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ABSTRACT
Database and Artificial Intelligence (AI) can benefit from each other.
On one hand, AI can make database more intelligent (AI4DB). For
example, traditional empirical database optimization techniques
(e.g., cost estimation, join order selection, knob tuning, index and
view advisor) cannot meet the high-performance requirement for
large-scale database instances, various applications and diversified
users, especially on the cloud. Fortunately, learning-based tech-
niques can alleviate this problem. On the other hand, database tech-
niques can optimize AI models (DB4AI). For example, AI is hard
to deploy, because it requires developers to write complex codes
and train complicated models. Database techniques can be used to
reduce the complexity of using AI models, accelerate AI algorithms
and provide AI capability inside databases. DB4AI and AI4DB have
been extensively studied recently. In this tutorial, we review ex-
isting studies on AI4DB and DB4AI. For AI4DB, we review the
techniques on learning-based database configuration, optimization,
design, monitoring, and security. For DB4AI, we review AI-oriented
declarative language, data governance, training acceleration, and
inference acceleration. Finally, we provide research challenges and
future directions in AI4DB and DB4AI.
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1 INTRODUCTION
Artificial intelligence (AI) and database (DB) have been extensively
studied over the last five decades. First, database systems have been
widely used in many applications, because databases are easy to
use by providing user-friendly declarative query paradigms and
encapsulating complicated query optimization functions. Second,
AI has recently made breakthroughs due to three driving forces:
large-scale data, new algorithms and high computing power.

Moreover, AI and database can benefit from each other. On one
hand, AI can make database more intelligent (AI4DB). For exam-
ple, traditional empirical database optimization techniques (e.g.,
cost estimation, join order selection, knob tuning, index and view
advisor) are based on empirical methodologies and specifications,
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and requires human involvement (e.g., DBAs) to tune and maintain
the databases. Thus existing empirical techniques cannot meet the
high-performance requirement for large-scale database instances,
various applications and diversified users, especially on the cloud.
Fortunately, learning-based techniques can alleviate this problem.
For instance, deep learning can improve the quality of cost esti-
mation, reinforcement learning can be used to optimize join order
selection, and deep reinforcement learning can be used to tune
database knobs [3, 42, 87].

On the other hand, database techniques can optimize AI models
(DB4AI). In many real applications, AI is hard to deploy, because it
requires developers to write complex codes and train complicated
models. Fortunately, database techniques can be used to reduce
the complexity of using AI models, accelerate AI algorithms and
provide AI capability inside databases. For example, database tech-
niques can be used to improve data quality (e.g., data discovery, data
cleaning, data integration, data labeling, and data lineage), auto-
matically select appropriate models, recommend model parameters,
and accelerate the model inference.

DB4AI and AI4DB have been extensively studied recently [17,
26, 41, 44, 67, 73, 76, 77, 89]. In this tutorial, we summarize existing
techniques on DB4AI and AI4DB, and provide research challenges
and open problems.
Tutorial Overview.We will provide a 3 hours tutorial. In the first
section (1.5 hours), we introduce AI4DB techniques.
(1) Learning-based database configuration (20min). It aims to utilize
machine learning techniques to automate database configurations,
e.g., deep reinforcement learning for knob tuning [42, 87], classifier
for index advisor [30, 50], reinforcement learning for view advi-
sor [21, 30, 45, 84], SQL rewriter, and reinforcement learning for
database partition [23].
(2) Learning-based database optimization (20min). It aims to uti-
lize machine learning techniques to address the hard problems in
database optimization, e.g., SQL rewrite, cost/cardinality estima-
tion [70, 80, 82], join order selection [54, 55, 83], and end-to-end
optimizer [53, 80].
(3) Learning-based database design (20min). It aims to utilize ma-
chine learning techniques to design database components, e.g.,
learned indexes [12, 24, 59], learned KV store design [24, 25], and
transaction management [86].
(4) Learning-based database monitoring (20min). Traditional meth-
ods rely on DBAs to monitor database activities and report the
anomalies, and these methods are incomplete and inefficient for
autonomous monitoring. Thus, machine learning based techniques
are proposed to predict query arrival rates [49], estimate query per-
formance [56, 90], diagnose root causes of slow queries [51], and
determine when and how to monitor what database metrics [28].
(5) Learning-based database security (10min). Traditional database
security techniques (e.g., data masking and auditing, sensitive data
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Figure 1: Overview of DB4AI and AI4DB.
discovery) rely on user-defined rules, which cannot automatically
detect unknown security vulnerabilities. Learning based algorithms
are proposed to discover sensitive data, detect anomaly [46], con-
duct access control [18], and avoid SQL injection [72].

In the second section, we focus on DB4AI techniques (70min). To
lower the barrier for using AI, the database community extends the
database techniques to encapsulate the complexity of AI algorithms
and enable users to use declarative languages, e.g., SQL, to utilize
the AI algorithms.
(1) Declarative language model (15min). SQL is relatively easy to be
used and widely accepted in database systems. We can extend SQL
to support AI models [66], and we can also design user-friendly
tools to support AI models [15].
(2) Data governance (15min). Data quality is important for machine
learning, and we can use data governance techniques to improve
data quality and enhance the efficiency, e.g., data discovery [16],
data cleaning [79], data labeling [40, 57], and data lineage.
(3) Model training (20min). Model training is a time-consuming and
complicated process, and thus it requires optimization techniques,
e.g., feature selection [85], model selection, model management [75],
hardware acceleration [29].
(4)Model inference (20min). Model inference aims to effectively infer
the results using a trained model with in-database optimization
techniques, e.g., operator support, operator selection, execution
acceleration.

In the third section, we provide research challenges and open
problems (20min). For AI4DB, we discuss AI for transactions and

database reliability when AI models cannot converge. For DB4AI,
we discuss how to enhance AI training inside database, how to
reduce errors with error-tolerant techniques, and build a database-
like AI optimizer. For hybrid AI and DB, we present hybrid data
models, hybrid computation models, and hybrid AI&DB systems.
Target Audience. The intended audience include SIGMOD atten-
dees from both research and industry communities that are inter-
ested in database optimization and machine learning. We will not
require any prior background knowledge in database or machine
learning domain. The tutorial will be self-contained, and we will
include a broad introduction and motivating examples for non-
specialists to follow.
Difference with Existing Tutorials. There are some existing tu-
torials on machine learning and databases [62, 64, 76]. Different
from them, we focus on the fundamental techniques for using AI
techniques to optimize databases and using DB techniques to accel-
erate AI models.

2 TUTORIAL OUTLINE
We start with a brief overview of this tutorial, to give the audience
a clear outline and talk goals. We then summarize existing tech-
niques of AI4DB, DB4AI, and hybrid AI and DB. Finally, we provide
research challenges and open problems.

2.1 AI for DB
Traditional database design is based on empirical methodologies
and specifications, and requires human involvement (e.g., DBAs)
to tune and maintain the databases. AI techniques can be used
to alleviate these limitations – exploring larger design space than
humans and replacing heuristics to address hard problems. We
categorize existing AI4DB techniques as below.
Learning-based Database Configuration. It aims to utilize AI
techniques to automate database configurations, including knob
tuning, index advisor, materialized view advisor, SQL rewriter, and
database partition.
(1) Knob tuning. Databases have hundreds of tunable system knobs
(e.g., Work_Mem, Max_Connections) [48], which control many im-
portant aspects of databases (e.g., memory allocation, I/O control,
logging) and affect database performance. Traditional manual meth-
ods leverage DBAs to manually tune these knobs based on their
experiences but they always spend too much time to tune the knobs
(several days to weeks) and cannot handle millions of database
instances on cloud databases. To address this problem, the data-
base community utilizes learning-based techniques [38, 42, 87] to
automate knob tuning, which not only achieve higher tuning per-
formance but less tuning time. For example, CDBTune [87] models
database tuning as a sequential decision problem and relies on rein-
forcement learning to improve tuning performance. Moreover, since
CDBTune only takes previous database state as input, QTune [42]
further characterizes query features using deep learning and can
achieve finer granularity tuning, e.g., query-level tuning, session-
level tuning, and system-level tuning.
(2) Index advisor. Indexes are vital to speed up query execution,
and indexes on appropriate columns can achieve high performance.
However, it is expensive to recommend and build indexes with large
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number of column combinations. Hence, there are some learning-
based works that automatically recommend indexes [30, 50]. For
example, Sadri et al [65] propose a reinforcement-learning-based
index selection method. First, without expert rules, they denote
workload features as the arrival rate of queries, column features
as the access frequency and selectivity of each column. Second,
they use the Markov Decision Process model (MDP) to learn from
features of queries, columns, and outputs a set of actions, which
denote creating/dropping an index.
(3) View advisor. It is important in DBMS that utilizes views to im-
prove the query performance based on the space-for-time trade-off
principle. Judiciously selecting materialized views can significantly
improve the query performance within an acceptable overhead.
However, existing methods rely on DBAs to generate and main-
tain materialized views. Unfortunately, even DBAs cannot handle
large-scale databases, especially cloud databases that have millions
of database instances and support millions of users. Thus, it calls
for the view advisor, which automatically identifies the appropriate
views for a given query workload [30, 45, 84]. For example, Han et
al [21] propose a deep reinforcement learning method to estimate
the benefit of different MV candidates and queries, and select MVs
for dynamic workloads.
(4) SQL rewriter. SQL rewriter can remove the redundant or inef-
ficient operators in logic query and enhance query performance
significantly. However, there are numerous rewrite orders for a slow
query (e.g., different operators and applicable rules), and traditional
empirical query rewriting methods only rewrite in a fixed order
(e.g., top down) and may derive suboptimal queries. Instead, deep re-
inforcing learning can be used to judiciously select the appropriate
rules and apply the rules in a good order.
(5) Database Partition. Traditional methods heuristically select
columns as partition keys (single column mostly) and cannot bal-
ance between load balance and access efficiency. Some work [23]
also utilizes reinforcement learning model to explore different par-
tition keys and implements a fully-connected neural network to
estimate partition benefits.
Learning-based Database Optimization. It aims to utilize ma-
chine learning techniques to address the hard problems in database
optimization, including cost estimation, join order selection, and
end-to-end optimizers.
(1) Cardinality/Cost estimation. Database optimizer relies on cardi-
nality and cost estimation to select an optimized plan, but traditional
techniques cannot effectively capture the correlations between dif-
ferent columns/tables and thus cannot provide high-quality esti-
mation. Recently, deep learning based techniques (e.g., CNN [13],
RNN [70], Mixture Model [60]) are proposed to estimate the cost
and cardinality by using deep neural networks to capture data
correlations. For example, a LSTM based work [70] learns a repre-
sentation for each sub-plan with physical operator and predicates,
and outputs the estimated cardinality and cost simultaneously by
using an estimation layer.
(2) Join order selection. A SQL query may have millions, even billions
of possible plans and it is very important to efficiently find a good
plan. Traditional heuristics methods cannot find optimal plans for
dozens of tables and dynamic programming is costly to explore the

huge plan space. Thus there are some deep reinforcement learning
based methods [54, 55, 83] that automatically select good plans.
For example, SkinnerDB [74] uses a Monte-Carlo tree search based
methods to try out different join orders in each time slice and can
optimize the join order on the fly.
(3) End-to-end optimizer. A full-fledged optimizer not only replies on
cost estimation and join order, but also requires to consider indexes
and views, and it is important to design an end-to-end optimizer.
Learning-based optimizers [53, 55, 80] use deep neural networks
to optimize SQL queries. For example, Marcus et al [55] propose
an end-to-end optimizer NEO to generate the final physical plan.
Without information from the cost model, NEO uses PostgreSQL’s
plan to pre-train the neural network and uses latency as feedback to
train the neural network. This end-to-end method learns from the
latency to generate the whole physical plan, which can be applied
to many scenarios and robust to estimation errors.
Learning-based Database Design. Traditional databases are de-
signed by database architects based on their experiences, but data-
base architects can only explore a limited number of possible design
spaces. Recently some learning-based self-design techniques have
been proposed.
(1) Learned indexes [12, 24, 59] are proposed for not only reducing
the index size but also improving the query performance using the
indexes. For example, Kraska et al. [32] propose that indexes are
models, where the B+tree index can be seen as a model that maps
each query key to its page. Learned indexes are also studied for
data updates and high-dimensional data.
(2) Learned data structure design. Different data structures may be
suit for different environments (e.g., different hardware, different
read/write transactions) and it is hard to design appropriate struc-
tures for every scenario. Techniques like data structure alchemy [24]
are proposed to automatically recommend and design data struc-
tures. They define the design space by the fundamental design com-
ponents (e.g., fence pointers, links, and temporal partitioning). To
design a data structure, they first identify the bottleneck of the total
cost and then tweak different knobs in one direction until reaching
the cost boundary or the total cost is minimal, which is similar to
the gradient descent procedure.
(3) Learning-based transaction management. Effective workload
scheduling can greatly improve the performance by avoiding
the data conflicts. We introduce learned transaction management
techniques from two aspects: transaction prediction and transac-
tion scheduling. First, for transaction prediction, traditional work-
load prediction methods are rule-based. For example, a rule-based
method [11] uses domain knowledge of database engines (e.g., in-
ternal latency, resource utilization) to identify signals relevant to
workload characteristics, which takes much time to rebuild a statis-
tics model when workload changes, so Ma et al. [49] propose an
ML-based system that predicts the future trend of different work-
loads. Second, for transaction scheduling, traditional database sys-
tems either schedule workload sequentially, which cannot consider
potential conflicts, or schedule workloads based on the execution
costs predicted by the database optimizer. Sheng et al. [68] propose
a learning based transaction scheduling method, which can balance
concurrency and conflict rates using supervised algorithms.
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Learning-basedDatabaseMonitoring. Traditional methods rely
on database administrators to monitor most database activities
and report the anomalies and these methods are incomplete and
inefficient. Thus, machine learning based techniques [28, 56, 90] are
proposed for three main cases – health monitor, activity monitor
and performance prediction.
(1) Database Health Monitor (DHM). It records database health re-
lated metrics, e.g., the number of queries per second, the query
latency, to optimize database or diagnose failures. In [51], they as-
sume that intermittent slow queries with similar key performance
indicators (e.g., CPU usage, transactions per second) have the same
root causes. Thus, they first extract slow SQLs from the failure
records, cluster them with KPI states, and ask DBAs to assign root
causes for each cluster. Next, for an incoming slow SQL, they match
it to a cluster C based on similarity score of KPI states. If matched,
they use the root cause of C to notify DBAs; otherwise, they gener-
ate a new cluster and ask DBAs to assign the root causes. However,
these methods [51] cannot prevent potential database failure and
it highly relies on DBA’s experience. So Taft et al. [71] propose to
proactively monitor database to adapt to workload changes.
(2) Database Activity Monitor (DAM). It externally monitors and
controls database activities (e.g., creating new accounts, viewing
sensitive information), which are vital to protecting sensitive data.
We broadly classify DAM into two classes, activity selection and
activity trace. For activity selection, traditional DAM methods are
required to record all the activities on extra systems according to
trigger rules [10]. However, it is still a heavy burden to record all the
activities, which brings frequent data exchanges between databases
and monitoring systems. Hence, it requires to automatically select
and record risky activities, and Hagit et al. [19] take database moni-
toring as a multi-armed bandits problem (MAB), which selects risky
database activities by exploiting current policy and exploring new
policies. The goal is to train an optimal policy with the maximal
risk score.
(3) Performance Prediction. Query performance prediction is vital to
meet the service level agreements (SLAs), especially for concurrent
queries. Marcus et al [56] use deep learning to predict query la-
tency under concurrency scenarios, including interactions between
child/parent operators, and parallel plans. However, it adopts a
pipeline structure (causing information loss) and fails to capture
operator-to-operator relations like data sharing/conflict features.
Hence, Zhou et al [90] propose a performance prediction method
with graph embedding. They use a graph model to characterize con-
current queries and utilize a graph convolution network to embed
the workload graph into performance metrics.
Learning-based Database Security. Traditional database secu-
rity techniques (e.g., data masking and auditing) rely on user-
defined rules, which cannot automatically detect the unknown
security vulnerabilities. Thus, learning based algorithms [18, 46, 72]
are proposed to discover sensitive data, conduct access control, and
avoid SQL injection.
(1) Learning-based Sensitive Data Discovery. Since sensitive data
leakage will cause great financial and personal information loss, it
is important to protect the sensitive data in a database. Sensitive
data discovery aims to automatically detect and protect confidential

data. For example, Fernandez et al. propose Aurum [16], which is
a data discovery system that provides flexible queries to search
dataset based on users’ demand.
(2) Access Control. It aims to prevent unauthorized users to access
the data, including table-level and record-level access control. Tra-
ditional methods cannot effectively prevent these attacks. Recently,
machine learning based algorithms are proposed to estimate the
legality of access requests. Colombo et al [9] propose a purpose-
based access control model, which customizes control polices to
regulate data requests. As different actions and data content may
lead to different private problems, this method aims to learn legal
access purposes.
(3) SQL Injection. SQL injection is a common and harmful vulnera-
bility to database. Attackers may modify or view data that exceeds
their priorities by bypassing additional information or interfering
with the SQL statement, such as retrieving hidden data, subverting
application logic, union attacks and etc. There are mainly two types
of SQL injection detection methods that utilize machine learning
techniques, including classification tree [47, 69] and fuzzy neural
network [5].
Learning-based Database Systems. There are some learning-
based database systems which are studied by both the academia and
industry [31, 41, 61]. For example, SageDB [31] provided a vision
to specialize the database implementation by learning the data dis-
tribution (CDF models) and designing database components based
on the knowledge, e.g., learned index, learned query scheduling.

2.2 DB for AI
Declarative LanguageModel. Traditional machine learning algo-
rithms are mostly implemented with programming languages (e.g.,
Python, R) and have several limitations. First, they require engineer-
ing skills to define the complete execution logic, e.g., the iterative
patterns of model training, and tensor operations like matrix multi-
plication and flattening. Second, machine learning algorithms have
to load data from database systems, and the data import/export
costs may be very high. Instead, SQL is relatively easy to be used
and widely accepted in database systems. However, SQL lacks some
complex processing patterns (e.g., iterative training) compared with
other high-level machine learning languages. Fortunately, SQL can
be extended to support AI models [66], and we can also design
user-friendly tools to support AI models in SQL statements [15].
Data Governance. AI models rely on high-quality data, and data
governance aims to discover, clean, integrate, and label the data to
improve the data quality.
(1) Data discovery. Data discovery aims to automatically find rel-
evant datasets from data warehouse considering the applications
and user needs. Learning based data discovery [8, 16, 20, 81, 88]
enhances the ability of finding relevant data, which effectively finds
out relevant data among a large number of data sources. For exam-
ple, Fernandez et al. propose Aurum [16], which is a data discovery
system that provides flexible queries to search dataset based on
users’ demand. It leverages enterprise knowledge graph (EKG) to
capture a variety of relationships to support a wide range of queries.
The EKG is a hyper-graph where each node denotes a table col-
umn, each edge represents the relationship between two nodes and

Tutorial Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2862



hyper-edges connect nodes that are hierarchically related such as
columns in the same table.
(2) Data cleaning. Dirty or inconsistent data can affect the training
performance terribly. Data cleaning and integration techniques [14,
27, 34, 36, 39] can detect and repair the dirty data, and integrate
the data from multiple sources. Wang et al. propose a cleaning
framework ActiveClean for machine learning tasks [34]. Given a
dataset and machine learning model with a convex loss, it selects
records that can improve the performance of the model most and
cleans those records iteratively.
(3) Data labeling. We can properly utilize domain experts, crowd-
sourcing and existing knowledge to label a large number of train-
ing data for ML algorithms [1, 57]. For example, with commer-
cial public crowdsourcing platforms like Amazon Mechanical Turk
(https://www.mturk.com), crowdsourcing is an effective way to
address such tasks by utilizing hundreds or thousands of workers
to label the data.
Model Training.Model training aims to train a high-qualitymodel
for online inference. Model training is a time-consuming and com-
plicated process, and thus it requires optimization techniques, in-
cluding feature selection, model selection, model management and
hardware acceleration.
(1) Feature selection aims to search appropriate features from a large
number of possible features, which is laborious and time-consuming.
Database techniques like batching [85], materialization [35, 85],
active learning [4] are proposed to address this issue. For example,
batching and materialization techniques [85] are utilized to reduce
the feature enumeration cost. Active learning based techniques [4]
are utilized to accelerate the evaluation process.
(2) Model selection aims to select an appropriate model (and param-
eter values) from a large number of possible models. Parallelism
techniques are proposed to accelerate this step, including task par-
allel [58], bulk synchronous parallel [33], parameter server [43]
and model parallelism. A key bottleneck of this problem is model
selection throughput, i.e., the number of training configurations
is tested per unit time. High throughput allows the user to test
more configurations during a fixed period, which makes the entire
training process efficient. A solution is to enhance the through-
put is parallelism, and the popular parallelism strategies include
task parallel [58] , bulk synchronous parallel [33] , and parameter
server [43].
(3) Model management. Since model training is a trial-and-error
process that needs to maintain many models and parameters that
have been tried, it is necessary to design a model management
system to track, store and search the ML models. We review GUI-
based [6] and command-based model [75] management system.
(4) Hardware acceleration. Morden hardwares, like GPU and FPGA,
are also utilized to accelerate the model training. We introduce hard-
ware acceleration techniques in row-store and column-store [29]
databases respectively. For example, DAnA [52] parses the query
and utilizes a hardware mechanism that connects the FPGA and
database. It retrieves the training data from the buffer pool to the
accelerator directly without accessing the CPU. Besides, they de-
sign an execution model to combine thread-level and data-level
parallelism for accelerating the ML algorithms.

Model Inference. It aims to infer the results using a trained model
with in-database optimization techniques.
(1) Operator support. An ML model may contain different types of
operators (e.g., scalar, tensor), which have different optimization
requirements. Thus in-database techniques are proposed to support
AI operators [22, 78]. For example, Boehm et al. [7] propose an in-
database machine learning system SystemML. SystemML supports
matrix operations with user-defined aggregation functions, which
provide parallel data processing in the column level. For example,
Boehm et al. [7] propose an in-database machine learning system
SystemML. SystemML supports matrix operations with user-defined
aggregation functions, which provide parallel data processing in
the column level.
(2) Operator selection. The same ML model can be converted to dif-
ferent physical operators, which may bring significant performance
difference. In-database operator selection can estimate resource
consumption and judiciously schedule the operators [7, 36].
(3) Execution acceleration. Different from model training, model
inference needs to choose ML models and execute forward propa-
gation to predict for different problems. Existing execution acceler-
ation techniques include in-memory methods [37] and distributed
methods[2, 63]. In-memory methods aim to compress data into
memory and conduct in-memory computation as much as possible.
And the distributed methods route tasks to different nodes and
reduce the burden of data processing and model computation using
parallel computing.

2.3 Challenges and Open Problems
Although AI4DB and DB4AI have been extensively studied, there
are still many opportunities and challenges to apply AI4DB and
DB4AI techniques in practice, and it also calls for hybrid AI and
DB techniques.
AI4DB. There are several challenges that utilize AI techniques to
optimize databases.
(1) Model Selection. There are two challenges. First, there are differ-
ent kinds of ML models (e.g., forward-feeding, sequential, graph
embedding) and it is inefficient to manually select appropriate mod-
els and adjust the parameters. Second, it is hard to evaluate whether
a learned model is effective in most scenarios, for which a validation
model is required.
(2) Model Validation. It is hard to evaluate whether a learned model
is effective and outperforms non-learning methods. For example,
whether a knob tuning strategy really works for a workload? It
requires to design a validation model to evaluate a learned model.
(3) Model Management. Different database components may use
different ML models and it is important to provide a unified ML
platform to achieve a unified resource scheduling and a unified
model management.
(4) Training data. Most AI models require large-scale, high-quality,
diversified training data to achieve high performance. However,
it is rather hard to get training data in AI4DB, because the data
either is security critical or relies on DBAs. For example, in database
knob tuning, the training samples are collected based on DBAs’
experiences. And it is laborious to get a large number of training
samples. Moreover, to build an effective model, the training data
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should cover different scenarios, different hardware environments,
and different workloads. It calls for new methods that use a small
training dataset to get a high-quality model.
(5) Adaptability. The adaptability is a big challenge, e.g., adapting to
dynamic data updates, other datasets, new hardware environments,
and other database systems. We need to address the following
challenges. First, how to adapt a trained model (e.g., optimizer, cost
estimation) on a dataset to other datasets? Second, how to adapt
a trained model on a hardware environment to other hardware
environments? Third, how to adapt a trained model on a database
to other databases? Fourth, how to make a trained model support
dynamic data updates?
(6) Model convergence. It is very important that whether a learned
model can be converged. If the model cannot be converged, we
need to provide alternative ways to avoid making delayed and
inaccurate decisions. For example, in knob tuning, if the model
is not converged, we cannot utilize the model for online knob
suggestion.
(7) Learning for OLAP. Traditional OLAP focuses on relational data
analytics. However, in the big data era, many new data types have
emerged, e.g., graph data, time-series data, spatial data, it calls
for new data analytics techniques to analyze these multi-model
data. Moreover, besides traditional aggregation queries, many ap-
plications require to use machine learning algorithms to enhance
data analytics, e.g., image analysis. Thus it is rather challenging
to integrate AI and DB techniques to provide new data analytics
functionality.
(8) Learning for OLTP. Transaction modeling and scheduling are
rather important to OLTP systems, because different transactions
may have conflicts. However, it is not free to model and schedule
the transactions, and it calls for more efficient models that can
instantly model and schedule the transactions in multiple cores and
multiple machines.
DB4AI. There are still several challenges to utilize in-database
techniques to optimize AI algorithms.
(1) In-database training. It is challenging to support AI training in-
side databases, including model storage, model update and parallel
training. First, it is challenging to store a model in databases, such
that the model can be trained and used by multi-tenants, and we
need to consider the security and privacy issues. Second, it is chal-
lenging to update a model, especially when the data is dynamically
updated.
(2) Training acceleration using database techniques. Most of studies
focus on the effectiveness of AI algorithms but do not pay much
attention to efficiency. It calls for utilizing database techniques
to improve the performance of AI algorithms, e.g., indexes and
views. For example, self-driving vehicles require a large number of
examples for training, which is rather time consuming. Actually, it
only requires some important examples, e.g., the training cases in
the night or rainy day, but not many redundant examples. Thus we
can index the samples and features for effective training.
(3) AI optimizer. Existing studies use user-defined functions (UDF)
to support AI models, which are not effectively optimized. It re-
quires to implement the AI models as operators insider databases,
and design physical operators for each operator. Most importantly,

it requires to push down the AI operators and estimate the cost/-
cardinality of AI operators. It calls for an AI optimizer to optimize
the AI training and inference. Furthermore, it is more important to
efficiently support AI operators in a distributed environment.
(4) Fault-tolerant learning. Existing learning model training does
not consider error tolerance. If a process crashes and the whole
task will fail. We can use the error tolerance techniques to improve
the robustness of in-database learning. However, to ensure busi-
ness continuity under predictable/unpredictable disasters, database
systems must provide capabilities like fault tolerance and disaster
recovery.
AI&DB co-optimization. There are several challenges in model
support, inference, and system integration.
(1) Hybrid relational and tensor model. Traditional CPU cannot ef-
ficiently process tensor models and AI chips cannot efficiently
process relational models. It calls for effective methods that accel-
erate relational operations on AI chips, schedule operators across
traditional CPU and AI chips, and supporting both relational and
tensor model.
(2) Hybrid DB&AI inference. Many applications require both DB
and AI operations, e.g., finding all the patients of a hospital whose
stay time will be longer than 3 days. A native way is to predict the
hospital stay of each patient and then prune the patients whose
stay time is less than 3. Obviously this method is rather expensive,
and it calls for a new optimization model to optimize both DB and
AI, e.g, new optimization model, AI operator push-down, AI cost
estimation, and AI index/views.
(3) Hybrid DB&AI system. It calls for an end-to-end hybrid AI&DB
system that supports a declarative language, e.g., AISQL, which
extends SQL to support AI operators, an AI&DB optimizer that co-
optimizes the two operations, an effective (distributed) execution
engine that schedules the two types of tasks, and an appropriate
storage engine.
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