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ABSTRACT
In this work we propose a prototype which combines an existing
augmented reality (AR) headset, the Microsoft HoloLens 2, with
an electroencephalogram (EEG) Brain-Computer Interface (BCI)
system based on covert visuospatial attention (CVSA) – a process
of focusing attention on different regions of the visual field without
overt eye movements. In this work we did not rely on any stimulus-
driven responses. Fourteen participants were able to test the system
over the course of two days. To the best of our knowledge, this
system is the first AR EEG-BCI integrated prototype that explores
the complementary features of the AR headset like HoloLens 2 and
the CVSA paradigm.

CCS CONCEPTS
• Human-centered computing→ Human computer interaction
(HCI); Interaction paradigms; Mixed / augmented reality.
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1 INTRODUCTION
Research in the field of physiological sensing, and Brain-Computer
Interfaces in particular, has been gaining momentum within the
past 15 years, as the systems have been tested in scenarios such
as rehabilitation [1], robotics [2], accessing mental states of the
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user [3] and entertainment [4]. However, these systems remain
expensive, bulky, uncomfortable to wear due to the gel applied to
the electrodes, wired, as well as prone to classification errors. Thus,
a lot of modern BCI systems are used in association with other
input modalities like gaze trackers [5], or HMDs like Virtual Reality
(VR) [6] and Augmented Reality (AR) headsets [7]. In this paper we
focus on AR HMDs.

The connection between BCIs and AR HMDs is threefold: both
BCI and AR systems are worn on the head; HMDs usually require
hands-free interaction, which BCIs can provide; and AR HMD de-
vices have voice and/or eye gaze modalities for interaction, which
could compensate for classification errors that occur during BCI
use.

However, these research works generally do not integrate the
BCI and ARHMD systems within the same physical prototype; thus,
they barely address the challenges of using BCIs and AR HMDs
simultaneously.

In this work we propose a prototype to solve this problem by
combining an AR headset with an existing EEG-BCI system, and we
conducted a study with 14 users, who were wearing our prototype
to validate this concept (Fig. 1). We investigated the feasibility of
using a BCI based on covert visuospatial attention (CVSA) – a
process of focusing attention on different regions of the visual field
without overt eye movements [8]. In this work we operate without
relying on any stimulus-driven responses. We invited the users to
test the system over a period of 2 days, and we report on our results
in this paper.

Our contributions in this paper are (1) an AR EEG-BCI integrated
prototype (2) a user study which is built upon CVSA paradigm (3)
sharing our code as well as all pertaining 3D files to print a clip-
on holder for EEG electrodes and electronics compatible with AR
HoloLens 2 headset [9], which we use in this work.

1.1 Covert Visuospatial Attention (CVSA)
Covert visuospatial attention (CVSA) is defined as the ability to
allocate one’s attention resources to a position located in one’s pe-
ripheral field of view without any overt eye movements [8]. Since
covert shifts of attention do not generate any observable behav-
ior, EEG provides access to this process that cannot be measured
through any other modality. Covert attention has been shown to be
underlain by specific neurophysiological patterns, specifically by a
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Figure 1: From left to right: OriginalHoloLens 2ARheadset (H2); HoloLens 2 headset with embedded brain sensing component
(clip-onholder to house EEGelectrodes over visual cortex, 2 EEGelectrodes highlighted in orange); Userwearing an “enhanced”
AR/BCI system (clip-on holder printed in blue; over visual and pre-frontal cortex); A close-up image of the electrode clip-on
featuring 7 electrodes; EEG clip-on hardware piece designed forHoloLens 2 headset. The clip-on piece includes three parts: the
first two parts house EEG electrodes that make contact with the forehead (left image, highlighted in orange) and the back of
the head (right image, highlighted in orange), while the last part, attached at the back of the HoloLens 2, holds the electronics
(right image, highlighted in light green).

lateralised modulation of α-power (8–14 Hz) in the visual cortex
[18, 19]. The neurophysiological patterns underlying CVSA have
been studied via the modulation of the brain responses elicited by
external visual stimuli [20], as well as via the self-generated modu-
lation of the activity in the visual cortex in a fully endogenous way
(i.e., not depending on external stimuli) [21, 22]. These covert shifts
of attention have also been explored in environments containing
ambiguous spatial information [23]. Tonin et al. [8, 24] have tested
the feasibility of detecting covert shifts of visual spatial attention
in real-time by analysing α sub-band modulations.

2 MATERIALS AND METHODS
2.1 Clip-On EEG Piece for HoloLens 2
We have designed our own EEG clip-on holder for HoloLens 2 to
host all the electrodes and electronics for the brain-sensing compo-
nent of our system. The HoloLens 2 EEG clip-on had three major
considerations: fit, effectiveness and material. It had to accomplish
three things in particular: (1) Conform to the shape of the HoloLens
2 front and back headset parts; (2) Ensure that the EEG electrodes
form a strong physical contact with the scalp; (3) The clip-on holder
piece fits rather comfortably for the user. The clip-on piece for the
HoloLens 2 includes three parts: the first two parts house EEG elec-
trodes that make contact with the forehead and the back of the head,
while the last part, attached at the back of the HoloLens 2, holds the
electronics (Fig. 1). The first round of ideation focused on finding
an optimal shape that maximizes the contact area. We explored a
number of geometric patterns that can be used to house up to eight
electrodes on each part, and found the staggering pattern to be the
most effective. The teardrop-shaped EEG sensors would sit inside
the extruded cut curvature of the clip-on.

The HoloLens 2 clip-on was designed in Solidworks and later
3D printed. The extrude command was used to create curvature for
the pieces that was then extrude cut to make teardrop slots that are
used to hold the EEG electrodes. Following the computer model,
the CAD models were 3D printed with thermoplastic polyurethane
(TPU) filament, which is flexible and abrasion resistant. We have
chosen TPU material over polylactic acid (PLA) because of its flexi-
ble material properties.

2.2 Participants
14 adult participants (7 women, 18 to 38 years old, median age: 23
years) with normal or corrected-to-normal vision participated in

this study. The study was approved by the ethics committee of MIT
where the study took place. The participants were recruited among
the campus passers-by and students, and they did not receive any
compensation for their participation.

2.3 Visuospatial Attention Protocol
We followed the protocol from Tonin’s et al., work [8], which used
a modified version of Posner’s spatial cueing task [25] (see Fig. 2). A
white fixation cross in the center of a screen and two white circles
positioned at the bottom-left and bottom-right locations were dis-
played continuously. After 2000 ms of fixation, a cue (arrow) was
displayed for 100 ms indicating on which of the two target locations
(circles) the user is supposed to focus their attention. Users were
instructed to perform the task without overt eye movements. After
3000-5000 ms of sustained covert attention, a red disc appeared
over one of the target locations, indicating the result of the classi-
fication (feedback) and indicating the end of the trial. During the
calibration phase the feedback always appeared at the correct, i.e.
cued, location. The duration of the covert attention period was
randomized to avoid the user adapting to the protocol pace. During
the covert attention period no external stimuli were provided to the
users. They were instructed to restrain from blinking or moving
their eyes as much as possible until the end of each trial.

2.4 Experimental Design
Each user participated in two recording sessions separated by 1 to
4 days (depending on the availability of each user to come back
to the lab). On the first day users performed four calibration runs
(total of 160 trials, 40 trials/run). The calibration phase lasted on
average 39.8 ± 6.2 minutes. After a break (10 ± 5 min), the users
performed four real-time runs (total of 120 trials, 30 trials/run).
The classifier used for the real-time runs was built with the data
from the calibration phase and then updated with the first two
real-time runs. On the second day of the experiment, the subjects
performed four additional real-time runs (total of 120 trials, 30
trials/run) using the same classifier from the previous day. In total,
each user performed 400 trials across the two recording days. Trials
were randomly shuffled between the two classes.

2.5 Data Acquisition and Preprocessing
We used the Microsoft HoLoLens 2 headset as an AR HMD platform.
We used electrodes from the g.tec Unicorn Hybrid system [26]. We
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Figure 2: Experimental design paradigm.

attached the Unicorn electrodes (any electrodes can be used) to
HoloLens 2 by 3D-printing a clip-on holder (Fig. 1, in blue), which
contains all the electrodes and electronics pertaining to EEG. Thus,
we discarded the use of any caps which are usually an integral part
of g.tec Unicorn system and many other commercially available
BCI systems.

We acquire EEG from 14 dry EEG electrodes. The data is sam-
pled with 24 Bit, 250 Hz per channel. The electrodes were placed
according to the standard international 10–20 system on prefrontal
and the parieto-occipital regions of the brain: FP1, FPz, FP2, AF7,
AF1, AF2, AF8 and PO7, PO3, POz, PO4, PO8, O1, O2. Reference
and ground electrodes were fixed on the mastoids of the user. After
acquisition, the EEG data of a given trial was low-pass filtered by
cutting-off frequency at 200 Hz. The envelope of the signals was
computed for seven frequency sub-bands in the α range. Subse-
quently, a Laplacian spatial filter was applied. Please check [8] for
more details.

Unlike, [8], our experiment was conducted in the 3D mixed real-
ity environment instead of a 2D screen. We used Unity 3D as the
software to set up the scenes for covert visuospatial attention exper-
iment setup. The HoloLens 2 has built-in eye-tracking functionality
which allowed us to know what the user was looking at. It pro-
vides eye-gaze ray (gaze origin and direction) data at approximately
30FPS.

2.6 Real-Time BCI Classification
In order to discriminate between the two classes (the left or right lo-
cus of attention) we adopted a time-dependent classificationmethod
following [8]: the classification of every trial was based only on the
data from the first 3000 ms after cue onset. This period was split into
consecutive non-overlapping windows of 150 ms. For each window
we built a quadratic discriminant analysis classifier. Please check
[24] for details. During real-time runs each classifier analyzed its
corresponding window sequentially: we accumulated the posterior
probabilities of each time window in a Bayesian framework in or-
der to make the final decision about the trial [27]. The real-time
accuracy of the BCI was evaluated in terms of the percentage of
correctly classified trials.

2.7 Offline Analysis: Gaze Control
After the completion of the online sessions, the data was addition-
ally analyzed offline in order to further investigate the performance
of the system. As one of the motivations of our setup was inves-
tigating the EEG acquisition and analysis to enable real-time use
cases, real-time BCI classification must make predictions on the

trials as they are received. Offline clean-up stages cannot be used.
But following Tonin et al.’s work [8] and rather novel hardware
setup, we evaluated the possible influence of eye movements. Using
eye-tracker data we: (1) quantified the incidences of overt gaze visits
to the target locations and (2) investigated the possible influences
of eye movements on the classification.

We defined two circular regions of interest (RoI) covering 8.8°
of the visual field, centered on the target locations. This number
was calculated based on the maximum distance of the two circu-
lar regions. We conservatively considered that a target location
received an overt glance (saccades) if the subject’s gaze visited the
corresponding RoI continuously for at least 50 ms.

However, to additionally verify whether any shifts in gaze direc-
tion could influence or account for our BCI classification results,
we performed classification of the trials based solely on eye move-
ments. The HoloLens 2 has 2 IR cameras and provides real-time
eye-tracking data such as GazeOrigin on x/y/z-axis, GazeDirection
on x/y/z-axis, and information about the currently gazed-at target
(HitInfo, HitPosition and HitNormal) [28]. For eye-tracking data
collected from the HoloLens 2, we extracted the horizontal compo-
nent x and vertical component y of the gaze location. We set the
fixation cross as the origin (0,0). The horizontal coordinate value
gave us a metric specifying if the user was looking to the left or to
the right. The vertical coordinate value gave us a metric specifying
if the user was looking up or down. The trials were classified as
left or right based on this metric.

Subsequently, for each user a φ coefficient was calculated be-
tween a vector of gaze-based trial-by-trial classifications (correct or
incorrect, 1 or 0) and a similar vector for BCI classification. The φ
coefficient is a measure of association between two variables; it can
be considered as an equivalent of Pearson’s correlation coefficient
for binary variables. A high association between gaze-based and
BCI classifications would mean that both performed well or both
failed, thus suggesting that both rely on the same physiological
processes—correlates of overt shifts in gaze direction. A low or
no association would demonstrate that BCI classification detects
cortical processes which are generally independent of incidental
gaze shifts.

3 RESULTS
3.1 Online (Real-time) BCI Performances
Figure 3 shows the online performances for each user averaged
over the two days of the experiment. All users performed better
than a chance level of p < 0.05. To double-check if the classification
results are significantly different from what could be achieved by
chance, we follow Muller-Putz et al. [29]. They propose that the
reported accuracies should be compared against the upper bound
of a confidence interval around the expected accuracy of a random
classifier. Accuracy averages inside the confidence interval cannot
be rejected from being essentially random. The same approach has
been followed by [8, 24, 29, 30]. The interval bounds depend on
the amount of trials in the experimental design. In the accuracy
plots we present, a horizontal line denotes the upper boundary for
the confidence interval with a threshold p < 0.05 as obtained from
Muller-Putz et al. [29]. The overall accuracy across subjects and
runs was 70.0 ± 5.5% (mean ± standard error of the mean (SEM)).
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Figure 3: Online performance of each user averaged over the
two days of the experiment. Error bars denote standard de-
viation of the mean. The broken line indicates the chance
level of p < 0.05.

Figure 4: Overt eye movements: percentage of trials involv-
ing overt gaze shifts: (1) towards either one of the target lo-
cations (green bars); (2) towards just the cue target location
(blue bars).

3.2 Gaze Shifts
In Fig. 4 we present the percentage of trials that involved overt gaze
direction shifts towards either one of the target locations (green
bars). This percentage is very low for all subjects: 0.73% on average,
maximum 2%; it is 0% for subjects s1, s6, s7, s11, s12 and below
1% for s13 and s14. As expected, most of the eye movements were
directed towards the cued target location (blue bars in the figure).
Given the small number of contaminated trials it can be assumed
that gaze shifts had a negligible impact in the classification accuracy.
Additionally we investigated the association between classification
based on the prevailing gaze direction in a given trial and EEG-
based BCI classification. We found a low correlation for all subjects
(Fig. 5), further confirming that BCI classification detects cortical
processes which are independent of any occurring gaze shifts.

4 DISCUSSION
In this study we demonstrated the online, real-time setup of using
an AR EEG-BCI integrated prototype based on CVSA not relying
on any external stimulation. Online classification accuracy of 70.0
± 5.5% (averaged across subjects and recording sessions) proves
CVSA to be in line with current percentages of control signal for
BCI applications as well as the similar state of the art research
projects [8, 22-24], all reporting between 69% and 74%.

Figure 5: Overt eye movements: correlations (φ coefficients)
between the trial-by-trial accuracy of classification based on
the horizontal component of eye saccades and BCI; none sig-
nificant at p < 0.05.

The proof-of-concept presented in this paper opens up interest-
ing possible applications of AR EEG-BCIs based on CVSA. Inherent
gaze independence of CVSA makes it a promising alternative for
completely locked-in patients, who do not display any overt eye
movements. Its intuitiveness—natural attraction toward regions or
objects of interest in the visual field—makes it a promising candi-
date for BCI-driven navigation devices (e.g., wheelchairs or robots),
as well as yes–no communication. Absence of stimulation stimuli
like ERPs/SSVEPs may prove it more suitable for use over longer
periods of time, as it allows a more engaging and direct operation,
and it is more adapted towards the out-of-lab interactions. How-
ever, the results of this study should be considered as preliminary
and the effect of extended use of such integrated systems based on
locus of attention should be explored further. Another interesting
approach lies in coupling CVSA with other BCI control signals in
a hybrid framework—particularly with another non-time-locked
paradigms like motor imagery. Advantages include the fact that
both rely on independent EEG correlates, while offering isolated
scalp distributions. Such hybrid system could be implemented in
order to increase the number of available commands or to decrease
the uncertainty of the existing ones.

Finally, a prospect of enhancing AR interaction using CVSA also
appears to be intriguing, in the applications where the user might
need additional modality to access some hidden properties of the
system without evoking those in an explicit manner.

REFERENCES
[1] Liesjet van Dokkum, Tomas E. Ward and Isabelle Laffont. Brain computer in-

terfaces for neurorehabilitation – its current status as a rehabilitation strategy
post-stroke. Annals of Physical and Rehabilitation Medicine, Volume 58, Issue 1,
2015, Pages 3-8, ISSN 1877-0657.

[2] Karl LaFleur, Kaitlin Cassady, Alexander Doud, Kaleb Shades, Eitan Rogin, and
Bin He. 2013. Quadcopter control in three- dimensional space using a noninvasive
motor imagery-based brain-computer interface. J. Neural Eng. 10, 4 (2013), 046003.
https://doi.org/10.1088/1741-2560/10/4/046003

[3] Daniel Afergan, Evan M. Peck, Erin T. Solovey, Andrew Jenkins, Samuel W.
Hincks, Eli T. Brown, Remco Chang, and Robert J.K. Jacob. 2014. Dynamic diffi-
culty using brain metrics of workload. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’14). Association for Computing
Machinery, New York, NY, USA, 3797–3806.

[4] Nataliya Kosmyna, Franck Tarpin-Bernard, and Bertrand Rivet. 2015. Towards
brain computer interfaces for recreational activities: Piloting a drone. In Proceed-
ings of INTERACT 2015. Bamberg, Germany.

[5] Nataliya Kosmyna and Franck Tarpin-Bernard. 2013. Evaluation and comparison
of a multimodal combination of BCI paradigms and eye tracking with affordable
consumer-grade hardware in a gaming context. IEEE Trans. Comput. Intell. AI

46

https://doi.org/10.1088/1741-2560/10/4/046003


A Pilot Study using Covert Visuospatial Attention as an EEG-based Brain Computer Interface to Enhance AR Interaction ISWC ’21, September 21–26, 2021, Virtual, USA

Games 5, 2 (2013), 150–154.
[6] Judith Amores, Robert Richer, Nan Zhao, Pattie Maes, and Bjoern M Eskofier.

2018. Promoting relaxation using virtual reality, olfactory interfaces and wearable
EEG. In 2018 IEEE 15th International Conference on Wearable and Implantable
Body Sensor Networks (BSN). IEEE, 98– 101.

[7] Nathan Semertzidis, Michaela Scary, Josh Andres, Brahmi Dwivedi, Yutika
Chandrashekhar Kulwe, Fabio Zambetta, and Florian Floyd Mueller. 2020. Neo-
Noumena: Augmenting Emotion Communication. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems (CHI ’20). ACM, New
York, NY, USA, 1–13.

[8] Luca Tonin, Robert Leeb, Aleksander Sobolewski and Josed́el R. Millań. 2013. An
online EEG BCI based on covert visuospatial attention in absence of exogenous
stimulation. J. Neural Eng. 10 056007, 2013.

[9] https://www.microsoft.com/en-us/hololens/hardware
[10] F. Putze, D. Weiβ , L. Vortmann and T. Schultz, "Augmented Reality Interface for

Smart Home Control using SSVEP-BCI and Eye Gaze," 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 2019, pp. 2812-
2817.

[11] H. Si-Mohammed et al., "Towards BCI-Based Interfaces for Augmented Reality:
Feasibility, Design and Evaluation," in IEEE Transactions on Visualization and
Computer Graphics, vol. 26, no. 3, pp. 1608-1621, 1 March 2020.

[12] Guillermo Bernal, Tao Yang, Abhinandan Jain, and Pattie Maes. 2018. PhysioHMD:
a conformable, modular toolkit for collecting physiological data from head-
mounted displays. In Proceedings of the 2018 ACM International Symposium
on Wearable Computers(ISWC ’18). Association for Computing Machinery, New
York, NY, USA, 160–167.

[13] K. Takano, N. Hata, and K. Kansaku, “Towards intelligent environments: An
augmented reality brain-machine interface operated with a see-through head-
mount display,” Frontiers in Neuroscience, vol. 5, p. 60, 2011. [Online]. Available:
http://journal.frontiersin.org/article/10.3389/fnins.2011.00060

[14] Lisa-Marie Vortmann and Felix Putze. 2020. Attention-Aware Brain Computer
Interface to Avoid Distractions in Augmented Reality. In Extended Abstracts of
the 2020 CHI Conference on Human Factors in Computing Systems (CHI EA ’20).
ACM, New York, NY, USA, 1–8.

[15] Meng Wang, Renjie Li, Ruofan Zhang, Guangye Li, and Dingguo Zhang. 2018. A
Wearable SSVEP-Based BCI System for Quadcopter Control Using Head-Mounted
Device. IEEE Access (2018).

[16] Escolano C, Antelis JM, Minguez J. A telepresence mobile robot controlled with
a noninvasive brain– computer interface. IEEE SMC. 42, 3 (2012), 793–804.

[17] L. Angrisani, P. Arpaia, N. Moccaldi and A. Esposito, "Wearable Augmented Real-
ity and Brain Computer Interface to Improve Human-Robot Interactions in Smart

Industry: A Feasibility Study for SSVEP Signals," 2018 IEEE 4th International
Forum on Research and Technology for Society and Industry (RTSI), Palermo,
2018, pp. 1-5.

[18] Sauseng, P. et al. A shift of visual spatial attention is selectively associated with
human EEG alpha activity. Eur. J. Neurosci. 22, 2917–2926 (2005).

[19] Rihs, T. A., Michel, C. M. & Thut, G. A bias for posterior a-band power suppression
versus enhancement during shifting versus maintenance of spatial attention.
Neuroimage 44, 190–199 (2009).

[20] Schmidt, N., Blankertz, B. & Treder, M. S. α -modulation induced by covert at-
tention shifts as a new input modality for EEG-based BCIs. In Systems Man and
Cybernetics (SMC), 2010 IEEE International Conference on, 481–487 (IEEE, 2010).

[21] Treder, M. S., Schmidt, N. M. & Blankertz, B. Gaze-independent brain–computer
interfaces based on covert attention and feature attention. J. Neural Eng. 8, 066003
(2011).

[22] Treder, M. S., Bahramisharif, A., Schmidt, N. M., Van Gerven, M. A. & Blankertz,
B. Brain-computer interfacing using modulations of alpha activity induced by
covert shifts of attention. J. Neuroeng. Rehabil. 8, 24 (2011).

[23] Trachel, R. E., Clerc, M. & Brochier, T. G. Decoding covert shifts of attention
induced by ambiguous visuospatial cues. Front. Hum. Neurosci. 9, 358 (2015).

[24] Tonin, L., Leeb, R. & Millań, J. D. R. Time-dependent approach for single trial
classification of covert visuospatial attention. J. Neural Eng. 9, 045011 (2012).
Michael I. Posner. 1980. Orienting of attention, Quarterly Journal of Experimental
Psychology, 32:1, 3-25.

[25] https://www.unicorn-bi.com
[26] Beck J M, Ma W J, Kiani R, Hanks T, Churchland A K, Roitman J, Shadlen M

N, Latham P E and Pouget A 2008 Probabilistic population codes for Bayesian
decision makingNeuron601142–52

[27] https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/
EyeTracking/EyeTracking_EyeGazeProvider.html

[28] Mul̈ler-Putz, G., Scherer, R., Brunner, C., Leeb, R. & Pfurtscheller, G. Better than
Random? A closer look on BCI results. International Journal of Bioelektromag-
netism. 10, 52–55 (2008).

[29] Kosmyna, N., Lindgren, J.T. & Lécuyer, A. Attending to Visual Stimuli versus
Performing Visual Imagery as a Control Strategy for EEG-based Brain-Computer
Interfaces. Sci Rep8, 13222 (2018). https://doi.org/10.1038/s41598-018-31472-9

[30] Nataliya Kosmyna, Qiuxuan Wu, Chi-Yun Hu, Yujie Wang, Cassandra Scheirer,
Pattie Maes. Assessing Internal and External Attention in AR using Brain Com-
puter Interfaces: A Pilot Study. In Proceedings of 2021 International Conference
on Wearable and Implantable Body Sensor Networks (IEEE BSN ’21). Institute of
Electrical and Electronics Engineers, USA.

47

https://www.microsoft.com/en-us/hololens/hardware
http://journal.frontiersin.org/article/10.3389/fnins.2011.00060
https://www.unicorn-bi.com
https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/EyeTracking/EyeTracking_EyeGazeProvider.html
https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/EyeTracking/EyeTracking_EyeGazeProvider.html
https://doi.org/10.1038/s41598-018-31472-9

	Abstract
	1 INTRODUCTION
	1.1 Covert Visuospatial Attention (CVSA)

	2 MATERIALS AND METHODS
	2.1 Clip-On EEG Piece for HoloLens 2
	2.2 Participants
	2.3 Visuospatial Attention Protocol
	2.4 Experimental Design
	2.5 Data Acquisition and Preprocessing
	2.6 Real-Time BCI Classification
	2.7 Offline Analysis: Gaze Control

	3 RESULTS
	3.1 Online (Real-time) BCI Performances
	3.2 Gaze Shifts

	4 DISCUSSION
	References

