygons, circles, and spirals (Fig. 8B). We also
find more surprising routines, such as those Fig. 8B dubs
‘s-curve’ and ‘arc’, which may be less interpretable but the
system nonetheless finds useful for many drawing tasks. It
additionally learns more abstract visual relationships, like
radial symmetry, which it models by abstracting out a new
higher-order function into its library (Fig. 8C).
Visualizing the system’s dreams across its learning tra-

jectory provides a window into how the generative model
bootstraps recognition model training: As the library grows
and becomes more finely tuned to the domain, the neural
net receives richer and more varied training data. At the
beginning of learning, random programs written using the
library are simple and largely unstructured (Fig. 8D), offer-
ing limited value for training the recognition model. After
learning, the system’s dreams are richly structured (Fig. 8E),
compositionally recombining latent building blocks and mo-
tifs acquired from the training data in ways never seen in its
waking experience, but ideal for training a broadly general-
izable recognition model [55].
Inspired by the classic AI ‘copy demo’ ś where an agent

looks at a tower made of toy blocks then re-creates it [58]
ś DreamCoder learns to solve tower ‘copy tasks’. Analo-
gously to LOGO graphics, we find inside its learned library
parametric ‘options’ [52], or ‘planning macros’, for building
blocks towers (Fig. 9B), including concepts like arches, stair-
cases, and bridges, which we also see recombined in many
novel ways in the model’s dreams (Fig. 9C,D).

In LOGO graphics and towers, the system’s learned library
effectively embodies a probabilistic generative model over
images and plans, respectively. For generative regexes, each
individual program is a probabilistic generative model. The
system here learns to learn regular expressions that describe
the structure of typically occurring text concepts, such as
phone numbers, dates, times, or monetary amounts (Fig. 10).
It can explain many real-world text patterns and use its ex-
planations as a probabilistic generative model to imagine
new examples of these concepts. For instance, it can infer an

844

DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning PLDI ’21, June 20ś25, 2021, Virtual, Canada

A

B

C

D

Figure 7. (A-B) Test set accuracy. Generative text modeling: posterior predictive likelihood of held-out strings on held out
tasks, normalized per-character. Error bars: ±1 std. dev. over 5 runs with different random seeds (compute limits restricted us
to 3 EC2 runs, except 2 such runs for LOGO and 0 for generative text). (C-D) Evolution of library structure over wake/sleep
cycles (darker: earlier cycles; brighter: later cycles). Each dot is a single wake/sleep cycle for a single run on a single domain.
Deeper (C) and larger (D) libraries correlate with solving more tasks. The dreaming phase bootstraps these deeper, broader
libraries, and also, for a fixed library structure, dreaming leads to higher performance.

abstract pattern behind the examples $5.70, $2.80, $7.60, . . . ,
to generate $2.40 and $3.30 as other examples of the same
concept. Given patterns with exceptions, such as -4.26, -1.69,
-1.622, . . . , -1 it infers a probabilistic model that typically gen-
erates strings such as -9.9 and occasionally generates strings
such as -2. It can also learn more esoteric concepts, which
humans may find unfamiliar but can still readily learn and
generalize from a few examples: Given examples -00:16:05.9,
-00:19:52.9, -00:33:24.7, . . . , it infers a generative concept
that produces -00:93:53.2, as well as plausible near misses
such as -00:23=43.3.

5.2 From Learning Libraries to Learning Languages

Our experiments up to now study how DreamCoder grows
from a łbeginnerž state given basic domain-specific proce-
dures, such that only the easiest problems have simple, short

solutions, to an łexpertž state with concepts allowing even
the hardest problems to be solved with short, meaningful
programs. Now we ask whether it is possible to learn from
a more minimal starting state, without even basic domain
knowledge: CanDreamCoder start with only highly generic
programming and arithmetic primitives, and grow a domain-
specific language with both basic and advanced domain con-
cepts allowing it to solve all the problems in a domain?

Motivated by classic work on inferring physical laws from
experimental data [28, 45, 49], we first taskDreamCoderwith
learning equations describing 60 different physical laws and
mathematical identities taken from AP and MCAT physics
łcheat sheetsž, based on numerical examples of data obey-
ing each equation (Appendix Tbl. 1). The full dataset in-
cludes many well-known laws in mechanics and electromag-
netism, which are naturally expressed using concepts like

845

PLDI ’21, June 20ś25, 2021, Virtual, Canada K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A. Solar-Lezama, J. Tenenbaum

A

B C

semicircle(r)

polygon(n, ℓ)

s-curve(r)

arc(n, ℓ, θ)

radial symmetry(n, body)

D E

Figure 8. (A): 20 (out of 160) LOGO graphics tasks.
(B-C): Example learned library routines for draw-
ing families of curves (B) as well as primitives
that take entire programs as input (C). Each im-
age shows the same library code executed with
different arguments. (D-E): Dreams change dra-
matically over the course of learning reflecting
learned expertise. Before learning (D) dreams can
use only a few simple drawing routines and are
largely unstructured; the majority are simple line
segments. After twenty iterations of wake-sleep
learning (E) dreams become more complex by re-
combining learned library concepts in ways never
seen in the training tasks. Color shows the model’s
drawing trajectory, from start (blue) to finish (pink).
Panels (D-E) illustrate the most interesting dreams
found across five runs, before and after learning.

A

B

arch(h) pyramid(h)

wall(w, h) bridge(w, h)

C D

Figure 9. (A) Example tower building tasks. (B) Four learned
library routines. Dreams both before (C) and after (D) learn-
ing show representative plans the model can imagine build-
ing. Dreams are selected from five different runs.

vectors, forces, and ratios. Rather than give DreamCoder
these mathematical abstractions, we initialize the system
with a much more generic basis Ð just a small number of
recursive sequence manipulation primitives like map and fold,
and arithmetic Ð and test whether it can learn an appropriate
mathematical language of physics. After 8 wake/sleep cycles
DreamCoder can solve 93.3% of the laws and identities in
the dataset (best of five runs, mean 84.3%).3 It first learns
the building blocks of vector algebra, such as inner products,

3For held-out test problems, as Sec. 5.1 studies, mean accuracy matters most.

For finding the łbestž library, one looks at the run with max solved

Input MAP program Samples

(210)
(220)
(41)
(635)
(38)

Full (dd(d)*)
(220)
(461)

No
Library

(dd(d)*.
(14u
(2040)

No Rec (dd(d)*)
(68)
(308)

$5.70
$3.40
$2.80
$5.40
$3.70

Full $d.d0
$2.40
$3.30

No
Library

$d.d0
$5=50
$7#40

No Rec $(d)*.(d)*0
$.0
$873.30

(715) 967-2697
(608) 819-2220
(920) 988-2524
(608) 442-0253
(262) 723-4043

Full (ddd) ddd-dddd
(099) 242-2029
(948) 452-9842

No
Library

.ddd) ddd.dddd
?773) 726-6866
m627) 674,0602

No Rec .(d)*) (d)*dd.(d)*
z40192) 51(8
=2) 279-876273

Figure 10. Results on held-out text generation tasks. Sys-
tem observes 5 strings (‘Input’) and infers a probabilistic
regex (‘MAP program’śregex primitives highlighted in red),
from which it can imagine more examples of the text concept
(‘Samples’). No Library: Dreaming only (ablates library learn-
ing). No Rec: Abstraction only (ablates recognition model).
See also Appendix Fig. 12

846

DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning PLDI ’21, June 20ś25, 2021, Virtual, Canada

vector sums, and norms (Fig. 11A). These operations have
many algebraic symmetries, and accordingly our symmetry-
breaking recognition model gives a slight edge over EC2,
which solves up to 86.6% of the tasks (best of three runs,
mean 81.1%; compute limits restricted us to 3 runs). After
acquiring these vector operations, DreamCoder then uses
this mathematical vocabulary to construct concepts underly-
ing multiple physical laws, such as the inverse square law
schema that enables it to learn Newton’s law of gravitation
and Coulomb’s law of electrostatic force, or the quadratic
form underlying equations of ballistic motion and angular
motion over time, effectively undergoing a ‘change of basis’
from the initial recursive sequence processing language to a
physics-style basis.
Could DreamCoder also learn this recursive sequence

manipulation language? We initialized the system with a
minimal subset of 1959 Lisp primitives (if, =, >, +, -, 0, 1,
cons, car, cdr, nil, and is-nil, all present in some form in
McCarthy’s 1959 Lisp [33]), and asked it to solve 20 basic
programming tasks, like those used in introductory computer
science classes (Figure 19). Crucially the initial language also
includes primitive recursion (the Y combinator), which in
principle allows learning to express any recursive function,
but no other recursive function is given to start; previously
we had sequestered recursion within higher-order functions
(map, fold, . . .) given to the learner as primitives. We did not
use the recognition model for this experiment: a bottom-up
pattern recognizer is of little use for acquiring this abstract
knowledge from less than two dozen problems.

With enough compute time (roughly five days on 64 CPUs),
DreamCoder learns to solve all 20 problems, and in so do-
ing assembles a library equivalent to the modern repertoire
of functional programming idioms, including map, fold, zip,
length, and arithmetic operations such as building lists of
natural numbers between an interval (see Fig. 11B). All these
routines are expressible in terms of the higher-order function
fold and its dual unfold, which, in a precise formal manner,
are the two most elemental operations over recursive data
ś a discovery termed łorigami programmingž [19]. Dream-
Coder retraced the origami style: first reinventing fold, then
unfold, and then defining all other recursive functions in
terms of folding and unfolding.
In contrast, EC2 uses a simpler library learning method.

When run on this data set, it fails to uncover the origami
basis: instead, it builds a bigger library (14 functions vs. 11
w/ DreamCoder) of less generic operators, and cannot solve
the harder ‘zipping’ tasks. As with our list processing domain
(Fig. 7B), sophisticated refactoring proves valuable for skillful
functional programming.

6 Discussion

Related work. Existing neural program synthesis systems
pair a fixed DSL to a learned neural network that guides

program search [4, 15, 18, 38, 42]. All such systems pre-
dict a distribution over programs conditioned on a specifica-
tion, ranging from unigram distributions [34], to bigram-like
ones [29, 30], to neural autoregressive models [12]. We build
on these ideas by showing that a bigram distribution, trained
correctly, suffices to break many syntactic symmetries in the
domain-specific language, which is especially valuable when
that language grows over time, as in DreamCoder.
Recent works for learning DSLs or libraries function by

inferring reusable pieces of code [10, 14, 31, 32] (c.f. predicate
invention in ILP [36] and ADFs in genetic programming [40]).
These systems typically work through either memoization
(caching reused subtrees, i.e. [10, 32], or reused command
sequences, as an [29]), or antiunification (caching reused
tree-templates that unify with program syntax trees, i.e. [14,
21, 24, 47]). Our abstraction sleep algorithm works through
automatic refactoring, discovering and incorporating into
the library syntax trees which are not present in the surface
form of programs available to the learner.

Conceptual connections exist between DreamCoder and
the cognitive science literatures on dual-process models [16],
and human expertise [5, 6]. These models partition exper-
tise into declarative and procedural knowledge. Declarative
concepts have explicit, symbolic structure: i.e., for a program-
mer, concepts such as depth-first-search or sorting. Human
experts also possess implicit procedural skill in deploying
those concepts to quickly solve new problems. Compared to
novices, experts more faithfully classify problems based on
the łdeep structurež of their solutions [5, 6], intuiting which
compositions of concepts are likely to solve a task even be-
fore searching for a solution. Most learning-to-synthesize
systems embed fixed declarative knowledge in a dsl, and
acquire procedural skill by learning to map a problem specifi-
cation to a distribution over programs in the dsl. In contrast,
DreamCoder is more reminiscent of human learning in
jointly acquiring both procedural and declarative knowledge
from its experience solving problems in a given corpus.
Outlook.We have fused and improved two technologies for
learned program synthesisślibrary learning and neurally-
guided searchśshowing how they can synergistically boot-
strap each other in a wake-sleep system applicable to classic
synthesis domains and AI problems. Further combining li-
brary learning with hybrid discrete/continuous or neurosym-
bolic program representations [56] could be valuable, espe-
cially for scaling to real-world domains with messier struc-
ture than those considered here. Still, the full problem of
automatically constructing a domain-specific language and
learning to use it remains a major open challenge: learning
not just the components of a dsl, but also its data types,
idioms, and design patterns, and all the dimensions of ex-
pertise needed to use these tools effectively to solve new
problems as human programmers do.

847

PLDI ’21, June 20ś25, 2021, Virtual, Canada K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A. Solar-Lezama, J. Tenenbaum

Figure 11. (A) Learning a language for physical laws starting with recursive list routines such as map and fold. DreamCoder ob-
serves numerical data from 60 physical laws and relations, and learns concepts from vector algebra (e.g., dot products) and
classical physics (e.g., inverse-square laws). Vectors are represented as lists of numbers. Physical constants are expressed in
Planck units. (B) Learning a language for recursive list routines starting with only recursion and primitives found in 1959 Lisp.
DreamCoder rediscovers the łorigamiž basis of functional programming, learning fold and unfold at the root, with other basic
primitives as variations on one of those two families (e.g., map and filter in the fold family).

Acknowledgments

We thank L. Schulz, J. Andreas, T. Kulkarni, M. Kleiman-
Weiner, J. M. Tenenbaum, M. Bernstein, S. Tenka, N. Fijalkow,
P. Bielik, E. Spelke, and our anonymous reviewers for com-
ments that greatly improved the manuscript. Supported by
grants from the Air Force Office of Scientific Research, the

Army Research Office, the NSF under Grant No. 1918839 and
NSF-funded Center for Brains, Minds, and Machines, the
MIT-IBM Watson AI Lab, Google, Microsoft and Amazon,
and NSF graduate fellowships to K. Ellis and M. Nye. Opin-
ions and findings in this material are those of the authors
and do not necessarily reflect the views of the NSF.

848

DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning PLDI ’21, June 20ś25, 2021, Virtual, Canada

References
[1] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama.

2017. Sygus-comp 2017: Results and analysis. arXiv preprint

arXiv:1711.11438 (2017). https://doi.org/10.4204/EPTCS.260.9

[2] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian

Nowozin, and Daniel Tarlow. 2016. DeepCoder: Learning to Write

Programs. ICLR (2016).

[3] ChristopherM. Bishop. 2006. Pattern Recognition andMachine Learning.

Springer-Verlag New York, Inc.

[4] Xinyun Chen, Chang Liu, and Dawn Song. 2018. Execution-guided

neural program synthesis. ICLR (2018).

[5] M.T.H. Chi, R. Glaser, and M.J. Farr. 1988. The Nature of Expertise.

Taylor & Francis Group. https://doi.org/10.4324/9781315799681

[6] Michelene TH Chi, Paul J Feltovich, and Robert Glaser. 1981. Cate-

gorization and representation of physics problems by experts and

novices. Cognitive science 5, 2 (1981). https://doi.org/10.1207/

s15516709cog0502_2

[7] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry

Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014.

Learning phrase representations using RNN encoder-decoder for sta-

tistical machine translation. arXiv preprint arXiv:1406.1078 (2014).

https://doi.org/10.3115/v1/D14-1179

[8] Andrew Cropper. 2019. Playgol: Learning Programs Through Play.

IJCAI (2019). https://doi.org/10.24963/ijcai.2019/841

[9] Luis Damas and Robin Milner. 1982. Principal type-schemes for func-

tional programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages. ACM, 207ś212.

https://doi.org/10.1145/582153.582176

[10] Eyal Dechter, Jon Malmaud, Ryan P. Adams, and Joshua B. Tenenbaum.

2013. Bootstrap Learning via Modular Concept Discovery. In IJCAI.

[11] David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: a

theorem prover for program checking. J. ACM 52, 3 (2005), 365ś473.

https://doi.org/10.1145/1066100.1066102

[12] Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and

Pushmeet Kohli. 2017. Neural Program Meta-Induction. In NIPS.

[13] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh,

Abdel-rahmanMohamed, and Pushmeet Kohli. 2017. RobustFill: Neural

Program Learning under Noisy I/O. ICML (2017).

[14] Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-

Lezama, and Josh Tenenbaum. 2018. Library Learning for Neurally-

Guided Bayesian Program Induction. In NeurIPS.

[15] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum,

and Armando Solar-Lezama. 2019. Write, execute, assess: Program

synthesis with a repl. In Advances in Neural Information Processing

Systems. 9169ś9178.

[16] Jonathan St BT Evans. 1984. Heuristic and analytic processes in rea-

soning. British Journal of Psychology 75, 4 (1984), 451ś468. https:

//doi.org/10.1111/j.2044-8295.1984.tb01915.x

[17] John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing

data structure transformations from input-output examples. In PLDI.

https://doi.org/10.1145/2737924.2737977

[18] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami,

and Oriol Vinyals. 2018. Synthesizing Programs for Images using

Reinforced Adversarial Learning. ICML (2018).

[19] Jeremy Gibbons. 2003. Origami programming. https://doi.org/10.1017/

S0956796804245324

[20] Sumit Gulwani. 2011. Automating string processing in spreadsheets

using input-output examples. In ACM SIGPLAN Notices, Vol. 46. ACM,

317ś330. https://doi.org/10.1145/1926385.1926423

[21] Robert John Henderson. 2013. Cumulative learning in the lambda

calculus. Ph.D. Dissertation. Imperial College London. https://doi.org/

10.25560/24759

[22] Luke Hewitt, Tuan Anh Le, and Joshua Tenenbaum. 2020. Learning to

learn generative programs with Memoised Wake-Sleep. In Conference

on Uncertainty in Artificial Intelligence. PMLR, 1278ś1287.

[23] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal.

1995. The "wake-sleep" algorithm for unsupervised neural networks.

Science 268, 5214 (1995), 1158ś1161.

[24] Irvin Hwang, Andreas Stuhlmüller, and Noah D Goodman. 2011. In-

ducing probabilistic programs by Bayesian program merging. arXiv

preprint arXiv:1110.5667 (2011).

[25] Diederik P Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic

optimization. arXiv preprint arXiv:1412.6980 (2014).

[26] Kenichi Kurihara and Taisuke Sato. 2006. Variational Bayesian gram-

mar induction for natural language. In International Colloquium on

Grammatical Inference. Springer, 84ś96. https://doi.org/10.1007/

11872436_8

[27] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum.

2015. Human-level concept learning through probabilistic program

induction. Science 350, 6266 (2015), 1332ś1338. https://doi.org/10.

1126/science.aab3050

[28] Pat Langley. 1987. Scientific discovery: Computational explorations

of the creative processes. MIT Press. https://doi.org/10.1177/

027046768800800417

[29] Miguel Lázaro-Gredilla, Dianhuan Lin, J Swaroop Guntupalli, and

Dileep George. 2019. Beyond imitation: Zero-shot task transfer on

robots by learning concepts as cognitive programs. Science Robotics 4,

26 (2019), eaav3150. https://doi.org/10.1126/scirobotics.aav3150

[30] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Ac-

celerating search-based program synthesis using learned probabilis-

tic models. ACM SIGPLAN Notices 53, 4 (2018), 436ś449. https:

//doi.org/10.1145/3296979.3192410

[31] Percy Liang, Michael I. Jordan, and Dan Klein. 2010. Learning Pro-

grams: A Hierarchical Bayesian Approach. In ICML.

[32] Dianhuan Lin, Eyal Dechter, Kevin Ellis, Joshua B. Tenenbaum, and

Stephen Muggleton. 2014. Bias reformulation for one-shot function

induction. In ECAI 2014. https://doi.org/10.3233/978-1-61499-419-0-

525

[33] John McCarthy. 1960. Recursive functions of symbolic expressions

and their computation by machine, Part I. Commun. ACM 3, 4 (1960),

184ś195. https://doi.org/10.1145/367177.367199

[34] Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and

Adam Kalai. 2013. A machine learning framework for programming

by example. In ICML. 187ś195.

[35] Microsoft. 2016. F# Guide: Units of Measure. https://docs.microsoft.

com/en-us/dotnet/fsharp/language-reference/units-of-measure

[36] Stephen H Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad.

2015. Meta-interpretive learning of higher-order dyadic datalog: Pred-

icate invention revisited. Machine Learning 100, 1 (2015), 49ś73.

https://doi.org/10.1007/s10994-014-5471-y

[37] Stephen H Muggleton, Ute Schmid, Christina Zeller, Alireza

Tamaddoni-Nezhad, and Tarek Besold. 2018. Ultra-Strong Machine

Learning: comprehensibility of programs learned with ILP. Machine

Learning 107, 7 (2018), 1119ś1140. https://doi.org/10.1007/s10994-018-

5707-3

[38] Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and Armando Solar-

Lezama. 2019. Learning to infer program sketches. ICML (2019).

[39] Benjamin C. Pierce. 2002. Types and programming languages. MIT

Press. IśXXI, 1ś623 pages.

[40] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. 2008.

A field guide to genetic programming. Published via http://lulu.com

and freely available at http://www.gp-field-guide.org.uk. (With

contributions by J. R. Koza).

[41] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-

gram synthesis from polymorphic refinement types. ACM SIGPLAN

Notices 51, 6 (2016), 522ś538. https://doi.org/10.1145/2908080.2908093

[42] Illia Polosukhin and Alexander Skidanov. 2018. Neural program search:

Solving programming tasks from description and examples. arXiv

preprint arXiv:1802.04335 (2018).

849

https://doi.org/10.4204/EPTCS.260.9
https://doi.org/10.4324/9781315799681
https://doi.org/10.1207/s15516709cog0502_2
https://doi.org/10.1207/s15516709cog0502_2
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.24963/ijcai.2019/841
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1111/j.2044-8295.1984.tb01915.x
https://doi.org/10.1111/j.2044-8295.1984.tb01915.x
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1017/S0956796804245324
https://doi.org/10.1017/S0956796804245324
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.25560/24759
https://doi.org/10.25560/24759
https://doi.org/10.1007/11872436_8
https://doi.org/10.1007/11872436_8
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1177/027046768800800417
https://doi.org/10.1177/027046768800800417
https://doi.org/10.1126/scirobotics.aav3150
https://doi.org/10.1145/3296979.3192410
https://doi.org/10.1145/3296979.3192410
https://doi.org/10.3233/978-1-61499-419-0-525
https://doi.org/10.3233/978-1-61499-419-0-525
https://doi.org/10.1145/367177.367199
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/units-of-measure
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/units-of-measure
https://doi.org/10.1007/s10994-014-5471-y
https://doi.org/10.1007/s10994-018-5707-3
https://doi.org/10.1007/s10994-018-5707-3
https://doi.org/10.1145/2908080.2908093

PLDI ’21, June 20ś25, 2021, Virtual, Canada K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A. Solar-Lezama, J. Tenenbaum

[43] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A framework

for inductive program synthesis. ACM SIGPLAN Notices 50, 10 (2015),

107ś126. https://doi.org/10.1145/2858965.2814310

[44] Stuart J. Russell and Peter Norvig. 2003. Artificial Intelligence: AModern

Approach (2 ed.). Pearson Education.

[45] Michael Schmidt and Hod Lipson. 2009. Distilling free-form natural

laws from experimental data. science 324, 5923 (2009), 81ś85. https:

//doi.org/10.1126/science.1165893

[46] Sanjit A. Seshia. 2012. Sciduction: Combining Induction, Deduction,

and Structure for Verification and Synthesis. In Proceedings of the

Design Automation Conference (DAC). 356ś365. https://doi.org/10.

1145/2228360.2228425

[47] Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, and Oleksandr

Polozov. 2019. Program Synthesis and Semantic Parsing with Learned

Code Idioms. NeurIPS (2019).

[48] Vighnesh Shiv and Chris Quirk. 2019. Novel positional encodings

to enable tree-based transformers. In Advances in Neural Information

Processing Systems.

[49] Herbert A Simon, Patrick W Langley, and Gary L Bradshaw. 1981.

Scientific discovery as problem solving. Synthese 47, 1 (1981), 1ś27.

https://doi.org/10.1080/02698599208573403

[50] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical

Networks for Few-shot Learning. In Advances in Neural Information

Processing Systems.

[51] Shashank Srivastava, Oleksandr Polozov, Nebojsa Jojic, and Christo-

pher Meek. 2020. Learning Web-based Procedures by Reasoning over

Explanations and Demonstrations in Context. In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, ACL

2020, Online, July 5-10, 2020. Association for Computational Linguistics,

7652ś7662. https://doi.org/10.18653/v1/2020.acl-main.684

[52] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between

MDPs and semi-MDPs: A framework for temporal abstraction in rein-

forcement learning. Artificial intelligence 112, 1-2 (1999), 181ś211.

[53] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009.

Equality saturation: a new approach to optimization. In ACM SIG-

PLAN Notices, Vol. 44. ACM, 264ś276. https://doi.org/10.1145/1480881.

1480915

[54] David D. Thornburg. 1983. Friends of the Turtle. Compute! (March

1983).

[55] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,

and Pieter Abbeel. 2017. Domain randomization for transferring deep

neural networks from simulation to the real world. In 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE,

23ś30. https://doi.org/10.1109/IROS.2017.8202133

[56] Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton,

and Swarat Chaudhuri. 2018. Houdini: Lifelong learning as program

synthesis. In Advances in Neural Information Processing Systems. 8687ś

8698.

[57] Philip Wadler. 1990. Comprehending monads. In Proceedings of the

1990 ACM conference on LISP and functional programming. ACM, 61ś78.

https://doi.org/10.1145/91556.91592

[58] Patrick Winston. 1972. The MIT Robot. Machine Intelligence (1972).

850

https://doi.org/10.1145/2858965.2814310
https://doi.org/10.1126/science.1165893
https://doi.org/10.1126/science.1165893
https://doi.org/10.1145/2228360.2228425
https://doi.org/10.1145/2228360.2228425
https://doi.org/10.1080/02698599208573403
https://doi.org/10.18653/v1/2020.acl-main.684
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1145/91556.91592

