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Figure 1: Prototype interface for the Sound Sketchpad. The grey waveform represents the input audio sketch, which the user
supplies (for example, through vocalization) as a "template" for the resulting composition. Each colored contour represents a
parameter that can be varied over the course of the sketch to shape the qualities of the output.

ABSTRACT

Software tools for media production have largely been adapted from
physical media paradigms, offering blank canvases upon which to
import, combine, and process content. In music production, this
increasingly involves meticulous manual assembly of audio clips
often carefully curated from diverse sources. As collections of au-
dio content scale upwards in sample size, diversity, and number,
creative projects require exponentially more time, effort, and at-
tention to effectively shape them. New tools must find new ways
to contend with this abundance of content. We propose the Sound
Sketchpad, an algorithm-in-the-loop audio-graphical system and
interface for combining sounds from a database into new music. It
allows a user to sketch broad musical ideas by making sound, and
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then interactively modify and refine the resulting composition by
drawing visual paths. We discuss the design, implementation, and
advantages of this approach.
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1 INTRODUCTION
1.1 Motivation

The composer Edgard Varése once asked the question “what is
music but organized noises?” [29] The proliferation of broadcast and
mechanical reproduction technologies in the mid-twentieth century
has given rise musical styles in which sounds—not notes—form
the essential units from which music is built. Much music has
explored the potential of such "recombinant” media. [13, 21] This
is perhaps most notable in hip hop; beginning in the 1980s, hip hop
DJs excerpted, reused, and combined segments of other recordings
to produce new forms. [18]

In the age of big data, rich media and specifically recorded sound
abounds in both volume and variety. While this growing wealth
of content could offer more creative possibilities, audio software
tools for composing with them lack support for spontaneity, agility,
and flexibility needed in proportion. Instead, they rely on intensive
and manual processes whose outcomes are difficult to adjust. Com-
bining many sounds together to create new compositions requires
intensive collection, observation, organization, and assembly. This
project addresses the assembly part; rather than retrieving sounds
from a file-system manually and placing them into a Digital Audio
Workstation (DAW) for assembly, the user encodes their intent,
regarding the outcome, in the form of bi-modal sketches, and these
are resolved into easily adjustable recombinant compositions.

1.2 Contributions

This project supports a new media production workflow for inter-
actively and iteratively creating recombinant musical compositions.
This workflow is declarative and flexible. Users demonstrate a com-
positional idea, prescribe parametric control, and can quickly and
easily create variations and develop compositions, in contrast to
standard methods and interfaces (especially DAWs) that require
extensive experience and laborious construction. This approach
points to a path forward for media production tools to benefit from
our growing expanse of material, while retaining expressive control.

2 BACKGROUND AND RELATED WORK
2.1 Graphical Sketching for Sound and Music

Goldschmidt describes sketching as a form of “interactive imagery”,
a process of visual reasoning through which form develops. [11] A
number of computer-aided musical sketching interfaces have oper-
ated directly with sound, as far back as the first half of the twentieth
century. [2, 16, 24]. In these devices, sketches act as control signals
for synthesizers. Other systems apply sketching gestures as inter-
faces to collections of recorded sound, as ways to impose structure
onto them. Examples of such projects include CataRT [27], ear-
Gram [5], the Infinite Drum Machine [17], the recent commercial
product XO [15], and Constellation [28], in which drawing imposes
structure by connecting sounds linearly and forming visual paths,
creating persistent audio sketches.

Some drawing-based music composition systems instead opt
for parametric forms of drawing. SonicExplorer [1] uses space,
color, and gesture to explore a multidimensional space of audio
parameters. Hyperscore [9] assigns parameters to drawn freehand
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contours, interpreting them as statements and elaborations of pre-
determined motifs in the symbolic domain. In DAWS, parametric
notation is commonplace in the form of automation [4]. Based on
adjusting hardware controls in real-time, digital automation takes
on a new role, of interactively sculpting sound. In this paper, we
explore the intersection of the generative, parametric systems with
the structure-imposing audio systems.

2.2 Sonic “Sketching”: Designing Sound with
Provisional Audio Representations

Some systems have used vocalizations to parameterize sound syn-
thesis engines. One project building on this idea is SKAT-VG [25],
which aims to combine vocal sketching with gestural articulation
to produce a bi-modal interface for creative sound design. Another
way that audio examples are used for sound design is in Corpus-
Based Concatenative Synthesis (CBCS) [26] systems. For example,
AudioGuide [12] combines sound segmentation and source separa-
tion with a matching pursuit algorithm to mimic target audio with
combinations of database sound segments.

Computer-aided orchestration systems need to represent a tar-
get with a combination of sound units, and often formulate this
as a combinatorial optimization problem. Orchidée [8], for exam-
ple, uses a multiobjective constrained optimization process. In our
case, sketches reflect ideas rather than ground truth to be precisely
reconstructed, and so we use a greedy algorithm and a simpler
optimization approach combined with graphical control.

3 DESIGN PRINCIPLES

Our objectives are for the system to be:

(1) Flexible: Olsen [20] describes flexibility as facilitating "rapid
design changes that can then be evaluated by users." This
means that our computational methods must be able to per-
form quickly. We absorb also the related goals of expressive
leverage and match, by reducing the input space from de-
tailed manual media import and assembly to guiding sketch-
ing across two modalities.

(2) Combinative: Boden [6] describes the goal of combinato-
rial creativity as combining concepts to create novel ones. In
our limited case of composition, we treat sounds as carefully
curated basic building blocks to combine into new composi-
tions. This is in contrast to generative models which mimic
corpora, producing outputs from the input distribution, and
to most corpus-based compositional tools which decompose
sounds into smaller units for later linear concatenation.
Extensible: We consider two forms of extensibility, in the
space of sounds and controls respectively. For sounds, the sys-
tem should be able to handle large databases elegantly, and
support their growth. For controls, new parameters should
be able to be introduced to support a diversity of user prac-
tices, styles, and goals.

(4) Learnable: We identify learnability in two ways. The first
is that users should be able to learn the system’s behavior,
and leverage this experience creatively. The second is that
any users, even those without experience in related tools,
should be able to express with it in a way that supports any
sounds they may be interested in. We can summarize this
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by considering Resnick and Silverman’s model of low floors,
high ceilings, and wide walls [23], albeit within the space of
sound-based musical compositions.

4 METHOD AND SOFTWARE
IMPLEMENTATION

As noted, the Sound Sketchpad combines two input modalities. The
first one is sonic: users can specify a sonic target, whether vocalized,
performed on an instrument, or otherwise. This target specifies an
initial “sound world”, establishing a general context and trajectory
for the collage. The second is graphical; users can draw patterns
that take on roles as parameters, guiding specific aspects of the
composition.

4.1 Data Preprocessing

When an audio sketch is supplied, we first extract a number of time-
varying audio features, depending on the Essentia [7] library to do
so. For information on common audio features and those referred
to later in this work, we refer the reader to excellent available audio
feature reviews [19, 22], and Essentia’s own documentation 1 for
details.

The process of assembling compositions can be quite intensive.
This requires an initial selection of, ideally < 100, pertinent sounds
from the larger database. This additional limitation helps to keep the
interaction agile, as well as focuses the qualities of the compositions
around the sketch audio. The system relies on either pre-selected
sound collections, from the full database, or it automatically selects
a number of sketch-relevant sounds. This is currently primarily
done by predominant pitch, which we compute as the median of
estimated fundamental frequencies with greater-than-mean esti-
mation confidence.

We then transform these into options. We first retrieve a multi-

feature matrix F; for each sound, where Fy € RF*" (k = Nfeaturessn =

Nframes), and produce multiple versions of each where len(sound) <
len(sketch). We time-shift feature matrices in increments of g =
%Oenh), and zero-pad to k X n, maintaining a corresponding list
of sound sources and offsets. This avoids sketch pre-segmentation
and a time-offset variable, allowing multiple (time-shifted) instances
of a sound and simplifying the algorithms needed for the arrange-
ment process.

The system also works to estimate each feature’s relevance to
the given sketch. We do this categorically, as is enumerated below.
Given the importance scores S, we apply the softmax function so
that )} ¢s = 1, and then assign the resulting weights to the relevant
features.

e Pitch: P = the portion (€ [0, 1]) of filtered pitch values that
are non-zero.
e Harmony: Based on the Shannon entropy H of the time-

H(K
averaged chroma [3] vector K: (1 — %)(l - P).
. | 5 ,max(C) —min(C) , s
e Timbre: o7 ( 5 )e + 3% 107 (1= P) where

C denotes the spectral centroid, 0'(2: denotes its variance, and
/s represents the mean spectral spread.

Ihttps://essentia.upf.edu/documentation.html
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4.2 Graphical Controls

We specify and implement two different forms of control param-
eters. Feature controls influence the template-matching process.
These are implemented as a dictionary that maps the parameter
name to a set containing one or more audio feature names, which
the parameter contours respectively replace. The second type is
processor controls, which apply additional post-processing to the
output audio. These are implemented as a dictionary mapping a
parameter name to a function of the audio signal and the control
parameter contour which returns the processed audio signal. This
format makes it trivial to introduce new expressive parameters as
desired, based on context or additional experimentation. Currently
implemented parameters are:

(1) Density: The textural complexity of the output, with larger
values favoring more timbrally diffuse and dissonant combi-
nations of sounds (spectral spread and dissonance).

(2) Variance: The amount of spectral change as a function of
time (spectral flux).

(3) Weight: The output spectrum’s center of mass over time
(spectral centroid).

(4) Energy: Gain envelope for the assembled audio, giving it
dynamic shape over time (f(x, 1) = x o ).

4.3 Assembling Compositions

The first method, which results in collages with a relatively sparse
texture, is a simple greedy algorithm. In each iteration, it seeks to
find and add one sound option to the arrangement that most helps it
more closely match the template, if any. Or, we seek the sound from
options L, with template T, template-scaling constant ¢ (defaults to
10), number of features k, arrangement A, and feature-weight w:

k
m = argmin {Z [| cTi —(A+X;) ||owi : X € L} (1)
i=0

The second method results in sound collages with a much denser
texture, with a relatively large number of sound instances. It is also
generally slower, and should ideally be used with a small, carefully
curated collection of sounds. For this method, we formulate a con-
tinuous optimization problem using simulated annealing [14], a
probabilistic method for optimization. The design variable s here
reflects amplitude per sound € [0, 1]. We also introduce p or den-
sity. In assembling audio after optimization, sounds assigned an
amplitude below 1 — p are not included, so this parameter acts as a
kind of filter. As a preprocessing step, we initialize s with the sparse
method’s selections (C {0, 1}) plus a small amount of noise. This
method tries to minimize, with limited iterations, the KL-divergence
between template features and combined features:

k N
ZDKL ZSiji || cT; |w; s.t. 0<s<1 (2)
i=0 =

4.4 User Interface

The interface is implemented in React.js. User-drawn contours
are smoothed and rendered with the Konva library. The screen
shows the sketch and audio sketch waveform, with line selection
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and rendering functionality at the bottom. A prototype version
showing the lines, sketch waveform, and controls can be seen in fig.
1. Sketched contours are interpolated and scaled, and sent along
with the audio sketch to the backend application. A modal view
handles additional functionality, including preview and download
for the assembled composition and original sketch audio.

5 EVALUATION AND PROJECT DISCUSSION

We examine the proposed workflow in comparison to existing
systems for sound-based composition with regard to each of our
previously-cited design goals, to offer insight into its advantages.

Flexibility. As noted, traditional DAWSs based on the tape machine
paradigm provide support for media file import, recording, editing,
and mixing. Users compose by combining these basic functions
to assemble new pieces of music. The Sketchpad, by automating
the assembly and providing descriptive inputs, diverts the focus of
the user from the how to the what. Additionally, with the Sketch-
pad, iteration is trivial, and requires only changes in easily drawn
contours.

Combination and Scale. Our goal is to increase the availability of
large sound collections to creative media production in situ. The un-
derlying sound database supports this; new sounds and collections
can be added, and they remain available to future work. In addition,
this expanding pool of resources is applied directly, yielding swift
mechanisms for combination both in sequence and in layers. This
improves upon DAW patterns and existing sound databases, such as
Freesound [10], which largely require manual search, downloading,
importing, and editing before their contents can then be composed
with. It also offers advantages over CBCS approaches, in that it
is scalable, supports both linear and vertical combinations, allows
interactive refinement, and benefits from a growing ecosystem of
content.

Extensibility. Our parameter control framework easily admits new
controls, that can be designed as desired to map onto features or
apply audio post-processing. The former builds on target-based con-
trol in CBCS and the latter follows from DAW parametric automa-
tion. This combination supports both control over the assembly
process and the output aesthetics respectively, and allows arbitrary
extension, limited only by possible feature mappings and signal
processing. Notably, discovering new parameters is not a simple
process, and so our initial implementation provides a few to begin
with.

Learnability. The bi-modal interface allows simple, expressive in-
puts and facilitates expression by new populations, specifically
those without training or experience in music composition or me-
dia production. Additionally, because we don’t depend on learned
black box models, the processes are more interpretable in the sense
that a user might become accustomed to the system’s behavior, and
discover new ways to maneuver its constraints into controllable
output and, ultimately, new interesting output forms.

These qualities together enable the system to provide creative ac-
cess to large amounts of material, while the interface makes this
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access easy to learn, experiment with, and extend for new users
and musical applications.

6 LIMITATIONS AND FUTURE WORK

This interface and its methods, by expecting pre-selection of sound
collections from the database, are able to operate relatively quickly
to generate new compositions from inputs. The process of curating
independent sound units and organizing them into collections is
still very cumbersome, however, and ongoing work aims to address
these particular tasks and connect them to the Sketchpad. Addi-
tionally, automated selection methods are currently somewhat in-
flexible; future work might consider more situation-specific search
criteria.

Another important challenge is effectively handling stylistic in-
formation and variation. The Sketchpad aims to account for overall
and gradual variations in texture, pitch, and envelope, as are typical
in soundscape composition and related styles. Future work may ex-
tend these techniques to consider important structural elements of
other recombinant musical styles, such as precise rhythm, melody,
and harmony, and imagine how new directions might be possible
for these by empowering creators with new scales of content and
powerful tools for production with them.

7 CONCLUSION

In this work, we examined the design, implementation, and possible
applications of a new interface and tool for sound-based music
composition with large, diverse audio collections. In doing so, it is
hoped that the problems, principles, and techniques explored can
motivate more work in designing creative media production tools
suitable for the age of big data, that thrive on scale and diversity
and support emerging forms of expression.
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