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ABSTRACT
The goal of in�uence maximization is to select a set of seed users
that will optimally di�use information through a network. In this
paper, we study how applying traditional in�uence maximization al-
gorithms a�ects the balance between di�erent audience categories
(e.g., gender breakdown) who will eventually be exposed to a mes-
sage. More speci�cally, we investigate how structural homophily
(i.e., the tendency to connect to similar others) and in�uence di�u-
sion homophily (i.e., the tendency to be in�uenced by similar others)
a�ect the balance among the activated nodes. We �nd that even
under mild levels of homophily, the balance among the exposed
nodes is signi�cantly worse than the balance among the overall
population, resulting in a signi�cant disadvantage for one group. To
address this challenge, we propose an algorithm that jointly maxi-
mizes the in�uence and balance among nodes while still preserving
the attractive theoretical guarantees of the traditional in�uence
maximization algorithms. We run a series of experiments on mul-
tiple synthetic and four real-world datasets to demonstrate the
e�ectiveness of the proposed algorithm in improving the balance
between di�erent categories of exposed nodes.
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1 INTRODUCTION
The goal of in�uence maximization is to optimize the di�usion of
content in a network by choosing an initial set of users who serve
as seeds for spreading the information through the network. As
suggested by the nature of this problem, in�uence maximization
can play a vital role in addressing practical issues such as viral mar-
keting. For example, if a corporate entity posts a job advertisement
on a social network and wants it to reach as many users as possible,
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it needs to promote the advertisement to an optimal set of users so
that the information spreads as much as possible through the net-
work. To determine the optimal set of users, in�uence maximization
algorithms need to be applied.

While these traditional algorithms are e�ective in amplifying
the outreach of information pushed into the network, they solely
focus on the number of users reached and do not consider speci�c
properties that drive the connectivity and the person-to-person
spread of information in the network. One such property is ho-
mophily, the phenomenon that a user is more likely to connect to
or be in�uenced by other like-minded users. As a result, the exist-
ing discrepancies between various categories of users in a social
network can be ampli�ed by these algorithms, often putting certain
groups of users at a signi�cant disadvantage. For example, in the
job advertisement case, by failing to account for the homophily in
the structure of the network and the di�usion of information, the
advertisement may reach a signi�cantly smaller fraction of female
users, hurting their interest.

The area of in�uence maximization has been very active over
the last two decades. Previous work has investigated many dif-
ferent aspects of in�uence maximization, including how to scale
the traditional in�uence maximization algorithms [23, 34, 36], how
di�erent spreading processes interact [9, 26, 29, 35], and how to
seed in the presence of competing campaigns [8, 16, 17], to name a
few. However, less research has been done on incorporating well-
established social phenomena, such as homophily, in the in�uence
models that largely determine the output of the in�uence maxi-
mization algorithms. Also, while there has been a great interest in
how the predictions on machine learning algorithms a�ect di�er-
ent groups [5, 15, 18], there has been less focus on how in�uence
maximization algorithms a�ect di�erent audience segments and
how to address any disparities.

In this paper, we aim to close this gap in the literature by making
the following contributions1:

• We set up a simulation framework that allows us to system-
atically investigate the impact of structural and di�usion
homophily on the categorical balance of the nodes reached
by seeds selected using in�uence maximization algorithms
(Section 3).

• We develop an in�uence maximization algorithm that jointly
maximizes the spread of information and achieving categori-
cal balance, and we demonstrate its e�ectiveness using both
simulations and four real-world datasets (Section 4).

In the rest of this paper, we gradually demonstrate the impact
of homophily on the categorical balance among the users who are
eventually exposed to the information. First, we show that balance
is not an issue in the absence of homophily (Section 3.1). Then, we

1The code and the data needed to reproduce our results can be found at the following
URL: https://github.com/sanzeed/balanced_in�uence_maximization
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test how homophily in network structure (Section 3.2), and later,
homophily in both network structure and in�uence impact balance
(Section 3.3), �nding that it can have signi�cant negative e�ects.
Finally, we propose an algorithm that simultaneously maximizes
in�uence and balance, and demonstrate that it performs better than
existing approaches (Section 4).

2 BACKGROUND
We start by reviewing key notions in the in�uence maximization
literature that we build upon in the rest of the paper. We highlight
recent advances most closely related to our work in Section 5.

In�uence Maximization. Traditionally, the problem of max-
imizing in�uence has been tackled in the context of marketing.
Early data mining techniques aimed only at the intrinsic value of
the customers, i.e., only considered the individual gain from a cus-
tomer. Domingos and Richardson [14] were the �rst to account for
the network value of the customers, i.e., the additional value of the
customer’s in�uence on other people.

Kempe et al. [21] formulated this question as a standard opti-
mization problem, expressing it as: maxS ✓V f (S) s.t. |S | = k , for
some parameter k , where f (S) denotes the size of the active set for
seed set S . Given the network of connections among the users, the
goal is to �nd a set S of k seeds that results in the largest in�uence
set, f (S). In our experiments, we use a more optimized version of
the algorithm by Kempe et al. named CELF [24] in order to reduce
the running times.

Network Generation Models. One of the key properties of
social networks is that they are scale-free, i.e., their degree distri-
bution follows a power law: pk ⇠ k�� , where pk is the probability
that a randomly sampled node has a degree k , and � is a constant.
Intuitively, this property implies that there will be fewer nodes with
a higher degree.

Barabási and Albert [4] propose a model that generates undi-
rected, scale-free networks, where the probability of two users
connecting is directly proportional to their degrees. Bollobás et
al. [6] extend this model to directed networks, where both the in
and out-degree distributions follow a power law. Of interest to us
are also models that incorporate homophily into the network gen-
eration process. Almeida et al. [12] propose a model for homophilic,
scale-free networks but focus only on undirected networks.

In this work, we are interested in the impact of homophily on in-
�uence maximization in directed networks and build on ideas from
[6] and [12] to generate homophilic directed scale-free networks
and systematically vary the level of homophily in the network.

In�uence Di�usionModels. In addition to specifying how the
nodes (users) in a network are connected, we also need to specify
how in�uence spreads from one node to another. Each node has two
possible states: active and inactive. According to the Independent
Cascade model, given an initial set of active nodes, the di�usion
proceeds discretely: at each step, an active node u gets a single
opportunity to activate its neighbor � with probability pu ,� [21].
As the name suggests, the probability that an edge is activated is
independent of whether any other edge is activated.

Homophily. In traditional network generation and in�uence
models, users’ probability to connect to or be in�uenced by another
user only depends on the number of their connections. However,

in the real world, people associate with and trust others very selec-
tively. One of the fundamental properties that sets social networks
apart from other networks is homophily, i.e., the tendency of “like
to associate with like” [11, 22, 28, 32]. There are two main conse-
quences of homophily that are relevant in the context of in�uence
maximization: (i) that people who share the same attributes are
more likely to be connected, and (ii) that, when in�uenced by their
connections, people are more likely to be in�uenced by others with
the same attributes [10, 13, 27].

Balance. In the context of in�uence maximization, the concept
of balance may have multiple meanings. For example, we can de�ne
balance as the categorical balance among nodes in either the seed
set or the active set (i.e., the nodes that are eventually reached). In
this paper, we focus on the categorical balance in the active set, as
it directly represents the e�ectiveness of an algorithm in reaching
users from di�erent categories fairly. In particular, we de�ne the
ideal categorical balance as the case in which the categorical ratio
between the nodes in the network is preserved in the active set.

To simplify the exposition of the results, in the rest of the paper,
we only consider the two-category case, i.e., we assume that any
given node is either a majority node or a minority node. However,
the simulations and the algorithm we propose in Section 4 can
be easily extended to attributes or sets of attributes with multiple
categories.

3 INFLUENCE MAXIMIZATIONWITH
TRADITIONAL ALGORITHMS

We start by investigating the impact of homophily on balance when
applying traditional in�uence maximization algorithms. We pro-
pose a network generation model for homophilic directed scale-free
networks and a homophilic in�uence di�usion model, which al-
low us to systematically vary the levels of structural and di�usion
homophily. Wemeasure the balance under three scenarios: (i) no ho-
mophily (ii) structural homophily, and (iii) structural and di�usion
homophily. In each scenario, we:

(1) Specify a pair of network generation model and in�uence
di�usion model,

(2) Generate a set of networks using a speci�c network genera-
tion model,

(3) Assign each node to either majority or minority,
(4) Run the traditional in�uence maximization algorithm [21],
(5) Analyze the di�erence between the expected and the ob-

served majority in the active set.
We consider three parameters in generating the networks: (i) n,

the number of nodes; (ii) pM , the fraction of nodes in the majority
group; and (iii) h, the structural homophily index, i.e., the likelihood
of a connection within vs. across groups [19].

We also consider two parameters in specifying the in�uence
di�usion model: (i) bp , the base probability of a node successfully
in�uencing a neighbor node; and (ii) hp , the di�usion homophily
index, i.e., the likelihood of in�uence within vs. across groups.
Finally, we use k to denote the number of seeds.

Recall that we denote by f (S) the size of the active set for seed set
S . We also de�neM(S) andm(S) to be the majority, and the minority
in the active set for seed set S ; then, f (S) = M(S)+m(S). To measure
the balance achieved by the algorithm, we consider the parameter
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Figure 1: Seeding of non-homophilic networks using the tra-
ditional in�uence maximization algorithm. Mean �(S) (dif-
ference in size between the observed and the target majori-
ties in the active set) for di�erent values of pM (fraction of
nodes in the majority group) and bp (base in�uence proba-
bility of the di�usion model). In the absence of homophily,
the traditional in�uence maximization algorithm naturally
achieves a categorical balance among the nodes in the active
set. The error bands represent 95% CIs.

pt , the fraction of majority we want in the active set of nodes, and
we compare two quantities: (i) the observed size of the majority in
the active set, given byM(S), and (ii) the target size of the majority
in the active set, given by pt f (S). According to our de�nition of
ideal categorical balance, we want to preserve the majority vs.
minority ratio in the active set, i.e., we want pt = pM . We achieve
ideal categorical balance when the two quantities we compare are
equal, i.e., when �(S) = M(S) � pt f (S) = M(S) � pM f (S) = 0.

3.1 No Homophily
We start by analyzing the balance of the activated nodes in the
absence of homophily.

Network Generation Model. We generate a series of directed
scale-free networks using the model proposed by Bollobás et al. [6].

Let G(t) denote the network at time t with exactly t edges and
n(t) nodes. We start with an initial network G(t0) = G0 at time t0,
and non-negative real numbers �, �,� , �in, �out s.t. � + � + � = 1.
For any node u, we denote its in-degree and out-degree by din (u)
and dout (u), respectively. For t � t0, we build G(t + 1) from G(t)
by adding an edge to G(t) at timestep t + 1 as follows:

• With probability � , we add a new node� and an edge from�
to an existing nodew . We choosew from all existing nodes
with probability proportional to din (w) + �in ,

• With probability � , we add an edge from an existing node� to
an existing nodew . We choose� from all existing nodes with
probability proportional to dout (�) + �out , and we choose
w from all existing nodes with probability proportional to
din (w) + �in ,

• With probability � , we add a new node w and an edge to
w from an existing node � . We choose � from all existing
nodes with probability proportional to dout (�) + �out .

In our experiments, we set� = � = � = 1
3 in order to make the three

edge addition scenarios equally likely. We also set �in = �out = 1
in order to prevent zero division while calculating the probability
distribution. In order to categorize the nodes of the network into
two distinct categories, we assign each node in the network to the
majority category with probability pM .
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Figure 2: Assortativity of the networks generated using the
homophilic network generation model introduced in Sec-
tion 3.2 for di�erent values of h 2 {0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
the structural homophily index (a model parameter), and
pM , the fraction of nodes in the majority group. The assor-
tativity of the networks has a clear linear relation to the
homophily index h, demonstrating that the networks gen-
erated by the model are indeed homophilic.

In�uenceDi�usionModel.We use the traditional (non-homo-
philic) Independent Cascade model where the probability of any
node successfully in�uencing a neighbor node is a constant, i.e.,
the base probability, bp .

Setup.We vary the number of nodes in the network: n 2 {15k ,
20k}, the fraction of nodes in themajority group:pM 2 {0.5, 0.6, 0.7,
0.8}, and the base in�uence probability: bp 2 {0.01, 0.05, 0.1}. Since
we are interested in the outcomes in the absence of any kind of ho-
mophily, we do not need to consider the structural homophily index
(h) and the di�usion homophily index (hp ). For each pair (n,pM ),
we generated 20 networks and ran an optimized version [24] of the
in�uence maximization algorithm by Kempe et al. [21] to choose
k = 200 seeds.

Results and Observations. Figure 1 shows the di�erence be-
tween the observed and the target majorities (�(S)) as a function
of the fraction of majority nodes in the network (pM ). We �nd that,
for all values of pM , �(S) is close to zero. This suggests that the
traditional in�uence maximization algorithm naturally selects seed
nodes that reach a balanced set of nodes when neither the network
nor the in�uence di�usion is homophilic.

3.2 Network Homophily
Next, we analyze the balance of the activated nodes in the presence
of network homophily, i.e., when similar nodes are more likely to
be connected.

Network Generation Model.We build upon the network gen-
eration models by Bollobás et al. [6] and Karimi et al. [19] to gen-
erate homophilic, scale-free networks. Using the same notation as
before, for any pair of nodes � andw , we de�ne:

h(�,w) =
(

h if � andw are from the same category,
1 � h otherwise.

We add a single directed edge in each timestep. We build G(t + 1)
from G(t) by adding an edge to G(t) at timestep t + 1 as follows:

• With probability � , we add a new node� and an edge from�
to an existing nodew . We assign � to the majority category
with probability pM , and to the minority category other-
wise. We choosew from all existing nodes with probability
proportional to h(�,w)din (w) + �in ,
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Figure 3: Seeding of homophilic networks using the tradi-
tional in�uence maximization algorithm. Mean �(S) (di�er-
ence in size between the observed and the target majorities
in the active set) for di�erent values of pM (the fraction
on nodes in the majority group) and bp (the base in�uence
probability). �(S) rises as we approach stronger homophily
(h > 0.5). The more extreme pM , the steeper the rise.

• With probability � , we add an edge from an existing node� to
an existing nodew . We choose� from all existing nodes with
probability proportional to dout (�) + �out , and we choose
w from all existing nodes with probability proportional to
h(�,w)din (w) + �in ,

• With probability � , we add a new node w and an edge to
w from an existing node � . We assign w to the majority
category with probability pM , and to the minority category
otherwise. We choose � from all existing nodes with proba-
bility proportional to h(�,w)dout (�) + �out .

Similar to the previous section, we set � = � = � = 1
3 in order to

make the three edge addition scenarios equally likely, as well as
�in = �out = 1 in order to prevent zero division while calculating
the probability distribution.

This model is particularly appealing as it generates networks
that resemble real-world social networks, i.e., have a small diameter,
power-law in- and out-degree distributions, and allows us to vary
the level of homophily in the network by changing the model
parameters.

To verify that the networks generated using this model have
the expected levels of homophily, we compute the assortativity
index [31] (a well-established measure of network homophily) of
networks generated using di�erent values of h. We �nd that indeed
networks generated with larger values of the structural homophily
index, h, have higher assortativity (Figure 2), demonstrating that
the model achieves the desired e�ect.

In�uence Di�usion Model. We use the same simple, non-
homophilic di�usion model for in�uence described in the previous
section, where the probability of any node successfully in�uencing
a neighbor node is bp .

Setup. We �x the number of nodes in the network to n = 20k
and vary the faction of nodes in the majority group: pM 2 {0.5,
0.6, 0.7, 0.8}, the structural homophily index: h 2 {0.5, 0.6, 0.7, 0.8,
0.9, 1.0}, and the base in�uence probability: bp 2 {0.01, 0.05, 0.1}.
Since the di�usion model is non-homophilic, we did not need to
consider the di�usion homophily index, hp . As before, for each set
of values of the parameters, we generate 20 networks and choose
k = 200 seeds using an optimized version [24] of the in�uence
maximization algorithm by Kempe et al. [21].
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Figure 4: Seeding of homophilic networks under homophilic
in�uence using the traditional in�uence maximization al-
gorithm. Mean �(S) (di�erence in size between the observed
and the target majorities in the active set) for di�erent val-
ues of h (the structural homophily index), hp (the di�usion
homophily index), and bp , (the base in�uence probability).
�(S) is much higher when both the network and the di�u-
sion model are homophilic.

Results and Observations. Figure 3 shows the di�erence be-
tween the observed and the target majorities (�(S)) as a function
of the structural homophily index (h). We �nd that when there is
an equal number of nodes in the two groups (pM = 0.5), the tradi-
tional in�uence maximization algorithm naturally achieves balance,
regardless of the homophily level in the network (h). However, as
soon as there are more nodes in one group (i.e., pM > 0.5) and some
homophily in the network formation (i.e., h > 0.5), the algorithm
starts to favor the majority group, selecting seeds that reach more
nodes in the majority group. This suggests that even when just
the network structure becomes mildly homophilic, the traditional
in�uence maximization algorithm fails to achieve balance.

3.3 Network and Di�usion Homophily
Finally, we analyze the balance of the activated nodes in the pres-
ence of network and di�usion homophily, i.e., when similar nodes
are more likely to both connect and in�uence each other.

Network Generation Model.We use the same model as in the
previous section to generate scale-free, homophilic networks.

In�uence Di�usion Model. We now add homophily in the
in�uence di�usion. First, we de�ne:

hp (�,w) =
(

hp if � andw are from the same category,
1 � hp otherwise.

Using this de�nition, for a given base probability bp , we de�ne our
homophilic in�uence di�usion model such that the edge probability
assigned to an edge (�,w) is proportional to hp (�,w). The motiva-
tion behind this choice is to make the results comparable to the
experiments in which we used non-homophilic di�usion.

Experiments. We �x the number of nodes in the network to
n = 20k and the fraction of nodes in the majority group to pM = 0.8.
We vary the network homophily by setting di�erent values of
the structural homophily index, h 2 {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and
the di�usion homophily by using di�erent values of the di�usion
homophily index: hp 2 {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We also vary
the base in�uence probability of our in�uence di�usion model:
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bp 2 {0.01, 0.05, 0.1}. We average the results over 20 networks, in
each case choosing k = 200 seeds using an optimized version [24]
of the in�uence maximization algorithm by Kempe et al. [21].

Results and Observations. Figure 4 shows the di�erence be-
tween the observed and the target majorities (�(S)) for di�erent
values of the structural (h) and di�usion (hp ) homophily indices.
In all cases, we observe that the di�erence between the observed
and the target majorities increases as the homophily index h in-
creases from 0.5 to 1.0, and the network becomes more and more
homophilic. The di�erence further increases for the same values of
the structural homophily (h) as we increase the di�usion homophily
(hp ) from 0.5 to 1.0. Finally, the larger the probability for any single
edge to be activated (bp ), the larger the di�erence between the
observed and the target majorities (�(S)) for the corresponding
values of h and hp . These observations suggest that the higher is
the structural and the di�usion homophily, the more severe is the
imbalance of the nodes reached by the seeds selected using the
traditional in�uence maximization algorithm.

4 BALANCED INFLUENCE MAXIMIZATION
4.1 Algorithm
So far, we have seen that even under mild homophily, the traditional
in�uencemaximization algorithm tends to select seeds that reach an
imbalanced set of active nodes, leading to a systematic disadvantage
for one group. To address this issue, in this section, we propose a
new algorithm for selecting seed nodes that jointly maximizes the
number and the balance of the users reached by the seed nodes.

We start by revisiting some basic terminology. Given a network
G(V , E) and seed set S , recall that we de�ne f (S) to be the size of
the active set that results from seeding the nodes in S . We also
de�ne M(S) andm(S) to be the majority and the minority in the
active set, respectively. Then, f (S) = M(S) +m(S). To simplify the
exposition, we focus on the case where the nodes belong to one of
two categories, but the algorithm can be readily extended to cases
where the nodes belong to more than two categories.

We aim to use a greedy hill-climbing approach inspired by Kempe
et al. [21] using the following objective function:

F (S) = (1 � �) · f (S)|V |
|           {z           }

In�uence

+ � ·
p

�M(S) +
p

(1 � � )m(S)
p
�pMn +

p

(1 � � )(1 � pM )n
|                                     {z                                     }

Balance

(1)

The �rst component of F (S) maximizes f (S), the size of the active
set, and the second component maximizes the categorical balance
in the active set. The denominators in both components are normal-
izing constants that make the semantics of the hyperparameter �
consistent across di�erent networks. The numerator of the balance
component includes two terms,

p

�M(S) and
p

(1 � � )pMm(S). The
intuition behind this balance component is that once many majority
nodes are added to the active set, adding more majority nodes will
lead to diminishing gains, thanks to the square root function (i.e.,
p

�M(S)), and the algorithm will favor minority nodes. The hyper-
parameter � controls how much the balance component favors the
majority vs. the minority group, and the hyperparameter � controls
the trade-o� between balance and in�uence. For � = 0 the objective
function is the same as the algorithm by Kempe et al. [21].

Algorithm 1: Balanced In�uence Maximization
Input: G(V , E), k, �, Di�usion model
Output: S
S  ;
while |S | < k do

u  argmax� 2V
n

F (S [ {�}) � F (S)
o

S  S [ {u}
return S

Using the terminology de�ned above, we propose Algorithm 1
to achieve categorical balance in in�uence maximization. Next, we
prove that Algorithm 1 provides a (1� 1

e )-guarantee in approximat-
ing maxS ✓V F (S). To do so, we �rst prove the following theorems.

T������ 4.1. (Non-negativity) Given a network G(V , E) and a
set of realizations R, for any S ✓ V , F (S) � 0.

P����. This result follows from the non-negativity of f (S),M(S)
andm(S). ⇤

T������ 4.2. (Monotonicity) Given a networkG(V , E), F is mono-
tone, i.e., for any S ✓ T ✓ V , F (S)  F (T ).

P����. Note that seeding additional nodes cannot decrease the
size of the active set. Therefore, f is monotone. Similarly, seeding
additional nodes cannot decrease the size of the majority or the
minority in the set of active nodes. Therefore,M(S) andm(S) are
monotone as well. Then, from the de�nition, F is monotone. ⇤

T������ 4.3. (Submodularity) Given a network G(V , E), F is
submodular, i.e., for any S ✓ T ✓ V and any u 2 V , F (S [ {u}) �
F (S) � F (T [ {u}) � F (T ).

P����. Abusing notation, let f (S) also denote the active set for
seed set S . Consider an arbitrary � 2 V such that � 2 f (T [ {u}) �
f (T ). Then � 2 f (T [ {u}) but � < f (T ), i.e., � is activated by
u and not by the nodes in T . Since S ✓ T , � cannot be activated
by the nodes in S either. So, � < f (S). However, � is activated
by u, and so � 2 f (S [ {u}). Then, � 2 f (S [ {u}) � f (S), and
therefore, f (S [ {u}) � f (S) ◆ f (T [ {u}) � f (T ). In other words,
f (S [ {u}) � f (S) � f (T [ {u}) � f (T ), and f is submodular.

Following the same logic, we can prove that M andm are sub-
modular. Then, we can use the following theorem [25] to show thatp
M and

p
m are also submodular:

T������ 4.4. Given functions h : 2V ! R and � : R ! R,
the composition H = � � h : 2V ! R (i.e., H (S) = �(h(S))) is
non-decreasing submodular, if � is non-decreasing concave and h is
non-decreasing submodular.

Finally, since F is a non-negative linear combination of f ,
p
M

and
p
m, F must be submodular as well, as desired. ⇤

Since F is non-negative, monotone and submodular, the follow-
ing result by Nemhauser, Wolsey, and Fisher [30] applies to F :

T������ 4.5. For a non-negative, monotone submodular function
h, let S be a set of size k obtained by selecting elements one at a time,
each time choosing an element that provides the largest marginal
increase in the function value. Let S⇤ be a set that maximizes the
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Figure 5: Seeding using balanced in�uencemaximization (Algorithm1) under structural and di�usionhomophily. The e�ect of
the hyperparameters � (higher values givemore importance on balance) and � (higher values givemore weight to themajority
group) on the trade-o� between in�uence (x axis) and balance (� axis) for di�erent values of the structural (h) and di�usion
(hp ) homophily indices. The points represent the means over ten runs, and the error bars represent 95% con�dence intervals.

value of overall k-element sets. Then h(S) � (1 � 1
e )h(S⇤); in other

words, S provides a (1 � 1
e )-approximation.

This theorem implies that our algorithm achieves a (1 � 1
e )-

guarantee in approximating the maximum value of our objective.
Computing the objective. As in�uence di�usion is a random

process, we cannot directly compute F (S). Therefore, the greedy
hill-climbing algorithm utilizes E[F (S)]. To approximate E[F (S)],
we de�ne the following: a realization of G(V , E) under a speci�ed
in�uence di�usion model is a subgraph G 0(V , E 0), such that for
any e 2 E, the probability that e 2 E 0 is the same as the di�usion
probability assigned to e under the in�uence di�usion model. For
a speci�c realization r of G(V , E), let fr (S) be the value of f (S)
conditioned on r . We de�neMr (S) andmr (S) in a similar manner.
Then, for a su�ciently large set R of realizations,

E[F (S)] ⇡ ER[F (S)]

= (1 � �) · ER[f (S)]|V | + � ·
ER

⇥

p

�M(S) +
p

(1 � � )m(S)
⇤

p
�pMn +

p

(1 � � )(1 � pM )n

= (1 � �) ·

1
|R |

’

r 2R
fr (S)

|V | + � ·

1
|R |

’

r 2R

p

�Mr (S) +
p

(1 � � )mr (S)

p
�pMn +

p

(1 � � )(1 � pM )n
.

4.2 Simulation Experiments
Next, we use our simulation framework to test the performance of
Algorithm 1 on synthetic networks.

Setup. Similar to our previous experiments, we generate a set
of homophilic networks (using the model described in Section 3.2),
assign each node to one of two categories (majority and minority),
assume a homophilic di�usion model (as proposed in Section 3.3),
and choose a set of seeds using Algorithm 1.

We �x the number of nodes in this network to n = 20k and
fraction of nodes in the majority to pM = 0.8. We also �x the
base in�uence probability to bp = 0.2 and the number of real-
izations to |R | = 1k . We experiment with three pairs of values
for the structural homophily h and the di�usion homophily hp :
(h = 0.5,hp = 0.5), (h = 0.5,hp = 0.8), and (h = 0.8,hp = 0.8)2.
For each pair, we run Algorithm 1 to choose k = 200 seeds. We use
2We also analyzed (h = 0.8, hp = 0.5) and found a very similar pattern to (h = 0.5,
hp = 0.8). To avoid visual clutter in Figure 5, we exclude those results.

di�erent setting of the hyperparameters � 2 {0.0, 0.2, 0.5, 0.8, 1.0}
and � 2 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and test their e�ect
on the size and the balance of the active set. To account for the
intrinsic randomness of the network generation and in�uence mod-
els, we repeat each experiment 10 times and report the means and
con�dence intervals (Figure 5).

Results and Observations.We �nd that our algorithm exhibits
a similar pattern in all three homophily settings (h and hp ). When
� = 0, our algorithm focuses solely on maximizing in�uence, and
consequently varying � a�ects neither f (S), the size of the active
set, nor �(S), the di�erence between the observed and the target
majorities. As we increase �, we begin to observe the trade-o� be-
tween f (S) and �(S) for di�erent � ; namely, increasing � increases
f (S), but also increases �(S). When � = 1, our algorithm focuses
on balance, and this trade-o� is at its maximum. We note that due
to the nature of the balancing component of our objective function
(Equation 1), even when � = 1, the algorithm still implicitly aims
to maximize the size of the active set of each group.

In the absence of both structural and di�usion homophily (h =
0.5,hp = 0.5), we can achieve balance by simply focusing on in-
�uence, i.e., setting � = 0, aligning with our observations in Sec-
tion 3.1. In fact, increasing � and using more extreme values of
� 2 {0.1, 0.2, 0.3} can hurt both the in�uence and the balance. How-
ever, in the presence of structural homophily (h = 0.5, hp = 0.8)
or both structural and di�usion homophily (h = 0.8, hp = 0.8),
focusing solely on maximizing in�uence yields poor balance, i.e.,
high �(S). In these scenarios, higher values of � achieve better
categorical balance in exchange for a decrease in in�uence.

Setting � to a high value (e.g., � = 1) and varying � (the weight
assigned to the majority group) allows us to sample a wide range
of seeding choices that have di�erent in�uence vs. balance trade-
o�s. This is especially important in cases where we are interested
in adopting a more extreme de�nition of balance, e.g., an equal
number of majority and minority nodes in the active set.

4.3 Experiments in Real-World Networks
Next, we test the balanced in�uencemaximization algorithm on four
real-world networks and compare its performance to the algorithm
proposed by Stoica et al. [33].
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Figure 6: Results of seeding four real-world networks using Algorithm 1. The plots illustrate how the hyperparameters �
(higher values give more importance on balance) and � (higher values give more weight to themajority group) a�ect the trade-
o� between in�uence (x axis) and balance (� axis), both in the absence (hp = 0.5) and presence (hp = 0.8) of di�usion homophily.
The points represent the means over ten runs; the 95% con�dence intervals are too small to be visible.

Setup.We consider the careers Twitter accounts of four major
companies: Bank of America (@bofa_careers), UPS (@upsjobs), Ver-
izon (@verizoncareers), and Hershey’s (@hersheycareers), where
they often post job announcements. Using the Twitter API, we fetch
the followers of each account and the followers of the followers to
construct the network of connections among the followers of each
account. We also fetch the followers’ names and use genderize.io
to determine their gender3. genderize.io uses an extensive data-
base of �rst and last names and their gender associations from
many countries/languages and has been shown to have high ac-
curacy [20]. The networks vary in size (n), the fraction of users in
the majority group (pM ), and structural homophily (here we report
assortativity, A, which maps very closely to the h parameter in our
simulations, Figure 2):

@bofa_careers: n = 13,688, pM = 0.77 (male), A = 0.08,
@upsjobs: n = 13,851, pM = 0.69 (male), A = 0.33,
@verizoncareers: n = 9,226, pM = 0.77 (male), A = 0.04,
@hersheycareers: n = 3,726, pM = 0.68 (male), A = 0.05.

We choose k = 200 seeds using Algorithm 1, assuming the ho-
mophilic in�uence model with bp = 0.01, varying the level of
di�usion homophily, hp 2 {0.5, 0.8} and measure the e�ect of
3We tokenize each name, remove punctuation and tokens with less than three char-
acters, and query for the gender of each token. We discard cases where none or an
equal number of tokens are associated with a male or a female name, which includes
accounts by organizations. We ignore private Twitter accounts.

varying the hyperparameters � 2 {0.0, 0.2, 0.5, 0.8, 1.0} and � 2
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. To account for the random-
ness in the di�usion simulations, we repeat each experiment 10
times and report the means and 95% con�dence intervals.

Baseline. In addition to the traditional in�uence maximization
algorithm, we also compare our algorithm’s performance with the
algorithm introduced by Stoica et al. [33]. They propose choos-
ing seed nodes based on node degree, but instead of simply se-
lecting the highest degree nodes from the full population, they
select the highest degree nodes for each group individually. The
main idea behind the algorithm is that imposing balance on the
seed set will lead to balance in the active set. To make fair com-
passion with our algorithm, we add an additional parameter to
their algorithm, ko�set , which allows us to vary the proportion
of seeds in the majority group. In particular, we select as seeds
kM = bpMkc + ko�set majority nodes with highest degree and
km = k �kM minority nodes with highest degree. We vary ko�set 2
{�50,�40,�30,�20,�10, 0, 10, 20, 30, 40, 50}, repeat each experiment
10 times, and report the means and con�dence intervals.

Results and Observations. First, we analyze our algorithm’s
behavior for di�erent values of � and � (Figure 6). We �nd that in
the absence of di�usion homophily (hp = 0.5), the hyperparameters
that achieve the best balance also achieve the greatest in�uence.
This is perhaps because the networks have very low structural
homophily. One exception is the @upsjobs network, which has a
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higher level of homophily (assortativity A=0.33), andwhere we need
to make a small sacri�ce in the active set size to achieve the desired
balance. In the presence of di�usion homophily (hp = 0.8), the hy-
perparameter settings that achieve the desired balance do not lead
to the largest in�uence, except for the @upsjobs network. However,
in these cases, the algorithm successfully trades-o� in�uence with
balance, achieving the desired balance by only slightly reducing the
size of the active set. For instance, in the @bofa_careers network,
the algorithm is able to decrease the surplus in majority nodes from
52 to 6, achieving nearly perfect balance, while reducing the size of
the active set by only 4 nodes (601 to 597).

Next, we compare the performance of our algorithm with the
performance of the baseline algorithm (Figure 7). We consider only
the results of our algorithm for � = 0.5, assigning equal impor-
tance to in�uence and balance. We observe that both algorithms
can achieve the desired balance in the active set with the right
hyperparameter settings. However, we �nd that our algorithm is
consistently able to achieve a higher in�uence, selecting seeds that
reach a signi�cantly larger number of nodes. This pattern holds
across all four networks, both in the absence (hp = 0.5) and the
presence (hp = 0.8) of di�usion homophily.

4.4 Hyperparameter Selection
The in�uence and the balance achieved by our algorithm depend
on many factors, including the network topology, the proportion
of majority vs. minority nodes, and the levels of structural and
di�usion homophily. Therefore, we cannot expect any single hyper-
parameter setting to achieve balance on every network. However,
based on our experiments, we recommend starting the exploration
of the hyperparameter space by setting � = 0.5 and � = 1 � pt ,
where pt is the desired proportion of majority nodes in the active
set. Setting � = 0.5 gives equal importance to in�uence and balance,
and setting � = 1�pt gives more importance to the minority group,
counteracting the natural advantage of the majority group.

5 RELATEDWORK
We build on existing work that has studied the performance of tradi-
tional seeding algorithms under various network models, analyzed
the relationship between homophily and di�usion, and investigated
the question of balance in in�uence maximization.

Aral and Dhilon [2] and Aral et al. [3] demonstrate the impor-
tance of using empirically motivated in�uence models. They show
that traditional in�uence models that do not model any empirical
properties of information di�usion, such as the independent cas-
cade model, can signi�cantly underestimate in�uence propagation.
In this paper, we considered an in�uence model that takes into
account the homophily among the users and studied how di�erent
levels of homophily a�ect the balance of the in�uenced users.

Several previous studies have modeled the relationship between
homophily and information di�usion [27], measured the gains in
accuracy of predicting di�usion when considering homophily [13],
and tested the e�ects of homophily in the adoption of behaviors [10].
In this work, we demonstrate that homophily can lead to an imbal-
ance among the in�uenced individuals when applying in�uence
maximization algorithms and propose an algorithm that mitigates it.

Bredereck et al. [7] consider the problem of assembling a group
of individuals that both score high on a certain quality measure and
are diverse as a group. Their method can be adopted for in�uence
maximization, where “quality” is de�ned as a certain measure of the
individual’s position in the network, e.g., their page-rank. However,
such an approach would not account for the fact that in in�uence
maximization, the “quality” of a user changes depending on which
other users are also selected to be in the group. For example, se-
lecting two high page-rank nodes that in�uence the same users is
suboptimal, although each of the two nodes is a good choice indi-
vidually. That is precisely the issue that our algorithm addresses.

Stoica et al. [33] propose the algorithm we used as a baseline in
Section 4.3, but also investigate the trade-o� between balance and
in�uence as a function of the seed set size. They �nd that when the
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size of the seed set is su�ciently large, imposing balance in the seed
set also leads to more in�uence. The intuition is that after selecting
the high degree majority nodes as seeds, promoting balance helps
reach other parts of the network that are not connected to the high
degree majority nodes.

In this paper, we focused on minimizing the disparities in infor-
mation exposure of users belonging to di�erent categories when
applying in�uence maximization algorithms to a single campaign.
Garimella et al. [16] and Yu et al. [37] consider another scenario
where the goal is to reach a balanced set of users across several
campaigns simultaneously running in the network.

Finally, similar to the approach we took in this paper, Ali et
al. [1] consider group fairness in in�uence maximization. While
we address the challenges of applying in�uence maximization al-
gorithms in the presence of homophily, they focus on time-critical
in�uence maximization, i.e., applications where it is only bene�cial
to in�uence users before a deadline.

6 CONCLUSION
In this paper, we studied how homophily in network formation
and in�uence di�usion a�ects the categorical balance of the nodes
reached by seeds selected to maximize in�uence. We found that
applying traditional in�uence maximization algorithms leads to a
signi�cant imbalance in outreach even in the presence of mild net-
work or di�usion homophily. To address this issue, we proposed a
new in�uence maximization algorithm that jointly maximizes in�u-
ence and balance, and has strong performance guarantees. Through
experiments in synthetic and real-world networks, we show that it
e�ectively trades-o� between in�uence and balance, and outper-
forms existing algorithms for balanced in�uence maximization.

Our work opens new directions for future work, including how
to measure and mitigate imbalance in terms of continuous node
attributes and how to adopt recent advances in the design of in-
�uence maximization algorithms to improve the scalability of our
algorithm.
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