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ABSTRACT
Moving-Target Defenses seek to introduce dynamism into com-
puter systems in an effort to make these systems harder to explore,
predict, and exploit. Over the past decade a variety of work has
explored applying these kinds of defenses to applications’ runtime
environments, to the operating systems and architectures running
the applications, and to networks.

In this paper, we report on lessons learned from seven years of
building and evaluating moving-target defenses, primarily for pro-
cess memory layouts and networks. We identify six major lessons
learned from our experience that we believe to be broadly appli-
cable to moving-target defenses, focusing around the importance
and impact of threat models and characteristics of effective moving-
target defenses. We then offer suggestions for the future direction
of the field based on our experience.
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1 INTRODUCTION
That computer systems are frequently insecure and attacked by
all manner of adversaries should come as no surprise to anyone.
Common attacks today may exploit a variety of issues in the compu-
tation stack, from buffer overflows or use-after-frees in individual
applications to unpatched vulnerabilities in operating systems or
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drivers, or ineffective network segmentation. Moving target de-
fenses seek to raise the bar for the attacker by introducing dy-
namism, or movement, into an otherwise static computer system.
For example, instead of using identical memory layouts every time
a binary executes, a moving-target defense may randomize the
memory layout every time it is loaded or even at runtime. As this
memory layout is critical to writing an exploit for a buffer over-
flow or use-after-free bug, this greatly increases the difficulty of
attacking the system.

This core moving-target idea of defending systems by intro-
ducing dynamism to make exploiting a system harder is broadly
applicable across domains and not constrained to defending against
one particular class of exploits or vulnerabilities. As a result, a wide
variety of defenses relying on moving-target techniques have been
developed over the last decade or more, including defenses apply-
ing randomization to process memory layout to protect against
memory safety exploits [4, 11, 12, 20, 34], defenses applying dy-
namism to network addresses to protect against network mapping
or denial-of-service [5, 13, 14, 36], defenses applying dynamism
to packet headers to protect against traffic analysis [25, 31], and
defenses applying diversity to the operating systems running some
service to protect against vulnerabilities in particular operating
systems [1, 18], as well as others [8, 30, 35].

While moving-target defenses have been successfully applied in
a wide variety of use cases, there remain several challenges. One
of the biggest is that moving-target defenses provide probabilistic
protection. In other words, attackers are not prevented outright
from exploiting the system; the dynamism or randomization intro-
duced merely makes exploitation extremely unlikely. As a result,
moving-target defenses may be rendered ineffective by attacks that
can follow the dynamism at runtime [7], by information leakage
attacks that can be used to determine the current configuration
for exploitation [22, 33], or by attacks that use other information
that is not perturbed by a given defense. As a result, moving-target
defense is still an active area of research.

We have been building and evaluating moving-target defenses
for more than seven years. Over the course of that time, we have
built moving-target defenses for network packet headers [25] and
network connectivity [8], as well as evaluated a variety of other
moving-target defenses in these areas and developed attacks that
circumvent them [1, 21, 26, 33]. Finally, we have taxonomized and
examined a large portion of the existing work in this area [32].

In this paper, we reflect on our experiences over the last seven
years and offer six lessons learned that we hope will be valuable
for the community. These lessons center around a need to carefully
consider the threat model and attacker capabilities when designing
or deploying moving-target defenses, as well as identifying what
information movement is most effectively applied to when creating
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moving-target defenses. We then offer insights as to key directions
for the future of the field.

2 BACKGROUND
Moving-target techniques seek to disrupt or prevent the successful
execution of a cyber-attack by adding dynamism to an otherwise
static system component.While theymay be taxonomized in several
ways, we find the categorization presented in [32] to be helpful for
the purpose of this paper. Under their system, a defense falls into
one of several categories based on the layer of the computation
stack where dynamism is added:

• Dynamic data techniques change the representation of ap-
plication data. This does not generally include encryption
of data at rest or in transit, though cryptographic primitives
may be used as part of a larger defensive technique.

• Dynamic software changes the application’s code in memory,
while preserving its higher-level execution semantics. For
example, a multi-compiler may emit different binaries with
equivalent functionalities.

• Dynamic runtime environments permute or add dynamism to
the environment an application executes in, such as memory
layout randomization.

• Dynamic platforms add dynamism to the underlying oper-
ating system while preserving (or adapting) its system call
interface. Many virtualization-based approaches fall into this
category, for example.

• Dynamic networks add dynamism to network structure (e.g.,
topology), addressing, or protocols. Examples include software-
defined networking approaches that modify network topol-
ogy over time, or permute network packet headers.

This paper will not focus on rigorously taxonomizing all refer-
enced techniques. Nor will it argue that specific categories are more
or less effective against certain threat models. However, many of
the lessons discussed here are especially applicable to, or represent
challenges naturally arising in the context of, particular categories
of moving-target defense.

3 LESSONS LEARNED
Lesson 1: Attackers can use APIs too
One danger when considering attacker threat models, especially
in enterprise environments, is assuming that the attacker does not
have full access to the same system and network services that be-
nign applications do (or not considering the full scope of those
services). In particular, it is common for modern attack campaigns
on enterprise networks to take advantage of system features such
as Windows Powershell, LDAP services, DHCP, and Server Mes-
sage Block (SMB) shares. All of these services are used by benign
applications, yet each affords the attacker powerful reconnaissance
and lateral movement tools.

As an example case study, consider the 2017 NotPetya attacks
[27]. The malware was originally introduced via a software supply-
chain attack that compromised a software update server. When
a victim downloaded an update, they also became infected with
the malware. From that original entry point, NotPetya queryed

Active Directory domain controllers and DHCP servers for sub-
net configuration data in order to begin mapping the network. It
conducted credential theft and remote process execution through
valid Windows system administration tools. While it was able to
spread via exploitation of SMB shares, credential theft was the pri-
mary vector for lateral movement [24]. With the exception of these
potentially-unnecessary SMB exploits, the remainder of NotPetya’s
attack chain used existing APIs for the purposes they were intended
for, albeit to malicious ends.

This case study is not unique. Similar techniques were used in
the 2017 Equifax breach [16] and 2015 Anthem breach [17]. Enter-
prise environments require rich service APIs in order to support
remote management, access control, system provisioning and main-
tenance, and consistency across distributed services. If an attacker
can obtain sufficient privileges to utilize these APIs, there is little
to distinguish an attacker from a legitimate system adminstrator
or service. Disabling these APIs is also not a realistic option, as it
would also impede system administrators trying to stop the spread
of malware. Indeed, in the case of NotPetya, Microsoft advised that
“if a threat actor has acquired the credentials needed for lateral
traversal, you can NOT block the attack by disabling execution
methods like PowerShell or WMI. This is not a good choke point be-
cause legitimate remote management requires at least one process
execution method to be enabled [24]."

The lesson here is that moving-target defenses rely on the at-
tacker needing capabilities unavailable through normal APIs. When
malware can largely limit its activities to legitimate APIs and ser-
vices, it is not clear what targets to move in order to disrupt the
attack, that will not also disrupt legitimate applications. IP address
randomization, for example, would be ineffective here, since the
malware can simply query the relevant servers for configuration
data also used by legitimate applications. Memory randomization
to stop exploitation via memory corruption may mitigate the SMB
exploits, but will do nothing to stop remote process execution via
stolen credentials.

That said, we think this represents an opportunity for themoving-
target community to reconsider how their defenses are designed,
and the threat models that drive them. Attackers must still operate
outside the bounds of a legitimate user (e.g., by stealing creden-
tials), and it is at these points that moving-target defenses will be
most capable at halting an attack with minimal impact on benign
operators.

Lesson 2: Moving-target defenses are most
effective when hiding information only the
attacker needs
Moving-target defenses fundamentally try to hide some informa-
tion from the attacker. We have observed that the choice of that
information is crucially important to the effectiveness and overhead
of a defense. In particular, we have found that the moving-target
defenses that are most effective and least costly focus on hiding
information that is valuable to an attacker but of little to no value
to legitimate users.

Coarse memory randomization defenses, like ASLR [28] and
DieHard [2], that randomize the location of the text and data sec-
tions of a process at load time are great examples of this. It turns
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out that there are almost no legitimate reasons for one process
to care about the memory layout of another process. Debuggers,
like gdb, are perhaps the one exception, but are rarely used on
production machines and typically require the debugged program
to be started with special flags or environments anyway. As a re-
sult, memory randomization defenses can freely randomize process
address spaces without having to develop complex mechanisms to
keep the rest of the system in sync (such mechanisms can also be
used by an attacker, see Lesson 1). This reduces the overhead of the
defense, as little metadata needs to be maintained, and improves the
effectiveness, as the defense offers no way to identify randomized
elements.

IP address randomization schemes, like RPAH [14], where the IP
addresses used to communicate with legitimate devices on the net-
work are automatically changed on a frequent basis, are examples
of the opposite situation. Here, basically any device that communi-
cates over the network needs to know the IP address of the hosts it
communicates with. This includes essentially every legitimate de-
vice on a network: workstations, IP phones, printers, cameras, and
a host of others. It also includes every router, which needs to make
decisions and optimizations based on those addresses. As a result,
these schemes require some mechanism to coordinate state across
the whole system in a consistent manner and make it query-able
by legitimate devices. This is frequently done using SDN and DNS,
for IP hopping schemes [23, 36]. Generally, however, this type of
coordination tends to be expensive and centralized and introduces
a whole host of consistency challenges (see Lesson 6). Additionally,
this query API is a possible channel for the attacker to learn and
circumvent the randomization (see Lesson 1). As a result, these
schemes tend to be expensive and offer easy paths for attackers to
circumvent.

Another important realization is that this space is a spectrum.
We have so far talked about defenses where the information being
hidden is either of no value or extreme value to the rest of the system.
Most defenses fall somewhere in the middle. Consider defenses that
rerandomize a binary dynamically at runtime, like TASR [4]. While
other processes do not care about the memory layout of the process,
the process itself does. In particular, any given process is likely to
have many code and data pointers in use and those would need to
be updated if the location of code or data changes. This gets much
worse if doing fine-grained randomization, where memory within
the code and data segments is reordered, such that jumps within the
code segment need to be changed. For defenses like these, metadata
definitely needs to be maintained to allow the defense to quickly
and accurately update the process image. Updating this metadata
and the process image will definitely result in overhead. However,
this metadata is specific to a single process, meaning that it does not
introduce consistency challenges across many system components.
Further, because the rerandomizing component is the only thing
that needs this metadata and the new memory locations, no API is
required for sharing this information.

Overall, we recommend those designing or deploying moving-
target defenses to consider what information is being protected
by a defense and focus on information that is of great value to
an attacker while being of little use to legitimate elements of the
system. We have observed that such systems usually have better
effectiveness and reduced overhead.

Lesson 3: Threat model and system type matter
Threat models drive the development of defenses. A good threat
model realistically considers what capabilities attackers have and
what constitutes attacker success. The efficacy of a defense should
be able to be quantitatively or analytically evaluated with respect
to this threat model. Unfortunately, it is difficult to quantitatively
demonstrate how much a defense makes it ‘harder’ to attack a
system. The security community lacks standard metrics of success,
and despite recent work on developing a science of security [10]
this situation is unlikely to change in the near future.

Lacking standard metrics, some early moving-target defenses
nonetheless provided a quantitative evaluation by claiming that
some measurable quantity is linked to the attacker’s difficulty, cost,
or probability of success. This is dangerous if it implicitly weak-
ens the attacker by restricting their capabilities, and can lead to a
false sense of security. For example, early memory randomization
schemes [3, 6] assumed that once memory layout was permuted,
attackers would be limited to guessing the offsets of useful code.
Thus, metrics based on probability and entropy were used to eval-
uate defenses. Not long after, the advent of memory-disclosure
attacks demonstrated the limitations of such metrics, as attackers
were no longer forced to guess memory offsets. The metrics implic-
itly limited attackers into a proscribed set of actions that were not
reflective of their actual capabilities.

Similarly, some leakage-resilient memory randomization de-
fenses evaluated the number of code reuse gadgets that were re-
moved [11, 20, 34] or the granularity of randomization [12], as a
ad-hoc security metric. The problem is that this is again making an
implicit assumption about what an attacker can or cannot do. Using
fine-grained randomization to make 99% of gadgets unavailable,
for example, does not necessarily make an attack 99% harder or
reduce the attacker’s probability of success to 1%. It restricts the
number of building blocks available to an attacker, but there is no
guarantee that the removed gadgets were critical to attack success.
Page-level randomization, for example, removes almost all gadgets
available to the attacker by randomizing their location in memory.
Yet, RelROP [33] attacks demonstrate that there can be enough
gadgets in a single page of memory to launch a shell.

A related problem arises when moving-target defenses make
implicit assumptions about what constitutes attacker success. Many
moving-target defenses (e.g., memory randomization) inherently
convert an attack on system integrity (e.g., memory corruption) into
an attack on availability, by causing undefined behavior, trapping,
or crashing a program in response to an attack. This is implicitly
considered to be a better scenario for the defender when evaluating
the technique. There are two issues with this approach.

First, it presupposes that the attacker’s goal is not denial-of-
service. Depending on the cost to restart a process and the overhead
imposed by the defense, a moving-target defense could transform
a normally non-crashing bug into valuable channel for denial-of-
service attacks. Second, it assumes that an attack on availability
is less harmful than an attack on integrity or confidentiality. This
may be true in conventional computing (e.g., web servers), but in
some environments unexpectedly crashing the process is entirely
unacceptable. Cyber-physical systems, for example, use a software
controller to sense and actuate physical processes. These include
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automotive braking controllers, flight control software, industrial
plant controllers, and electrical grid management systems. In these,
a software crash can result in physical damage or harm to human
beings. If a moving-target defense increases the probability of an
unexpected crash in the event of an attack, it may not improve the
overall security of the system.

Overall, we recommend against attempting to informally quan-
tify how a defense impacts an attacker’s cost, difficulty, or probabil-
ity of success. Many metrics make implicit assumptions about what
attackers can or cannot do, and these may not hold up in reality.
In particular, it is dangerous to claim that a moving-target defense
makes a particular kind of attack ‘too hard’ for an adversary. Addi-
tionally, it is important to be clear about the impact of a defense not
only on system integrity or confidentiality, but also on availability.

Lesson 4: Used improperly, moving-target
defenses can help attackers
Moving-target defenses add dynamism to a previously static sys-
tem component. When done well, this effectively hides informa-
tion needed for an attacker to succeed. However, if the impact of
additional dynamism is not carefully considered, it may hinder
legitimate users or even play to the advantage of the attacker. In
particular, we have observed two kinds of detrimental effects that
can arise from improper use of moving-target defenses.

First, care must be taken when using moving-target approaches
that ‘rotate’ through one of several system configurations. TAL-
ENT [18], for example, provides platform diversity by moving a
software container across several operating systems over time. The
danger here is that depending on the threat model (see Lesson
3), such a defense may expose the union of all the vulnerabilities
present in the rotated set of system components. For example, con-
sider an application whose host OS is rotated through Windows,
Linux, and Mac distributions. If an attacker needs to maintain con-
stant persistence on the system, this may effectively hinder them
by requiring a compromise of every OS instance. However, if the
attacker only needs to cause a one-time effect, then a vulnerability
against any one of the three operating systems will suffice. The
defense has effectively aided the attacker by allowing them to lever-
age a wider attack surface. This phenomenon has been explored
analytically in [19].

Second, the dynamism added by moving-target defenses may
make it difficult or impossible for system administrators to recon-
struct a past system state or to collect meaningful forensics. This is
especially challenging when deploying a network-based moving-
target system that adds dynamism to packet header fields [23, 25]
or the network topology itself [8]. Network operators attempting
to determine where an attack originated, what endpoints may be
compromised, or how an attacker spread through the enterprise
must be able to examine the network at past points in time. This is
much easier if conventionally long-lived state, such as IP addresses
or network routes, have changed only minimally over time. If they
have been rapidly permuted by a moving-target defense, operators
must trace those permutations backward in time in order to recon-
struct the network state. Depending on the size of the network,
the frequency of permutation (see Lesson 5), and the amount of
time in question, a very large volume of meta-data may need to be

maintained in order to support diagnostics that would otherwise
be straightforward and low-cost.

Overall, we recommend that researchers working on moving-
target defenses weigh the effects of the defense against what the
attacker may be trying to achieve (see Lesson 3) and the impact of
dynamism on system auditing and maintenance. Dynamism can
aid, or hide, malicious activities when improperly used. If a defense
adds software to a system, researchers should address how this
changes attack surface. If a defense permutes information that is
routinely logged, researchers should strive to provide a low-cost
mechanism for tracing permutations backward in time.

Lesson 5: Timescale of movement must match
threat model
Another important lesson we have learned is that it is essential
for the time scale of the dynamism in a moving-target defense to
match the threat model in order for that defense to be effective. Be-
cause moving-target defenses operate by hiding information from
attackers, their nemeses are information leakage attacks. These
attacks expose the current configuration of the information being
hidden and, if acted on prior to an application of dynamism, allow
an attacker to bypass the moving-target defense. Unfortunately,
information leakage attacks are common and increasingly used by
attackers [9, 29]. Effective moving-target defenses will take this
into consideration in their threat models and use timescales of
movement that minimize this risk of information leakage being
weaponized.

Of course, the timescale of movement is a trade off between
performance and security. Pick too fast of a timescale and you waste
time unnecessarily changing the system. However, if you pick too
slow of a timescale, an attacker can easily defeat the system by using
information leakage attacks to learn the current configuration of
the system and then create an attack for that configuration. This too
slow case is much harder to identify for because the performance
looks good and untuned attacks are stopped. Ultimately, a moving-
target defense’s threat model should define how quickly attackers
can weaponize an information leak and that should be the driving
factor for the timescale of movement.

An excellent example of this is TASR [4], a memory randomiza-
tion defense that rerandomizes a process’s address space at runtime.
The key insight of TASR, however, is less about how the reran-
domization is actually done as when it is done. The most obvious
thing to do would be to randomize the process’s address space
periodically, every n seconds, for instance. However, the key in-
sight was that launching an information leakage attack against a
remote network daemon and exploiting the results requires at least
two I/O operations, one output and one input. In particular, one
output operation is required to leak the process memory layout
and one input operation is required to exploit it. TASR, therefore,
chooses to rerandomize immediately after any input operation that
follows one or more output operations, ensuring that an adver-
sary is unable to exploit any information leakage attack they may
launch. The careful consideration of information leakage attacks
and threat model here results in a defense that effectively mitigates
information leakage attacks with minimal overhead.
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In contrast, many defenses focus exclusively on how to dynam-
ically modify a system and do not really consider how often this
should be done for meaningful protection. This significantly hurts
their effectiveness because users are effectively given a knob to
choose between performance and some abstract definition of se-
curity, with no real guidance about how to set said knob. For con-
creteness, imagine a defense that dynamically migrates applications
between operating systems, like TALENT [18]. In this context, an
information leakage attack looks like determining the current oper-
ating system being used to run the application. Fingerprinting an
operating system in this manner is fairly easy, thanks to many tools
like nmap [15], and looking up vulnerabilities and exploits for a
given operating system version is not very challenging either. This
means that information leakage is definitely possible and possible
to weaponize quickly. Worse, because checkpointing and migrating
applications is expensive, it needs to be done infrequently to achieve
good performance. The needed balance between these competing
requirements is simply not obvious without reference to a threat
model.

Overall, we observe that most moving-target defenses have con-
centrated on mechanism, with policy like timescale of movement
being extremely dependent on the threat model being considered.
We also observe a striking lack of research into reasonable threat
models for moving-target defenses that would attempt to answer
this question. Instead researchers and administrators are largely
left guessing about appropriate threat models and parameters, like
timescale of movement.

Lesson 6: Moving-target defenses must preserve
system-wide consistency
Although moving-target defenses are based on dynamic movement,
our experience has shown that when it comes to system-wide prop-
erties that other legitimate components depend on, consistency is
absolutely critical. In fact, we find that ensuring this consistency
and debugging transient inconsistent state takes up the majority of
the engineering effort in building these kinds of defenses.

Ideally, one ensures system-wide consistency by avoiding dy-
namically changing any state that must be visible across the whole
system, as discussed in Lesson 2. However, this is not always fea-
sible, especially for network defenses that are fundamentally dis-
tributed in nature. For such defenses that involve system-wide state,
the entire system must be architected so as to provide consistency
and make identifying any inconsistencies that do occur as easy as
possible.

Our experience building DFI [8] provides a good example. DFI is a
network moving-target defense designed to dynamically configure
the network with only the connectivity needed at any moment in
time. For example, a workstation with no users logged in will only
have connectivity to the authentication server, but as soon as a user
logs in, connectivity will be added to services appropriate for the
user’s role in an organization. In a traditional network, by contrast,
each device’s connectivity is static and represents the maximum
connectivity that device could ever need. DFI is built using a variety
of sensors to collect authentication events and network identifier
binding information (e.g. IP-hostname or MAC-IP mappings) and
then a Software Defined Network (SDN) to update the connectivity.

All of this information is visible across the system and needed to
be kept consistent. In particular we had 4 mappings that needed to
be kept consistent both across our defense and with the rest of the
network infrastructure: switch port to MAC address, MAC address
to IP address, IP address to hostname, and hostname to logged in
users. Additionally, the flow rules in multiple SDN switches needed
to be kept consistent with our defenses understanding of allowed
connectivity.

Although we were able to quickly prototype an initial concept
for DFI, it took well over a year of engineering effort to work out
all the consistency bugs and get the system working reliably for
sustained periods of time. Just one of the bugs we faced was where
a user would log in, but the first packets from the user would arrive
before we got the notification that they logged in, resulting in their
traffic being blocked until they logged out and logged back in. This
actually involved two consistency issues: first, flow rules were being
kept in the switches after they were inconsistent with the traffic
DFI would currently allow and, second, network traffic was beating
the notification that they logged in to our system. For the first, we
added logic such that when connectivity changes in the network
flow rules that are now inconsistent with that connectivity are
removed from the switches. For the second, we experimented with
a variety of different login notification options and eventually found
one that was faster and fast enough that traffic did not get blocked
in practice. This was, of course, just a single consistency related
bug, among many, that we encountered during development.

These issues are not unique to DFI or networks, but are a general
feature of moving-target defenses that modify system-wide state.
moving-target based systems that change the operating system on
which a program runs, like TALENT [18], would be another good
example. In such systems, the entire state of the program and any
operating system interactions must be tracked such that it can be
moved to a new operating system correctly. Correctly tracking,
preserving, and replicating things like open file descriptors is a
major challenge and a huge engineering effort. Bugs in this will
result in state inconsistencies that will be extremely hard to track
down and fatal to the running program.

The key take away from this discussion is that the challenges in
implementing a moving-target defense are often not about what
dynamism to introduce into the system or how to introduce it, but
rather how to preserve consistency so that as dynamism occurs the
rest of the system continues to operate correctly.

4 FUTURE DIRECTIONS
Stepping back to consider the field of moving-target research as a
whole and looking towards the future, we see two major directions
for future work.

First, we argue that the community needs to recognize that what
dynamism is applied to is much more important than exactly how
that dynamism is created. In particular, we argue that future work
needs to focus on identifying elements of a system to which it
would be most valuable to apply dynamism. As discussed earlier
(Lesson 2), these are usually elements of the system that provide
data that attackers need but not legitimate components. Further,
because outside components do not need access, there is no need
for APIs that attackers can take advantage of (Lesson 1) and the
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implementation and performance of the system improves (Lesson
6).

Much moving-target work has been confined to demonstrating
that dynamism can be applied to a given element or incrementally
improving the dynamism of a common element (e.g., IP Addresses,
Memory Address Space). While these are good contributions, for
our community to advance, we need to begin to understand where
moving-target defenses provide value and how to slice major secu-
rity problems in such a way that our defenses are able to maximally
impede attackers while having minimal impact on legitimate users.

While we propose that focusing on applying dynamism to el-
ements of the system that are crucial to the attacker, but not to
legitimate components, is a good marker, it is also only an initial
marker. There are undoubtedly other markers for problems and
places that moving-target defenses will be effective. Much research
is yet needed.

Second, it is essential for research in this area to consider well-
defined and reasonable threat models. A number of our lessons
learned (1, 3, 4, and 5) highlight the importance of having a correct
threat model before designing or deploying moving-target defenses
and the dangers that come from not doing so. While it can be tempt-
ing to design a moving-target defense under the assumption that
any dynamism is beneficial and leave threat models for determin-
ing what defenses apply where, our experience indicates that these
defenses are most effective when designed with a realistic threat
model in mind. Additionally, research is also needed on appropriate
threat models for moving-target defenses. A promising starting
point may be systematic examination of threat intelligence and
case studies of real-world attacks. Novel defenses may need to
leverage deep understanding of both modern attacker tactics, and
the complex and distributed systems that are being attacked.

5 CONCLUSION
Moving-target defenses introduce dynamism into computer sys-
tems in an effort to make these systems harder to exploit. Over the
past decade a variety of work has explored applying these kinds
of defenses to runtime environments to protect process memory
layout, to the operating systems and architectures running target
applications, and to networks.

We have presented six lessons learned from our seven years
experience in the building and evaluation of moving-target de-
fenses. These lessons center around a need to carefully consider
the threat model and attacker capabilities when designing or de-
ploying moving-target defenses and identifying what information
dynamism is most effectively applied to when creating moving-
target defenses. We also suggest that future work on moving-target
defenses needs to consider carefully exactly what element of the
system dynamism is applied to and what an appropriate and correct
threat model is for the target system.
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