MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Keeping Safe Rust Safe with Galeed

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Rivera, Elijah, Mergendahl, Samuel, Shrobe, Howard, Okhravi, Hamed and Burow,
Nathan. 2021. "Keeping Safe Rust Safe with Galeed.”

As Published: https://doi.org/10.1145/3485832.3485903
Publisher: ACM|Annual Computer Security Applications Conference
Persistent URL: https://hdl.handle.net/1721.1/146129

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146129
https://creativecommons.org/licenses/by-nc-sa/4.0/

Keeping Safe Rust Safe with Galeed

Elijah Rivera
MIT CSAIL
Cambridge, MA, USA
eerivera@mit.edu

Hamed Okhravi
MIT Lincoln Laboratory
Lexington, MA, USA
hamed.okhravi@ll.mit.edu

ABSTRACT

Rust is a programming language that simultaneously offers high per-
formance and strong security guarantees. Safe Rust (i.e., Rust code
that does not use the unsafe keyword) is memory and type safe.
However, these guarantees are violated when safe Rust interacts
with unsafe code, most notably code written in other programming
languages, including in legacy C/C++ applications that are incre-
mentally deploying Rust. This is a significant problem as major
applications such as Firefox, Chrome, AWS, Windows, and Linux
have either deployed Rust or are exploring doing so. It is important
to emphasize that unsafe code is not only unsafe itself, but also it
breaks the safety guarantees of ‘safe’ Rust; e.g., a dangling pointer in
a linked C/C++ library can access and overwrite memory allocated
to Rust even when the Rust code is fully safe.

This paper presents Galeed, a technique to keep safe Rust safe
from interference from unsafe code. Galeed has two components: a
runtime defense to prevent unintended interactions between safe
Rust and unsafe code and a sanitizer to secure intended interactions.
The runtime component works by isolating Rust’s heap from any
external access and is enforced using Intel Memory Protection Key
(MPK) technology. The sanitizer uses a smart data structure that
we call pseudo-pointer along with automated code transformation
to avoid passing raw pointers across safe/unsafe boundaries during
intended interactions (e.g., when Rust and C++ code exchange data).
We implement and evaluate the effectiveness and performance of
Galeed via micro- and macro-benchmarking, and use it to secure a
widely used component of Firefox.

ACM Reference Format:

Samuel Mergendahl
MIT Lincoln Laboratory
Lexington, MA, USA
samuel.mergendahl@Il.mit.edu

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan

Burow. 2021. Keeping Safe Rust Safe with Galeed. In Annual Computer Se-
curity Applications Conference (ACSAC 21), December 6-10, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3485832.3485903

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

ACSAC 21, December 6-10, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8579-4/21/12.
https://doi.org/10.1145/3485832.3485903

824

Howard Shrobe
MIT CSAIL
Cambridge, MA, USA
hes@csail.mit.edu

Nathan Burow
MIT Lincoln Laboratory
Lexington, MA, USA
nathan.burow@ll.mit.edu

1 INTRODUCTION

Many modern-day systems are written in C or C++. These include
operating system (OS) kernels such as Linux [38] or Windows [42],
mainstream web browsers like Mozilla Firefox [45] and Google
Chrome [26, 27], and even other languages’ compilers and inter-
preters (e.g. Python [56], JVM [37]). Unfortunately, C and C++ have
weak enforcement of type or memory safety, and as a result are
vulnerable to a host of different types of memory errors.

Memory errors in programs are a major source of errors and
exploitable vulnerabilities dating at least as far back as 1996 [51].
At BlueHat Israel 2019, Microsoft disclosed that in the past decade,
memory errors have comprised ~70% of discovered vulnerabili-
ties in their products [43]. Google has recently come to the same
conclusion after analyzing their own security vulnerabilities since
2015 [28]. Memory safety remains a significant concern for soft-
ware security despite the immense research effort expended on
addressing it [2, 35, 66, 69], and such vulnerabilities are highly
exploitable [6, 19-21, 25, 63, 65, 69, 75].

Memory safety is also closely related to type safety, the preven-
tion of type errors. A type error occurs in memory when a memory
location is treated as having a certain type, but is then written to
with data that does not represent a valid member of that type. In
1978 Robin Milner famously claimed and then proved that “well-
typed programs cannot go wrong” [44] in a sound type system.
There have been multiple major vulnerabilities discovered due to a
lack of soundness in the type system of C [21, 49, 51].

New programming languages are entering popular use that ad-
dress the twin threats of memory and type safety violations, most
notably Go [15] and Rust [40]. Rust guarantees strong memory and
type safety for programs written in it [59], guarantees which have
recently been formalized and verified by the RustBelt project [31].
Rust’s guarantees rely on its ownership system, which implements
memory safety as a subset of its type system. By encoding infor-
mation about the kinds of reference to an object and the lifetime
of the object into the type system, Rust is able to utilize existing
type checking techniques to statically ensure that programs that
compile meet the memory safety guarantees above, and do so with
little to no cost to performance [7, 70]. This combination of safety
and performance has proven attractive to the systems community,
prompting an increased in the popularity of Rust [32, 50].

Rust’s type system is conservative, that is, sound but incomplete.
The Rust type-checker is sound, in that it will never accept a pro-
gram that is not well-defined within the language model, and thus
will not violate the safety guarantees of that model. Rust’s type


https://doi.org/10.1145/3485832.3485903
https://doi.org/10.1145/3485832.3485903
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3485832.3485903

ACSAC °21, December 6-10, 2021, Virtual Event, USA

system is incomplete in that the Rust type-checker will reject some
benign programs during compilation, programs that are considered
incorrect by the type-checker but which are actually valid in the
underlying language model. Many operations required in low-level
systems programming violate the rules of the type-checker but do
not necessarily violate the underlying safety model, e.g., doubly
linked lists.

Concerningly for incremental deployments of Rust, another set
of operations which break the rules of the Rust type-checker in-
volve the use of the Rust Foreign Function Interface (FFI) to interact
with other languages, especially C/C++. In large, pre-established
codebases, developers cannot simply rewrite the entire system at
once in Rust. Issues of both scale and backwards compatibility are
guaranteed to arise. Instead, many of these codebases are being
ported over to Rust in small increments (e.g., Firefox [46]). Individ-
ual components are rewritten in Rust, and then the FFI is used to
connect the Rust component to the rest of the codebase. The FFI
makes designated Rust functions externally available to non-Rust
components, and enables the use of externally defined functions
within the Rust component. However, by default the Rust compiler
cannot reason about the safety of functions not written in Rust, and
therefore will refuse to compile.

To get around these restrictions, Rust provides a backdoor in
the form of the keyword unsafe. In Rust, unsafe signals to the
compiler that the programmer is writing code that they know will
not pass the Rust type-checker. The burden of verifying that the
code adheres to memory-safety and type-safety falls back onto the
programmer. Unsafe Rust is a security hazard on multiple fronts.
Unsafe code transitively removes the safety of code that interacts
with memory it modifies. The standard library relies extensively on
unsafe to provide safe wrappers around abstractions that the type
system cannot verify. Applications written in Rust and C++have
been shown to be less secure than hardened C++ [53]. Given the
transitive nature of unsafety in Rust, and that Rust will be deployed
in mixed-language settings that fundamentally require unsafe code
for the foreseeable future, new defenses are needed to preserve
Rust’s guarantees in mixed-language applications.

Here we consider mixed-language applications consisting of both
a memory and type safe component (Rust) and an unsafe compo-
nent (C++). Such applications pose two threats against their “safe”
components. The first is that in practice safe and unsafe languages
share a heap, with no abstraction or isolation between them at
runtime, such as virtual addresses between processes. This allows
efficient communication, but also means that an arbitrary-write
vulnerability in C++ can alter memory that notionally belongs to
Rust. The second is through the programmer intended interactions,
in which Rust gives C++ a pointer to use.

Galeed preserves the memory and type safety guarantees of Rust
in mixed-language applications, and consists of two components:
1) a runtime defense that isolates Rust’s heap from manipulation by
C++, thereby preventing unintended interactions, and 2) a sanitizer
for use by developers that secures intended interactions between
the safe and unsafe programming language. Galeed thus protects
safe code from possible corruptions in the unsafe code with which it
interacts. Our runtime defense is built on top of 1ibmpk [54], which
enables the use of Intel’s Memory Protection Keys (MPK) [30] to
remove read/write access to the heap. However, the Galeed design

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan Burow

825

is generic and can work with any enforcement mechanism. Our
sanitizer replaces pointers passed across the language boundary
with identifiers to Rust objects (dubbed pseudo-pointers), and turns
dereferences of such pointers into function calls back into Rust
with the object ID and request operation.

To demonstrate the effectiveness of the Galeed runtime defense,
we use a case study from Firefox, a web browser in the process
of migrating from C++ to Rust [46]. The evaluation results show
that our technique incurs a runtime overhead of less than 1%. The
security guarantees of the sanitizer are demonstrated on micro-
benchmarks, which show reasonable overhead.

Our contributions are as follows:

e We study and systematize threat vectors against Rust in
mixed-language applications, e.g., Firefox, into unintended
and intended interactions.

e We design and implement a runtime defense for isolating
and protecting Rust heap from accesses by unsafe code en-
forced using Intel’s MPK technology, and a sanitizer to verify
the security of intended interactions between safe Rust and
unsafe code using the idea of pseudo-pointers.

e We perform micro- and macro-benchmarking on our tech-
niques and evaluate their security and performance impact,
finding that the runtime defense has less than 1% overhead
in our Firefox case study.

2 BACKGROUND & THREAT MODEL

In this section, we provide a quick background on the Rust pro-
gramming language and Intel’s MPK technology at the level that is
necessary to contextualize the rest of our work. Our goal is not to
be a comprehensive reference on these two relevant technologies.
Interested readers can refer to the references cited in this paper for
a deeper background on these two technologies.

2.1 Rust

Rust [60] is a programming language that offers low-level control
and high performance, while still offering type safety, memory
safety, and automatic memory management. Rust does this by mak-
ing memory safety a property that is statically checked at compile-
time in the same way that type safety is. In fact, memory safety is
built into the type system for Rust via the ownership system.

In Rust, variables “own” their resources, including allocated mem-
ory [61]. When a variable goes out of scope, it is responsible for
freeing its owned resources. To prevent memory leaks and double-
frees, every resource has exactly one owner. Ownership can be
transferred to another variable, which invalidates future accesses
to the first owner.

If one needs to access a resource without taking ownership of it,
one can borrow it. Borrowing gives one a reference to a resource.
One can either borrow a resource immutably or mutably. There
can be any number of immutable references to a resource, but if
there is a mutable reference, no other references can exist until
the mutable reference is done being borrowed (i.e., goes out of
scope). All of these properties are checked at compile-time by the
Rust borrow-checker (a subset of the type-checker), and a program
which violates any of them will not compile.



Keeping Safe Rust Safe with Galeed

To make sure that borrowed references are always valid, Rust
also includes the concept of lifetimes. In Rust, every resource has
an associated lifetime, which is the length of time for which it
exists. References are not allowed to exist beyond the lifetime of the
original resource, a restriction also checked by the borrow-checker.
This restriction prevents use-after-free errors.

The combination of these static properties ensures that programs
which successfully compile are guaranteed to be memory safe. Hav-
ing these properties be statically checked also means that Rust does
not incur the costs associated with runtime checks, which allows
for performance on par with its closest counterpart, C/C++ [7, 70].

Rust has made claims to memory and type safety from its in-
ception, and these claims have been mostly proven, first with
Patina [58] and then more thoroughly with the RustBelt project [31].
RustBelt formalizes a machine-checked safety proof for a “realistic
subset” of Rust. The project then extends that proof to semantically
verify the safety properties of some Rust core libraries which are
forced to use unsafe to avoid the compile-time restrictions of the
Rust borrow-checker. They also provide an extensible interface to
this proof system, which allows developers to check what verifica-
tion conditions are required of new Rust libraries before they can
be considered safe extensions to Rust.

Rust’s combination of performance and guaranteed safety has
contributed to its increasing popularity within the programming
community, with many projects being written or re-written all or
at least partly in Rust [4, 22, 32, 36, 46]. Our work focuses on one
such real-world, popular applications, Firefox [45]. Firefox is a web
browser developed by Mozilla Corporation. Firefox was originally
written in C++, but has begun the process of migrating to Rust [46].

For many applications, the Rust compile-time checks can often
be too restrictive when trying to write certain patterns in programs,
especially in low-level systems or when interfacing with other
languages. To allow developers to bypass compile-time checks, Rust
includes the keyword unsafe. unsafe bypasses compiler checks
including the borrow-checker, which means that memory safety is
no longer guaranteed in the presence of unsafe.

2.2 MPK

Intel Memory Protection Keys (MPK) [30] is a new technology
which is currently only available on Intel Skylake or newer server-
class CPUs. MPK enables quick switching of read/write permissions
on groups of pages from userspace. Each page in the page table is
tagged with a protection key. Built-in system calls are available to
change which protection key is assigned to a page. Permissions for
the protection keys are stored in a new register called the PKRU,
and new assembly instructions are available to read from or update
the PKRU while in userspace. This means that we can execute a
single assembly instruction to toggle read/write permissions on a
group of pages all at once. ERIM [73], Hodor [29], and libmpk [54]
present intra-process isolation schemes using MPK. Such schemes
come with a variety of security issues, detailed by Connor et al. [8].

The attraction of MPK is the performance of hardware security
schemes. ERIM showed that updating permissions takes between 11-
260 cycles, which corresponds to an overhead of <1%. 1ibmpk [54]
(discussed below) also confirmed a <1% overhead cost for using

826

ACSAC 21, December 6-10, 2021, Virtual Event, USA

MPXK, and was able to show that using MPK enables performance im-
provements of >8x when compared to traditional mprotect system
calls for process-level permissions.

libmpk [54] is an open-source C library meant to serve as a soft-
ware abstraction around the MPK hardware technology. It claims
to provide “protection key virtualization, metadata protection, and
inter-thread key synchronization” The library has API calls for
initialization, allocating/freeing pages, and setting page group per-
missions. Additionally, 1ibmpk provides an additional set of API
calls specifically for setting up a heap within a given page group
and then allocating/freeing memory from that heap.

2.3 Threat Model

Our effort focuses on mitigating threats explicitly caused by in-
teractions between safe Rust and an unsafe language (e.g., C/C++)
in mixed-language applications. Threats against the underlying
hardware [67], operating system (OS), and compiler layers are out-
of-scope for this effort. We recognize the importance of threats
against these layers, but as these threats exist independently of the
cross-language boundary we are investigating, we consider them
out-of-scope. For the same reason, we consider security pitfalls of
MPK out-of-scope.

We assume standard protections mechanisms such as W & X [52]
(a.k.a. data execution prevention (DEP) [41]), address space layout
randomization (ASLR) [55], and stack canaries [9] are in-place. We
do not attempt to replace these basic protections and our tech-
niques work seamlessly with them. Since unprotected C/C++ code
is trivially vulnerable to memory corruption attacks, our work is
particularly relevant for cases where C/C++ code is hardened using
additional protections such as CFI [5].

We assume a strong attacker, in-line with the related work in this
domain [35, 66, 69]. That is, the attacker knows one or more strong
memory corruption vulnerabilities in the unsafe portion of a mixed-
language application and can use them to achieve an arbitrary
write gadget to any writable location in the memory space of the
application. Prior work has shown that in this situation memory
safety (and thus application safety) can be violated [53]. The goal of
our work is to implement protections such that we can isolate the
effect of vulnerabilities in the unsafe language (C/C++) portion of
the application and preserve the safety of the safe language (Rust)
portion of the application.

3 GALEED DESIGN

In this section, we describe the design of Galeed. Galeed has two
components: a runtime defense for isolating the Rust heap from
unintended interactions, and a sanitizer for securing intended in-
teractions using pseudo-pointers. We describe each component
separately for ease-of-understanding, but they are both part of the
overall technique for preserving the memory safety guarantees of
safe Rust when it interfaces with unsafe code.

Rust is primarily being incrementally deployed: a longstanding
codebase written in a different unsafe language (most often C/C++)
is converted piece-by-piece to the equivalent Rust code. The ubiq-
uitous web browser Firefox, our case study, started its migration
from C++ to Rust in 2016 [46]. Mozilla, the maintainers of Firefox,
list Rust’s memory safety as primary reason for the switch [46].



ACSAC °21, December 6-10, 2021, Virtual Event, USA

Heap

Rust
allocated
memory

Rust code

C++
allocated

C++ code memory

Figure 1: Possible memory accesses in Rust-C++ applications

Mixing Rust with another language (e.g., C++) breaks the Rust
memory safety model, and leaves the mixed-language application
more vulnerable to exploit than a CFI [1, 5] hardened C++ imple-
mentation [53]. Our work is general to any unsafe language that
interfaces with Rust, but for the sake of simplicity and because of
its heavy usage in Firefox, in the discussion below we focus on C++.
C++ is not bound by the Rust memory model, nor does it have to
obey the restrictions of the Rust compiler. Calling into C++ from
Rust breaks any promises of memory safety, and thus such calls
must always be marked as unsafe in Rust.

In a mixed Rust-C++ application, there are 4 possible patterns of
memory access: Rust code accessing Rust-allocated memory, Rust
code accessing C++-allocated memory, C++ code accessing C++
allocated memory, and C++ code accessing Rust allocated memory
(fig. 1). Rust code accessing Rust memory should never be able
to break Rust memory safety (by definition). Additionally, Rust
memory safety is independent of accesses to C++ memory.

In contrast, C++ accessing Rust memory (the red arrow in fig. 1)
could cause any number of violations to Rust memory safety guar-
antees, up to and including full control-flow hijacking [53]. We
separate these memory accesses further into two cases: intended
and unintended accesses. An intended access occurs when C++ is
explicitly given the location of some part of Rust memory by Rust
code and then accesses that Rust memory, while any other access
is considered unintended. An example of an intended interaction
is when Rust parses a message and passes a pointer to it to C++
for further processing. An example of an unintended interaction
is when an arbitrary write gadget (e.g., a dangling pointer in C++)
is used to modify a data structure in Rust memory when such an
interaction was not conceived of by the developer.

3.1 Preventing Unintended Interactions via
Heap Isolation

First, we focus on preserving memory safety in the presence of
unintended accesses, and then we extend Galeed to secure intended
accesses in section 3.2.

In order to preserve Rust memory safety in the Rust component
of a mixed-language application, we must isolate and restrict Rust
memory such that it cannot be accessed by a component written

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan Burow

827

MPK Protection

Heap

Rust
allocated
memory

Rust code

Heap

C++
allocated
memory

C++ code

Figure 2: Protection via page-level memory isolation and
MPK-enabled permissions switching

in another language. If only Rust can access Rust memory, Rust
memory safety is preserved.

3.1.1 Heap Isolation. Intel MPK enables quick switching of read-
/write permissions on groups of memory pages from userspace.
Previous work has shown that using MPK to enforce different lev-
els of isolation is a viable strategy [29, 62, 73], and libmpk [54]
provides a software abstraction for MPK for general-purpose use.

Galeed’s approach to Rust memory isolation is to make sure that
all of the pages of Rust-allocated memory are in the same page
group, and then to use MPK to set permissions on these pages in
such a way that external functions are unable to access the Rust
memory. If only the given Rust component can access its own
memory, and accesses from other non-Rust components to Rust
memory are forbidden by MPK, then the program stays consistent
with the Rust memory model despite executing untrusted code in
another language.

Galeed focuses on isolating the Rust component’s heap, leaving
stack isolation to future work. We emphasize that this is in-line
with the related work in the memory safety domain. For example,
the low-fat’ scheme was proposed to protect the heap [16], while it
was extended to protect the stack in a follow-on effort [17]. General
memory safety for non-Rust components is out of scope of this
work, and is well-studied in literature [47, 48, 64, 66].

3.1.2  Heap Splitting. In order to isolate the Rust heap, we split
the unified program heap into per safe language component heaps
that are protected, and a remaining unified unsafe language heap.
Each safe language heap comprises a distinct set of pages with its
own MPK key. This allows per safe language permissions to be
controlled by a single MPK key. Note that if, e.g., a page used for
Rust heap contains a C++allocation, then MPK permissions that
operate on the page-level can no longer distinguish between the
language heaps and thus appropriate permissions regimes. Note
also that the pages for each heap can be interleaved, so long as each
page in a language heap is dedicated exclusively to that heap.

3.1.3 Access Policy. Whenever a safe language is executing, its
heap and the unified unsafe language heap have full read and write



Keeping Safe Rust Safe with Galeed

MPK Protection

Heap
Rust code Rust
allocated
*n— | memory
\\- p
C++ code

—

Figure 3: Galeed restricts all accesses by default.

permissions. Leaving the unified unsafe heap accessible still pre-
vents unintended interactions while maintaining safety, see fig. 1.
On language transitions, which happen on function calls, permis-
sions are removed for the calling safe-language heap. This permis-
sion change is inverted upon return. The Galeed policy invariant
is that a safe language heap is accessible if and only if that safe
language is currently execution. This policy results in full isolation
of the language heaps, which is overly restrictive in practice. We
next discuss how to relax this regime while maintaining safety with
pseudo-pointers.

Our heap isolation technique is a runtime defense (a.k.a. exploit
mitigation), a technique that is meant to run continuously when the
application is running in order to provide the protection discussed
above. As such, its small performance footprint is crucial for its
adoption.

3.2 Securing Intended Interactions via
Pseudo-pointers

Galeed’s default policy intentionally excludes intended accesses, i.e.,
times when C++ is explicitly and intentionally given a pointer to
Rust memory. This most commonly occurs in FFI function calls, by
passing a pointer as an argument to a structure in memory instead
of passing directly by value. In fact, this pattern is employed by
many Firefox modules, often due to performance or storage consid-
erations. Galeed’s default behavior breaks this intended behavior,
illustrated in fig. 3.

Here, we present an option for data flow between safe Rust and
unsafe code that does not require breaking the safety guarantees
provided by Galeed’s default heap policy. Instead, when external
functions need access to Rust memory, we will force the external
function to request that Rust make the change in its own memory,
arequest that Rust can safety-check and reject. We present a design
for both the interfaces and underlying machinery required in both
the Rust and external functions, followed by an implementation of
this design specialized to Rust and C++.

We introduce the idea of pseudo-pointers, i.e., identifiers that
Galeed passes to an external function instead of pointers. Galeed
keeps an internal mapping of pseudo-pointers to real pointers. Any
time a non-Rust component attempts to dereference a Rust pointer,

828

ACSAC 21, December 6-10, 2021, Virtual Event, USA

MPK Protection

Heap
Rust code Rust
id pointer allocated
el ® ] \ memory
] P
id(p)
C++ code

—

Figure 4: In our design, C++ uses pseudo-pointers (e.g. id(p))
to request that Rust dereference Rust memory

it must present a valid, non-expired pseudo-pointer to Rust via an
exposed API, along with the information for the change it wishes
to make (if applicable). Rust verifies that the pseudo-pointer is valid
and non-expired. In the case of a write request, Rust also verifies that
the value to write represents a valid member of the type associated
with the memory location. Once verified, Rust executes the request.
Since only Rust directly accesses Rust memory, we can keep our
heap isolation in place and ensure memory safety (fig. 4).

In contrast to our heap isolation that is a runtime defense, our
pseudo-pointer technique is a sanitizer [66] meant to be used by
the developer to detect and remove vulnerability pre-release. Ac-
cordingly its performance budget is much higher [66].

We break the design into three components to discuss further:
necessary properties of these pseudo-pointers, the API which Rust
exposes to other external components, and the requirements on
external functions.

3.2.1 Pseudo-pointer Properties. Pseudo-pointers need to have cer-
tain properties in order to function correctly as safe pointer identi-
fiers: uniqueness, automatic expiration, and forgery resistance.

Pseudo-pointers must be unique to the memory they represent:
each pseudo-pointer must represent exactly one real memory loca-
tion, and each memory location must be represented by at most one
pseudo-pointer. Not only is this necessary for being able to look
up the corresponding memory location, but also it is necessary to
comply with the Rust borrow-checker.

Pseudo-pointers must automatically expire when the correspond-
ing memory is freed at the latest. If a pseudo-pointer is still treated
as valid and used to access memory even after its corresponding
memory location has been freed, we have violated Rust memory
safety with a use-after-free error.

Pseudo-pointers must be difficult to guess or forge. Ideally this
applies even between different runs of the same program, which
requires some level of randomization. It should be noted that while
forging a valid pseudo-pointer could potentially cause information
leaks or even information replacement (both important security
risks), neither one has the possibility of breaking memory safety,
since the operations are still controlled by safe Rust and are valid
operations within the Rust memory model.



ACSAC °21, December 6-10, 2021, Virtual Event, USA

Pseudo-pointer management should be automated, and transpar-
ent to the developer. This is not a requirement for correct functional-
ity, but is still critical in the push to incorporate these safety changes
into existing applications. The more of the process that can be au-
tomated, the lower the burden on the developer. A fully-automated,
transparent system for introducing and using pseudo-pointers re-
duces the possibilities for potential mistakes.

3.22  Rust API. Pseudo-pointers are functionally useless without
the corresponding external-facing Rust API, consisting of functions
which can be called by another language in order to read from or
write to the memory represented by a pseudo-pointer. For any given
structure that will be used in the FFI, the Rust API will have a getter
and setter for each field within that struct. The function names
for these getters and setters are automatically generated using a
naming strategy that includes both the struct type and the field
name. These functions will either be NOPs or raise errors when asked
to perform a memory operation that is inconsistent with its current
internal understanding of that memory location, including both
type errors and expired pseudo-pointers. These functions must also
be entirely in safe Rust, where compile-time and run-time checks
automate most of this for us.

3.2.3  External Function Transformation. Pseudo-pointers are passed
in place of pointers in every call to an external function, to avoid
ever passing a Rust memory location to another language. Before
each external function call, we create a pseudo-pointer for the
pointer that would normally be passed, and pass that instead. We
invalidate the pseudo-pointer once the function returns, for the
reasons mentioned in section 3.2.1.

If we rewrite calls to external functions to use pseudo-pointers,
we will also need to rewrite the external functions themselves to
accept and use these pseudo-pointers everywhere that they would
have had a real pointer instead. Pointer dereferences and writes
need to be converted into the equivalent Rust API calls from sec-
tion 3.2.2.

Ideally, these rewrites can be done automatically, which would
once again mitigate the burden on the developer. In fact, full automa-
tion of these external rewrites would allow us to secure calls to large
existing legacy libraries with little to no change, allowing for this
technique to be used in cases like migration from a legacy codebase
in an unsafe language (e.g., Firefox, originally in C++). Additionally,
since developers are often hesitant to make changes (even auto-
mated ones) to working legacy code, these rewrites should be able
to be performed at compile time instead of modifying the source
file.

Aliasing in unsafe languages could stand as a barrier to the full
automation above, as it may be impossible to completely determine
the full set of pointer dereferences for a Rust object. We note that
ours is a conservative approach prioritizing guaranteed safety. In
cases where alias analysis fails and a pointer dereference is not
transformed, that pointer dereference will be disallowed by MPK
permissions and will not violate memory safety. The developer
can then debug the code to ensure that all the necessary pointers
are transformed. We did not encounter such cases in our analysis,
although their possibility remains open.

829

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan Burow

3.3 Galeed Security Guarantees

Galeed has two security aims: 1) to prevent unintended interac-
tions on the heap in mixed-language applications by providing
a runtime defense, and 2) helping developers identify vulnerabil-
ities in intended interactions between languages by providing a
sanitizer. Heap isolation in turn has two components — the isola-
tion policy and the hardware mechanism used to enforce it. The
isolation policy is simple: a safe-language heap is only accessible
when code in that language is executing. Enforcing this requires
changing permissions whenever the executing language changes,
which is precisely what Galeed does. Such a policy is as sound as
its underlying enforcement mechanism.

Galeed uses MPK to enforce heap isolation due to MPK’s low
overhead. Doing so sacrifices some security. Since any user-space
application can modify the PKRU (the MPK permissions register),
additional care is required to ensure that the external language
does not turn its permissions back on. To do so, binary of the
unsafe applications are scanned to detect any instance of MPK
instruction [29, 73]. If such an instruction is detected, the user is
alerted. Such occurrences should be very rare, however, because
the unsafe applications are assumed to be buggy and potentially
compromised, but not developed to be malicious. Also, note that W
® X is deployed, so when unsafe code is compromised, its binary
cannot be overwritten by the attacker. The best an attacker can do
is to hijack its control by modifying code pointers (e.g., function
pointers and return addresses) or use a dangling pointer to write
arbitrary data to data (writable) regions.

Alternatively, other techniques can also be deployed alongside
Galeed to prevent MPK instructions in unsafe code disabling the
access policy, including CFI [1], hardware watchpoints [29], and
system call filtering via sandbox [62]. System calls in particular
pose a danger to MPK protection regimes [8] that no existing work
fully addresses. We do not address the security of MPK isolation
schemes here beyond following current best practices of scanning
for additional PKRU instructions.

The sanitizer ensures that all pointers given to C++are still used
in a memory and type safe manner. It relies on Rust’s built in
guarantees to do so, by referring all pointer dereferences back
to safe Rust for verification before they are completed, and the
result returned to C++. By removing all pointers to the Rust heap
from C++, Rust maintains the integrity of its heap against intended
interactions.

4 GALEED IMPLEMENTATION

We implemented a prototype for Galeed, specialized to interactions
between Rust and C++. The full source code for our implementation
is available at https://github.com/mit-11/galeed.

4.1 Heap Isolation

4.1.1 Heap Creation. 1ibmpk (section 2.2) provides, among other
things, a heap API for allocating memory within a page group. We
replace the standard Rust allocator with calls to this API (namely
mpk_alloc() and mpk_free()), after updating it to match new
typing information in the Linux kernel headers.

Rust provides machinery for writing a custom allocator that
can be imported as a crate and used in place of the default. Our


https://github.com/mit-ll/galeed

G W N =

Keeping Safe Rust Safe with Galeed

implementation does not separate the allocator into its own crate
out of convenience, but doing so would allow a developer to switch
to this allocator with a handful of lines of code.

In order to ensure that 1ibmpk is properly initialized and has a
page group assigned to it, we also must include a one-time call to
mpk_create(). We note additional subtleties and difficulties when
using the 1ibmpk interface in section 6.

4.1.2  Access. libmpk restricts all access to newly allocated mem-
ory by default. We removed the line of code that did this, so that
Rust by default has full access permissions in its own memory.

Code to switch MPK permissions is included on either side of
all external function call sites. The code immediately preceding
the call site switches selected permissions off, and the code im-
mediately following the call site switches all permissions back on.
We currently switch the Rust memory permissions to read-only at
all call sites, but permissions could be selected at each call site by
swapping named constants.

asm! ("rdpkru", in("ecx") ecx,
lateout ("edx") _);

eax = (eax & !PKRU_DISABLE_ALL) |

asm! ("wrpkru", in("eax") eax,
in("edx") edx);

lateout("eax") eax,

PKRU_ALLOW_READ;
in("ecx") ecx,

Figure 5: Rust inline assembly code for MPK permission
switching

We use the Rust asm! macro to directly call the assembly instruc-
tions rdpkru and wrpkru for reading from and writing to the PKRU
register which holds the MPK permissions (fig. 5). Note that the
inline assembly code for switching permissions at any given call
site is independent of any local variables or names present at that
site. This means that if one could identify all external function call
sites, one could easily insert the correct code into either end of the
call site. Depending on the analysis mechanism chosen, this could
be done at either the Rust or LLVM levels. Rust calls to external
functions specify the C ABI and unmangled names, so identifying
such external calls is possible in principle.

4.2 Pseudo-pointers

Pseudo-pointers extend our heap isolation mechanism to secure
intended interactions between Rust and C++. We implement pseudo-
pointers for user-defined structs that are intended to be passed
across the language boundary as those are the primary vehicle Rust
and C++ use to exchange data. For primitives like booleans, integers,
and floating-point numbers, we would normally expect these to
be passed by value directly. For other constructs in the language
and/or standard library, further work is required to implement the
necessary transformations.

Pseudo-pointers are implemented as a transparent struct con-
taining a single field, the ID of the pseudo-pointer as a signed 32-bit
integer. The struct also contains a PhantomData field that is the
type of the pointed data. PhantomData is used in Rust for fields
that exist at compile time but not at runtime. This allows us to
make distinctions in code between pseudo-pointers that represent
different types, while still having confidence that they will still

830

ACSAC 21, December 6-10, 2021, Virtual Event, USA

1 |int add5(MyStruct* const p) {

2 p->x += 5;
}
(a) Before
1 |int add5(ID<MyStruct> const p) {
2 Xx = get_x_in_MyStruct(p);
3 set_x_in_MyStruct(p, x+5);
4|3

(b) After

Figure 6: Transforming an example C++ function to use
pseudo-pointers.

compile down to 32-bit identifiers once all of the compiler checks
are passed.

We also define a specific map struct for pseudo-pointers, in-
cluding a function that takes a Rust struct, adds it to the map, and
returns the corresponding pseudo-pointer, and the reverse function
that takes a pseudo-pointer, removes it from the map, and returns
the Rust struct. Every time a struct is added to the map, it will
be added with a different ID, and every time a struct is retrieved,
that ID becomes invalid. This prevents external functions from
attempting to access a struct after Rust has reclaimed it.

It is worth noting that creating pseudo-pointers using this inter-
face requires having ownership of the object. One cannot just have
a writable reference to the object. This is how we ensure temporal
memory safety, as Rush requires the object’s lifetime must extend
for at least as long as it is in the map.

Pseudo-pointer support is implemented as an attribute macro
that can be added to a struct. This attribute macro creates the
global map that will hold all pseudo-pointers of this struct type.
Additionally, the macro automatically creates the API that will be
exposed to external functions, as described in the next section.

4.2.1 Rust API. The attribute macro is able to generate getter and
setter functions for each field of a struct by name. The macro
has access to the type information of each field, so these functions
are able to carry that type information in their return value and
arguments respectively.

These functions use the pseudo-pointer provided as an argument,
and go to the appropriate pseudo-pointer map to request access. If
the pseudo-pointer is valid, the function proceeds as expected, ei-
ther reading or writing the appropriate value. If the pseudo-pointer
is invalid, the function will panic. Other reactions to an invalid
pointer (e.g., a NOP instruction instead of a panic) can also be easily
used as appropriate depending on the application.

In addition to generating the getter and setter functions based
on the name of a field, we also generate equivalent functions based
on that field’s position in the struct. This enables some of the
low-level automation described in the next section.

4.2.2  External Function Transformation. In order to use this new
pseudo-pointer interface, external C++ functions that once accepted
pointers to structs in memory must be modified to instead accept
pseudo-pointers, and operations on those pointers must be replaced



ACSAC °21, December 6-10, 2021, Virtual Event, USA

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan Burow

?é????????

?%?ﬁ?§5??ﬁ

250
120
§225 5
8 8110
200 g
° 5
8175 100
S —— with isolation <
?‘3 150 —— without isolation Aé 90
g g
o125 — 5 B
% | m S = s = = % 80
5100 s
# % # o
- - 7
75 S = H &S = ‘%’ = %‘ —_ —
s - 4
1 2 3 4 5 6 7 8 9 10 1 2 3 4

# of times operation was performed (x100k)

(a) Single Read

c
2
I
o 110
Q
o
=
2100
—— with isolation c —— with isolation
—— without isolation g —— without isolation
8
_— wn 90 -
Q<
T s -
\EI O B S 80 ? Q o
o
_ 3* ’_'L -
1 T T
- 05— — P T -
5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

# of times operation was performed (x100k)

(b) Single Write

# of times operation was performed (x100k)

(c) Write then Read

Figure 7: Heap isolation micro-benchmarks

with the appropriate Rust API getters and setters above. Figure 6
shows an example of this transformation.

Instead of placing the burden on developers to manually perform
these transformations, we automate this transformation process.
We introduce a module-level pass into the LLVM compiler which
is enabled by a command-line flag. This pass transforms identi-
fied functions by replacing the expected pointer argument with a
pseudo-pointer argument. It then traces usages of that argument
through the function, replacing load instructions with calls to the
correct getter function and store instructions with calls to the setter
function. The information needed to determine the correct function
can be found in the type information that LLVM preserves.

5 EVALUATION

In this section, we evaluate our safety claims and calculate the per-
formance overhead costs for our prototype. Since our heap isolation
technique is a runtime defense, in addition to micro-benchmarking
its checks, we also evaluate its macro performance overhead in
Firefox. In contrast, our pseudo-pointer technique is a sanitizer, so
we only perform micro-benchmarking on it because it is not meant
to be deployed at runtime.

5.1 Heap Isolation

Recall that Galeed implements its heap isolation using Intel MPK.
MPXK is still a new hardware technology. At the time of writing,
it is only available on the newest line of Intel’s server-class CPUs
(Skylake).

We first present a micro-benchmark of our heap separation be-
fore a case study of our heap separation in a Firefox library. We
use the micro-benchmarks to evaluate the overhead of switching
heap permissions and to validate the security properties of Galeed.
Figure 7 shows the performance results from three scenarios: a) a
single read to an MPK protected page, b) a single write to an MPK
protected page, and c) a write and then a read to an MPK protected
page. We find that our heap isolation protections add an overhead
of ~50 cycles on average, which is tiny and consistent with prior
work using MPK [54, 73]. Note that the overhead for the first 100K

831

samples is large due to cold caches, but even then, the overhead
is acceptable (~250 cycles). To evaluate security, we verify that
C++ dereferencing a Rust pointer causes a MPK segmentation fault,
and verify that the expected permissions changes are present in
the binary.

5.2 Firefox’s libpref

Moving beyond micro-benchmarks, we present an evaluation of
Galeed’s heap isoaltion on Firefox. We target the libpref module
within Firefox, which is used to parse a file to collect user prefer-
ences. We use Firefox’s own libpref module test suite as bench-
marks. We discard 5 of the tests which test front-end behavior and
fail in our headless evaluation environment. As expected, applying
heap isolation without modification caused all tests to fail due to
heap permissions errors. However, the libpref module uses Rust
to parse a preference file, after which the results are only read by
C++. Consequently, pseudo-pointers were not required by this mod-
ule. Instead, we modify our access policy to allow C++ to read the
Rust heap. This reduces security by allowing information leaks that
would otherwise be prevented by Rust’s memory safety, but allows
us to evaluate heap isolation separately.

We ran the test suite 1,000 times with both the unmodified libpref
module as our baseline, and 1,000 times with heap isolation, and
we compare the results here. The test suite is written in JavaScript,
with Firefox machinery allowing it to hook directly to C++ function
calls. Only a subset of these C++ function calls directly call the
Rust component (the preference parser). In order to attempt an
accurate comparison, we time each function hooked by the test
suite using rdtscp and report the cycle count for each invocation
of the function. We present results both specifically for the parser
as well as the overall test suite.

We find an average overhead of <1% using heap isolation for the
Rust component (fig. 8), with an even lower average overhead in
the application overall (fig. 9).



Keeping Safe Rust Safe with Galeed

ACSAC 21, December 6-10, 2021, Virtual Event, USA

1.2

overhead
=
o

o
©

0.6

0 20 40 60 80

function call (sorted by overhead)

100

(b) Heap isolation overhead - Rust function calls

Figure 8: Heap isolation on libpref benchmarks - Rust component

le7
P original
—— with isolation [:%5
4
o
19}
X
8
a3
Q<
o
>
[}
52
3
1
0
0 20 40 60 80 100
function call (sorted by # of cycles taken)
(a) Cycle counts - Rust function calls
1.0 1le8
—— original
—— with isolation
0.8
c
i
© 0.6
%]
Q<
o
>
©0.4
“—
o
$*
0.2
0.0
0 10000 20000 30000 40000 50000

function call (sorted by # of cycles taken)

(a) Cycle counts - all function calls

w

overhead

N

_

10000 20000 30000 40000 50000
function call (sorted by overhead)

—

0

(b) Heap isolation overhead - all function calls

Figure 9: Heap isolation on libpref benchmarks - all function calls

5.3 Pseudo-pointers

To evaluate the functionality and performance of Galeed’s pseudo-
pointers, we developed a proof-of-concept application in which
the C++ side has a “library” of functions which took in a pointer
to a Rust struct and read from and/or wrote to that struct. We
are able to show that the compiled unit for this application had
replaced all pointer dereferences and writes for the Rust struct with
the corresponding Rust function calls for that struct. Rust pointers
were never accessed from C++, while other pointers not from Rust
were left unaffected.

We evaluate the performance overhead of adding these additional
function calls using micro-benchmarks (fig. 10). We found that there
is ~3x overhead for each individual read/write operation; however,

832

when operations are chained the overhead is not ~6x as expected
but instead ~4.5x, indicating that the compiler toolchain is inserting
additional optimizations post-transformation.

This overhead is considered quite practical for sanitizers, many
of which have overheads ranging from 3x to over 10x [66].

6 PRACTICAL LESSONS LEARNED

In this section, we discuss some of the lessons we learned during
this effort for practical deployment of a technique like Galeed, how
alternative design choices could impact them, and the directions for
future work. It is our hope that these lessons not only inform the
reader about these practical considerations when using Rust and
Galeed, but also they can help researchers be cognizant of some



ACSAC °21, December 6-10, 2021, Virtual Event, USA

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan Burow

: : N : T T
80 7 1 & T 8o 1 | T T I = % =]
o & -l &4 = O - - 1201 = LT T
s a7 T TOST 5 THTYTHTZLH s
870 870 g
I I 100
o o o
5 601 601 @
Q Q Q
c —— using pseudo-pointers c —— using pseudo-pointers c 80 —— using pseudo-pointers
%504 —— using pointers %50- —— using pointers % —— using pointers
8 8 8 60
S0 840 B
bS] bS] bS]
# 30/ # 30 # 40
bodddddddd e e el el el e — s S - 5P - — P —
20! 20
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

# of times operation was performed (x100k)

(a) Single Read

# of times operation was performed (x100k)

(b) Single Write

# of times operation was performed (x100k)

(c) Write then Read

Figure 10: Pseudo-pointer micro-benchmarks

of the practical challenges and pitfalls when developing similar
technologies.

6.1 Active Rust Development

Constant changes to the Rust language and standard libraries mean
that verification of features will necessarily lag behind language
development. In the past year, since we started this project, some of
the Rust’s memory containers that have unsafe code have changed
and added new methods (e.g., the Cell library). Developers seeking
to only use formally verified libraries must be aware of the time de-
lay between language implementation and formal verification, and
plan accordingly. Some projects using Rust have pinned themselves
to a specific release, to avoid other difficulties with a constantly
changing language. Such decisions further emphasize the need for
technologies such as Galeed that seek to limit the impact of unsafe
code, particularly since even a stable and verified Rust language
and core libraries will be deployed in mixed language environments
for the foreseeable future.

6.2 Inline Assembly

Another ongoing change in the Rust language is its handling of
inline assembly via the asm! macro. The details of this macro have
not been finalized, and inline assembly is still only available on
“nightly” builds of Rust. We treat inline assembly like a different
language because it is, with different syntax and semantics, and is
necessarily unsafe. However it is also unlike every other language
that Rust can interact with, because it does not do so through
external function calls (i.e., the Foreign Function Interface, or FFI).
The assembly memory model requires knowledge of the underlying
architecture in a way that most other modern languages do not.
Some of our memory isolation principles still apply, and we believe
it would be interesting future work to see what analysis could be
done on Rust’s inline assembly once finalized.

6.3 libmpk

Galeed also relies on the open-source project 1ibmpk [54], a soft-
ware abstraction developed around MPK. 1ibmpk is implemented

833

as a C library, and we currently rely on its heap abstractions for
allocation and deallocation of memory by calling that library in our
allocator. We trust these abstractions by necessity in our prototypes,
but in future work these abstractions should be rebuilt, preferably
in Rust, and optimized for performance. Multiple research projects
have shown that memory allocator design has an impact on perfor-
mance [12, 18, 39]. Future work should include an updated memory
allocator that is natively aware of MPK.

6.4 Mixed-Language Application Security

This work is a first attempt to address the security of mixed-language
applications, and only considers interactions between compiled lan-
guages. Future work should consider interactions between compile
and JIT compiled languages such as Python, or with the JVM. Fur-
ther work is also needed to examine, both statically and dynamically,
the full relationship between Rust and C++ applications. It is likely
that Papaevripides and Athanasopoulos [53] have only scratched
the surface of attacks on Rust/C++applications, motivating this
work and future work in this area.

7 LIMITATIONS

Galeed also has a number of limitations that we discuss here. In
our prototypes, we intentionally focused on preserving memory
safety first, sometimes to the detriment of performance. We rely
on the unoptimized 1ibmpk library for our memory allocation and
deallocation steps. In the pseudo-pointer sanitizer, we replace C++
pointer access with external function calls, performing this step
before either compiler has a chance to potentially optimize some of
these accesses away. In addition, in both cases, we made no attempts
to allow for LLVM’s cross-language link time optimization (LTO).

Galeed can also be further automated, with the end goal being a
fully automated compiler process that requires little to no developer
input. We have already achieved this on the C++ end with the
LLVM pass that automatically replaces Rust struct pointers with
pseudo-pointers and inserts the correct function calls, but many
opportunities are still available on the Rust side.



Keeping Safe Rust Safe with Galeed

Moreover, in our pseudo-pointers prototype, we currently sup-
port flat user-defined structs. This covers a large amount of use
cases, but must be expanded to accommodate current Rust/C++
interactions. For example, we do not support strings, which are
used in the parsing modules that Firefox has migrated to Rust.

Lastly, our prototype currently depends on having access to the
original source code for Rust, and at minimum the LLVM bytecode
for C++. Future work can investigate how to retrofit security in
cases where only Rust/C++ binaries are available.

8 RELATED WORK

Below we discuss related work in three major areas: formal rea-
soning about Rust, code/memory isolation (related to our heap
isolation), and program transformations for safety (related to our
pseudo-pointers).

8.1 Formal Reasoning about Rust

Our work relies heavily on the inherent memory safety guaran-
tees of the Rust language. Attempts to formalize and prove these
guarantees began with Patina [58] in 2015, though the work built
upon decades of prior PL theory. Patina formalized a small model
of Rust which did not account for unsafe, and so the RustBelt
project [10, 31] built another formalization of a realistic subset of
Rust. RustBelt used the Iris framework for concurrent separation
logic [33] to prove memory safety properties. RustBelt went even
further and also verified some standard libraries which contained
unsafe. CRUST [72] also verified memory safety properties of un-
safe library code by translating Rust into C code then performing
bounded model checking. While limited, this approach did prove
to be able to find memory errors in Rust standard libraries.

There is also a body of work around verification of assembly code,
which is one of the uses of unsafe that we leave for future work.
The Vale line of work [3, 24] presents a language and framework
for proving properties of assembly programs and even automating
those proofs. TINA [57] automatically lifts inline assembly within
C code to semantically equivalent C code, easing the burden of
analysis and verification tools.

8.2 Isolation

There have been numerous efforts into efficient and effective iso-
lation at both the software and hardware levels. Many software
isolation techniques rely on sandboxing untrusted code [74]. Na-
tive Client [77] specifically provides this sandboxing for untrusted
browser-based applications, while Vx32 [23] allows native appli-
cations to sandbox untrusted plug-ins. Sandcrust [34] targets the
same domain as our work: applications that mix Rust and C. Sand-
crust offers protection by moving unsafe C code to execute in a new
sandboxed process in a different address space, and using remote
procedure calls (RPC) to communicate between the two languages.
Our solution uses the Rust foreign function interface (FFI) instead
which is the standard method and allows for lower overhead.

Many hardware-based isolation techniques rely on additional
metadata/tags on pointers and/or memory locations [13]. CHERI[76]
and Dover [68] uses PUMP [11, 14] infrastructure are among such
efforts.

834

ACSAC 21, December 6-10, 2021, Virtual Event, USA

Multiple compartmentalization projects have been built on top
of Intel MPK [30] technology [29, 62, 73]. MPK has been shown to
have vulnerabilities that these projects do not prevent [8].

8.3 Compile-time Transformations

The current solution for FFI between Rust and C++ is a project called
CXX [71]. CXX claims to be able to statically analyze both sides
of a Rust/C++ boundary, where the Rust code is written entirely
in safe Rust using references and obeying borrow-checking rules,
and then emit equivalent unsafe Rust code working directly with
pointers. This code is what is ultimately compiled into the final
application. Our project takes many cues from CXX, but ultimately
felt the need to rebuild much of our machinery from scratch. We
were not comfortable emitting unsafe Rust code and still claiming
memory safety, and could not find a way to validate the static
analysis claims.

Other projects have also used compile-time transformations to
strengthen safety for C/C++ code. For a comprehensive list, we
refer the reader to systematization of knowledge papers in this
area [66, 69].

9 CONCLUSION

The Rust programming language offers a combination of perfor-
mance and memory safety guarantees which is increasingly draw-
ing developers to use it, but interfacing with unsafe code under-
mines claims to memory safety. In this paper, we presented Galeed,
a technique to preserve memory safety in safe Rust while used in
conjunction with unsafe code (e.g., C/C++). Galeed consists of two
components: a runtime defense to isolate Rust’s heap from exter-
nal unintended interactions that is enforced using Intel MPK and
a sanitizer that automatically replaces raw pointers with pseudo-
pointers to secure intended interactions between safe Rust and
unsafe code. Our micro-benchmarking of the transformations and
macro-benchmarking on Frifox indicate that our runtime defense
only incurs minimal overhead and our sanitizer is practical.

REFERENCES

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. 4Control-Flow
Integrity Principles, Implementations, and Applications. ACM Transactions on
Information and System Security (TISSEC) (2009).

David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed

Okhravi. 2015. Timely Rerandomization for Mitigating Memory Disclosures. In

Proceedings of the 22nd ACM Computer and Communications Security (CCS’15).

Barry Bond, Chris Hawblitzel, Manos Kapritsos, K Rustan M Leino, Jacob R

Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. 2017. Vale:

Verifying High-Performance Cryptographic Assembly Code. In 26th USENIX

Security Symposium (USENIX Security 17).

[4] Adam Burch. 2019. Using Rust in Windows. https://msrc-blog.microsoft.com/
2019/11/07/using- rust-in-windows.

[5] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-Flow Integrity: Precision, Security,
and Performance. ACM Comput. Surv. 50, 1 (April 2017).

[6] Center for Internet Security. 2019. Multiple Vulnerabilities in

Google Android OS Could Allow for Arbitrary Code Execution.

https://www.cisecurity.org/advisory/multiple-vulnerabilities-in-google-

android-os-could-allow-for-arbitrary-code-execution_2019-088.

Catalin Cimpanu. 2019. A Rust-based TLS library outperformed OpenSSL in

almost every category. https://www.zdnet.com/article/a-rust-based-tls-library-

outperformed-openssl-in-almost-every-category.

R Joseph Connor, Tyler McDaniel, Jared M Smith, and Max Schuchard. 2020.

PKU Pitfalls: Attacks on PKU-based Memory Isolation Systems. In 29th USENIX

Security Symposium (USENIX Security 20).

[2

B3

—
)

=


https://msrc-blog.microsoft.com/2019/11/07/using-rust-in-windows
https://msrc-blog.microsoft.com/2019/11/07/using-rust-in-windows
https://www.cisecurity.org/advisory/multiple-vulnerabilities-in-google-android-os-could-allow-for-arbitrary-code-execution_2019-088
https://www.cisecurity.org/advisory/multiple-vulnerabilities-in-google-android-os-could-allow-for-arbitrary-code-execution_2019-088
https://www.zdnet.com/article/a-rust-based-tls-library-outperformed-openssl-in-almost-every-category
https://www.zdnet.com/article/a-rust-based-tls-library-outperformed-openssl-in-almost-every-category

ACSAC ’21, December 6-10, 2021, Virtual Event, USA

=

[10]

[11]

[12]

=
&

[14]

(15

[16]

(17

(18]

[19]

[20]

[21]

[22

[23]

[24

[25]

[26]
[27]
[28

[29]

[30
[31]

[32

[33

[34]

[35

Crispin Cowan, Steve Beattie, Ryan Finnin Day, Calton Pu, Perry Wagle, and
Erik Walthinsen. 1999. Protecting systems from stack smashing attacks with
StackGuard. In Linux Expo.

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer.
2019. RustBelt Meets Relaxed Memory. Proceedings of the ACM on Programming
Languages (POPL) (2019).

Arthur Azevedo De Amorim, Maxime Dénés, Nick Giannarakis, Catalin Hritcu,
Benjamin C Pierce, Antal Spector-Zabusky, and Andrew Tolmach. 2015. Micro-
Policies: Formally Verified, Tag-Based Security Monitors. In 2015 IEEE Symposium
on Security and Privacy.

David Detlefs, Al Dosser, and Benjamin Zorn. 1994. Memory Allocation Costs in
Large C and C++ Programs. Software: Practice and Experience (1994).

Joe Devietti, Colin Blundell, Milo MK Martin, and Steve Zdancewic. 2008. Hard-
Bound: Architectural Support for Spatial Safety of the C Programming Language.
ACM SIGOPS Operating Systems Review (2008).

Udit Dhawan, Nikos Vasilakis, Raphael Rubin, Silviu Chiricescu, Jonathan M
Smith, Thomas F Knight Jr, Benjamin C Pierce, and André DeHon. 2014. PUMP: A
Programmable Unit for Metadata Processing. In Proceedings of the Third Workshop
on Hardware and Architectural Support for Security and Privacy (HASP).

Alan AA Donovan and Brian W Kernighan. 2015. The Go programming language.
Addison-Wesley Professional.

Gregory J Duck and Roland HC Yap. 2016. Heap bounds protection with low
fat pointers. In Proceedings of the 25th International Conference on Compiler
Construction. 132-142.

Gregory J Duck, Roland HC Yap, and Lorenzo Cavallaro. 2017. Stack Bounds
Protection with Low Fat Pointers.. In NDSS, Vol. 17. 1-15.

Dominik Durner, Viktor Leis, and Thomas Neumann. 2019. On the Impact of
Memory Allocation on High-Performance Query Processing. In Proceedings of the
15th International Workshop on Data Management on New Hardware (DaMoN).
Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang,
Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi.
2015. Missing the Point(er): On the Effectiveness of Code Pointer Integrity. In
Proceedings of the IEEE Symposium on Security and Privacy (Oakland’15) (San
Jose, CA).

Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu: On the
Weaknesses of Fine-Grained Control Flow Integrity. In Proceedings of the 22nd
ACM Computer and Communications Security (CCS’15).

Reza Mirzazade Farkhani, Saman Jafari, Sajjad Arshad, William Robertson, Engin
Kirda, and Hamed Okhravi. 2018. On the Effectiveness of Type-based Control
Flow Integrity. In Proceedings of IEEE Annual Computer Security Applications
Conference (ACSAC’18).

Wedson Almeida Filho. 2021. Rust in the Linux kernel - Google Security Blog.
https://security.googleblog.com/2021/04/rust-in-linux-kernel.html.

Bryan Ford and Russ Cox. 2008. Vx32: Lightweight, User-level Sandboxing on
the x86. In USENIX Annual Technical Conference.

Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno, Aseem
Rastogi, and Nikhil Swamy. 2019. A Verified, Efficient Embedding of a Verifiable
Assembly Language. Proceedings of the ACM on Programming Languages (POPL)
(2019).

Ronald Gil, Hamed Okhravi, and Howard Shrobe. 2018. There’s a Hole in the
Bottom of the C: On the Effectiveness of Allocation Protection. In Proceedings of
the IEEE Secure Development Conference (SecDev18).

Google. [n.d.]. Chromium. https://www.chromium.org/Home.

Google. [n.d.]. Google Chrome. https://www.google.com/chrome.

Google. [n.d.]. Memory safety - The Chromium Projects. https://www.chromium.
org/Home/chromium-security/memory-safety. Accessed on 2021-05-14.
Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Isolation
for High-Throughput Data Plane Libraries. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19).

Intel. 2021. Intel®64 and IA-32 Architectures Software Developer’s Manual.
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017.
RustBelt: Securing the Foundations of the Rust Programming Language. Proceed-
ings of the ACM on Programming Languages (POPL) (2017).

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2020.
Safe Systems Programming in Rust: The Promise and the Challenge. Commun.
ACM (2020).

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars
Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an Orthogonal
Basis for Concurrent Reasoning. ACM SIGPLAN Notices (2015).

Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Hermann
Hértig. 2017. Sandcrust: Automatic Sandboxing of Unsafe Components in Rust.
In Proceedings of the 9th Workshop on Programming Languages and Operating
Systems (PLOS).

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:

Automated software diversity. In 2014 IEEE Symposium on Security and Privacy.
IEEE, 276-291.

835

(36]

[37

(38]

[39

[40

[41

[42

[43]

~
o)

o
20,

[60

[61

[62

[63]

e
=

(65

[66

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan Burow

Ryan Levick. 2019. Why Rust for safe systems programming. https://msrc-
blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming.

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The Java
virtual machine specification. Pearson Education.

Linux Kernel Organization. [n.d.]. The Linux Kernel Archives. https://www.
kernel.org.

Rahul Manghwani and Tao He. 2011. Scalable memory allocation. https://
locklessinc.com/downloads/Preso05-MemAlloc.pdf.

Nicholas D Matsakis and Felix S Klock. 2014. The rust language. ACM SIGAda
Ada Letters 34, 3 (2014), 103-104.

Microsoft. 2006. A detailed description of the Data Execution Prevention (DEP)
feature in Windows XP Service Pack 2, Windows XP Tablet PC Edition 2005, and
Windows Server 2003. Online. http://support.microsoft.com/kb/875352/en-us
Microsoft. 2014. Lesson 2 - Windows NT System Overview. https://docs.microsoft.
com/en-us/previous-versions//cc767881(v=technet.10).

Matthew Miller. 2019. Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape. https://github.com/microsoft/MSRC-
Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01-
BlueHatIL-Trends, challenge, andshiftsinsoftwarevulnerabilitymitigation.pdf.
Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput.
System Sci. (1978).

Mozilla Foundation. [n.d.]. Firefox. https://www.mozilla.org/en-US/firefox.
Mozilla Foundation. [n.d.]. Oxidation. https://wiki.mozilla.org/Oxidation. Ac-
cessed on 2021-05-14.

Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for C.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI).

Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2010. CETS: Compiler-Enforced Temporal Safety for C. In Proceedings of the 2010
International Symposium on Memory Management (ISMM).

Tim Newsham. 2001. Format string attacks. http://hackerproof.org/technotes/
format/formatstring.pdf.

Hamed Okhravi. 2021. A Cybersecurity Moonshot. IEEE Security & Privacy 19, 3
(2021), 8-16. https://doi.org/10.1109/MSEC.2021.3059438

Aleph One. 1996. Smashing The Stack For Fun And Profit. Phrack magazine
(1996).

OpenBSD. 2003. OpenBSD 3.3.

Michalis Papaevripides and Elias Athanasopoulos. 2021. Exploiting Mixed Bina-
ries. ACM Transactions on Privacy and Security (TOPS) (2021).

Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
2019 USENIX Annual Technical Conference (USENIX ATC 19).

PaX. 2003. PaX Address Space Layout Randomization.

Python Software Foundation. [n.d.]. The Python programming language. https:
//github.com/python/cpython.

Frédéric Recoules, Sébastien Bardin, Richard Bonichon, Laurent Mounier, and
Marie-Laure Potet. 2019. Get rid of inline assembly through verification-oriented
lifting. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE).

Eric Reed. 2015. Patina: A Formalization of the Rust Programming Language.
University of Washington, Department of Computer Science and Engineering, Tech.
Rep. UW-CSE-15-03-02 (2015).

Rust Foundation. [n.d.]. Meet Safe and Unsafe - The Rustonomicon. https:
//doc.rust-lang.org/nomicon/meet- safe-and-unsafe.html. Accessed on 2021-05-
14.

Rust Foundation. [n.d.]. Rust Programming Language. https://www.rust-lang.
org.

Rust Foundation. [n.d.]. What is Ownership? - The Rust Programming Language.
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html. Accessed on
2021-05-14.

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky: Domain Keys-Efficient
In-Process Isolation for RISC-V and x86. In 29th USENIX Security Symposium
(USENIX Security 20).

Jeff Seibert, Hamed Okhravi, and Eric Soderstrom. 2014. Information Leaks
Without Memory Disclosures: Remote Side Channel Attacks on Diversified Code.
In Proceedings of the 21st ACM Conference on Computer and Communications
Security (CCS’14) (Scottsdale, AZ).

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12).

Hovav Shacham et al. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In ACM conference on Computer
and communications security (CCS).

Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert,
Per Larsen, and Michael Franz. 2019. SoK: Sanitizing for Security. In 2019 IEEE
Symposium on Security and Privacy (SP).


https://security.googleblog.com/2021/04/rust-in-linux-kernel.html
https://www.chromium.org/Home
https://www.google.com/chrome
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming
https://www.kernel.org
https://www.kernel.org
https://locklessinc.com/downloads/Preso05-MemAlloc.pdf
https://locklessinc.com/downloads/Preso05-MemAlloc.pdf
http://support.microsoft.com/kb/875352/en-us
https://docs.microsoft.com/en-us/previous-versions//cc767881(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions//cc767881(v=technet.10)
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://www.mozilla.org/en-US/firefox
https://wiki.mozilla.org/Oxidation
http://hackerproof.org/technotes/format/formatstring.pdf
http://hackerproof.org/technotes/format/formatstring.pdf
https://doi.org/10.1109/MSEC.2021.3059438
https://github.com/python/cpython
https://github.com/python/cpython
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html
https://www.rust-lang.org
https://www.rust-lang.org
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html

Keeping Safe Rust Safe with Galeed

[67] Chad Spensky, Aravind Machiry, Nathan Burow, Hamed Okhravi, Rick Housley,
Zhongshu Gu, Hani Jamjoom, Christopher Kruegel, and Giovanni Vigna. 2021.
Glitching Demystified: Analyzing Control-flow-based Glitching Attacks and
Defenses. In 2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 400-412. https://doi.org/10.1109/DSN48987.2021.
00051

[68] Gregory T Sullivan, André DeHon, Steven Milburn, Eli Boling, Marco Ciaffi,
Jothy Rosenberg, and Andrew Sutherland. 2017. The Dover Inherently Secure
Processor. In 2017 IEEE International Symposium on Technologies for Homeland
Security (HST).

[69] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In 2013 IEEE Symposium on Security and Privacy.

[70] The Computer Language Benchmarks Game. [n.d.]. Rust vs C gcc fastest
programs. https://benchmarksgame-team.pages.debian.net/benchmarksgame/
fastest/rust.html. Accessed on 2021-05-14.

[71] David Tolnay. [n.d.]. CXX - safe interop between Rust and C++. https://cxx.rs.

[72] John Toman, Stuart Pernsteiner, and Emina Torlak. 2015. CRUST: A Bounded
Verifier for Rust. In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE).

ACSAC 21, December 6-10, 2021, Virtual Event, USA

[73] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler,

Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isola-
tion with Protection Keys (MPK). In 28th USENIX Security Symposium (USENIX
Security 19).

Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Graham. 1993.
Efficient Software-Based Fault Isolation. In Proceedings of the fourteenth ACM
symposium on Operating systems principles.

Bryan Ward, Richard Skowyra, Chad Spensky, Jason Martin, and Hamed Okhravi.
2019. The Leakage-Resilience Dilemma. In Proceedings of the 24th European
Symposium on Research in Computer Security (ESORICS).

Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age
of risk. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA).

Bennet Yee, David Sehr, Gregory Dardyk, ] Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native Client:
A Sandbox for Portable, Untrusted x86 Native Code. In 2009 30th IEEE Symposium
on Security and Privacy.


https://doi.org/10.1109/DSN48987.2021.00051
https://doi.org/10.1109/DSN48987.2021.00051
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust.html
https://cxx.rs

	Abstract
	1 Introduction
	2 Background & Threat Model
	2.1 Rust
	2.2 MPK
	2.3 Threat Model

	3 Galeed Design
	3.1 Preventing Unintended Interactions via Heap Isolation
	3.2 Securing Intended Interactions via Pseudo-pointers
	3.3 Galeed Security Guarantees

	4 Galeed Implementation
	4.1 Heap Isolation
	4.2 Pseudo-pointers

	5 Evaluation
	5.1 Heap Isolation
	5.2 Firefox's libpref
	5.3 Pseudo-pointers

	6 Practical Lessons Learned
	6.1 Active Rust Development
	6.2 Inline Assembly
	6.3 libmpk
	6.4 Mixed-Language Application Security

	7 Limitations
	8 Related Work
	8.1 Formal Reasoning about Rust
	8.2 Isolation
	8.3 Compile-time Transformations

	9 Conclusion
	References

