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Figure 1: (a) EIT-kit supports users in creating a variety of EIT sensing devices and (b) visualizing the resulting data. EIT-kit 
provides (c) a 3D editor plugin, (d) a sensing motherboard and microcontroller library, as well as an image reconstruction API. 

ABSTRACT 
In this paper, we propose EIT-kit, an electrical impedance tomogra-
phy toolkit for designing and fabricating health and motion sensing 
devices. EIT-kit contains (1) an extension to a 3D editor for person-
alizing the form factor of electrode arrays and electrode distribu-
tion, (2) a customized EIT sensing motherboard for performing the 
measurements, (3) a microcontroller library that automates signal 
calibration and facilitates data collection, and (4) an image recon-
struction library for mobile devices for interpolating and visualizing 
the measured data. Together, these EIT-kit components allow for 
applications that require 2- or 4-terminal setups, up to 64 electrodes, 
and single or multiple (up to four) electrode arrays simultaneously. 

We motivate the design of each component of EIT-kit with a forma-
tive study, and conduct a technical evaluation of the data fdelity 
of our EIT measurements. We demonstrate the design space that 
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EIT-kit enables by showing various applications in health as well 
as motion sensing and control. 
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1 INTRODUCTION 

Electrical Impedance Tomography (EIT) is an imaging technique 
that measures conductivity, permittivity, and impedance of a sub-
ject [18]. It works by attaching electrodes to the surface of the 
subject, and then using the electrodes to either inject current or 
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measure the resulting voltages. Interpolating the raw signals then 
results in an image of the subject’s internal conductivity. 

In the past, EIT sensing required large, expensive hardware setups, 
as well as complicated image reconstruction algorithms. As a result, 
it was mainly used for professional medical applications in hospitals 
for monitoring the inner structure of a part of the human body [18], 
such as for observing lung function [16] and detecting cancer [50]. 
In the last decades, with the development of low-cost electronics and 
the availability of open-source EIT image reconstruction libraries, 
such as EIDORS [3], EIT sensing also became accessible to HCI 
researchers who have used it for touch sensing (Electrick [46]), 
tactile sensing [22], and hand gesture recognition (Tomo [45]). Such 
advances that made EIT sensing more portable have also fed back 
to the health sensing domain [4] where it has been used in sports 
medicine on the feld [13] and home care [30], which demonstrates 
the great potential of low-cost EIT technology. 

However, the expertise required for designing custom EIT devices 
is still high. To create an EIT device, users frst have to design the 
form factor of the device to ensure constant contact between the 
electrodes and the subject, which depending on the measurement 
location and electrode distribution are diferent each time. Next 
users have to connect the EIT device to a sensing board, which for 
custom applications often needs to be designed from scratch [37, 47] 
since commercial boards do not provide enough options to support 
diferent EIT confgurations. On top of that users have to fnd 
the optimal AC injecting current and voltage measurement gain 
to optimize the signal acquisition, which can be time consuming 
because they are diferent for each sensing task. Finally, while there 
are visualization libraries for desktop applications (e.g. EIDORS [3] 
based on MATLAB [27]), they do not work on mobile devices and 
thus users have to create their own visualizations when designing 
mobile applications. 

In this paper, we present EIT-kit, an electrical impedance tomog-
raphy toolkit that supports users across the diferent stages of 
EIT device development. EIT-kit provides (1) a 3D editor for cus-
tomizing the form factor of the measurement setup and the elec-
trode distribution, (2) a customized EIT sensing motherboard that 
supports diferent measurement setups (2- and 4-terminal, up to 
64 electrodes, and single or multiple (up to four) electrode arrays), 
and that provides adjustable AC injecting current to improve the 
quality of the signals, (3) a microcontroller library that automates 
the calibration of the signals and facilitates data collection, and 
(4) an image reconstruction API for mobile devices that can be 
used to interpolate and then visualize the data. We motivate the 
development of EIT-kit with a formative user study, demonstrate 
the capability of EIT-kit to support various interactive devices that 
focus on health and motion sensing (i.e., a muscle monitor for phys-
ical rehabilitation, a wearable hand gesture recognizer, armbands 
for non-intrusive distracted driving detection), and also conduct a 
technical evaluation of the data fdelity of our EIT measurements. 

In summary, we contribute: 

• a formative study with 6 participants to understand the chal-
lenges of EIT sensing and how to address them in a toolkit; 

• a 3D editor for personalizing measurement setups and a 
custom sensing motherboard; 

• a library for microcontrollers to automate EIT data collection 
and a library for mobile devices for image reconstruction; 

• a demonstration of EIT-kit’s applicability across diferent 
sensing use cases at the example of four interactive devices; 

• a technical evaluation of the data fdelity, image reconstruc-
tion algorithm and system performance of EIT-kit. 

2 RELATED WORK 

In the next section, we review the types of sensing applications 
EIT has been used for and describe how users currently prototype 
EIT sensing applications. We then discuss work related to toolkit 
development in HCI. 

2.1 EIT Sensing Applications 

Since EIT sensing is non-invasive and low-cost while ofering high 
frame-rates, it has been used for various sensing use cases in difer-
ent disciplines. For instance, in medical applications, EIT has been 
used for monitoring lung function [16], detecting breast cancer [50] 
and imaging the brain [35]. EIT has also been used for industrial 
applications, such as monitoring the quality of products after man-
ufacturing by detecting interior defects via non-destructive test-
ing [25]. Finally, EIT has been used in geophysics to analyze rocks 
and ground without taking them apart (cross-section analysis [10]). 

More recently, EIT sensing has also been used for various appli-
cations in HCI [26], such as contact and touch sensing on rigid 
(Electrick [46]) as well as soft and stretchable surfaces (iSoft [44]). 
In addition, HCI researchers have explored the use of EIT for tac-
tile sensing, i.e. to detect the amount of force applied [22] and the 
resulting deformation of the surface [31]. To sense hand gestures, 
HCI researchers also developed EIT measurement setups of dif-
ferent resolutions (Tomo [45], Tomo2 [47]) and machine learning 
architectures [26, 42], and have also mapped the resulting output 
onto robotic prosthesis [43]. Furthermore, HCI researchers used 
EIT to identify users by directly using the raw data to train the 
classifer rather than frst reconstructing an impedance image. For 
instance, Cornelius et al. [9] identify users through a wrist-mounted 
EIT device. Zensei [37] can also identify users interacting with ob-
jects, such as chairs and phones. Finally, Touché [36] can recognize 
complex confgurations of human hands and users’ bodies. 

2.2 Prototyping EIT Sensing Systems 

To build EIT devices, researchers have developed a variety of device 
form factors and sensing boards, and explored various methods for 
processing the signals and for visualizing the data. 

Form Factors: Researchers developed EIT measurement setups for 
diferent parts of the human body, such as the wrist [45], the 
chest [16, 50], and the head [35]. EIT measurement setups have 
either been mounted on the surface of objects to sense interaction 
with them (iSoft [44]) or around objects to sense their interior [25]. 
For most applications the electrodes are distributed evenly, how-
ever, some applications also use uneven electrode distributions to 
collect more data in certain areas (Zensei [37]). Similarly, while 
most applications use a single electrode array, some applications 
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use two or more electrode arrays to create a 3D volumetric im-
age [16, 35]. Finally, while most medical applications use standard 
medical electrodes, applications for interactive devices often use 
custom electrodes to better conform to the human body. 

Boards: Applications in the medical domain and in industry tend to 
use commercial EIT sensing boards [16, 25]. There are also open 
source EIT sensing boards (OpenEIT [7]) that provide measurement 
solutions for standard EIT use cases. To extend the sensing capabili-
ties of such boards, researchers have also added custom PCB boards 
to them to create their own sensing functionality [37]. Most of the 
interactive applications, however, use their own custom boards. 
The reason for this is that existing commercial boards do not ofer 
enough options for diferent EIT confgurations. For instance, they 
only support a fxed number of electrodes whereas many applica-
tions require a custom number of electrodes [37, 47]. In addition, the 
most relevant open-source board we found (OpenEIT [7]) applies 
voltage to the electrodes, which imposes noise to EIT theories [6]. 
In contrast, EIT-kit injects AC current, which is more commonly 
used in the medical domain because it is safer to operate and more 
accurate when measuring signals. 

Sensing Confguration: Commercial boards typically come with their 
own software, i.e., a graphical user interface that allows users to 
specify the measurement confguration and then start collecting 
data [7]. However, such software can often not be used for custom 
boards since the code of the commercial software relies on specifc 
hardware components on the board. Thus, users with custom boards 
cannot adapt the software for their own purposes and instead have 
to write their own sensing code [45] and manually calibrate it across 
diferent sensing subjects [47]. 

Visualization: Commercial boards typically come with their own 
visualization software [7, 35], which similar to the sensing software 
is specifc to the board. While there are open source libraries, such 
as EIDORS [3], that allow users to interpolate and visualize custom 
data, these libraries are nearly 20 years old and based on MAT-
LAB [27], which does not work on today’s mobile and ubiquitous 
sensing devices. Even open source solutions, such as OpenEIT [7], 
which uses a part of the pyEIT [24] visualization library, do not 
ofer image reconstruction on mobile devices. EIT-kit’s mobile vi-
sualization API ofers additional portability, which unlocks more 
sensing environments (e.g., outdoors). In addition, because existing 
open source boards do not support multiple electrode arrays, they 
do not provide 3D volumetric visualization. This is a problem when 
user motions are involved since the EIT device can move slightly 
out of place, which 3D volumetric data analysis can compensate 
for. EIT-kit can provide such 3D volumetric visualizations because 
its sensing board supports multiple electrode array setups. 

To address the limitations of prior work, EIT-kit provides a 3D ed-
itor to customize the EIT measurement setups for diferent body 
locations (e.g., hand, thigh, chest cufs) and allows users to cus-
tomize the confguration of the electrodes (up to 64 electrodes, on 
up to 4 electrode arrays, with customizable electrode distributions). 
In addition, it provides a custom sensing board that supports vari-
ous measurement confgurations (2- and 4-terminal measurements 
using the same hardware components, diferent injecting currents 

and voltage measurements). The custom sensing board of EIT-kit 
samples 125x faster than the closest alternative (OpenEIT )) (e.g. 
under 32-electrode 4-terminal measurement, EIT-kit runs at 10 fps 
including Bluetooth latency while OpenEIT runs 1 frame every 12.8 
seconds), which can be used for motion sensing and monitoring. 
Furthermore, EIT-kit provides a custom sensing library to automate 
the signal calibration and signal acquisition, and includes a visual-
ization library that is optimized for mobile applications and capable 
of both 2D and 3D image reconstructions. 

2.3 Toolkit Research in HCI 

Toolkit research plays an important role in the feld of HCI since 
toolkits can "heavily infuence both the design and implementation" 
of interactive systems [23]. According to Greenberg [14], toolkits 
are generative platforms designed to create new interactive arti-
facts, to provide easy access to complex algorithms, to enable fast 
prototyping of software and hardware interfaces, and to enable 
creative exploration of design spaces. Therefore, a lot of toolkit re-
search focuses on reducing the complexity of existing technologies, 
minimizing authoring time, and creating paths of least resistance. 
In hardware prototyping, toolkits have played an important role in 
lowering the barrier of entry by encapsulating low-level domain 
knowlegde [5]. Multi-Touch Kit [34], for instance, makes capacitive 
touch sensing technology more accessible by providing fabrication 
fles and a software library that works with commodity microcon-
trollers. Similarly, Midas [38] supports the design and fabrication of 
capacitive touch sensors with custom shapes and layouts that can 
be attached to existing objects. WatchConnect [19] is a toolkit for 
rapidly prototyping cross-device applications with smartwatches 
that includes a custom sensing board which generalizes across dif-
ferent interactive use cases. Other toolkits for fast prototyping, 
such as Phidgets [15], .NET Gadgeteer [17], and VooDooIO [39], pro-
vide both hardware and software programming support for users. 
Because of the wide variety of EIT measurement setups, sensing 
confgurations, and visualization options, building a toolkit for both 
the hardware and software parts of EIT technology has the potential 
to increase access to the technology and enable novel applications. 

3 FORMATIVE STUDY 

To further increase our understanding of the challenges involved 
in EIT sensing, we conducted a formative study with six partici-
pants. The participants included 2 males and 4 females, aged 21-35 
(M=27.2, SD = 4.60). Three participants were medical professionals 
with an MD degree from a hospital who use EIT or similar sens-
ing technologies (EMG, EEG) in their daily diagnosis. The other 
three participants were designers who had previously designed 
interactive devices using EIT or similar sensing technologies. 

We conducted semi-structured interviews (40 minutes per partici-
pant) and focused our questions on participants’ experiences when 
building EIT sensing devices and acquiring data via EIT sensing. We 
asked about any challenges participants encountered and invited 
them to talk about what would have made their task easier. We 
describe our fndings below and discuss how they informed our 
toolkit design. 
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Electrodes Placement: Multiple participants stated that it can be 
challenging to ensure that electrodes are placed correctly over 
the sensing area and that they are positioned to create sufcient 
electrical contact. P2 explained: “it’s difcult to have consistent 
electrode placement and to keep it in [good] contact with the skin.” 
P3 also stated: “... the electrode placement is really important to 
make sure that you’re getting a good measurement.” P1 added that 
“sometimes even residencies can struggle with electrode placement 
across diferent patients, which results in bad data quality.” 

Measurement Automation: All six participants mentioned that they 
struggled with calibrating the signals to obtain the best data quality 
and wished this step could be automated. This was especially promi-
nent among the medical professionals who have to re-calibrate the 
setup for each new patient. P1 mentioned that the more automated 
the process, the more benefcial it is, saying “we physicians want 
it as simple as possible to measure [across] diferent patients and 
body parts so that we can diagnose more patients.” 

Cross-section vs. Volumetric Visualization: Several participants men-
tioned that they prefer a 3D volumetric visualization over the 
2D cross-section visualization ofered by existing software. P3 ex-
plained that such a visualization would be a reason for doing more 
EIT measurements, saying “we [physicians] only use equipment if 
it provides a diagnosis that changes or adds to our current diagnosis 
[...] we don’t want to scan the patient more than necessary.” P6, one 
of the interactive device designers, also expressed that “[volumetric 
visualization] would have higher data density to interpolate and 
can enable new applications in the VR/AR domain.” 

Data Sense Making: Five out of six participants expressed that they 
would like to have data sense making capabilities on top of the raw 
measurements and reconstructed images. P1 said that “I spend the 
most time convincing patients that what I’m saying is valid [...] it 
would be nice if this kit also visually validated my interpretation.”. 
P5 also stated that “[it] may be helpful to give more detail on what 
the data means so that the user can know what they’re looking 
at” and P6 added “(data sense making) can be super helpful to 
understand what data are represented in the physical world.” 

Based on these insights from our formative study, we designed our 
toolkit to include a 3D editor that generates the electrodes place-
ment based on a 3D scan of the human body, a sensing board and 
sensing library that automates the EIT signal measurements, the 
option to use multiple electrode arrays with the board for 3D volu-
metric visualization, and a visualization library that facilitates data 
sense making by allowing users to visualize the data in AR overlaid 
onto the subject they are measuring. 

4 THE EIT-KIT 

EIT-kit supports users across the diferent stages of EIT device 
development. EIT-kit ofers a 3D editor for creating custom mea-
surement setup for diferent measuring locations (e.g, wrist, thigh) 
and sensing resolutions (number of electrodes, electrode distribu-
tion). In the EIT data measuring stage, EIT-kit provides an EIT 
sensing motherboard as well as a sensing library (Arduino-based) 
for acquiring data from the board. In the fnal stage, where users 
have to interpolate the data and visualize it, EIT-kit assists users 

with an image reconstruction API for mobile devices (i.e. iOS de-
vices) that is capable of 2D and 3D visualizations, on screen and in 
AR. By providing these building blocks that are essential for EIT 
device development, EIT-kit facilitates the creation of custom EIT 
sensing applications. 

4.1 3D Editor for EIT Device Geometry and 
Electrode Distribution 

When users create a new EIT device, EIT-kit’s 3D editor supports 
users in creating a device form factor that ensures sufcient contact 
with the subject and allows them to specify the sensing resolution 
via custom electrode distributions. Once users are satisfed with 
the design, the 3D editor generates the fabrication fles for building 
the physical EIT device. 

Ensuring Sufcient Contact with Subject: To ensure that the electrode 
arrays make sufcient contact with the subject, EIT-kit’s 3D editor 
automatically generates a device form factor that fts tightly around 
the designated sensing area. Users start by importing a 3D model 
of the subject they want to measure. The 3D model can be acquired 
either through 3D scanning or by downloading a pre-built 3D model 
from an open-source platform (e.g., Thingiverse [21]). Next, users 
specify the sensing area on the 3D model by marking the corre-
sponding faces, EIT-kit then automatically generates a form factor 
that tightly fts around the marked area, as shown in Figure 2. 

Figure 2: Device Form Factor: EIT-kit’s 3D editor generates 
the device geometry and electrode distribution automati-
cally, here shown at the example of a wrist worn device on 
an imported arm 3D model. 

Specifying the Sensing Resolution: To specify the sensing resolution, 
i.e. the number of electrodes, users can either select the desired 
number from the user interface and EIT-kit will distribute them 
evenly, or directly select locations on the device geometry. This 
also allows users to specify a custom measurement focus rather 
than using even measurements. EIT-kit supports users in fnding 
the best electrode distribution for their use case by showing the 
resulting sensing paths between the electrodes in a 2D visualization 
(Figure 3). In addition, EIT-kit helps users in fnding the best trade-
of between measurement resolution and measurement speed by 
displaying the estimated frame rate of the chosen electrode setup. 
Finally, to support users in creating multi-band designs, EIT-kit 
provides functionality that replicates an existing band in a diferent 
location while adjusting the device form factor to ft that geometry. 

Exporting the Fabrication Files: Once satisfed with the device form 
factor and electrode distribution, users export the design as a 
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Figure 3: Sensing Quality: (a) Areal weighting of the EIT mea-
surements of even and (b) uneven electrode distributions. 

3D printable .stl fle. The 3D printable fle already includes spaces for 
the electrodes in the corresponding locations. By default, the editor 
uses standardized commercially available electrode pads (e.g., 3M 
2248 monitoring electrodes [1] or 440C stainless steel balls [28]). 
However, users can also defne custom electrode shapes, which 
the 3D editor then exports as 3D printable fles. Such electrodes 
can be printed with plastic flament and then coated with silver 
particles to make them conductive. After 3D printing, users attach 
the electrodes to the EIT device geometry as shown in Figure 4 and 
then solder or plug the electrode arrays into the sensing board. 

Figure 4: Fabrication: (a) 3D printed prototype and elec-
trodes ready for assembly, (b) adding the wires to the elec-
trodes, (c) attaching the electrodes to the prototype, (d) as-
sembled EIT device. 

4.2 EIT Sensing Motherboard 

After fabricating the EIT device, users next connect the EIT device 
to the EIT-kit sensing motherboard (Figure 5). The motherboard 
automates the EIT signal calibration and measurement for diferent 
electrode confgurations. 

Figure 5: EIT sensing motherboard: (a) top view, (b) bottom 
view, (c) with two stacked up mux boards. 

Diferent Electrode Confgurations: Our motherboard can support 
diferent electrode confgurations since its architecture consists of 
a main sensing board that can be fexibly extended with a stack 

of modular multiplexer boards. The mux boards can support up 
to 64 channels when connected to the main sensing board and 
thus allow users to customize the number of electrodes (up to 64) 
depending on the use case. The channels can also later be confgured 
via the EIT-kit sensing library to take measurements for either 
single or multiple electrode array (up to 4) confgurations. 

AC Signal Injection and Voltage Measurement Mode: EIT-kit’s board 
supports both 2- and 4-terminal measurements. 2-terminal mea-
surements use opposing pairs of electrodes, i.e. inject AC current 
into one pair of opposing electrodes and then measure voltage of 
all other pairs of opposing electrodes. 4-terminal measurements, 
in contrast, use adjacent pairs of electrodes, i.e. inject AC current 
into one pair of adjacent electrodes and then measure voltage of all 
other pairs of adjacent electrodes. 2-terminal measurements use a 
simpler hardware setup and support higher frame-rates since fewer 
measurements have to be taken whereas 4-terminal measurements 
have a higher spatial resolution due to the additional measurements 
but at the expense of lower frame-rates. To support both types of 
measurements, EIT-kit’s board can address each channel individ-
ually and set it to either inject current or measure the resulting 
voltage. In addition, EIT-kit’s board provides adjustable AC inject-
ing current and measurement voltages since impedance can vary 
across diferent subjects, diferent sizes of electrodes, diferent dis-
tances between adjacent electrodes, and diferent frame rates [16]. 
EIT-kit’s board can adjust the injected current by providing difer-
ential AC current up to 500kHz (which covers the main frequencies 
used for bio-signal measurements [41]) and output voltages ranging 
from -5V to 5V. To accommodate the range of diferent injected 
currents, the boards’ ADC converter is sampling at 20MHz for the 
voltage measurements to ensure the signal is accurately captured. 

Autocalibration: To help users fnd the AC current and measure-
ment voltage that delivers the highest data quality for their sensing 
application, the board provides an auto-calibration mode that uses 
a digital rheostat instead of a fxed resistor for both AC current and 
voltage measurement gains. 

4.3 EIT Sensing Library 

After connecting the EIT device to the sensing board, users next 
need to write a program to measure the signals. EIT-kit assists users 
by providing an EIT sensing library for the Arduino programming 
environment. Users frst input the parameters of their measure-
ment setup into the library’s constructor and then call the library’s 
take_measurement() function to start collecting data. 

Initializing the Constructor: Users start by importing the library 
and then construct an object of the library that takes as input 
parameters the specifcations from the measurement setup, i.e. the 
number of electrode arrays, the number of electrodes, the sensing 
method, which is either 2- or 4-terminals, and if they want to use 
auto-calibration (EIT_setup(int array_num, int electrode_num, int 
sensing_method, boolean auto_calibration = TRUE)). 

Calibrate Signals: By default, auto-calibration is turned on. To auto-
calibrate the signals, the library evaluates diferent injecting cur-
rents and voltage measurement gains (i.e., 2048 simulations, 10 bit 
for each current and voltage) and chooses the combination that 

404



UIST ’21, October 10–14, 2021, Virtual Event, USA Zhu et al. 

maximizes the voltage response within the ADC channel’s range. 
Users can also turn the auto-calibration of and manually try dif-
ferent injecting current and voltage measurement gains using the 
set_current() and set_voltage_gain() functions. In addition, the li-
brary’s constructor contains a boot-up function, which calibrates 
the subject-specifc fps based on the subject’s conductivity. 

Collecting Data: Once the calibration process is completed, users 
can start collecting data by calling the take_measurement() func-
tion. By default, measurement data is retrieved from the electrode 
pairs in sequence, i.e. starting with one electrode pair and then the 
remaining electrode pairs around the array. Depending on the mea-
surement method (2- or 4-terminal), the data is either collected by 
measuring adjacent or opposing electrodes. Users can also directly 
access the measurement data for each electrode pair, i.e. retrieve 
the raw root mean square (RMS) voltage measurements and phase 
measurements via getter methods provided by the library. 

Communication Protocol: By default, Bluetooth communication is 
turned on. When the microcontroller collects new data, it auto-
matically sends it to the image reconstruction API via Bluetooth. 
The image reconstruction API then uses the received data, i.e. the 
voltage readings, to reconstruct the image as soon as it receives 
the measurements. Users have the option to turn of Bluetooth and 
instead write the values to the Serial Port. This also enables users 
to use the voltage readings for other applications by having their 
application read the values from the Serial Port. 

4.4 Image Reconstruction API 

Once users started to collect data, they can use the functions from 
EIT-kit’s image reconstruction library to interpolate and then visu-
alize the data. The image reconstruction library is built for mobile 
devices (e.g., iPhone, iPad) and can be used with the Xcode inte-
grated development environment. 

Figure 6: A reconstructed EIT image: (a) measurement setup, 
i.e. a water tank with fve 3D printed PLA cylinders, (b) trian-
gulated mesh, (c) reconstructed conductivity map generated 
on a mobile phone (model: iPhone XR). 

Interpolating the Data: Once the measurement data arrives at the 
communication port, the image reconstruction library stores the 
data for later data interpolation. Before the data can be interpolated, 
users frst have to specify the boundary that best approximates the 
measuring setup (i.e., circular, rectangular, or elliptical). The image 
reconstruction library then processes the voltage measurements 
from the electrode pairs and calculates the conductivity distribution, 
i.e. the conductivity at each point within the boundary. 

Visualizing the Data: Once the library determined the conductiv-
ity at each point, it still has to visualize it in an image. For this, 
the image reconstruction library constructs an empty mesh, which 
consists of uniform triangular faces. It then maps the previously cal-
culated conductivity distribution onto the faces (Figure 6). Users can 
set the ’visualization mode’ to be either continuous, in which case 
a color gradient based on the value of the conductivity is assigned, 
or discrete, in which case either black or white is assigned. When 
multiple electrode arrays are used, the image reconstruction library 
creates a separate 2D visualization for each electrode array. Alter-
natively, users can also visualize the data from multiple electrode 
arrays as a 3D volumetric image, which the image reconstruction li-
brary creates by performing a linear interpolation of the previously 
generated 2D meshes of each of the electrode arrays. EIT-kit also 
provides an AR visualization mode in which the volumetric data 
is overlaid onto the user’s environment using the mobile device’s 
AR functions. Users can then build their own application-specifc 
visualizations on top of the reconstructed image data. 

5 APPLICATIONS 

We demonstrate the applicability of EIT-kit with a range of EIT 
devices that support diferent sensing applications. The applications 
include a muscle monitor for physical rehabilitation, a wearable 
hand gesture recognizer, and a wrist-worn device that can detect 
when users are distracted while driving. To demonstrate that EIT-kit 
can accurately sense biological tissue, we also include an application 
in which we apply EIT sensing to a cross-cut piece of meat which 
is similar to human tissue. All devices are developed via EIT-kit. 

5.1 Muscle Monitor for Physical Rehabilitation 

We built a personal muscle monitor that can sense muscle strain 
and tension in the thigh to monitor muscle recovery after injury 
and to prevent re-injury of the muscles. The muscle monitor uses 
two electrode arrays to create a 3D volumetric image of the thigh. 
This does not only provide more comprehensive data on the muscle 
engagement but also reduces measurement errors due to the EIT 
device shifting slightly during movement. The muscle monitor uses 
a custom electrode distribution to focus the measurements on a 
particular muscle group, i.e. the quadriceps femoris. 

To create the muscle monitor, we frst used EIT-kit’s 3D editor 
to select two regions around the 3D scanned thigh model of the 
patient to generate the device geometry for the two electrode ar-
rays. Next, we chose the 16 electrode option and set the electrode 
type to be 1/2" stainless steel spheres. EIT-kit then distributed the 
electrodes evenly along the device geometry. To emphasize the 
measurements over the quadriceps femoris, which are four muscles 
located at the front of the thigh used for walking, running, jump-
ing and squatting, we adjusted the electrode positions to focus on 
this area by repositioning them on the electrode band. We then 
3D printed the exported design with elastic flament (TPU), assem-
bled the electrode stainless steel spheres onto the printed device, 
and then connected it to the EIT-kit motherboard. We then used 
the EIT microcontroller library to initialize our setup for 4-terminal 
measurements to obtain the higher spatial resolution required to 
identify each muscle. Next, we built a mobile application using 
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the EIT image reconstruction library and defned the visualization 
to be 3D for an AR environment. To test our device, we placed 
it onto our thigh, started our mobile application, and then used 
our mobile phone’s augmented reality function to overlay the 3D 
visualization onto our leg by using the virtual model of the leg to 
align the visualization with our body (Figure 7). 

Figure 7: A muscle monitor for physical rehabilitation that 
can display an AR view of the muscle activity in real-time. 
Here, the AR visualization shows the muscle activity when 
the user is (a) standing, and (b) lifting the leg. 

5.2 Wearable Hand Gesture Recognizer 

To demonstrate how EIT-kit can help with the development of de-
vices for sensing user interaction, we built a wearable hand gesture 
recognizer (Figure 8). Since we are not sure what the best measure-
ment location is (e.g., wrist or arm) and what electrode distribution 
would be appropriate for sensing gestures (e.g., 8, 16, or 32), we 
created a range of prototypes that represent diferent combinations 
of these parameters. We quickly created the diferent measurement 
setups in the EIT-kit 3D editor and then exported them all. To eval-
uate the signal quality of the diferent measurement setups, we 
quickly confgured them in the EIT-kit microcontroller library by 
specifying diferent parameters in the constructor, and then used 
the EIT-kit image reconstruction library to create the conductivity 
maps. Based on the images, we found that measuring on the arm 
with a 16-electrode array and a 4-terminal confguration results 
in the best trade-of between data quality, recognition speed, and 
cost for our device. We then trained a machine learning model 
on the conductivity images (default model from CreateML [20]), 
and achieved a recognition rate of 97.5% over six diferent hand 
gestures (i.e. rock, paper, scissor, left, right, thumb-up). This applica-
tion demonstrates that EIT-kit can help users quickly prototype EIT 
devices for traditional EIT applications, such as gesture recognition, 
which is one of the benefts of a toolkit. 

5.3 Non-intrusive Distracted Driving Detection 

To demonstrate that EIT-kit can be used to build mobile EIT sensing 
devices, we built an EIT device that can identify which hand the 
user has on the steering wheel while driving. Car manufactures 
usually require drivers to have both hands on the steering wheel 
since not having the hands on the wheel is an indication of being 
distracted while driving, which causes a large number of accidents 

Figure 8: A wearable hand gesture recognizer that can distin-
guish between 6 diferent hand gestures, here showing the 
reconstructed EIT image for a thumbs-up gesture. 

every year (12% of deadly vehicle crashes [12]). While several car 
manufacturers integrate sensors directly into the car (e.g., by adding 
them to the steering wheel), they can easily be fooled by attaching 
an object to the wheel [32]. Sensors on the hands bypass this issue. 
Furthermore, sensors on the hands can be used to remind the user 
to switch hands to avoid pain on long drives if one hand is overused. 
This cannot be done with sensors integrated into the wheel since 
they cannot detect which hand is used when the hand is placed at 
6 & 12 o’clock on the wheel. 

Figure 9: A wrist-mounted EIT device to detect if both of the 
driver’s hands are on the wheel: (a) both hands are on the 
steering wheel, i.e. safe driving behavior, (b) the right hand 
is of the steering wheel, which displays a warning. 

To develop our EIT device, we created two separate 16-electrode 
arrays, one for each arm, and connected them to a single EIT-kit 
motherboard. In the microcontroller library, we set up the measure-
ment as a two electrode array design and used the 2D visualization 
for the image reconstruction. We then built a custom application 
on top of the visualization that trains a machine learning model for 
each of the user’s arms, and then applies that model during driving. 
The app visualizes one of four possible detected outcomes, i.e. both 
hands on the wheel, only the left or right hand on the wheel, or 
neither hand on the wheel (Figure 9). 

5.4 Visualizing Biological Tissue 

Finally, we built an EIT device to demonstrate that EIT-kit is capable 
of sensing biological tissue. Since we cannot cut open a human body, 
we used a cross-cut piece of meat which closely emulates human 
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tissue similar to prior work [47]. Since fat and lean tissue have 
diferent electrical conductivity levels, EIT can be used to visualize 
the tissue composition of a sample. 

We built our EIT device using a single electrode array with 16-
electrodes that are distributed evenly, and then used the EIT-kit 
microcontroller library to specify the measurement parameters to 
use a 2-terminal confguration. In contrast to the prior applications 
that used a gradient conductivity image, we used a discrete visu-
alization (fat vs. lean tissue) for this use case. In EIT-kits image 
reconstruction library, we set the visualization mode to be ’discrete’ 
and defned the threshold level to be the conductivity of lean bi-
ological tissue. If the conductivity falls below the threshold, it is 
characterized as fat biological tissue, otherwise, as lean. A percent-
age counter in the corner keeps track of the amount of fat vs lean 
biological tissue in the sample (Figure 10). 

Figure 10: An EIT device for sensing biological tissue, i.e. the 
percentage of fat and lean tissue in the sample. 

6 TECHNICAL EVALUATION 

To evaluate EIT-kit, we conducted several experiments. First, we 
tested how well EIT-kit’s default electrodes make contact with the 
human skin by measuring the contact impedance. Second, we eval-
uated the quality of data collected with EIT-kit’s sensing board, i.e. 
how well EIT-kit can diferentiate between diferent numbers of 
distinct objects and objects of diferent sizes and shapes. We then 
evaluated the quality of EIT-kit’s image reconstruction when com-
pared to EIDORS. Finally, we collected data on the overall system 
performance and the latency of individual components. 

6.1 Evaluation of Electrode Contact 

EIT signals are sensitive to variations in electrode properties, such 
as changes in contact impedance, electrode area and the boundary 
shape under the electrode. To avoid such variations, electrodes 
should have consistent and steady contact with the measurement 
subject via a "point-like" contact area [8]. To fulfll this requirement 
while avoiding pointy shapes that could cause discomfort to the 
wearer of the EIT device, EIT-kit uses sphere-shaped electrodes 
as one of its default electrode types (apart from standard medical 
electrodes). To evaluate if sphere-shaped electrodes make sufcient 
contact with the human skin, we compared sphere-shaped elec-
trodes (1/2" 440C stainless steel balls) to the gold standard ECG 

electrodes. For our experiment, we placed both the ECG electrodes 
and the sphere electrodes mounted on a single armband (with and 
without conductive gel) at the same locations on the human skin, 
and injected a pk-pk 5V diferential sinusoidal signal into one pair 
of adjacent electrodes. We then measured the signal amplitude 
over a signal frequency from 1kHz to 100kHz from another pair 
of adjacent electrodes. The contact impedance is represented by 
the value of amplitude measured / amplitude injected, with a larger 
percentage value indicating better results. . 

Figure 11: Quality of contact impedance of medical ECG elec-
trodes and sphere electrodes (with and without conductive 
gel) with injecting alternating current frequency ranging 
from 1kHz to 100kHz. 

Figure 11 shows the measurement results. We found that when 
low injecting frequencies are used the sphere electrodes do not 
perform as well when compared to the ECG electrodes (i.e., at 5kHz 
sphere electrodes with conductive gel perform about 3% worse 
and without conductive gel about 7% worse). However, they start 
outperforming the ECG electrodes at higher frequencies (i.e., above 
35kHz when conductive gel is used and 70kHz when no conductive 
gel is used. Since the optimized signal frequencies for human skin 
are around 50kHz [41], we conclude that for this range the stainless 
steel sphere electrodes have comparable contact impedance (within 
2%) with medical ECG electrodes and are therefore also suitable for 
health-related EIT sensing applications. 

6.2 Evaluation of Measuring Data Quality 

To evaluate the data quality from the EIT-kit sensing hardware, we 
developed a 32-electrode EIT phantom and designed experiments 
similar to those carried out in previous research [11, 13, 47]. Our 
phantom was 15cm in diameter and flled with 500ml saline water, 
which we used to approximate the conductivity of human tissue. 
In our frst experiment, we measured how well our hardware can 
sense diferent numbers of distinct objects (red box in Figure 12). 
For this, we placed 3D printed PLA cylinders (diameter: 2cm) in 
diferent numbers (1-6 cylinders) into the phantom. In addition, we 
also tested how well our hardware can distinguish between objects 
of diferent sizes (green box in Figure 12). For this, we placed pairs 
of 3D printed PLA cylinders of diferent diameters (2cm and 4cm, 
and 2cm and 6cm) into the phantom. Finally, we also evaluated how 
well our hardware can diferentiate diferent shapes. For this, we 
placed a 3D printed PLA cylinder and 3D printed prism into the 
phantom as shown in the blue box in Figure 12. To ensure that this 
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Figure 12: Reconstructed images of phantom setups with diferent numbers of objects (red box), diferent object sizes (green 
box) and diferent shapes (blue box) measured by EIT-kit’s sensing hardware and visualized by both EIDORS and EIT-kit. 

evaluation only measures the accuracy of our sensing hardware 
and is not infuenced by our image reconstruction algorithms, we 
used EIDORS to reconstruct the images. The measurement setups 
and reconstructed EIDORS images are shown in the top two rows 
of Figure 12. The reconstructed images indicate that our sensing 
hardware is indeed capable of detecting how many objects are 
present, how large the objects are, and which shapes they have. 

6.3 Evaluation of Mobile Visualization API 

We evaluated the quality of EIT-kit’s image reconstruction by com-
paring it to a standard EIT image reconstruction library (i.e., EI-
DORS). We compared the image reconstruction quality for both data 
captured from our measurement board and data created through 
simulation. 

Measured Data: The data captured from our measurement board 
consisted of the phantom measurement data (9 phantom conditions) 
from the previous evaluation section, as well as in-use data from 
the gesture recognition application in Section 5.2 (the six hand 
gestures). We reconstructed the EIT images with both EIDORS and 
EIT-kit’s image reconstruction library. Since it is not possible to 
acquire ground truth data for measured data, we use EIDORS’s 
images as ground truth and defne the loss metric to be the con-
ductivity deviation between the results from EIDORS and EIT-kit’s 
image reconstruction. Before generating the images, we set the 
mesh resolution and boundary shape in both image reconstruction 
libraries to be the same, i.e. 1024 triangles with a circular boundary. 
After the images were reconstructed from both EIDORS and EIT-kit, 
we normalized the conductivity values to 0.0-1.0 greyscale, and 
then compared them pixel by pixel to calculate the conductivity 
deviation between the two. We did not compare the meshes triangle 
by triangle since both image reconstruction libraries triangulate 
the meshes diferently. The reconstructed EIT images of phantom 
data from EIDORS and EIT-kit are shown side by side in the last 
two rows of Figure 12. To calculate the average diference between 
EIDORS and EIT-kit we averaged the conductivity deviation of the 
last 5 continuous frames to account for slight perturbation for each 
of the 9 phantom conditions and 6 hand gestures (in total 75 frames). 
We used the origin frame σ0 as control. The results show that for 

the 9 phantom conditions, the average diference in conductivity is 
0.0407 (std. 0.0123), with the control’s average at 0.235 (std. 0.00891). 
For the 6 hand gestures, the average diference in conductivity is 
0.114 (std. 0.0373), with the control’s average at 0.205 (std. 0.0170). 
The images in Figure 12 emphasize these results, i.e. show that 
EIT-kit’s image reconstruction can reconstruct how many objects 
are present and what size the objects have. However, EIT-kit is not 
as robust in detecting object contours. This is because EIT-kit’s 
image reconstruction is optimized for real-time performance on a 
mobile device, and due to the constraints in computational power, 
it has to limit the mesh image resolution, i.e. EIT-kit uses 1024 
triangular faces while EIDORS uses 4096 faces per image. We set 
EIDORS to a higher resolution because we did not want to diminish 
its performance because of mobile device computational limits. 

Simulated Data: While the previous evaluation compared EIT-kit’s 
image reconstruction with EIDORS, it does not provide insights into 
how accurately EIT-kit and EIDORS represent the ground truth. To 
create ground-truth data, we simulated six conditions by creating 
input data for frames that contained 1-6 circular objects (diameter = 
0.2) inserted into a unit circular boundary. We assigned each object 
a high conductivity of 2.0 and assigned the medium surrounding 
the objects a low conductivity of 1.0. As the loss metric, we used 
the conductivity deviation between the ground truth data and the 
reconstructed conductivity image, and compared the results from 
EIDORS and EIT-kit. We used the same mesh resolution (1024 tri-
angles with circular boundary), and normalized the conductivity 
values from EIDORS and EIT-kit to 0.0-1.0 greyscale, as shown in 
Figure 13. The results show that for EIDORS the average difer-
ence in conductivity is 1.108 (std. 0.0518), and for EIT-kit 1.165 (std. 
0.0841) when compared to the ground truth. The detailed results 
are presented in Table 1. 

Table 1: Diference in Conductivity of EIT results from EI-
DORS and EIT-kit when compared to ground truth data. 

simulated data 1 obj. 2 obj. 3 obj. 4 obj. 5 obj. 6 obj. 
EIDORS 1.043 1.061 1.093 1.123 1.154 1.174 
EIT-kit 1.052 1.095 1.144 1.188 1.237 1.271 
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Figure 13: Side-by-side comparison of reconstructed EIT im-
ages by EIDORS and EIT-kit’s image reconstruction library. 
For each library the top row shows the ground truth data 
and the bottom row the reconstructed image. 

6.4 Evaluation of System Performance 

Finally, we evaluated EIT-kit’s overall system performance, includ-
ing the sensing motherboard’s frame rate, the system latency, and 
the performance of the auto-calibration. 

Sensing Motherboard Frame Rate: The board’s sensing frame rate 
depends on numbers of electrodes, measuring confgurations, in-
jecting current frequency, and period averaging factors. The ADC 
chip onboard samples at 20MHz. Under 100kHz injecting AC cur-
rent, 4-terminal 32-electrode confgurations (928 measurements 
per frame) and default averaging factor (4), the board runs at 26.94 
frame-per-second (single measurement in 0.04ms). 

System Latency: Apart from the sensing latency reported above, 
the mobile visualization API also takes on average 0.0349 second 
(28.65 frame-per-second) to solve each frame for 4-terminal 32-
electrode confgurations, measured over 200 continuous frames on 
an iPhone XR. However, the overall system latency is dominated 
by the Bluetooth communication. Depending on the number of 
electrodes and the measurement confguration, diferent amounts of 
data have to be sent. For the above confguration, the system overall 
runs at 9.93 frame-per-second over 60 seconds of continuous data. 

Auto-calibration Performance: The purpose of the auto-calibration 
is to remove the need for an oscilloscope, which is required for 
manual calibration. The auto-calibration yields within +/-1% (i.e. +/-
10 out of 1024) of manual calibration with an external oscilloscope. 
All phantom tests in the evaluation section as well as application 
examples used auto-calibrated signals. 

7 IMPLEMENTATION 

We next provide additional details on how each component of EIT-
kit is implemented. EIT-kit’s components, including the 3D editor 
plugin, customized PCB sensing board design fles, microcontroller 
library, and mobile visualization API, are open source1. 

1https://github.com/HCIELab/EIT-kit_open-source.git 

7.1 EIT-kit 3D Editor 

EIT-kit’s 3D editor is implemented as a Grasshopper Plugin for the 
3D editor Rhino3D. 

Device Geometry: Based on the polyline users drew on the imported 
object, our editor plugin frst calculates the geodesic curve around 
the object and then ofsets it along the normal vector of the object 
surface to create the device thickness. To generate the mounts for 
the electrodes, it frst computes the electrodes’ widths and heights 
via their bounding boxes, and then generates a rectangle at each 
electrode’s location that matches these dimensions. Our editor plu-
gin then ofsets all rectangles along the normal vector until a 75% 
overlap is created with each electrode’s bounding box. It then lofts 
all rectangles, caps the generated open geometry to be a closed 
BREP (boundary representation), and calculates the boolean dif-
ference between the electrode 3D models and the closed BREP. As 
a result, the electrodes can be snapped into the electrode array 
geometry while also maintaining a constant contact area with the 
subject’s surface. 

Electrode Distribution: To distribute the electrodes evenly, our editor 
plugin frst computes the overall length of the geodesic curve and 
then divides it by the number of electrodes. For custom electrode 
distributions, the user’s selected electrode is always moving along 
the geodesic curve. For custom electrode shapes, our system re-
quires that the electrode 3D model has its contact area on the 3D 
model’s base plane and centered at its local (0, 0, 0) coordinate to 
ensure the electrode distribution function works properly. 

Connection Mechanism: The connection mechanism for closing the 
electrode arrays is implemented as a classic three-piece interlock 
clasp design (Figure 14). To ensure the connector does not interfere 
with the electrodes, the interlock geometry is generated at the 
center between two electrodes, and its length is constrained to be 
less than half the distance between the electrodes. A removable 
link screw can be exported and 3D printed separately. Alternatively, 
an ofce clip or toothpick can be used to lock the mechanism. 
The connector type for the electrodes and wires depends on the 
electrode type. For standard medical snap electrodes, our system 
generates space for snap electrode cables [33] on the electrode 
array’s top surface. For sphere electrode designs, a rectangle slot 
is extruded with corresponding ring terminal size [29] on the side 
of each electrode. For customized electrode types, users have to 
design their own electrode-wire connectors. 

Figure 14: To connect (a) the three-piece interlock clasp on 
the EIT electrode array, users (b) insert a link screw, and op-
tionally (c) cut of the unused length of the screw. (d) The 
assembled electrode array. 
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7.2 EIT Sensing Motherboard 

The motherboard consists of the main sensing board which is re-
sponsible for injecting the AC signal and measuring the resulting 
voltage output, and up to two multiplexer boards, which can be 
stacked on top, and that direct the signal to the individual elec-
trodes. The main sensing board has three components: a current 
drive circuit for injecting the AC signal, a voltage measurement 
circuit for measuring the voltage output from the current drive, and 
a control circuit with an ESP32 microcontroller (Figure 15). 

Figure 15: (a) Top and (b) bottom view of the EIT sensing 
board highlighting the parts that make up the current drive, 
voltage measurements, and control circuit. 

Current Drive Circuit: The current drive circuit consists of a signal 
generator, an adjustable instrumentation amplifer, and a voltage-
controlled current source (VCCS). The signal generator (AD5930) 
acts as a voltage source and produces a small, constant-amplitude, 
diferential sine waveform at the desired injection frequency. This 
waveform is routed to the instrumentation amplifer (AD8220) pro-
ducing a single-ended output ranging from 0V to 5V and centered 
around 2.5V. The output amplitude (AD8220) is modulated by a 
digital rheostat (AD5270) allowing for gain control of 1 to 1024. The 
output directly drives the VCCS, which consists of two op-amps 
(ADA4841) in a mirrored, modifed Howland confguration. The 
current output is diferential and centered around 0. 

Voltage Measurement Circuit: The voltage measurement circuit con-
sists of two input bufers, an adjustable instrumentation amplifer, 
and a 10-bit analog-to-digital converter (ADC). The input bufers 
consist of two op-amps (ADA4841), each in a unit-gain confgura-
tion. The output of each amp passes through an RC high-pass flter 
with a cutof of 350Hz. The input bufers drive the instrumentation 
amplifer (AD8220), producing a single-ended output ranging from 
0V to 5V and centered around 2.5V. The output amplitude is modu-
lated by a digital rheostat (AD5270), allowing for gain control of 
1 to 1024. The output is stepped down from 5V to 3.3V, then fed 
into the ADC through an RC band-pass flter with cutofs at 1kHz 
and 1MHz. The ADC (ADS901E) samples at 20MHz and returns a 
result in the range 0-1023 corresponding roughly linearly to the 
input range of 0-2.2V. 

Microcontroller Control Circuit: Both the current drive and voltage 
measurement circuits are controlled by the ESP32 microcontroller 
via the SPI channels and the GPIO pins. In order to have more direct 
control at faster frequencies, we implemented the control circuit 
via two separate SPI buses (HSPI & VSPI ). The frst SPI bus is used 
to control the signal generator and digital rheostat. The second 
SPI bus is used for the IO expander (MCP23S17) that drives the 

chip-select pins of the multiplexers as well as various other digital 
inputs. The ADC converter output is routed directly to ESP32 GPIO 
pins and sampled at 20MHz. 

Mux Board & Electrodes: Each multiplexer (MUX) board consists of 
four 32-to-1 analog multiplexers (ADG731). We refer to the 32-pin 
side as “source” and the 1-pin side as “drain”, though all analog pins 
are bi-directional. The multiplexers are connected in parallel such 
that they share the same 32 source pins and same SPI clock and 
data pins. The four drain pins are connected to the current drive 
positive, current drive negative, voltage measurement positive, and 
voltage measurement negative pins of the sensing board. Each pin 
of the 32 source pins is connected directly to an electrode. Thus, 
each of the 32 electrodes may be confgured to connect to any of 
the four current drive and voltage measurement pins of the sensing 
board. A second MUX board can be stacked on top of the frst to 
allow for another 32 electrodes to be connected. Thus, in total 64 
electrodes can each be connected to any of the four current drive 
and voltage measurement pins of the sensing board. 

7.3 Microcontroller Library & Data Acquisition 

We next explain how our microcontroller library provides fast ac-
cess to signals and enables auto-calibration. 

Faster Read/Write via Memory-mapped Registers: Instead of using 
the native digital read/write functions, we implemented our own 
functions directly from/to memory-mapped registers to achieve 
faster signal processing and steadier performance. Since our library 
is implemented to support the specifc EIT-kit sensing hardware 
from our toolkit, we were able to predefne the internal registers 
used for all connections, i.e. between the microcontroller, multi-
plexers, ADC Converter, IO expander, and rheostats, as well as all 
frequencies for SPI communication and constants for calibration. 

Auto-Calibration: For the auto-calibration, three phases of calibra-
tion are performed. First, the library calibrates for the number of 
samples that can be collected over the course of a certain num-
ber of input signal periods. Second, the library fnds the greatest 
current gain that can be injected and still yields an approximate 
sinusoidal root mean square voltage reading within a user-specifed 
error threshold throughout all injecting and measuring electrode 
pairs. In this phase, both diferential current source and diferential 
voltage measurement are controlled via adjustable instrumentation 
amplifers modulated by digital rheostats with gain control of 1 
- 1024 respectively (1024*1024=1048576 possible confgurations). 
Under a 32-electrode 4-terminal setup, the library determines the 
greatest current gain (i.e. highest amplitude that keeps a sinusoidal 
waveform under the specifc measuring load) throughout all in-
jecting pairs (32 electrode pairs*1024=44032 measurements), then 
determines the strongest viable signal based on the calibrated inject-
ing current (another 44032 measurements). This calibration stage 
allows our library to fnd the strongest viable signal because higher 
amplitude sine waves can be distinguished more easily than lower 
amplitude ones. Lastly, our library calculates the phase ofset of 
the current signal wave to be used as a reference for the voltage 
measurement readings. 
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7.4 Image Reconstruction Algorithm & iOS API 

The image reconstruction library is developed in Xcode via Swift 
and builds onto the algorithms from EIDORS [3] and pyEIT [24]. 
Its backend can perform Finite Element Method (FEM) simulation 
and EIT inverse solving, while its frontend interpolates and vi-
sualizes the data. We next provide technical details of the image 
reconstruction algorithm we implemented. 

Image Reconstruction Algorithm: EIT-kit solves the inverse problem 
of inferring the internal conductivity σ over a domain Ω from 
voltage responses ϕ to current sources I , with σ0 initialized to be of 
constant conductance 0.5. This is mathematically formalized by the 
continuum Ohm’s law J = σ ∇ϕ, where J is the current density, and 
the continuum Ampere’s law ∇ · J = I . Combining these equations 
under the assumption of no interior current sources gives us the 
continuum Kirchof’s law: 

∇ · σ ∇ϕ = 0. (1) 

Boundary current sources are encoded by j = −J · n̂, where n̂ is the 
surface normal of Ω. For a fxed σ , and boundary conditions j, one 
can solve the linear PDE (1) for voltages ϕ over Ω. These felds are 
discretized as piece-wise linear voltages and piece-wise constant 
conductances on a triangle mesh. Diferential operators ∇ and ∇· 
are computed with the standard FEM. This solves the ‘forward’ 
problem of determining ϕ from known σ , j. For convenience of 
notation let f (Ω, σ ) be the restriction of voltages ϕ to the boundary 
∂Ω. 

In the ‘inverse’ problem, one experimentally chooses current 
sources j, and measures the boundary voltages ϕ̃. The σ can then 
be inferred by solving the nonlinear optimization: 

σ ∗ = argmin ∥ f (Ω, σ ) − ϕ̃∥2
2 

(2)
σ 

This problem sufers from being instable to noisy perturbations 
in ϕ̃. To achieve a faster and more stable solution, this problem 
is frequently regularized with terms such as smoothness of σ :∫ 
λ ∥∇σ ∥p [18], or with assumptions that σ does not change

Ω 2 
quickly in time. Let σk−1 be the solution to (2) for the previous 
timestep. One can add a simple regularization term λ∥σ − σk−1 ∥2

2 

to the computation σ for the current timestep. 

A fast way to solve for σk is to compute 

σk = σk−1 + (JT J + λI )−1 JT (f (Ω, σk−1) − ϕ̃), (3) 
∂fwhere J = ∂σ . This corresponds to taking one Gauss-Newton 

σk−1iteration, or to solve (2) linearized about σ = . Since this 
approach is designed from linearizing about the previous iteration’s 
solution, the quality of (3) depends on σ changing slowly between 
timesteps. 

Interactive Speeds: A key focus of our method is to achieve interac-
tive speeds. Our image reconstruction σ is therefore computed via 
the EIT problem (2) with the assumption that σ changes slowly over 
time. This assumption can be broken when a new object is intro-
duced to the measuring domain between iterations. However, the 
quality of the reconstruction will quickly improve with additional 
iterations. In this setting our reconstruction is a visualization of 

Newton iterations. For future work, we plan to explore integrating 
regularizers to address this challenge. 

3D Visualizations: A secondary feature of our method is the ability 
to create 3D visualizations from data of multiple electrode arrays by 
interpolating between conductivity measurements from multiple 
cross-sections of the measuring object. Since the underlying triangle 
mesh topology is fxed regardless of where the cross-section is 
imaged, we can use linear blending to visualize conductivity across 
a volume that represents an extruded cross-section of the boundary 
of the measuring subject (e.g., a cylinder for circular boundaries). 
As a result, the resulting mesh is implicitly a triangular prism mesh 
but does not need to be constructed explicitly. 

8 DISCUSSION 

In the next section, we refect on limitations of our approach and 
discuss real-world impact and future opportunities for EIT-kit. 

Measurable Impedance Range: Our EIT-kit motherboard is a low-
power board and runs on 5V for portability, which limits the in-
jecting current’s amplitude and voltage measurement range of the 
system. We pushed the limit by implementing the current source 
and measuring circuit to work with diferential signals rather than 
single-ended signals, which can generate diferential output voltage 
ranging from -5V to 5V in theory. However, that range decreases 
because current passes through small resistors. The larger the cur-
rent, the more voltage will be lost. The range of injectable current is 
±Vi/R, where Vi is the amplitude of the instrumentation amplifer 
output after gain and R is the resistance value in the current circuit. 
Overall the system has a measurable impedance ranging from R to 
Vimax /(Vimin /R). In practice, the minimum and maximum of Vi is 
around 0.15V to 5V, which corresponds to a measurable impedance 
ranging from R to around 33R. In our current system setup, the 
resistance value R can be changed between 220Ω, 470Ω and 1kΩ. 
This is an issue faced by all low-power EIT sensing systems. We 
can address this in our future work by implementing an additional 
voltage booster circuit. 

Integrating EIT-kit Sensing Hardware with Measuring Setup: While 
the EIT-kit 3D editor allows users to customize the form factor of 
the electrode arrays, the editor does not yet include functionality 
to integrate the motherboard with the overall device design. For 
future work, we plan to include the EIT-kit board geometry with the 
3D editor and also investigate how designers can change the shape 
of the board to better integrate electronic function with device 
form [40, 48, 49]. 

Microcontroller & Image Reconstruction Libraries: Our microcon-
troller library is currently implemented for ESP32 and Teensy mi-
crocontrollers with hard-coded register addresses for optimized 
performance. For future work, we will expand the type of develop-
ment boards EIT-kit supports. Similarly, the image reconstruction 
library is implemented for use with Xcode, which limits it to iOS 
products only. In addition, EIT-kit currently only supports dynamic 
EIT imaging methods (e.g., back projection, GREIT [2]) to enhance 
the portability of the toolkit and we plan to explore the integra-
tion of absolute imaging methods, which require signifcantly more 
computation power, in the future as well. 
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Deployment for Remote Rehabilitation: As mentioned in the intro-
duction, EIT devices have many applications in the medical domain. 
We are currently collaborating with Massachusetts General Hospi-
tal to use EIT-kit for the creation of remote rehabilitation devices 
that can monitor diferent parts of a patient’s body during the heal-
ing process. Each device created with EIT-kit will be customized to 
the patient’s body and their particular injury, and will be mobile 
and thus allow for at-home use to provide doctors with additional 
information about the patient’s healing process. 

Pre-Built Applications to Extend Target User Group: In its current 
form, the target user group for EIT-kit are interactive device de-
signers who focus on health and motion sensing. Since interactive 
device designers often use 3D modeling and 3D printing to build 
new devices and write code to program them, EIT-kit’s 3D editor 
plugin as well as the microcontroller and visualization APIs match 
the capabilities of this user group. To extend EIT-kit’s audience to 
users who are less experienced in programming, we will extend 
EIT-kit with pre-built applications as part of our future work. 

9 CONCLUSION 

We presented EIT-kit, an electrical impedance tomography toolkit 
for designing and fabricating health and motion sensing devices 
that supports users across the stages of EIT device development. 
We showed how our 3D editor for personalizing the form factor of 
the electrode arrays automatically generates the EIT device geome-
try, distributes the electrodes, and computes the electrode connec-
tions. We demonstrated how our customized EIT sensing mother-
board supports various measurement confgurations by providing 
adjustable current injection and voltage measurements. We also 
showed how our microcontroller library allows users to quickly 
auto-calibrate their signals and collect the data. Finally, we illus-
trated how our image reconstruction library interpolates the data 
and automatically generates 2D and 3D visualizations while opti-
mizing for interactive speeds. We evaluated the data fdelity of our 
EIT measurements and demonstrated the toolkit’s applicability at 
the example of four interactive devices. 

For future work, we plan to explore how to more tightly integrate 
the sensing board with the EIT device design and how to further 
improve the signal processing modules on the EIT sensing mother-
board for additional clinical use cases. 
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