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ABSTRACT

The (Capacitated Multi-Commodity Network Flow (CMCF) problem
arises whenever commodities (goods, people, vehicles, etc.) must be
transported from one location to another over a network with finite
capacity. The objective is to determine the cost-minimizing assign-
ment of commodities to arcs such that each commodity is transported
from its origin to its destination without violating capacity restric-
tions. Numerous applications of this problem type can be found in the
transportation industry, particularly in the areas of vehicle routing
and scheduling with freight flow assignment. These real-world prob-
lems can be extremely large, however, and thus, are wunsolvable using
existing solution procedures. As a result, a new algorithm, called
PDN, was developed specifically for the solution of large-scale CMCF
problems.

The PDN algorithm is cast in the primal-dual framework and uses a
network-based solution strategy to solve the CMCF problem. The net-
work-based procedure, by eliminating the restrictions on problem size
imposed by the simplex method, provides the PDN algorithm with the
flexibility to solve large-scale problems.

Computational tests show that the PDN algorithm is able to solve
problems of much larger dimension than could previously be solved
using existing solution techniques. Furthermore, the PDN algorithm is
more efficient than the simplex-based primal-dual algorithm in solving
even small to moderate size problems.

Thesis Supervisor: Dr. Yosef Sheffi
Title: Professor of Civil Engineering
Head, Transportation Systems Division
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1. Introduction

This chapter introduces the Capacitated Multi-Commodity Network
Flow Problem {(CMCF) and then reviews the relevant literature. Section
1.1 first presents the CMCF problem description and its mathematical
formulation. Then, Sections 1.2 and 1.3 describe existing sclution
techniques for the linear CMCF problem. Finally, Section 1.4 outlines

the general structure of this thesis.

1.1 Problem Description

The Capacitated Multi-Commodity Network Flow (CMCF) Problem arises
whenever commodities (goods, people, vehicles, etc.) must be trans-
ported from origin to destination locations over a network with finite
capacity. The multi-commodity problem can be conceptualized as a set
of single-commodity problems tied together by "bundle" constraints.
Each single-commodity problem requires the transport of one commodity
from its origin to its destination, conserving flow along the way.
The bundle constraints ensure that the commodities, whicﬁ flow along
the same arcs, share arc capacity without exceeding the amount avail-
able. The CMCF objective is to determine the assignment of commodities
to arcs such that the total cost of transporting all commodities is
minimized.

These objective and constraints can be represented for the 1linear

CMCF probiem in node-arc form as follows:

Z*P = MIN zijeA ZRGK Cijkx-_;'jk [1.1]

-15-



subject to:
Skek ¥1j© + sij = dyy, V ijea [1.2]
bk if 1 = sk,
Tyen Xi3° - Siew Xi3" = { bk if i o=k,
0, otherwise; VieN, vkeK. [1.3]
xijk >0, V ijeA, V keK; sjj = 0, V ijeA. [1.4)
where:
K: set of 1,...,|K| commodities;
A: set of arcs; |
N: set of nodes;
dij: = capacity of arc ijeA;
xijk: quantity of flow of commodity keK on arc ije€A;
cijk: per unit cost of flow on arc ij of commodity k;
bK: quantity of commodity keK supplied at origin; (-bk:
quantity of commodity keK demanded at destination);
Sij* slack variables for bundle constraints [1.2]--

representing the amount of wunused arc capacity,

i.e.: Sij = dij - xi_‘]; where xij = ZyreK xijk;

The node-arc formulation of the CMCF problem exhibits block diag-
onal form with coupling rows. Equations [1.2] are the bundle or arc
capacity constraints which limit the total flow on each arc to the
capacity of that arc. Equations [1.3] are the conservation of flow
constraint; which ensure for each commodity, that the total quantity
demanded 1is transported from the origin to the destination. Finally,

equations [1.4] are the flow and slack non-negativity constraints. The

-16-



objective, equation [1.1], is to minimize total cost.

The CMCF problem presents itself in several transportation appli-
cations. For example, the following transportation-rzlated problems
have been formulated as CMCF problems:

i) tanker scheduling [9];

ii) wurban traffic assignment [33];

iii) school desegregation [16];

iv) routing freight cars over a failroad [56,57]; and

V) design of a route structure for an Air Force air cargo system

[2].

The freight assignment problem requires the transport of shipments
from their origins to their destinations using a fleet of vehicles. -
This problem can be formulated as a linear CMCF problem where:

i) the objective is to minimize total service time for the
freight; and

ii) the wunderlying network represents the possibilities for
freight movement.

Freight (or personnel) assignment problems must be repeatedly
solved as part of the everyday operations of truck, ship, rail or air
transportation companies. However, primarily because real-world prob-
lem sizes tend to be extremely large, many of these freight assignment
problems are very difficult to solve. Hence, it is concluded that the
transportation industry could benefit from a solution methodology

geared specifically to the solution of large-scale CMCF problems.
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This observation motivates the research work described in this thesis.

Although the linear CMCF problem is the focus of this thesis, it
should be mnoted that CMCF problems can also be cast as non-linear
mathematical programming probliems. For example, the traffic equili-
brium problem [11,33,48,53,54] can be formulated as a multi-commodity
flow problem where:

i) the network arcs and nodes represent roadways and intersec-
tions, respectively; and

ii) the commodities represent specific origin to destination traf-
fic flows.

In the traffic equilibrium problem, the bundle constraints are
eliminated and instead, non-linearities in the objective function cap-

ture the effect on travel time of congestion in the network.

1.2 Literature Review

The linear CMCF problem is a linear program and can therefore be
solved using a technique, developed in 1947 by George B. Dantzig [19],
called the simplex method. Specialized solution techniques, however,
are generally used. The most widely researched techniques are:

i) partitioning methods;

ii) resource-directive decomposition methods; and

iii) price-directive decomposition methods.

Assad [6] and Kennington [36] provide excellent CMCF surveys

describing these solution techniques.
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1.2.1 Partitioning Methods

To solve the CMCF problem, partitioning methods wuse the simplex
procedure and partition the current basis to exploit the problem's
underlying network structure. Grigoriadis and White [24,25] observe
that only a small number of the bundle constraints are actually bind-
ing in practice. Thus, they include only a subset of the bundle con-
straints in their current basis and perform dual simplex steps using a
generalization of Rosen’s Primal Partition Programming [44]. Hartman
and Lasdon [26], Kennington [34], Maier [38], and Saigal [45] propose
compact inverse methods to solve the CMCF problem. These methods are
specializations of Generalized Upper Bounding for block-angular sys-

tems [37].

1.2.2 Resource-Directive Decomposition

The resource-directive decomposition method is an iterative
approach where arc capacities are repeatedly allocated among commodi-
ties until the optimal allocation is determined. For each given
capacity allocation, the CMCF problem dec..uwposes into single-commodity
transshipment problems-- one for each commodity. (These single-
commodity transshipment problems can be efficiently solved using the
primal network simplex or the primal-dual out-of-kilter approaches.)
If the current capacity allocation is not optimal, a new allocation is
determined .using either the method of tangential approximation
[22,49]; the method of feasible directions [36]; or subgradient opti-

mization [27,35].
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1.2.3 Price-Directive Decomposition

Price-directive decomposition is driven by the economic principal
that prices can be set such that supply and demand are in equilibrium.
In the CMCF problem, the objective is to find for each arc, that price
which achieves equilibrium between the amount of capacity demanded and
that supplied.

The Dantzig-Wolfe decomposition method [18) is a price-directive
solution approach which is said to have been inspired by the earlier
work of Ford and Fulkerson [20] on the multi-commodity maximal flow
problem. The Ford-Fulkerson price-directive decomposition approach
was adapted and implemented for the multi-commodity minimal cost flow
problem by Tomlin [52].

In Dantzig-Wolfe decompositior, a master problem (MP) and |K]|
subproblems (SPk) are repeatedly solved. Ford and Fulkerson [20]
showed that the optimal CMCF flow assignment can be represented as a
convex combination of single origin to destination chains for each
commodity, i.e.:

zyp” = MIN Sieg T1egk Zijea ©19°0N6351 KK [1.5]

subject to:

Trer Tiegk bROi 1 RALK + sy = a5y, v tdear (-myy)  [1.6]

Tjeqk MK - 1, V kek; (oK) [1.7]

xlk >0, V kek, v 1eQk; [1.8]
where

Qk: set of extreme points (or equivalently, sk to tk

-20-



single chains) for the set xk = (xijk, Y ijeA: zjeN

xijk - DieN xijk - bk if i = sk = bk if i = ¢k,
and = 0 otherwise; xijk >0, V ijeA) ¥ keK.

61j1-k: = 1 if arc ij is included in the single chain
ler for commodity keK, = O otherwise;

Alk: decision variables (Note: the amount of flow on

each extreme point chain lEQk is bkAlk, V keK).

Using the simplex method to solve MP, let T and oK be the dual
prices associated with constraints [1.6]) and [1.7] respectively. The

reduced costs of the variables Alk and sij are then:

rclk = zijEA cijkbk5ij1'k + zijGA ﬂijbkgijl'k - Uk,
for 21K, v leQk, v kek. [1.9]
rcij - 1|'ij for Si.j’ v lJGA [1.10]

Since MP 1is a minimization problem, any variable with negative
reduced cost should be pivoted into the basis. Following along these
lines, the wvariable with the most negative reduced cost should be
pivoted into the basis. To determine the Ak variable with the most

negative reduced cost, consider the fcllowing subproblem, denoted SPk:

ZSPk* = MIN zijGA (cijk + "ij)xijk [1.11]
subject- to:

xijk e xK, [1.12]
The optimal solution to SPK (for each keK) is the assignment of

-21-



all bX units of flow to the minimum cost path from sK to tX. (This
minimum cost path for k, denoted 1*, can be efficiently determined
with a shortest path algorithm using revised arc costs of cijk + ”ij-)
The optimal objective function value for SPK can therefore be written

as:

* * k *
ZSPk = EijGA cijkbksijl K + E"jGA 1l‘ijb 61_]1 'k. vV kek (1.13]

L

and hence,
rey* K = zgpk* - ok, (1.14]

If zspk* < ak, then for commodity k, there exists a candidate for
entry into the basis. Thus, by locating the minimum cost chain, the
variable with the most negative reduced cost is determined. Tomlin
[52] therefore draws an analogy between Dantzig-Wolfe decomposition
and decomposition of node-arc into arc-chain flows. Ford and Fulker-
son [20] suggested that these shortest chains for entry into the basis
be pgenerated as needed. Using this idea, one implementation of the
Dantzig-Wolfe price-directive decomposition algorithm is as follows:

Step O: Initialization. Let the initial set of wvariables
include:

i) slack variables Sij» V ijeA; and

ii) artificial wvariables ak, V keK-- representing an infinite

cost, infinite capacity, origin to destination, single arc path for

commodity keK.
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Step 1: Solve MP. Given the current set of wvariables, use the
simplex method to solve MP and to obtain new dual prices.

Step 2: Dual Update. Update the cost on each arc ij as follows:
c’ij = Cij + Tijo V ijeA. [1.15]

Then, solve SPK for each keX.

Step 3: Test for Optimality. For all keK, if zSPk* > oK

STOP--the CMCF problem 1is optimally solved; otherwise continue.
(Note: since artificial arcs with infinite capacity are included in
the initial basis, the CMCF problem is always "feasible".)

Step_4: Basis Update. For all keK with zSPk* < ak, add the

variable (column) Al*k to MP. Go to Step 1.

Bazaraa and Jarvis [8], Chen and Dewald [15], Jarvis and Keith
[30], Cremeans et. al. [17], Swoveland [49,5C], Weigel and Cremeans
[55] and Wollmer [58] report additional price-directive decomposition
results for both the multi-commodity maximal flow problem and the mul-

ti-commodity minimum cost flow problem.

1.2.4 oOther Solution T=chniques

Jewell [31,32] developed a primal-dual simplex method to solve the
multi-commodity maximal flow problem. The drawback to Jewell’s
approach 1is that it requires the identification of all forward and
backward ch;ins, as well as all loops for each commodity.

Gersht and Shulman [23] solve the linear CMCF problem using a bar-

rier-penalty optimization algorithm specifically geared to the solu-
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tion of CMCF problems with a large number of commodities.

1.3 Computational Experience

Table 1.1 summarizes the size of problems solved using the above
discussed solution techniques. Test results of Swoveland [49] and
Assad [5] independently showed that the Dantzig-Wolfe decomposition
method 1s superior to the resource-directive decomposition method.
Additionally, Assad and Swoveland both reported that Dantzig-Wolfe did
not exhibit the tailing-off phenomenon generally observed. Tomlin
[53], Swoveland [49,50], and Chen and Dewald [15] also reported suc-
cess in solving CMCF problems using this decomposition strategy.

Computational experience with resource-directive techniques is
provided by Held, Wolfe and Crowder [27] and Kennington and Shalaby
[35]. They developed heuristics and used a subgradient approach to
update capacity allocations. Assad [5] found that the subgradient
approach converged for problems with 26 or less arcs but for problems
with greater than 100 arcs or greater than 10 commodities, convergence
vas very slow. In fact, the solution time for the subgradient method
was from 10 to 20 times slower than that for the Dantzig-Wolfe method.

Kennington [34,35] compared the performance of the resource-
directive subgradient approach, the primal partitioning method and the
simplex method for capacitated multi-commodity transportation prob-
lems. Thé- subgradient approach was approximately 1.7 to 4 times
faster than the partitioning approach, which was comparable to the

APEX III [4] LP code.
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PROBLEM SIZE

NAME SOLUTION METHOD (n,m,mc, k)t
Tomlin [53] Price-Directive (18,54,54,10-60)
Decomposition (50,152,152,63)
Swoveland [49,50] Dantzig-Wolfe and (356,1279,50-60,6)
Resource-Directive (92,224,50-60,4)
Decomposition (37,67,50-60,3)
Grigoriadis& Primal Partitioning (8,15,1-15,5-40)
White [24,25] Algorithm (21,98,1-37,2-20)
Assad [5,7] Decomposition (47-83,100-270,100,
2-30)
Kennington [34,35] Resource-Directive (8-12,8-12,8-12,
w/ Subgradient & 8-12)

Primal Partitioning

(#LP rows, #LP cols.)

Ali et al [3] Primal-Partitioning (400-600,700-1000)
& LP (1395-2191,3165-21676) %

t: n: number of nodes; m: number of arcs; mc: number of
capacitated arcs; k: number of commodities.

$: Real-world problems, the largest of which is solved
on a CDC 6600 computer.

Table 1.1: Size of Problems Solved

Ali, et. al. [3] implemented the primal partitioning algorithm of
Hartman and Lasdon [26] and solved three real-world problems ranging

in size from 1395 to 2191 rows and from 3165 to 21676 columns. Their
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experience shows that the partitioning algorithm performed quite well
on real-world problems where only a few of the coupling constraints
are binding at optimality.

Additionally, Ali, et. al. generated a set of smaller test prob-
lems to compare the performance of primal-partitioning algorithms with
the general LP codes MINOS [41], XMP [39], and LISS [1i]. They found
that in solving the CMCF problems, primal partitioning codes are from
2 to 3 times faster than the general LP codes.

Finally, Ho and Loute [28] tested their implementation of the
Dantzig-Wolfe decomposition method against IBM's MPSX/370 LP software
[(29]. They performed computational tests for large-scale block-
angular LP’s with 411 to 5898 rows and 1411 to 12048 columns. In sol-
ving the set of block-angular problems, the Dantzig-Wolfe method was
approximately 4 times slower than the general LP code. This result,
which contradicts the computational findings reported above, may be
explained by the fact that the set of test problems, although block-
angular in form, are not CMCF problems specifically.

To conclude, in solving CMCF problems, computational testing shows
that in general, price-directive decomposition methods outperform the
partitioning method, the simplex method and resource-directive decom-

position methods.

1.4 Thesis Outline
This chapter, which defines the CMCF problem and reviews existing

techniques for its solution, is followed up by an in-depth review in
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Chapter 2 of the primal-dual solution methodology. Then, Chapter 3
evaluates the solution methodologies presented in Chapters 1 and 2 and
motivates the development of a new network-based, primal-dual algo-
rithm (PDN) for the CMCF problem. Chapters 4, 5 and 6 describe the
PDN algorithm in detail. Then, Chapters 7 and 8 present several algo-
rithmic implementations for the CMCF problem and compare their perfor-
mances. Finally, Chapter 9 summarizes the contributions of this the-

sis and describes directions of future CMCF research.
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2. The Primal-Dual Method and the CMCF Problem

This chapter describes how the Capacitated Multi-Commodity Network
Flow (CMCF) Problem can be solved using the primal-dual method. The
theoretical details of the primal-dual method are reiterated here and
are cast 1in terminology specific to the CMCF problem. A detailed
understanding of fthe primal-dual method is essential in that it pro-
vides the foundation upon which follow-on chapters build.

Section 2.1 presents the path formulation of the CMCF problem. The
path formulation is particularly useful to Section 2.2 which describes
the theoretical underpinnings of the primal-dual method. Section 2.3
presents the Primal-Dual Algorithm itself and Section 2.4 shows that
the Primal-Dual method optimally solves the CMCF problem in a finite
number of steps. Finally, Section 2.5 summarizes the basic idea of

the primal-dual method.

2.1 Path Formulation of the CMCF Problem

The path formulation of the CMCF problem in standard form, P, is

as follows:

2¥p = MIN Zpeyg Spepk cpfxpX [2.1]

subject to:

Trek Tpepk %pK61iP K + sy = djy, v ijea [2.2]

zpépk xpl = bK, ¥ kek [2.3)

xpk > 0, V pePX, V keK; sij 2 0, V¥ ijea, (2.4]
where:
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K: set of 1,...,|K} commodities, where each origin to
destination demand is considered a commodity;

PK: set of all distinct, simple, directed paths from the
origin to the destination of commodity k, V kekK;
Sijpvk: = 1 if arc ijeA is contained on path pePK, keK;

and = 0 otherwise;

k. cost of path pePk, keK where:
k-

p ‘
epf = Zijea c15%615P0K;

xpk: flow of commodity keK on path pePk;

bk; quantity demanded/supplied of commodity keK;

dij:

Sij: slack variables for constraints [2.2]-- representing

capacity of arc ijeA;

the amount of unused arc capacity, i.e.:

sjj = dij - Xij; where xij - szPk Zrek xpksijp'k;

Equations [2.2] 1limit the total flow on each arc to the capacity
of that arc. Equations [2.3] are the demand constraints which ensure
that for each commodity, the total flow on all paths from the origin
to the destination exactly equals supply. Finally, equations ([2.4]
are the flow and slack non-negativity constraints. The objective,
equation [2.1], is to minimize the total cost of flow on all paths.

The dual of the CMCF problem, D, can be correspondingly formulated

as follows:

2¥p = MAX Zjjep -735dij + Skeg oFbK [2.5]
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subject to:

-Sijea *15615P'F + oF = cp¥, v peP¥, v kek [2.6]

73§20, V ijea [2.7]

oK unrestricted in sign (u.i.s.), V¥ kekK. [2.8]
where:

mij- negative of the dual variables for constraints
[2.2]--can be interpreted as the "price" on arc
ijeA;

oX: dual variables on constraints [2.3}-- can be inter-
preted as the "cost" or "length" of the shortest
path for commodity keK. (The terms path length and
path cost are used interchangeably here.) The
length of path p for commodity k, Apk, is defined

as:

k
Ap

= Zijen (c15" + 7506152k [2.9]
Given the above interpretation of the dual wvariables, equations
[2.6] <iequire for each commodity, that all the origin-to-destination
paths are at least as long as the shortest path. Equations [2.7]
restrict the dual arc prices to non-negative values and the objective,
equation [2.5], can be loosely interpreted as balancing the conflict-
ing goals of maximizing each commodity’s shortest path length and min-

imizing dual arc prices.

The objective of the CMCF problem, in light of the above path for-
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mulation, is to find a minimum-cost assignment of flow to paths such
that all commodity-specific demand is satisfied and no arcs are over-
capacitated. This interpretation of the CMCF problem facilitates the

description of the primal-dual method.

2.2 Primal-Dusl Method

The primal-dual method provides the theoretical foundation of the
work described in this thesis. Thus, to obtain a thorcugh understand-
ing of the methodology, the results of the primal-dual method are rei-
terated here and interpreted specifically with respect to the CMCF
problem.

The primal-dual method, like dual methods, always maintains dual
feasibility. It begins with a dual feasible solution and then, given
this dual solution, tries to construct a primal solution which obeys
complementary slackness and feasibility conditions. If such a solu-
tion does not exist, a different dual feasible solution is determined
and another search for a satisfactory primal solution is launched.
The primal-dual method iterates in this manner until, for some given
dual feasible solution, a primal solution obeying complementary slack-
ness and primal feasibility is found. Once all of these conditions
are satisfied, basic mathematical programming theory shows that opti-
mality is achieved.

The Coﬁélementary Slackness conditions for the CMCF problem repre-
sent a theoretical tie between the primal and dual solutions. These

conditions are as follows:
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CS#l: -Trij (EREK zpepk xpksijp'k + sij - dij)- 0, vijea; [2.10]
cs#2:  oX(pepk xp* - bK) = 0, vV keK; [2.11]
cs#3:  xpK(epk + Eyjeq mij613P K - o¥) = 0, vpePk, vkek; [2.12]

Cs#a:  myy(siy) = 0, vV 1jeA. [2.13]

In P, equations [2.2] and [2.3] are equality constraints and thus,
complementary slackness conditions #1 and #2 are satisfied for any
primal feasibie solution. Complementéry slackness conditions #3 and
#4, however, are not so trivially satisfied.

CS #3 conditions restrict the assignment of flow to least cost
paths; where path cost, equation [2.9], is a function of both a primal
flow cost and a dual arc price. CS #4 conditions restrict the value
of slack to zero for each arc with a non-zero dual price. Said
another way, CS #4 conditions require that total flow exactly equals
capacity on each arc with a non-zero dual price. These complementary
slackness conditions highlight the "push-pull" nature of the dual arc
prices and primal flows. They show that arc prices restrict flow
assignments and flow assignments restrict arc prices. Highlighting
this effect, the problem can be viewed as finding a set of feasible
dual prices and feasible primal flows which are in equilibrium with
respect to the complementary slackness conditions.

From equations [2.12] and [2.13], CS #3 and CS #4 conditions are
satisfied if flow is restricted only to least cost paths and the value

of slack is positive only on arcs with dual price equal to zero. Let
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J denote the set containing least cost paths and slack variables which
can take on non-zero values. Using the terminology of Papadimitriou
and Steiglitz (42], the paths contained within set J are "admissible."
In mathematical terms, all paths (and all arcs contained in these

paths) which satisfy the following relationship are admissible:
-zijGA "ijsijp'k + o¥ - cpk, pGPk, keK; [2.14]

Similarly, slack variable 14 is admissible if arc ij satisfies

the following criterion:
LI B 0, ijeA. [2.15]

Then, any primal feasible solution to P which exclusively utilizes
the elements of set J (meaning xpk>0 only if peJ and sij>0 only if
sijEJ), is a solution which satisfies all complementary slackness
conditions. This leads to the first basic primal-dual result:

Result #1: Any feasible solution to P exclusively using the
elements of set J (defined for a given feasible solution in D), is an
optimal solution to P.

Considering the CMCF problem specifically, this result can be
explained as follows:

Proof: A feasible solution to P satisfies primal constraints
[2.2]) and [2.3], thereby satisfying CS #1 and CS #2 conditions. Since
the feasible solution exclusively uses the elements of set J, flow is

assigned only to shortest paths (equation [2.14]), and the value of
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slack is non-zero only for arcs with dual arc price equal to =zero
(equation [2.15]). Hence, CS #3 and CS #4 conditions are satisfied.

For a given dual feasible solution, any feasible solution to P
exclusively using the elements of set J, satisfies primal feasibility
and complementary slackness conditions. Therefore, optimality in P is
achieved. ]

Thus, the set J is defined such that if feasibility is achieved
for P, optimally iIs simultaneously acﬁieved.

Figure 2.1 shows how the primal-dual method implements these ideas
in an iterative framework. In ftep O, an initial feasible solution in
D 1is generated. Step 1 uses the current dual solution to define the
set of admissible elements. Then Step 2, using only these admissible
elements, assigns flow with the objective of achieving feasibility in
P. (This problem is referred to as the Restricted Primal (RP) prob-
lem.) If feasibility in P is achieved using only admissible elements,
then optimality in P is simultaneously achieved (Result #1). It is
possible that the admissible set is too restrictive, however, and no
feasible solution to P can be found using only the elements of J. In
this case, Step 3 gauges the closeness of the solution to optimality
by computing an infeasibility measure, denoted Z*RP' As shown later,
optimality in P is achieved when Z*RP = 0. If optimality is achieved,
the algorithm terminates; otherwise another, less restrictive, dual
feasible solution for D is generated in Step 4 and starting with Step

1, the entire process repeats.
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Step 0: Step 1:
Genarate Define
initial Dual Admilssible
Solution Elements
[ , ¥
Generate Naw H Solve Restricted
Dual Feasible Optimai? Primal and
Solution ¢ Dual Problsm

Figure 2.1: Primal-Dual Method

The following sections, 2.2.1 through 2.2.5, describe in further

detail the steps of the primal-dual method.

2.2.1 Step 0: Generate Initial Solution

An initjal dual feasible solution to the CMCF broblem can be
easily achieved by:

i) setting all dual arc prices to zero; and

ii) determining commodity-specific dual node prices with a short-

est path algorithm.

2.2.2 Step'1l: Define Admissible Elements

For a given current dual feasible solution, admissible paths are

(least cost) paths satisfying equation [2.14] and admissible slacks
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are slack variables associated with arcs satisfying equation [2.15].

2.2.3 Step 2: Solve the Restricted Primal and Dual Problem

The general framework of the primal-dual method, as presented in
Papadimitriou and Steiglitz ([42] and in Shapiro [47], is adopted and
applied here to the CMCF problem specifically. The RP problem can be
formulated in several different ways depending on the variables intro-

duced. The formulation adopted here is as follows:

MIN Zpp ™= zijGA (wij' + wij+) [2.16]
subject to:
Skek Zpesk xpF813P K + wyyt - wyyt = dyy,
V ije1d¥(x); [2.17a]

'!k ’ T = d-
Skek Zpesk xpRe1gPrK + spy - wiyT = dgy,

v ijeldt(x)C; [2.17Db]
Zpegk xpK = bE, V kek; [2.18]
xpkzo, v peJK, v kek; xpk-o, vV pe(JK)¢, v kek; [2.19]

wij wij+ >0, V ijea; wij+ -0, Vv ijeld*(n)¢. [2.20a]
s1j20, V ijea; s33=0, V ijeldt(n). [2.20b]
where:
JK: set of least-cost (shortest) paths in set J for com-
modity keK;
(JK)¢:  complement of set JK;
LJ*(n): set of arcs ijeA with mj3 > 0;

I (m)C: complement of set IJ+(W);
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Wij+r wij: artificial variables measuring infeasibility

of the flow assignment on each arc ijeA.

The objective of the RP problem is to find, using only admissible
elements, the flow assignment which minimizes the number of violations
to feasibility in P. Section 2.2.4 shows that when the objective
function value of RP equals zero, primal feasibility and optimality in
P are simultaneously achieved.

There are two major differences between the RP problem (equation
[2.16] through [2.20]) and the CMCF problem, P (equations [2.1]
through [2.4]). First, the objective function of RP, unlike the
objective function of P, does not explicitly deal with arc costs.
Instead, arc costs are implicitly considered by restricting the
assignment of flow to admissible paths only. The need to evaluate a
potentially complicated cost function is therefore alleviated and the
objective in the RP problem is reduced to finding a feasible solution
only. Second, the concept of admissibility reduces the size of the
problem by eliminating from consideration all paths which are not
shortest and all slack variables for arcs with non-zero dual prices.
As a result, the RP problem is much smaller than P.

The dual of the RP problem, DRP, is as follows:

MAX zppp = Zijea -Amijdij + Skex AckbK [2.21]
subject to:
-Sijen Anij61iP K + 80k <0, v pesk, v kek; [2.22]
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-1 s amgy < 1, v ijerd*(x); [2.23]

0 =<amgy s 1, v ijeld*(x)c; [2.24]
Aok u.i.s., V keK. [2.25]
where:
A"ij: dual arc price on arc ij: prices associated with
the bundle constraints (equations {2.17])-- can be

interpreted as the "direction" or "relative magni-
tude" of change for the dﬁal arc prices in D;

aoK: dual prices associated with the demand constraints
(equations [2.18])-- can be interpreted as the
"direction" or "relative magnitude" of change for
the dual price at the destination node for commodity

k.

Certain observations can be made here to provide a better under-
standing of the restricted dual problem. First, wusing the simplex
method, the optimal solution to the RP problem is a basis containing
flow-carrying paths for each commodity. The reduced cost of each

basic path p for commodity k, c'pk, is equal to zero:

C'pk -0 - [-zijeA A"'ij‘sijp'k + Aak] = 0;

v peJK & basic, V keK [2.26]
or, reﬁriting:

Zijen Omij615P K = Aok, v pek & basic, Vv kek. [2.27)
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For now, interpret pok

as the change in the length of the shortest
path for commodity keK, and interpret bmyy as the change in the dual
price on arc ijeA. (Each of these values will be multiplied by some
factor to achieve the actual changes in shortest path lengths and dual
arc prices.) Then, equations [2.27] show that every basic path for
each commodity k is equally altered in length by an amount equal to

Aak. Furthermore, for each basic path for commodity k, Aak

is equal
to the sum of the dual price adjustments on all arcs contained in the
path.

Since only basic paths contain flow, the dual objective function

to the DRP problem, equation [2.21], can be rewritten using equations

[2.18] and [2.27]:

*
z*pRp = MAX Zijep -Amijdij + Sxek Zpesk Eijea AmiyfigPrixp
[2.28]

To simplify, recall that by definition, total flow is:

Xij = Zkek Zpegk 613P ik, v 1jea. [2.29]

Substituting equation [2.29] intn equation [2.28], the dual objec-

tive function becomes:
z*l-)RP =~ MAX EijeA Aﬂ'ij [Xij-dij]. [2.30]

These manipulations show the direct effect of alterations in dual

prices on the objective function of the DRP problem. It is clear that
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equation [2.30] is maximized if:
i) a positive adjustment is made to LER for arcs with total flow

exceeding capacity, i.e.
Aﬂij >0 if Xij-dij > 0, ijeA; and [2.31a]

ii) a negative adjustment is made to i3 for arcs with capacity

exceeding total flow and with positive dual price, i.e.
Arij <0 if xij-dij < 0 and ﬁij > 0, ijea. [2.31b]

This suggests an economic interpretation as follows. If an arc
has flow exceeding capacity, then demand for its resource, namely
capacity, exceeds supply and thus, 1its price should be increased.
Likewise, an arc with a positive dual price and flow strictly less
than capacity has its resource priced above the market price and for
equilibrium to exist, the arc's dual price should be decreased.

From the above analysis, the DRP problem can be interpreted as
maximally increasing dual prices on arcs with flow above capacity and
maximally decreasing (subject to the non-negativity restriction on
dual arc prices) dual prices on arcs with flow below capacity such
that all paths containing flow of a commodity are equally altered in

length.

2.2.4 Step 3: Test for Optimality

A basic result of the primal-dual method 1is that optimality is

achieved in P when the following occurs:
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Result #2: The CMCF problem, P, 1is optimally solved if the
optimal objective function value of the RP problem, Z*RP- is equal ©to
zero.

This primal-dual result can be proven for the CMCF RP problem for-
mulation (equations [2.21]) - [2.25]) as follows:

Proof: From equation (2.16]}:

* - +
Z'Rp = Zijen (Wij  + wig')
where, from equation [2.20], wij+' Wij- =20, v ijeA.

If Z*RP = 0, it follows that w1j+, wij- - 0, V ijeA. From
equation [2.17a], wij+' wij- = 0, VijeA implies that all arcs ijea
with iy > 0 have total flow exactly equal to capacity. Furthermore,
from equations [2.17b] and [2.19], "ij+- Wij- - 0, VijeA imply that
all arcs ijeA with LSS 0 have total flow not greater than capacity.
Hence, the primal solution in RP is feasible in P. Furthermore, by
design, the optimal solution in RP exclusively utilizes the elements
of set J. Hence, by Result #l, optimality iﬁ P is achieved. &

If Z*RP is strictly greater than zero, then wij- > 0 for some ijeA

and/or wij+ > 0 for some ijeA. If wijo > 0 for an arc ijeA, then it
can be seen from equations [2.16] and [2.17] that total flow must
exceed capacity for that arc i1j, thereby violating feasibility (equa-
tions [2.2]) in P. If Wij+ > 0 for an arc ijeA, then, again from

equations [2.16j and [2.17], total flow plus slack must be strictly

less than capacity for that arc ijelJ*(x), thereby again violating
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feasibility (equations [2.2]) in P. Thus, if Z*RP is strictly greater
than zero, feasibility and hence, optimality in the CMCF problem is

not achieved.

2.2.5 Step 4: Generate a Feasible Solution for D

Section 2.2.4 showed that if the optimal objective function wvalue
of the RP problem is strictly greater than zero, neither feasibility
nor optimality in P 1is achieved for the current dual solution.
Consequently, a new set of feasible prices in D must be generated, and
another iteration of the primal-dual method 1is necessary. The mnew

dual prices are determined as follows:

”'ij - T4 + eiAnij, ijea; and
oK' = oK 4 GiAak, keK. [2.32]
where:
i oK: dual prices for D, used in the ith jteration of
the primal-dual algorithm;
1y oX': revised dual prices for D, used in the i+1St
iteration of the primal-dual algorithm;
Anij, ack: optimal prices for the ith pgrp problem, DRPj;

83: multiplier of optimal prices for the DRP; problem.

Thus, at the ith jteration of the primal-dual method, the optimal
solution to the DRP problem provides the direction in which to alter
the dual prices in D. The magnitude of the alteration is measured by

8;, where 6; is restricted in size by the following requirements:
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i) the altered dual prices should be feasibie in D;

ii) the altered dual prices should maintain admissibility for all
basic elements in the optimal solution to RPj; and

iii) the altered dual prices should not decrease the objective
function value in D.

The following sections describe the effects of these requirements

on the definition of 8;.

2.2.5.1 Dual Price Adjustments, Admissibility and Dual Feasibility

As stated previously, each dual price adjustment must not only
produce dual feasible prices but must also produce new dual prices
which satisfy the admissibility conditions (equations [2.14] and
[2.15]) for all elements in the optimal basis of the ith gp problem.
The implications of these requirements are captured in the following
primal-dual result and presented here for the CMCF problem in particu-
lar.

Result #3: To satisfy the requirements that the adjusted dual
prices maintain feasibility in D and admissibility for all basic ele-

ments in the optimal solution to RP;j, 8; is defined as follows:

85 = MIN [(MING(cp® + Bjjep m35645P°F - oF)/
(-Sijen bryj615P % + 20%)); MINg(-my3/6m15)] [2.33]
where:_-
a = {PIPE(Pk)- vkeK, -zijEA Aﬂij5ijpi'k + Adk - 1pk > 0);

B = {ij|ijeAr & Aﬁij<0);
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Procf: For the adjusted dual prices to maintain dual feasibility,

each adjusted dual arc price must be non-negative, i.e.:
®yj + 64bmyy 2 0, V ijea. [2.34]
Rewriting equation [2.34]:
6; =< '”ij/A"ij' VvV ijeA with Anij<0, [2.35]
or, equivalently:
6; = MINﬁ(-wij/AxiJ), where fS={ij|ijeA n Anij<0} [2.36]

6; must be bounded not only to maintain non-negativity of each
dual arc price as 1in equation [2.36], but also to ensure that the

adjusted dual prices satisfy dual feasibility constraints [2.6]:

'zijeA (ﬂ'ij + GiAﬂ'iJ)Sijpak + ak + eiAak < cpk.

vpePX, vkeK. [2.37]

For now assume (it will be shown later) that ©4 1s non-negative.
Then from equation [2.37], since the current set of dual prices are
feasible in D, the adjusted dual prices can violate feasibility con-

straints [2.6] only if:
-Sijea ArggbiyPrk + a0k ~ 9 K >0, v pePK, v kek.  [2.38]

Thus, solving equation ([2.37] for 6; and using the observation

expressed in equation {2.38], the adjusted dual prices are guaranteed

bl -



to satisfy dual feasibility constraints [2.6] if @; is defined as

follows:

8; < (Cpk + E-ljeA Nijsijp’k - Uk)/(-zijeA Aﬂijsijp'k + Aak),

i jen A,,ijgijp-k + Aok = ~,pk >0, vV pePX, Vv keK. [2.39]

Equations [2.36] and [2.39] define ©; such that the adjusted dual
prices are feasible in D.

Consider now, the requirement thaﬁ the basic elements in the opti-
mal solution to the RP problem remain admissible after the dual price
adjustment. Since admissibility is defined both for paths (equation
{2.14]) and for slack variables (eguation [2.15]), consider the two
cases separately.

Take first the case of a slack variable, Sij in the optimal basis

for the RP problem. Since Sij is included in the RP formulation, from

admissibility it follows that Ty = 0. Furthermore, from basic
mathematical programming theory, the reduced cost of this basic Sij
variable in the optimal solution to the RP problem is:

C'ij -0 - [-Awij] =0, V ij such that S1j basic. [2.40]

Equation [2.40] shows that Awij = 0 for all arcs ijeA with Sij
basic. Hence, for each arc ijeA with Sij basic, the adjusted dual
prices, LIS I eiAwiJ, remain equal to O for any 6;. Thus, all basic
slack variables remain admissible with the altered dual prices.

Now consider the final requirement that all flow carrying paths
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remain admissible with the adjusted dual prices. The reduced cost
value of each flow-carrying (basic) path in the optimal solution to

the RP problem is:

C'Pk =0 - [-ZijeA Aﬂijsijp'k + Aak] = 0,

v peJK n p basic, kekK. [2.41]

Plugging the adjusted dual prices (as defined in equations [2.32])
into admissibility condition ([2.14], and using the relationship in

equation [2.41], it follows that for any 6;:

-Ziiep (m33 + 638m34)64 Pk 4 ok 4 eiAak - cpk,
J J

v pGJk N p basic, keK. [2.42]

Hence, all basic admissible paths remain admissible after dual prices
are adjusted in accordance with definition [2.32].

Thus, the adjusted dual prices assure feasibility In D and
continued admissibility of all basic elements in the optimal solution
to the RP problem as long as 6; satisfies equations [2.36] and [2.39].
Equation [2.36] together with equations [2.39] form the definition of
©; as presented in equation [2.33]. <]

Note that the numerator of the first term in equation [2.33] rep-
resents the difference between the length of path p and the shortest
path length- for commodity keK and thus, is non-negative. The denomi-
nator of this term is strictly positive by definition. Thus, the

first term of equation [2.33] is always non-negative,. Likewise, the
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second term of equation [2.33] is always non-negative because, by dual
feasibility, Wi is less than 0 and by the definition of 8, A"ij is
less than 0. Therefore, it follows that 8; is always non-negative.

Papadimitriou and Steiglitz [42] prove the following result for
the primal-dual methodology:

Result #4: The definition of 8; in equation [2.33] ensures that
if there 1is a feasible solution to P, at least one inadmissible ele-
ment becomes admissible with the adjugted dual prices.

Following is the interpretation and proof of this result for the
CMCF problem specifically:

Proof: If P 1is feasible, 8; is determined either by the first

term or the second term in equation [2.33]. If the first term deter-
mines 8;, there is some path p*ea which, by rewriting equation [2.33],

satisfies:

'zijGA (ﬂ'ij + eiﬂ'i_j)csijp*'k* + ok* 4 eiAak* - Cp*k*.

Tpa* > 0, prepk*, [2.43]

Thus, given thz adjusted dual prices, p* is an admissible path
(equation [2.14]).

Using equation [2.41] and recalling that RP is a minimization
problem, it follows that all admissible paths in J have the following

reduced costs:

c'pk = 0 - (-Zyjep &myy854P K + 80k) = -y k= 0, (2.44]

-47-



(This inequality also follows from dual feasibility requirements
in the DRP problemn.)

Equations [2.43] and [2.44] show that prior to the dual price
adjustment, 1p*k* > 0 and thus, p* is an inadmissible path. After the
dual price adjustment, however, p* is an admissible path. Thus, if 6
is determined by the first term in equation [2.33], at least oné inad-
missible path becomes admissible.

A similar argument follows when 8; is determined by the second

term in equation (2.33]. In this case, there is some ij*eﬁ which
satisfies:
-(ﬂij* + eiAﬂ'ij*) =0, ij*es. [2.45]

Thus, the adjusted dual price for arc ij* is reduced to O and Sjj*
becomes admissible by equation [2.1Z].
Using equation [2.40] and again recalling that RP is a minimiza-

tion problem, the reduced cost of each admissible S variable is:
c'ij =0 - (-ATrij) > 0. [2.46]

(This inequality also follows from the dual feasibility requirements
in the DRP pro£iem.)

Since ij*eﬂ, A”ij < 0, and thus equation [2.46] shows that prior
to the dual-price adjustment, Sij* is inadmissible. However, equation
[2.45] shows that after the dual price adjustment, Sij* is admissible.

Thus, if ©; is determined by the second term in equation ([2.33], at
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least one inadmissible slack variable becomes admissible. i

2.2.5.2 Dual Price Adjustments and the Dual Objective Function Value

In primal-dual methods, Papadimitriou and Steiglitz [42] show that
ascent of the objective function in D occurs when the dual prices are
altered and a new dual feasible solution is generated (Step 4). This
result holds when the primal-dual method is used to solve the CMCF
problem as follows:

Result #5: If dual prices are altered by a non-zero amount in
accordance with equations [2.32]) and [2.33], the dual objective func-
tioa in D will increase.

Proof: Substituting the revised dual prices into equation [2.5],
the new dual objective function value for D is:

2'¥p = Zijen -*'1j91j + Bkex oF bK. [2.47]

Rewriting equation [2.47] using equation [2.32]:

K
z' 'p= zijEA -ﬂijdij + EkGK akbk + zijGA -eiAﬂijdij
+ Zpek 8ilokpk [2.48]

and simplifying:
Z'*D - Z*D + ei(Z*DRP) [2.49]

Section-2.2.4 showed that until optimality in P is achieved, the
optimal objective function of the ith grp problem is strictly positive.

Since the optimal objective function values of the RP; and DRPy
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problems are equal, it follows that the optimal objective function
value for the DRP; problem is positive (at each iteration i) until
optimality is achieved. Furthermore, Section 2.2.5.1 showed that 8y
is always non-negative. In fact, if dual prices are altered by a non-
zero amount, then from equation [2.32], 8; must be strictly positive.
Combining these observations together with equation [2.49], it follows

that for a non-zero dual price adjustment:

*p > 2%p. [2.50]

z
N

If all paths are admissible and the Anij values for all arcs ijeA
are non-negative, then 1pk < 0 for all paths (see equation [2.44]) and
a dual price adjustment using eny ©6; = 0 does not threaten dual
feasibility or admissibility requirements (Result #3), In other
words, the dual prices can be altered by an unbounded 8; amount. An
unbounded increase in ©; results in an unbounded dual objective

function wvalue (Result #5) and hence, the primal problem P is infeas-

ible.

2.3 Primal-Dual Algorithm-- A Summary

To summarize, the primal-dual method begins with a feasible solu-
tion to the dual of the CMCF problem. This dual solution is used to
define a set of admissible paths and slack variables to which flow may
be assigned. The restricted primal problem, RF, is to find the flow

assignment, using exclusively these admissible elements, whose value,
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z*pp, is equal to 0. If there is no such flow assignment, the current
dual solution is not optimal for the CMCF problem. Thus, a new feas-
ible solution for D is determined (using the solution to the DRP prob-
lem), and the entire primal-dual process repeats. As shown in Figure
2.2, the primal-dual method iterates in this manner until optimality

in P is achieved.

2.4 Finiteness

At each iteration of the primal-dual method, the RP problem can be
solved using the simplex algorithm. As a result, Papadimitriou and
Steiglitz [42] as well as Shapiro [47] show the primal-dual results
previously presented, the primal-dual method optimally solves any
standard LP problem. This results applies specifically to the CMCF
problem as follows:

Result #6: If P is feasible and Z*RP > 0, then (using standard
perturbation techniques to eliminate degeneracy), Z*RPi+1 < Z*RPi
where:

Z*RPi' Z*RPi+1: optimal objective function value for the
ith and the i+15t RP problens, respectively.

Proof: From Result #3, all basic elements in the optimal solution
to the ith Rp problem remain admissible given the newly adjusted dual
prices. Thus, the optimal solution to the ifR RP problem is a
feasible s;arting solution for the i+15t RP problem and, it follows

that Z*RPi provides an upper bound on the <value of Z*RPi+lv i.e.

* *
Z RPi+l = Z RPi-
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Program Primal-Dual Method
Given: =, o dual feasible

infeas « .false.
opt + .false.

DO WHILE (.not.opt .and. .not. infeas) !Until optimal

CALL DEFINE SET J !Finds admissible paths
CALL SOLVE_RP . !Solves RP with SIMPLEX
IF (Z*RP = 0) THEN !0ptimality test

opt + .true.
ELSE IF (vK<0, vpelK, VkeK .and. Am;:>0, VijeA) THEN
ij J
infeas « .true.

ELSE
CALL CALC_® !Calculate optimal value
x' + 7w + BAn !Update dual prices
o' « o + 8Ac
END IF
END DO
RETURN

END.

Figure 2.2: Primal-Dual Algorithm

Result #4 shows that 6;, as defined in equation [2.33], is
determined by an inadmissible path or an inadmissible slack variable
which becomes admissible with the newly adjusted dual prices. Let the
critical element be p* if it is a path; otherwise, let it be ij* if it
is a slack variable. Then, the reduced cost of path p* in the i+1St

RP problem is:
’ *,k k k
c p*k -0 - (-EijEA Aﬂijsijp ' AgT) = -’YP* < 0. [2.51]
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Similarly, the reduced cost of ij* in the i+15t RP problem is:
C'ij* -0 - (-Aﬂ’ij) < 0. [2.52]

Since the reduced cost of any newly admissible element 1is always
strictly negative (see equations [2.51] and [2.52]), a minimum of one
pivot will occur in the i+1St RP problem. Thus, using perturbation if
necessary to bar degeneracy, the optimal objective function value for
the i+15% RP problem will be strictly less than that for the ith Rp
problem. n

The conclusions of Papadimitriou and Steiglitz [42] and Shapiro
(47] are adapted here for the CMCF problem as follows:

Result #7: The primal-dual algorithm, described ip Figure 2.2,
optimally solves the CMCF problem in a finite number of steps.

Proof: If all of the paths in problem P, plus all of the artifi-
cial variables are included as variables in the RP problem, then the
solution of each RP problem at each iteration of the primal-dual
method produces a basic feasible solution to the CMCF problem, P.
Result #6 showed that if the ith RP problem’s optimal objective func-
tion value is strictly greater than zero, then an i+1St RP problem can
be solved and its optimal objective function value will be strictly
less. This-result follows from the Fundamental Property of the Sim-
plex Method [13)] wherein it is stated that the simplex method, using

perturbation if necessary, solves any given linear program in a finite
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number of iterations.

Hence, by employing a rule to avoid degeneracy, the iterations of
the primal-dual algorithm are guaranteed to produce non-repeating
basic feasible solutions to the CMCF problem and thus, the primal-dual
algorithm optimally solves the CMCF problem in a finite number of

steps. =

2.5 Summary

The primal-dual approach is particularly useful when, due to prob-
lem size, the solution to P takes an inordinate amount of time to
achieve. The idea is to indirectly solve a given problem P by itera-
tively solving a restated problem, RP; where RP is smaller and simpler
than P. Once the solution to the RP problem satisfies a certain con-
dition, optimality in P is achieved. It is guaranteed that the pri-
mal-dual method optimally solves problem P in a finite number of

steps.
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3. Algorithmic Design

This chapter presents the general structure of the new capacitated
multi-commodity network flow algorithm.

Section 3.1 presents the motivation for the development of a net-
work-based algorithm to solve the CMCF problem. Section 3.2 explains
why the primal-dual approach in particular, was adopted as the basis
of the new algorithm. Then Sections 3.3 and 3.4 cast the new algo-
rithm into the framework of the priﬁal-dual method and introduce the
algorithmic design features and criterion. Finally, Section 3.5 sum-

marizes the general concepts underlying the algorithmic development.

3.1 Algorithmic Motivation

The development of a new capacitated multi-commodity network flow
algorithm is primarily motivated by the need to solve large-scale mul-
ti-commodity mnetwork flow problems of the type encountered in prac-
tice. Numerous applications of this problem type can be found in the
transportation and logistics industry, particularly in the areas of
vehicle routing and scheduling with freight flow assignment (discussed
in Chapter 1). The major weakness of conventional solution methods in
solving these real problems is that as problem size increases, formu-
lation size becomes prohibitively large. For example, consider the
problem in which a company needs to transport hundreds of shipments
from their origins to their respective destinations, using dozens of
vehicles. This problem can be formulated as a CMCF problem. Even for

problems of this size, however, the CMCF formulation can become diffi-
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cult to solve because the number of variables grows exponentially with
problem size. Specifically, the number of variables for the path for-
mulation of the CMCF problem is equal to the number of commodities
multiplied by the number of distinct paths in the network. 1In a worst
case scenario, the number of variables can be as great as |K|*|N!],
where |K| is the number of commodities and IN!l is the factorial of
the number of nodes in the network. Thus, for the above example,
arbitrarily taking |K| = 100 and in| = 100, the number of decision
variables is on the order of 10100, Thus, the goal is to develop a
new algorithm for the CMCF problem which 1is specifically geared
towards solving large network problems of the size typically encoun-
tered in industry.

Decomposition and exploitation of special problem structure are
two useful strategies in tackling large scale problems. The next sec-
tion describes how these strategies shape the design of the new algo-

rithm for the CMCF problem.

3.2 Primal-Dual Method vs. Dantzig-Wolfe Method

Chapter 1 presented the Dantzig-Wolfe method and Chapter 2 pre-
sented the Primal-Dual method. Both methods solve the original CMCF
problem P indirectly by iteratively solving a restated problem, RP.
RP, in both methods, is smaller in size than the original problem P.
(The Dantzig-Wolfe and Primal-Dual RP problems are smaller than P not
in the number of rows but instead, in the number of columns. Both the

Dantzig-Wolfe and the primal-dual methods generate columns as neces-
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sary until optimality is achieved. Problem P, on the other hand, con-
tains all possible columns from the onset.)

In the Dantzig-Wolfe method, RP, although smaller, is formulated
exactly as P. In other words, RP is a minimum-cost, capacitated mul-
ti-commodity network flow problem. In the primal-dual method, how-
ever, although the RP problem is a capacitated multi-commodity network
flow problem, its objective is simplified to that of finding a feas-
ible primal solution. The objectiﬁe function of the primal-dual RP
problem does not contain arc costs because they are implicitly consid-
ered through the concept of admissibility. This simplified objective
of the RP problem is, however, achieved at some expense to the primal-
dual method. Table 3.1 shows the major components of the primal-dual
and Dartzig-Wolfe methods. The primal-dual method performs a step not'
included in the Dantzig-Wolfe method. It is this additional step,
which determines the amount by which dual prices are adjusted (i.e.
Determine 6;), that enables arc costs to be eliminated from the RP
problem.

In comparing and evaluating the primal-dual and Dantzig-Wolfe
methods, the question is whether the simpler objective of the RP prob-
lem in the primal-dual method as compared to the Dantzig-Wolfe method
justifies expending additional time and effort to adjust dual prices.
The ansver to this question is, of course, dependent on the nature of
the problem being solved. In the case discussed here, the types of

problems to be soived have corresponding RP problems whose size cannot
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be easily accommodated by the simplex method.

Dantzig-Wolfe Primal-Dual
RP Smaller
than P? YES YES
RP Simplex
than P? NO YES
Find Initial
Solution? YES YES
Solve
RP/DRP? YES YES
Determine ;7 NO YES
Dual Price
Adjustment? YES YES
Update RP? YES YES

Table 3.1: Primal-Dual vs. Dantzig-Wolfe

As stated previously, the RP problem for both the Dantzig-Violfe

and primal-dual methods is itself a CMCF problem-- one which is
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reduced in size in comparison to the original CMCF problem, P. Unfor-
tunately, even a reduced-size CMCF problem is laden with difficulties.
The multi-commodity aspect introduces numerous interactions not pre-
sent in the single-commodity case and the coupling constraints preohi-
bit easy decomposition by commodity. The Dantzig-Wolfe method
requires that the CMCF subproblem, RP, be optimally solved. The pri-
mal-dual method, however, requires only that the CMCF subproblem be
solved for a feasible solution (if oné exists). It 1is exactly this
simplification that leads to the selection of the primal-dual method,
and not the Dantzig-Wolfe method, as the theoretical basis for the new
algorithm to solve large-scale CMCF problems. Thus, the answer to the
question posed previously is that for large scale problems, the addi-
tional work required in determining revised dual prices in the primal-
dual method will hopefully be compensated for by the benefit that its
RP subproblem is not only smaller than P, but also simpler than the
Dantzig-Wolfe RP subproblem.

The new Primal-Dual Network algorithm, termed PDN, is cast in the
primal-dual framework and 1is motivated by the desire to solve large
scale minimum cost, capacitated multi-commodity network flow problems.
The RP subproblems are solved with an algorithm specifically geared to

exploit the network structure of the CMCF problem.

3.3 Algorithmic Framework

The primal-dual method, as presented in Chapter 2, provides the

theoretical foundation for the PDN algorithm. Thus, dual feasibility
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i1s always maintained by the PDN algorithm. At each iteration, a pri-
mal solution 1is constructed which, although possibly infeasible,
always guarantees the satisfaction of certain complementary slackness
conditions. The objective is to find, for the given dual solution and
resulting set of admissible eleivents, a primal solution which 1is as
"close" to satisfying the feasibility requirements as possible. The
"cloceness" of the solution to feasibility is gauged with a feasibil-
ity measure which is equal to zero Qhen feasibility is achieved. By
construction, optimality is achieved simultaneously with primal feasi-
bility. If at e given iteration, the "best" primal solution is not
feasible, the dual solution is modified and the algorithm reiterates.

Figure 3.1 depicts the Primal-Dual Network Algorithm. The struc-
ture of the PDN algorithm is designed to parallel that of the standard
primal-dual method, shown in Figure 2.1. In fact, there is a one-to-
one correspondence between the steps of the PDN algorithm and the
steps of the standard primal-dual method. Both algorithms contain the
following:

i) Step 0: Generate Initial Dual Solution;

ii) Step 1l: Define Admissible Elements;

iii) Step 2: Solve the Restricted Primal and Dual Problem;

iv) Step 3: Test for Optimality; and

v) Step 4: Generate New Solution for D.

In adapting the standard primal-dual method to the specifically

tailored PDN algorithm, steps 0, 1, 3 and 4 are essentially unchanged.
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Step 0; Step 1;

Cenerate Define

Initial Dua! Admissible

Solutlon Elements

.

Generate New <~° Step 3: Solve Restricted
Dual Feaslible v Optimal? Primal and
Solution R Dual Problem

Figure 3.1: The PDN Algorithm

It is only step 2-- the solution of the RP and DRP subproblem, which
is significantly altered for the PDN algorithm. As shown in Figure
3.2, instead of solving step 2 with the simplex method as in the stan-
dard primal-dual algorithm, the PDN algorithm uses an iterative, net-
work-based solution technique. In the PDN algorithm, the solution of
the RP/DRP problem (Step 2) is achieved by repeatedly performing Flow
Adjustment Steps using the Flow Adjustment Algorithm. As demonstrated
later, these primal-based Flow Adjustment Steps work on the current
primal solution and by shifting flow around, move the solution closer
to primal feasibility and to optimality. Flow adjustment steps are
repeated until no further reduction in infeasibility is possible for

the current admissible set and the RP problem is solved to optimality.
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If the optimal solution to the RP problem is still infeasible for P, a
new solution for D is generated with a dual-based Price Adjustment
Step (Step 4). This new dual solution for D, satisfies complementary
slackness conditions #2 and #3 for the current flow assignments and

increases the dual objective function value.

FLOW
ADJUSTMENT
ALGORITHM

Step 2:
Solve the

Restricted i

Primal and Duai
Probiems

Satlefy
Stopping
Criteria

Yes No

Figure 3.2: Solution of the RP/DRP Problem

3.4 Algorithmic Design Features and Criterion

The PDN Algorithm is cast in the primal-dual framework and thus,
solves the original CMCF problem P by repeatedly solving a smaller,
restated problem RP. RP differs from P not only in size but also in
the bundle'éonstraints (equations [2.2]), which are relaxed in RP. To
ensure that P will be optimally solved by solving RP, the following

design features are included in the PDN algorithm:
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#1: Each step of the PDN algorithm must maintain dual feasibil-
ity;

#2: Each step of the PDN algorithm must maintain complementary
slackness conditions #3 (equations [2.12]), which permits the assign-
ment of flow only to shortest paths;

#3: Each step of the PDN algorithm must satisfy demand con-
straints (primal constraints [2.3]) (thereby satisfying complementary
slackness conditions #2 (equations [2:11]); and

#4: Each step of the PDN algorithm must maintain f£low non-
negativity (primal constraints [2.4]).

Control is exercised by appropriately defining and restricting
each step of the algorithm so as to satisfy the above features and the
following criterion:

Design Criterion: Measurable advancement towards optimality must

be achieved at each iteration of the PDN algorithm.

In summary, the PDN algorithm, modeled after the primal-dual
method, alters the primal and dual solutions so that measurable
advancement towards optimality in P is achieved. The design features
of the PDN algorithm ensure that each altered primal and dual solution
do not destroy satisfaction of dual feasibility; complementary slack-
ness conditions #2 and #3; demand requirements; or flow non-
negativity.

As in the general primal-dual algorithm, the PDN algorithm termi-
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nates when the RP objective function value is reduced to zero. At
this point, by Result #2 and the stated features of the PDN algorithm,
feasibility in P arnd D, as well as the complementary slackness condi-

tions are all satisfied and hence, optimality is achieved.

3.5 Summary

The need to solve large-scale CMCF problems of the size encoun-
tered in practice motivated the development of a new network-based
primal-dual algorithm, called PDN. The primal-dual methodology was
adopted as the framework fur the PDN algorithm because:

i) it employs decomposition and therefore never directly solves
the original (very large) problem P; and

ii) the RP subproblems are both smaller in size and simpler in
form than P.

Althougn reduced in size, the RP subproblems are not small enough
to be efficiently solved (or solved at all) using general LP-based
methods. Instead, the PDN algorithm uses a specialized network based
method to solve the RP subproblems. For this reason, the PDN algo-
rithm is modeled after the primal-dual method, which has a simplified
RP subproblem.

Chapters 4 and 5 describe in detail the design of the network-
based technique used in the PDN algorithm to solve the RP/DRP subpro-

blems.
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4. Solution Method for the RP and DRP Problems

The PDN Algorithm solves the CMCF problem indirectly by itera-
tively solving restricted primal and dual problems, denoted RP and
DRP, respectively (as shown in Figure 3.2). The RP/DRP problems can
be solved with the simplex method if problem size permits. However,
the simplex method is not amenable to very large scale problems. Thus,
the PDN algorithm uses a network-based method, referred to as the Flow
Adjustment Algorithm, to solve these ﬁubproblems. The next two chap-
ters are devoted to describing this network based algorithm. Chapter 4
first presents the inherent challenges of solving the RP/DRP subpro-
blems for the CMCF problem. Then, Chapter 5 describes the steps of
the Flow Adjustment Algorithm in detail.

Section 4.1 restates the formulations of the RP and DRP problems.
Next, section 4.2 introduces definitions useful in describing the flow
adjustment step performed by the Flow Adjustment Algorithm. Then,
sections 4.3 and 4.4 provide insight into the implementation difficul-
ties. Section 4.3 shows that these difficulties are attributable to
the multi-commodity aspect of the problem. Finally, Section 4.6 sum-
marizes the general strategy used in the network-based Flow Adjustment

Algorithm to solve the RP subproblems.

4.1 The RP and DRP Formulations Restated

As presented In Chapter 2, the adopted formulation for the RP

problem is as follows:
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MIN zgp = Bijep (wij™ + wij") [4.1)
subject to:
Zkex Spegk %1613 1 K + wigt - wiyT = a4y,
vV ijeldt(x); [4.2a]
Skek Zpesk xi¥615P K + sy - wijT = diy,
v ijeldt ()¢, [4.2b]
Zpegk xpk = bk, V keK; [4.3]
xkaO, v peJk, vV keK; xpk-O,.V pe(Jk)c, vV keK; (4.4]
wijt, wijt 2 0, VvV ijea; w3t =0, vV 1jelIT(m)C. [4.5a]
sij = 0, V ijea; s33 =0, V ijeryt(x). [4.5b]
where:

JX: set of least-cost (shortest) paths in set J for com-
modity keK;

(Jkye. complement of set Jk.

1JY(n): set of arcs ijeA with ™ij > 0;

1J¥(n)¢: complement of set IJV(x);

Wij+' wij': artificial variables measuring the infeasi-
bility of the current flow assignment on each arc
ijeA.

The dual of the RP problem, DRP, is as follows:

MAX zppp = Zijen -Amyjdiy + Zyxeg AokbK (4.6]
subject to:

-Zijen Aryj615P K + a0k <0, v pesk, v ke [4.7]
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-1 < Amgg <1, V ijelt(n); [4.8]
0 < amjy = 1, v 1je1I*(n)C; [4.9]

Aok u.i.s., V kekK. [4.10]

4.2 Definitions

Definition 4.1: An over-capacitated arc, denoted OCarc, is an arc
with excess flow, or equivalently, an arc with flow exceeding capac-
ity. An over-capacitated arc 1s categorized as a "problem" arc
because its flow violates the (primal) arc capacity constraint (equa-
tions [2.2]). The amount of over-capacitation on arc ije€A, 0cij, is

determined as follows:

ocij = MAX(O, Xij-dij), V ijeA. [4.11]
Definition 4.2: An under-capacitated arc, denoted UCarc, is an

arc with a non-zero dual arc price and flow strictly less than capac-
ity. Under-capacitated arcs, like over-capacitated arcs, are categor-
ized as problem arcs. UCarcs do not satisfy arc capacity constraints
(equations [2.2]) at equality because, by complementary slackness con-
ditions #4 (equation [2.13]), slack on arcs with non-zero dual prices
is restricted to zero.

The amount of wunder-capacitation on an arc ijeA is expressed as

follows:

uciy = {MAX(O, dij - Xij), V¥ 1j€lI(m);

0, vV ijerdt(x)C. [4.12]
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Theorem 4.1: ocij = wij- and ucij = wij+-
Proof: From the form of the objective function (equation [4.1])
and constraints [4.2] in the RP problem, the following relationships

are observed:

wij+ >0 => wii- -0, Vv ijeA;

wij' >0 => W1j+ >0, V ijea; [4.13]

Using thase relationships together with constraints [4.2], Wij+

and wij- can be defined as follows:

wijT = MAX(O, Zyeg Zperk xpR63PrK - dji); v ijea. [4.14]
wijt = (MAX (0, dij - Tyeg Spesk xpN615P'K), v 1jelIT(a);

-0, VY ijerg*(x)c ). [4.15]

By inspection, equation [4.14] is equivalent to equation ([4.11]
and equation [4.15] is equivalent to equation [4.12]. i@

Thus, the artificial wvariables w1j+ and Wij-' V ijeA can be
interpreted as measures of primal infeasibility. Given this interpre-
tation, the objective of the RP problem is to find the flow assignment
which minimizes the number of viclations to feasibility in P.

The PDN algorithm requires the satisfaction of all the primal
feasibility constraints (equations [2.2] through [2.4]) except the arc
capacity constraints (equations [2.2]). Thus, the measure of primal
infeesibility (denoted I and defined below), is equal to the total

amount by which the primal feasibility constraints [2.2] are violated.
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Constraints [2.2] are violated if arc flow exceeds capacity or if arc
flow is less than capacity and slack on the arc is restricted to zero.
These two situations define OCarcs and UCarcs, respectively. Thus,

the infeasibility measure is defined as follows:
I - zijEA (ocij + U.Cij). [4.16]

From Theorem 4.1, the infeasibility measure can be equivalently

expressed as:

I = 2jjea (Wij~ + wijh). [4.17]
By equivalence of equations [4.1] and [4.17], it follows that:

I = 2zpp [4.18]

Result #2 and equation [4.18] lead to the following corollary:

Corollary 4.1: The CMCF problem P is optimally solved if the

infeasibility measure is equal to zero. B

Thus, the objective of the RP problem is to find a flow assignment
which minimizes the total primal infeasibility, given that the only
possible source of infeasibility is violation of the capacity con-
straints (represented by equations [4.2] in the RP problem). In the
PDN algorithm, this objective is obtained by repeatedly performing
flow adjustment steps (Step 2 of the PDN Algorithm). The primal-based
flow adjustment step improves the primal (infeasible) solution by mov-

ing it closer to feasibility while satisfying the algorithmic design
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features. These criteria are satisfied by defining the FLOW _ADJUST-

MENT STEP as follows:

Definition 4.3: The flow adjustment step shifts existing

commodity flows among shortest paths so as to achieve a net decrease
in the total amount of primal infeasibility.

Any flow shift satisfying the requirements of Definition 4.3 is
successful in satisfying all of the design features of the PDN algo-
rithm. Specifically:

i) Dual feasibility (equations [2.6] through [2.8]) is unaffected
because flow adjustments modify only the primal solution and not the
dual solution;

ii) Demand constraints (equations [2.3]) are guaranteed to be
satisfied because flow adjustments shift flow of a particular commo-
dity between paths;

iii) Complementary slackness conditions #3 (equations [2.12]) are
satisfied because flow adjusiments shift flow between shortest paths;
and

iv) Primal non-negativity constraints (equations ([2.4]) are
satisffed because flow adjustments shift only existing flow.

Hence, the flow adjustment step is designed to shift flow between
shortest paths without violating any of the algorithmic design fea-
tures. Furthermore, the flow adjustment step 1is designed to shift
flows only if a net decrease in the total amount of primal infeasibil-

ity, I, is achieved. By Corollary 4.1, optimality 1is achieved when
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I=0. Thus, each flow adjustment step strictly reducing I represents
advancement (measured in terms of the amount of reduction in 1I)
towards optimality. Hence, if a potential flow shift meets the crite-
ria of the flow adjustment step, it is executed and the design crite-
rion of the PDN algorithm is satisfied.

Theorem &4.2: If optimality in P is achieved for the current flow
assignments, then I = 0.

Proof: If optimality in P is achieved:

i) from equations [2.2] and [4.2]:

wij = 0, V ijea; [4.19a]
ii) from equations [4.5b] and [2.2]:

sij = 0 and wy;* = 0, V ijelI(x) ' [4.19b]

and thus, complementary slackness conditions #4 (equa-
tions [2.13]) are satisfied; and

iii) by equations [4.5a]:

wijt =0, Vv ijert(x)C. [4.19¢]

Using equation [4.17] together with equations [4.19]:

I =0. [4.20]
From Result #2 and Theorems 4.1 and 4.2, the following corollary

results:
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Corollary 4.2: The CMCF problem P is optimally solved if and only
if no OCarcs and no UCarcs exist for the current flow assignment. &

To summarize, each flow adjustment step searches for a flow shift
which satisfies the algorithmic design features and, at: the same time,
decreases the value of the infeasibility measure.

Analogies can be drawn between the execution of a flow adjustment
step and a pivot in the simplex method. When the simplex method is
used to solve the RP problem, each-non-degenerate pivot reduces the
value of zpp. Similarly, in the PDN algorithm, each flow adjustment
step 1is designed to decrease the value of I (= zgp). In the simplex
method, pivots are performed for a given RP problem as long as they
result in a decrease in zgp. Similarly, in the PDN algorithm, flow
adjustments are repeated as long as they achieve a reduction in I.

In the PDN algorithm, the RP problem is solved by first selecting
a problem arc, either an OCarc or an UCarc. Then, based on the
rationale that optimality is achieved with the elimination of OCarcs
and UCarcs (Corollary 4.2), the PDN algorithm searches for a flow
adjustment (among shortest paths) which removes flow from the selected
arc if it is an OCarc or adds flow to the selected arc if it is an

UCarc; and decreases the value of I.

4.3 Search Process

First, to simplify the scope of the search for a flow adjustment
satisfying definition 4.3, observe that any flow shift removes flow of

a single commodity off one shortest "from-path" and places that flow
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onto another shortest "to-path". Thus, the flow adjustment search can
be performed in a restricted network containing only shortest paths.
Furthermore, the search can be simplified by observing that the from-
path and the to-path, although distinct, have at least two nodes in
common-- namely the origin and destination nodes of the commodity
shifted. Thus, at least one cycle, denoted I', is formed by the two
paths. The purpose of the flow shift between the two paths is to
reduce the infeasibility measure I. Hence, the flow shift between the
from and to-paths can be effectively represented as a flow shift
around the cycle I' (Figure 4.1), where flow is added to the arcs in T
on the to-path and flow is removed from the arcs in I on the from-
path. The search for this cyclic flow shift 1is simplified when a
residual network is used. Thus, each commodity-specific flow shift is

performed on a residual restricted network for that commodity, denoted

RNK,
i R
< cycle T
®- »0—6_—»8 »®
origin for . dostination
commodHity k from-path for commodity k

Figure 4.1: (Cycle Flow Shift
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Definition 4.4: A residual restricted network for commodity k,
RNk, is a network containing only shortest paths for commodity k. In
RNk, each arc ijeA on a shortest path, is replaced with two arcs: a
forward arc from node % to node j and a reverse arc from node j to

node i. The costs, vij, on the arcs in RN are defined as follows:

vij - 1, if ijeF; xij = dij;
= -1, if ijeF; Xij < dij , ﬂ'ij > 0;
= 1, if ijGFc, in < dij’ ﬂji > 0;

= -1, if ijEFc, in > dji;

= 0, otherwise. [4.21]

F: set of forward arcs in RN;

F¢: complement of set F-- the set of reverse arcs in RN.

Let RN denote the "aggregate" residual restricted network contain-
ing every arc in each commodity specific network. Rather than repli-
cating information throughout each RNK network, quantities regarding
arc flow and dual arc price are stored on the arcs ir RN. (Although
flow shifts of commodity k are technically performed over the commo-
dity specific network RNk, for ease of description, the flow shifts
will simply be described as occurring in the aggregate network RN).

The following standard notation is introduced to simplify the

explanation process:
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ij3: "conceptual" aggregate arc achieved by combining
the forward arc from node i to node j and the
reverse are from node j to node 1i.

Xija, xijak: total flow and commodity-specific flow on

arc ij3eRN where:

xjjal = xii% - %515 V ij, ji, ij2eRN; [4.22a]
xija - X]-_j - in, v ij, ji, ijaeRN. [4.22])]
The arc capacities, denoted d , are as follows:
djja = dyj, V ijeA, ij2eRN;
dij = =, vV 1jeRNKNF, V kek;
dj i< = xj1a%, V ijEeRNKNFC, V kekK. [4.23]

dij: capacity of arc ijeA;
dijk: capacity of the reverse arc ijeRNk, specified for

each commodity keK.

Defining arc capacities in this manner ensures that flow non-
negativity 1is always maintained. The reverse arc capacities, which
are specified by commodity, restrict the amount of flow of a commodity
removed from an arc to the amount of existing flow of that commodity
on the arc. - Thus, if commodity k is not assigned to forward arc
ijeRN, then the capacity of the corresponding reverse arc in RNK is

equal to zero and the reverse arc, in essence, does not exist for
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commodity k.

As with the flow and capacity of the original arc ij€A, informa-
tion concerning the dual arc price, Tig, is contained on the aggregate
arc ij®eRN.

As shown in Figure 4.1, a flow shift of commodity k around a
directed cycle in RN, denoted T', can be interpreted as a flow shift
removing flow from one shortest path and placing it onto another
shortest path. The arcs on the paths'from which flow is removed are
represented by reverse arcs 1iIn the directed cycle. Similarly, the
arcs on the path to which flow is added are represented by forward
arcs in the directed cycle. Thus, a flow shift around I' of commodity
keK adds flow to forward arc ijeRN if the arc from node i to node j is
contained in I' and removes flow from reverse arc nmeRN if the arc from
node j to node i is contained in T.

Define the cost of cycle I', ¥p, as the sum of the costs on the

arcs contained in the cycle, i.e.:
Yp - zijer Vij, for cycle T. [4.24)

Then, let A* be the maximum size flow shift around cycle T which

satisfies the following conditions:

i) the total flow on an cver-capacitated aggregate arc is reduced
at most to the capacity of the arc; and
ii) the total flow on an aggregate arc with flow strictly less

than capacity is increased at most to the capacity of the arc.

-76-



Theorem 4.3: In the residual network with arc costs as defined in
equations ([4.21], the cycle cost (equation [4.24]) represents the
change in the infeasibility measure per unit of flow shifted around

the cycle for a flow shift of size A%, i.e.:
AL = A% (¥p). [4.25]

Proof: Given the restriction on the size of A*, a flow shift of
A* units around cycle I' increases tﬁe value of the infeasibility
measure only if:

i) flow is increased on arc ij2eRN with Xjja z djja; or

ii) flow is decreased on arc ij®eRN with xija < dija and Tjije > 0.

Similarly, the value of infeasibility is decreased by such a flow
shift if:

i) flow is decreased on arc 1ij@eRN with xija > dija; or

ii) flow is increased on arc ij2eRN with Xija < dija and Tjja > 0.

Thus, the change in the infeasibility measure brought about by a

flow shift of A* units around cycle I' can be expressed using the arc

costs described in equations [4.21] as follows:
AL = Zijer (vij)a” [4.26]
From equations ([4.25] and [4.26], it follows that:

AT = A%yp. (4.27]

Notice that AI can also be defined as:
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AT = 1itl _ gi ' [4.28]
where:
I1¥: value of the infeasibility measure prior to the

1+18t flow shift.

Similarly, the change in the value of the RP objective function
resulting from a flow shift of A* around cycle ', denoted Azgp, can be

expressed as:

Azgp = zppi*t - zgpl [4.29]
where:
zRPi: objective function value of the RF problem prior

to the i+1St flow shift.

The following corollary results from Theorem 4.3 and equation
[4.18]):

Corollary 4.3: Azpp = A*(¥p) [4.30]

=

The idea then, is to specify each arc’s cost so as to capture the
change in the infeasibility measure (or equivalently, the change in
the objective function value of RP) realized by adding or removing
flow from the arc. Then, by Theorem 4.3, the flow adjustment goal to

find a flow shift reducing the value of the infeasibility measure can

be achieved by sending A* units of flow around a directed, negative

cost cycle in RN In other words, the infeasibility measure can be
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reduced if there is a negative cost cycle in RN. The difficulty is
that the opposite cf this result does not hold. Indeed, even if there
are no negative cost cycles in the residual network, the infeasibility
measure may be reduced through a particular type of flow shift in RN.
This "special" flow shift is a composite flow shift containing severai
individual, commodity-specific flow shifts. Each individual flow
shift moves flow of some commodity around a non-negative cost cycle in
the corresponding RNK network and the-cycles combine together in RN to
form a composite cycle. The flow shifts around the individual cycles
in the composite cycle interact to form a composite flow shift which
reduces the infeasibility measure.

For example, Figure 4.2 shows a composite flow shift containing
cycle #1, denoted cl, and cycle #2, denoted c2. Cycle cl has cost Vo1
= 0 and cycle c2 cost ¥,9 = 1. Cycle shift #1, taken alone, shifts A*
units of some commodity around cycle cl, thereby reducing the flow on
OCarc A at the expense of over-capacitating arc B. Cycle shift #2,

taken alone, shifts a*

units of some commodity around cycle c2 and
therefore, under-capacitates arc B. However, when cycle shifts #1 and
#2 are combined, the over-capacitating effects of cycle shift #1 and
the under-capacitating effects of cycle shift #2 on arc B are nulli-
fied. The net result is that the composite flow shift removes flow

from OCarc A and improves the current solution by achieving a net

decrease in the infeasibility measure, i.e. AT < 0.
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Figure 4.2: Composite Flow Shift

-80-



A decrease in the Infeasibility measure results even though all
the individual cycles comprising the composite cycle have non-negative
cost. This occurs because, unlike flows, cycle costs are not addi-
tive. The individual cycle costs do not sum to the net cycle cost for
the composite cycle. This is best explained through an example.

Again refer to Figure 4.2 and focus on arc B whose total flow,
before any flow shift, is exactly equél to arc capacity. In the com-
posite flow shift, the net change in flow on arc B is zero and thus,
the resulting contribution to the infeasibility measure is also equal
to zero. From Theorem 4.3, it follows that the net contribution for
arc B obtained by adding its cost in cycle cl together with its cost
in cycle c¢2 should likewise be zero. However, in cycle c¢l, arc B has
cost = 1, since Xga = dga. In cycle c2, the reverse arc for B has
cost = +1 since Xpga < dga, mpa > 0. Thus, arc B contributes a total
cost of 2, and not 0, to the value of the cost of the cycles compris-
ing the composite cycle. The discrepancy results because arc costs
are different (as defined in equation [4.21]) depending on the total
amount of flow on the arc. For example, the cost for the reverse arc
for B is equal to #1 if total flow on B is exactly at capacity but is
equal to -1 if arc B is over-capacitated.

Thus, ecycle costs exactly measure the contribution to the change
in the infeasibility measure for an individual cycle shift but do not

exactly measure the contribution to AI of a combination of flow
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shifts. This presents a rather serious problem. It shows that the
arc costs defined in equations [4.21] are valid only for flow shifts

containing a single cycle.

4.4 Arc Costs Revisited

In the multiple-commodity arena, it may be necessary to combine
several cyclic flow shifts in order to reduce the infeasibility mea-
sure. In the search for and construction of this composite flow
shift, the total flow on some arcs is repeatedly altered and thus,
costs must be continuously updated to accurately measure the change in
infeasibility achievable for the flow shift. The arc costs defined in
equations [4.31)] below are determined by rewriting equations [4.21] to
account for:

1) the explicit bounding of the flow shift size; and

ii) the possibility that the flow shift may consist of several

commodity-specific cycle flow shifts.

OCARCS:

vij = 1, if ijeF; Xi:a > dija;

-1, if 1j€FC, Xjia > djja; AETi a < Xj5a - djqa;

UCARCS:

-1, if ijeF; Xj3a < dj;a, m;3a > 0; ANET, .a < dj:a - X :a;
ij ij ij ij ij ij

1, if ijEFc, ina < dJ-ia, Trjik > 0;
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CAPACITATED ARCS:

- -1, if 1jeF®, Xjja = djja, aNETj5a > 0;

Vi j

= -1, if ijeF, Xjja = djja, mjja > 0, ANETija < 0;

- 1, if 1jeF®, Xyja = djja, my3a > 0, aNET 58 < 0;

- 0, if ijeF, Xjja = djja, mjja = 0, aNET 52 < 0;

- 0, if 1jeF°, Xjja = djja, mj5a = 0, ANET 50 < 0;

- 0, if ijeF, Xyja = dgja, aNET 4a = 0;

- 0, if 1j€F®, Xjja = djja, ANETjia - 0. (4.31)
where:

ANETij: the change in total flow on arc ijeRN due to the
composite flow shift;
ANETija: the change 1in total flow on aggregate arc

1j2eRN due to the composite flow shift, where:
ANETija - ANETij - ANETji, v ijaERN. (4.32]

Equations [4.31] show that arc costs are a function becth of the
total flow on an arc and the change in the total flow on an arc
brought about by the flow shift. As the composite flow shift is con-
structed, the change in total flow on an arc is altered. Thus, there
is not a "static" set of arc costs which can be used from start to
finish in the search for a composite flow shift with negative AI
value. However, the determination of arc costs is scmewhat simplified
by appropriately bounding the size of the flow shift. With this

bounding, some of the arc costs can be statically set.
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Take for example an OCarc ijeERNNF. As long as the composite flow
shift in RN does not reduce the total flow on arc ij below capacity,
the infeasibility measure is increased by one unit for each wunit of
flow shifted onto OCarc ij, and is decreased by one unit for each unit
of flow shifted off OCarc ij. This corresponds to setting the cost of
forward OCarc 1ijeRN, vij, to +1 and setting the cost of the
corresponding reverse arc ji, Vii, to -1.

A similar anclysis applies to tﬁe case of an UCarc, denoted
ijeRNNF. As long as the flow shift in RN does not over-capacitate arc
ij, there is a one-to-one correspondence between the amount of flow
snifted and the change in AI. For each unit of flow shifted onto
UCarc ij, the infeasibility measure is decreased by one unit and, for
each unit of flow shifted off UCarc ij, the infeasibility measure is
increased by one unit. These changes are represented in RN by setting
the cost of UCarc 1ij in RN, vij, to -1 and setting the cost of the
corresponding reverse arec, vji, to +1.

In the case where the aggregate arc ij@eRN has total flow strictly
less than capacity and dual price equal to zero, arc costs can also be
fixed. This time, as long as the amount of flow shifted is bounded so
that forward arc ij does not become over-capacitated, the infeasibil-
ity measure is unchanged for each unit of flow shifted on or off arc
1j. The costs on the forward and corresponding reverse arcs in RN, 1ij
and ji respectively, are set to zero.

Thus, for arcs with flow strictly greater than or strictly less
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than capacity, arc costs can be fixed in RN provided that eaéh flow
shift increases or decreases (whichever may be the case) the total
amount of flow on each arc at most to the capacity of the arc.

Yow analyze the case of arc ij3eRN with total assigned flow
exactly equal to capacity. If a flow shift in RN increases the flow
on forward arc i1j, the costs on arcs ij and jieRN should be set as in
the OCarc case. However, if a flow shift decreases the flow on arc
ij, then the costs on arcs ij and jiGRN should be set in accordance
with the cost specifications for UCarcs.

Thus, for arcs with flow exactly at capacity, arc costs must be
updated as cycle shifts are added to or removed from the composite
flow shift. All other arc costs, however, can be fixed at the start
of the search process.

To summarize, given a particular composite flow shift and appro-
priate bounds on the size of the flow shift, arc costs (defined by
equations [4.31]) precisely measure the per unit change in infeasibil-
ity resulting from each unit of flow shifted.

Fheorem 4.4: For any composite flow shift in RN (where arc costs
are determined using equations [4.21]), the sum (for each cycle in the
composite flow shift) of the product of the flow quantity shifted and
the cycle cost is equal to the change in the infeasibility measure
brought about by the flow shift. This is mathematically stated as

follows:
Al = A% (Zpen ¥p) [4.33]
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where:

amount of flow shifted for each commodity-specific
flow shift;

Q: set of individual cycles T contained in the composite

flow shift.

Proof: By definition, the cost of cycle I' is expressed as:

¥r = 3ijer vij- [4.34]

The arc costs defined in equations [4.31] represent the change in
the infeasibility measure per unit flow shifted onto arc 1jeRN given
an appropriately bounded fléw shift which does not increase the flow
on an UCarc above capacity and does not decrease the flow on an OCarc
below capacity. Let the total change in flow on arc ijeRN resulting

from the composite flow shift be expressed as:

ANET, 4 = Speq(a®s gy, [4.35]
where:
Sijrz = 1 if arc ijeRN is contained in cycle I'; and = O
otherwise.
Then the change in the infeasibility measure associated with the

composite flow shift can be expressed as:
AT = Zqjery ANET;j(vyg). [4.36]
Rewriting equation [4.36] using equation [4.35]:
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AL = Srep¥ijern (A76157vig). [4.37]
Substituting equation [4.34] into equation [4.37]:
AL = Speq (A%Up). (4.38]

Equation [4.33] is obtained by rewriting equation [4.38]. &
The next sections describe the difficulties resulting when arc

costs depend upon arc flows, as in equations [4.31].

4.4.1 Negative Cost Cycles in RN

Theorem 4.3 shows that a reduction in infeasibility can be
achieved with a flow shift around a negative cost cycle. The
existence of a negative cost cycle does not guarantee however, that an
infeasibility-reducing flow shift is possible. 1In fact, a flow shift
around & mnegative cost cycle may increase the infeasibility measure
because arc costs are a function of arc flow and can therefore change
as flow is shifted around the cycle. Specifically, the costs on arcs
with flow exactly at capacity must be continually updated as flow lev-
els change. The difficulty is that the simultaneous updating of all
arc costs leads to cycling in the search for a infeasibility reducing
composite cycle shift.

Consider, for example, the negative cost cycle cl depicted in Fig-
ure 4.3a. 'A flow shift of A* units around cycle cl results 1in the
over-capacitation of arcs ij, kl, and mn. To accurately reflect their

contribution to the change in the infeasibility measure, the costs of
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Figure 4.3b: Cycling in the Negative Cost Cycle Search-- Part II

arcs 1j, kl and mn must all be increased from O to 1 and the costs of
arcs ji, lk and nm must all be decreased from O to -1, as shown in

Figure 4.3b. A flow shift around cycle cl, as indicated by the

revised arc costs, results In an increase, and not a decrease, 1in
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infeasibility. The next step then, is to build upon the initial cycle
cl and try to undo some of the “damage" created by shifting flow
around c¢l. Arc 1ij 1is selected and a search is made for a negative
cost cycle containing arc ji. Note that cycle c¢2, the reverse of
cycle cl, 1is located as a negative cost cycle. Shifting flow around
c2 results in reducing the flow level on arcs ij, kl and mn back to
capacity. Hence, to satisfy equations [4.31], the costs on arcs ij,
ji, k1, 1k, mn and nm should all be sét to zero. The result is that
the search for a composite negative cost cycle combined flow shifts
and adjusted arc costs so as to replicate the original conditions
(Figure 4.3a). To control this cycling in the search process, the Flow
Adjustment Algorithm (described in Chapter 5) alters arc costs one at

a time rather than simultaneously.

4.4.2 Positive Cost Cycles in RN

In the previous section it was shown that because of discrepancies
in assigned costs on arcs with flow at capacity, a negative cost cycle
does mnot guarantee that an infeasibility-reducing flow shift is pos-
sible. This gives rise to the question of whether an infeasibility-
reducing flow shift might be possible around a single, positive cost
cycle T.

Theorem 4.5: A flow shift around any single positive cost cycle T
in RN (wh;re arc costs initially are specified In accordance with
equations [4.31)), results in an increase in the measure of infeasi-

bility.
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Proof: For all arcs with flow not equal to capacity, arc costs in
RN can be fixed at a particular value to reflect the true change in
infeasibility for any proposed composite flow shift containing these
arcs. Unfortunately, this same result does not hold for arcs with
flow at capacity. Take, for example, an aggregate arc ij® with flow
equal to capacity. Assume either arc ij or arc ji 1is contained in
cycle T,

If arc 1ijel', then a proposed' flow shift around I' will over-
capacitate arc 1j2 and hence, the true cost assignment, denoted "tij'
should be vtiJ = 1. By equations [4.31], the assigned cost of arc 1ij
cannot exceed the value 1 (”ij < 1). Thus, for the case where forward
arc 1jer’ 1is over-capacitated by the proposed flow shift around cycle
r, utij > vij§-

Next consider the case where reverse arc ji is contained in cycle
r. This time, a proposed flow shift around I' will under-capacitate
arc ij@. Hence, ANETija prior to the flow shift is equal to zero and
by equations [4.31], the assigned cost for arc ji is equal to zero,
i.e. vy = 0. If rjja = 0, then vtji = 0. Similarly, 1if 7jja > 0,
then vtji = 1. Thus, for the case where reverse arc jiel' and arc ij?
is under-capacitated by the proposed flow shift around cycle T, vtji >
vyi-

Hence for each arc ijel’ whose corresponding aggregate arc has flow
exactly equal to capacity, vtij Z vyj. Furthermore, for arcs with

flow not equal to capacity, arc costs exactly measure the change
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infeasibility. Thus, it follows that vtij 2 vij, Vijel. As a result,
the cost of cycle I' is an underestimate of the change in infeasibility
resulting from a flow shift around I', i.e. ¥p =< AI. . | ]

To summarize, using arc costs defined in equations ([4.31], the
search for an infeasibility-reducing flow adjustment is carried out by
continually updating costs and searching for a set of cycles which
when combined produce a composite negative cost cycle. As explained
in the next section, the need to searéh for sets of cycles and to
continually update arc costs is attributable to the multi-commodity

aspect of the problem.

4.5 Muiti-Commodit fect on Problem Complexit

It is important to realize the effects of the multi-commodity
aspect on the problem complexity. Consider the overall flow shift
described in Figure 4.2 and assume the problem is a single commodity
prcblem and not a multiple-commodity problem. Then, as shown in Fig-
ure 4.4, the sequence of flow shifts depicted in Figure 4.2 can be
equivalently represented as a single cycle shift, where conservation
of flow is guaranteed for the single commodity and cycle cost ¥ = -1 =
AL, The single cycle is constructed from the composite set of cycles
by eliminating all arecs with a net change in flow of zero.

Thus, for the single-commodity case, a sequence of cycle shifts
can always be represented by a single cycle shift in RN. From Theorem
4.3, wusing arc costs as defined in equation [4.31], the cost of the

single cycle is equal to AI. Therefore, in the single-commodity case,
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the problem is reduced to finding a single, negative cost cycle and
shifting flow (in accordance with flow non-negativity constraints)
around this cycle. In the multiple-commodity case, this simplifica-
tion does not hcld because the equivalent single cycle for the compos-
ite flow shift contains several commodities. For example, cycles cl
and c2 (depicted in Figure 4.2) contains one commodity on the arcs
contained in paths #l and #2 and another commodity on the arcs con-
tained in paths #3 and #4. In order to ensure conservation of flow
for each commodity, the commodity specific cycle shifts must be indi-

vidually constructed.
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Thus, in a multiple commodity vs. a single-commodity problem, the
solution strategy is altered from searching for a single negative cost

cycle to searching for multiple commodity-specific cycles which form a

composite negative cost cycle.

4.6 Summary

Summarizing, the flow adjustment step is a primal-based step whose
purpose is to adjust the current flow assignment by shifting flow
between paths 1in the residual restricted network in a manner which
improves the overall condition of problem arcs. The improvement to
problem arcs 1is measured by the change in infeasibility achieved by
the flow shift. The search for an infeasibility-reducing flow shift
is satisfied by locating a negative cast cycle in RN. However, unlike
the single commodity case, this negative cost cycle may need to be a
composite cycle containing several individual, commodity-specific
cycles. In the search for this negative cost cycle, costs on arcs
with flow at capacity must be continually updated to accurately
reflect their contribution to the AI value. If the flow adjustment
step finds a set of commodity-specific cycle shifts which form a nega-
tive cost composite cycle, then an appropriately bounded flow shift
around the composite cycle is performed, total infeasibility is
reduced and the solution is improved. These flow adjustment steps are
repeatedly performed until no further reduction in I (or equivalently,
in zpp) can be achieved for the given current dual solution.

The next chapter presents the details of the Flow Adjustment Algo-
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rithm-- the algorithm developed to locate and execute flow shifts sat-

isfying the PDN algorithmic design features and criterion.
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5. The Flow Adjustment Algorithm

The Flow Adjustment Algorithm is used to solve the RP subproblem
of the primal-dual method. Given a restricted residual network com-
prised solely of admissible elements, the objective of the RP problem
is to find a flow assignment as close to primal feasibility as pos-
sible. This objectiv> 1is achieved by repeatedly using the Flow
Adjustment Algorithr to perform flow adjustment steps meeting the spe-
cifications of definition 4.3. The Flow Adjustment Algorithm takes as
input the current set of shortest paths and the assignment of flow for
each commodity. Then the algorithm searches for a set of commodity-
specific flow shifts which form a composite flow shift reducing the
infeasibility measure. Equivalently, the Flow Adjustment Algorithm
searches for a set of commodity-specific cycles forming a composite
negative cost cycle. The algorithm terminates either with an 1infeasi-
bility-reducing flow shift or with a determination that no further
reduction in infeasibility is possible.

This chapter presents the details of the Flow Adjustment Alge-
rithm. Section 5.1 presents an overview with an example demonstration
of the algorithm. Section 5 2 then presents the detailed steps of the
Flow Adjustment Algorithm. Next, Sections 5.3 through 5.5 discuss
termination and finiteness issues. Finally, Section 5.6 summarizes

the Flow Adjustment Algorithm.

5.1 Overview and Example

The implementation of the flow adjustment step is guided by the
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desire to achieve a net decrease in primal infeasibility. To decrease
the infeasibility measure, the overall flow shift must achieve a net
decrease in the amount by which arcs are over-capacitated or under-
capacitated. The idea then is to remove flow from OCarcs or add flow
to UCarcs. The flow adjustment step thus begins with the selection of
a problem arc (either an OCarc or an UCarc). The algorithm then
attempts to improve the condition of this problem arc by searching for
a commodity-specific cycle in the festricted, residual network con-
taining the selected arc. If the infeasibility measure can be
decreased by shifting flow around this cycle, the flow shift is
executed and the flow adjustment step is complete.

In general, the flow adjustment step is not so simple. It is more
likely that the located cycle flow shift will increase or hold con-
stant the value of the infeasibility measure. This means that che
flow shift, in trying to improve the condition of the selected problem
arc, over or under-capacitates at least one other arc. The strategy
then 1is to select the newly created problem arc and repeat the search
process. Thus, flow shifts resemble "dominos" in that each flow shift
may trigger a whole series of flow shifts. The flow adjustment step
constructs these series of flow shifts by repeatedly performing two
basic steps: |

Step 1) SELECT problem arc, where a problem arc is an OCarc, an
UCarc or an arc with flow at capacity which becomes an OCarc or an

UCarc with a proposed flow shift;
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Step 2) SEARCH for cycle flow shift improving the condition of
the selected problem arc wusing the commodity-specific restricted,
residual network.

The repetition of these select and search steps is halted when the
infeasibility measure becomes negative for the set of flow shifts
located or when it is established that there is no sequence of flow
shifts in RN which improves the infeasibility measure.

The next section provides an examéle of the select and search flow

adjustment steps and exhibits the "domino-effect".

Example

Consider the network illustrated in Figure 5.1. The flow adjust-
ment step begins with the selection of OCarc A. It locates cycle cl
for commodity kl assigned to the OCarc. Shifting A* units of kil
around cycle cl has the positive effect of reducing flow on OCarc A by

A*

units. Unfortunately, the negative effects of this flow shift
outweigh the positive effects. Shifting A* units around cycle cl has
the negative effect of:

i) 1increasing flow on the capacitated arc B by A% units; and

ii) decreasing the flow on the capacitated arc C (with positive
dual price) by an amount A%,
Thus, this flow shift increases the infeasibility measure.
In accordance with the flow adjustment strategy, arc B (an arc

whose condition 1is worsened by flow shift cl) is selected as the new

problem arc. Cycle c2 containing arc B is located and a flow shift of
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A* around cycle c2 reduces the flow on arc B back to capacity without

over or under-capacitating any other arc. Thus, cycle shift ¢2
negates the ill-effects to arc B caused by cycle shift cl.
cycle c2
dastination
f
:omﬂgl:w::ty K2 for commedity k2
. dsatination
o for commedity k1
origin for dsstinzilen
commaodity k3 for commaodilty k3

Figure 5.1: Domino-Effect

However, the net change in the infeasibility measure for the com-

posite shift containing cycles cl and c¢2 is still non-negative.

The

net effect of the composite shift is to reduce flow both on the OCarc

A and on the capacitated arc C (with positive dual price) by A* units.
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Thus, again in accordance with the flow adjustment stracegy, the
arc C (temporarily transformed into a problem UCarc by the flow shift
around cycle cl) is selected as the next problem arc. The search pro-
cess locates cycle c3 containing UCarc C. Shifting A* units of flow
around cycle c3 has the effect of increasing the total flow on arc C
back to capacity without over-capacitating or under-capacitating any
arc.

By combining cycles cl, c2 and c3 to form a composite shift, flow
on the OCarc A 1is decreased without over-capacitating or under-
capacitating any other arcs, thereby reducing the infeasibility mea-
sure.

To summarize Figure 5.1, an OCarc is selected and the search for a
flow adjustment begins. The domino-effect is experienced and a
sequence of flow shifts is generated. Each successive flow shift is
centered about a potential problem arc, which if previous flow shifts
are executed, becomes either an OCarc or an UCarc. The cycle flow
" shift alters the flow on the problem arc so as to nullify the illegal
effects of the previous flow shifts. Thus, each flow shift "undoes"
the "damage" caused by earlier flow shifts. If the flow shift undoes
damage at the expense of creating other damage, further flow shifts

are triggered until total infeasibility can be strictly reduced.

5.2 Steps of the Flow Adjustment Algorithm

Following is a detailed description of each step in the Flow

Adjustment Algorithm, depicted in Figure 5.2.
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Figure 5.2: The Flow Adjustment Algorithm
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5.2.1 FAA Step 0: Initialize

Inputs to the Flow Adjustment Algorithm include a restricted,
residual network RN and a set of flow assignments in RN satisfying
feasibility in the RP problem (constraints [4.2] through [4.5]).

The first step in the initialization process is to set the arc
cost on each arc contained in RN in accordance with equations [4.31].

Next, the initialization step creates a flag called Quit and sets
the status of this flag to false. (The FAA terminates if, when

tested, the Quit flag js set to true.) Then, a stack, denoted S+—and

a cycle 1list, denoted 0, are created. Stack S, at any point in the
algorithm, contains a listing of arc and cycle pairs and is initial-
ized to contain all ijeRN with cost strictly greater than zero. The
function of Stack S is to keep track of all unsearched arcs which have
the potential of being members of a negative cost cycle (actually it
is negative cost arc ji€RN which is the member of the negative cost
cycle). In addition, arcs are stored in a stack so that their process-
ing order will be last-in-first-out. Prior to the search, each of
these arcs 1is paired with an unlocated and therefore, unspecified
cycle.

List @, at any point in the algorithm, contains the commodity-
specific cycle flow shifts forming the composite flow shift. Ini-

tially, List Q is empty.

5.2.2 FAA Step 1: Select Cyclearc ij and Cycle T from Stack S

In order to correct the flow infeasibility on a problem arc, a
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cycle containing the problem arc must be located and flow shifted
around it. The problem arc about which the cycle is rormed is
referred to as a cyclearc, where a cyclearc is defined as follows:

Definition_ 5.1: An arc ijeRN 1is a cyclearc if it satisfies any
one of the following criteria:

i) a forward arc ijeRN with Xjja > dija' (i.e. an 0OCarc);

ii) a forward arc ijeRN with Xjja = dija and ANETija = 0 for the
composite flow shift (i.e. a potential OCarc);

iii) a reverse arc 1jeRN with Xjia < djia and 7jia >0 (i.e. an
UCarc); or

iv) a reverse arc ijeRN with Xjia = djia- mjia > 0 and ANETjia <
0 for the current composite flow shift (i.e. a potential UCarc).

Step 1 selects the cyclearc and cycle pair, denoted ij and T

respectively, from the top of Stack S.

5.2.3 FAA Step 2: Search for Negative Cost Cycle

Step 2 is executed when no cycle has been located for the cyclearc
ij selected in Step 1. Thus, in order to improve the status of the
problem arc and to improve overall infeasibility, Step 2 searches for
a cycle in RN, denoted I', which has negative cost and contains arc ji.
(The search for a negative cost cycle is performed by determining the
shortest path in RN from node i to node j. If the cost (length) of
this shortest path added to the cost of arc ji is less than zero, a
negative cost cycle is found.) Cycle I' must contain arc ji-- the arc

which is opposite and parallel to cyclearc ijeRN, because a flow shift
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Fal

around cycle I' improves the problem status of the cyclearc by sending
flow over its parallel reverse arc. In the case of over-capacitation,
the flow shift around I' sends flow over the reverse arc ji, thereby
removing flow from forward arc ij and reducing the amount by which arc
ij@ is over-capacitated. Similarly, in the case of under-
capacitation, the flow shift around cycle T' sends flow over the for-
ward arc ji, thereby reducing the amount by which arc ji? is under-

capacitated.

5.2.4 FAA Step 3: Update

Step 3 performs "bookkeeping” tasks. It adds the negative cost
cycle T located in Step 2 to list Q-- the current list of commodity-
specific cycle flow shifts forming the composite flow shift. In addi-
tion, the current cyclearc and cycle pair is updated so that cycle T

is the one paired with cyclearc ij in stack S.

5.2.5 FAA Step 4: Compute Al Measure

Using equations [4.31] (to determine appropriate arc costs) and
equations [4.33] and [4.34], Step &4 computes:

i) the change in the infeasibility measure for the composite flow
shift, AI, and;

ii) the change in the infeasibility measure for an 1isolated flow
shift around cycle I', denoted Alr.

Although the cost of cycle I' is negative, (¥p < 0), the value of

Alpr is not necessarily negative, as explained in Chapter 4.4.1. Again,
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this discrepancy arises because costs on arcs with flow exactly at
capacity are a function of the assigned arc flows as well as the net
change in flow resulting from the composite flow shift. The diffi-
culty is that the value of the net change in flow itself changes as
the composite flow shift 1is constructed. Thus, when cycle T is
located and added to the composite flow shift Q, costs on arcs in T

with flow exactly at capacity may not satisfy equations [4.31].

5.2.6 FAA Step 5: Select New Cyclearc ij from Cvcle T and Update

By adding cycle T to the composite flow shift, the net change in
total flow (ANETija) on each arc ij in cycle T is altered. For arcs
with total flow exactly at capacity (and only these arcs), correct arc

costs (equations [4.31]) change as &NET

ij@ values change. Step 5
selects, from the directed cycle I' in RN, a new cyclearc ij with:

i) total flow equal to capacity; and

ii) arc cost strictly less than the correct arc cost, as deter-
mined by equations [4.31], using the ANETija values computed for the
composite flow shift.

As an example, consider forward arc ijeRN contained in cycle T
with vij = 0; Xija - dija; and ANETija > 0. If the composite flow
shift is executed, arc 1j%, the potential OCarc, becomes over-
capacitated. Thus, in accordance with equations [4.31], the cost of
arc 1ij shéuld be increased to vij = 1 and the cost of reverse arc ji

should be decreased to vyi = -1. Hence, forward arc ij satisfies the

selection criteria i) and ii) above and can be chosen as the next
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cyclearc.

A potential UCarc is another example of an arc meeting the selec-
tion criteria of Step 5. Again consider forward arc ijeRN contained
in cycle T with cost vij = 0; Xija - dija; mija > 0; and ANETija < 0.
If the composite flow shift is executed, arc ij® becomes under-
capacitated. Thus, in accordance with equations [4.31], the cost of
arc 1ij should be decreased to vij = -1 and the cost of reverse arc ji
should be increased to vjy = 1. In this scenario, reverse arc ji

meets the selection criteria above and can thus be chosen as the next

cyclearc.

In summary, Step 5 selects a new cyclearc ij in RN with total flow
exactly equal to capacity and an assigned cost which underestimates
the arc’'s contribution to the change in the infeasibility measure for
the composite flow shift. Then, cyclearc 1ij and its paired (yet
unspecified) cycle are added to the taop of stack S.

Theorem 5.1: There always exists a cyclearc in cycle T satisfying

selection criteria i) and ii) above.

Proof: Step 5 is executed when, given the current assignment of
arc costs, a negative-cost cycle I' is located (Step 2). Using arc

costs as defined by equations [4.31], the cost of cycle I' (as computed
in Step 4) is strictly greater than zero for a flow shift of any size.

Initially, the arc costs of every arc in RN are set in accordance
with equations [4.31]. The Flow Adjustment Algorithm alters costs

exclusively on arcs with flow exactly equal to capacity. Thus, the
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difference between the values of ¥y and AIp is attributable to the
inappropriate assignment of costs to arcs with total flow equal to
capacity. Since V¥p is strictly less than AIp, there exists at least
one arc ij with flow equal to capacity and arc cost strictly less than
the correct arc cost as specified by equations [4.31]. &
Theorem 5.1 reaffirms the domino phenomenon. If AI > 0, then the
proposed flow shift, in correcting the infeasible flow assignment on
some arc, over or under-capacitates aﬁ least one other arc. Thus, the
algorithm proceeds by selecting one of these arcs and tries to correct

its newly infeasible flow assignment.

5.2.7 FAA Step 6: Update Cyclearc Cost

To more accurately measure the change in the infeasibility measure
resulting from the composite flow shift, Step 6 updates the cost of
the cyclearc 1j selected in Step 5. The cyclearc cost, Vij is

altered as follows:

Augj = MINC-¥p, v¥g5 - vjj) [5.1]
where:

Avjj: amount added to the cost of arc ijeRN and the
amount subtracéed from the cost of its opposing,
parallel arc ji€RN;

Yp: cost of cycle T before cost of cyclearc 1ij is
updated;

v*ij: cost of arc ij as determined by equations [4.31]
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given current composite flow shift;

vjj: current assigned cost of arc ij.

Figure 5.2 shows that Step 6 is executed only if the cost of
cycle I 1is strictly negative and thus, -¥r > 0. Furthermore Step 5,
by definition, selects cyclearc ij only if 1its assigned cost is
strictly less than the true arc cost as determined by equations
[4.31]. Thus, it follows that ”*ij © vy > 0. Hence, Avij, as
determined by equation [5.1], is the minimum of two strictly positive
values and is therefore strictly positive. As a result, the cost of
cyclearc ijeRN strictly increases in Step 6, i.e. A”ij > 0.

The wupdated cost for arc 1ij is achieved by adding Av to its

i]
current arc cost. Similarly, since arc costs on parallel forward and
reverse arcs in RN are negative images of one another, the updated
cost for the opposing parallel arc ji€eRN is achieved by subtracting
Bvj from its current assigned cost.

A strict increase in the cost of cyclearc ijel results in a strict
increase in the cost of cycle ', which is a negative cost cycle. Thus,
in addition to more accurately reflecting the contribution from arc ij
to the change in the infeasibility measure for a composite flow shift
containing I', the cost adjustment works to eliminate the negative-cost
cycle. The size of the cost adjustment to arc ij (equation 5.1) is
bounded, however, so that the cost of cycle I' does not become posi-

tive. Increasing the cost of cycle T above zero would be counter-

productive since then, traversing I in the reverse direction would
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yield a cycle of negative cost.

Altering costs in the above manner is consistent with the economic
interpretation presented in section 2.2.3 for the Primal-Dual Method.
If arc ij® is a potential OCarc, forward arc ijeRN is selected as the
cyclearc. On the other hand, if arc ij? is a potential UCarc, reverse
arc jieRN is the selected cyclearc. In either case, the cost of the
cyclearc 1is always increased. The increased cost makes the cyclearc
less attractive and its opposing parailel arc more attractive,. As a
result, removal of flow is encouraged for (potential) OCarcs and addi-

tion of flow is encouraged for (potential) UCarcs.

5.2.8 FAA Step 7: Shift Flows

The Flow Adjustment Algorithm shifts flow either when AT < 0 or
when AIp < O. The goal 1is to achieve a maximum decrease in the
infeasibility measure given that an equal quantity of flow, denoted
A*, is shifted around each cycle in the flow shift. (Note: If it is
desirable to shift more flow around some cycle, then that cycle may be
contained in the composite flow shift more than once.) The quantity
A* is restricted in size by the flow non-negativity constraints and
the requirement that the flow shift reduce the infeasibility measure.

To satisfy the flow non-negativity constraints, the amount of flow
shifted off an arc can not exceed the quantity of that commodity

assigned to the arc, i.e.

Ax* = MINpeg MINjjepenp (xj5a¥, k shifted around T) [5.2]
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where:
Ax*: optimal amount of flow to shift given flow non-

negativity requirements only.

A* must also be bounded to ensure that the infeasibility measure
is strictly decreased by the composite flow shift. Equations [4.31]
appropriately measure the change in infeasibility for a composite flow
shift provided that the amount of flow shifted does not push the flow
level of any arc across 1its capacity boundary. In other words,
Theorem 4.4 holds if the flow shift does not change an arc with less
flow than capacity into an OCarc, or alternatively, does not change an
OCarc into an arc with less flow than capacity. These restrictions

are expressed as follows:

* . NET . .
AT =< MINQ].UQZ ((dija xija.)/A 1Ja)) [5.3]
where:

AI*: amount of flow which can be shifted before at least
one arc cost no longer correctly measures its con-
tribution to AI for the composite flow shift;

1. i3 s . NET, .

1*: set of forward arcs ijeRN where XlJa < dija, A ija
> 0;

2. - i . . NET_ .

1“: set of reverse arcs ji€RN where lea > diJa, A ija
< 0

Using equations [5.2] and [5.3], flow non-negativity and a reduc-

tion in the infeasibility measure is guaranteed for a flow shift of
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size A*, where A* is defined as follows:
A% = MIN(AY, ar™). [5.4]

Given the above definition of AY, the following observations are
made :

Observation 5.1: Ir the PDN algorithm, non-integer flow shifts

may occur. For example, when an arc ij is contained in more than one
cycle of the composite flow shift, ANETija may be strictly greater
than or less than one and consequently, AI* will be a fractional
value.

Observation 5.2: Each flow adjustment step terminating with a

flow shift will strictly decrease the infeasibility measure. By
design of the FDN algorithm, a flow shift is attempted only when an
infeasibility reducing flow shift of size A* 1is located. a* is
guaranteed to be a non-zero quantity because it is bounded only by the
requirements that:

i) OCarcs are not transformed into UCarcs; and analogously

ii) UCarcs are not transformed into OCarcs.
Thus, each flow shift strictly reduces the infeasibility measure.

Equation [5.4] provides a lower bound on the total amount of flow
which can be shifted to achieve the maximum reduction in the infeasi-
bility measure. 1f A* < Ax*, then the overall value of AI may still

be negative for shifts of flow in excess of the A* amount, even though

the value of AI is increased. Hence, the determination of the optimal
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flow shift size is an iterative process, as shown in Figure 5.3.

Set arc costs
——1 per equations —®
4.31 for current
arc flows

Compute
Al

Shiit Determine A"

Flows

Figure 5.3: Determination of the Optimal Flow Shift Size

Using equation [5.4], the "conservative" flow shift size 1is com-
puted, then A* units of flow are shifted around each cycle T'eQl. The
arc flow levels are adjusted to reflect the flow shift of A* units and
the arc costs are updated with equations [4.31]. The value of Al is
again computed using equations [4.33] and [4.34]. If Al 1is still
negative, another flow shift will strictly reduce infeasibility. Thus,
the flow quantity 2* is again determined, a flow shift of A* units is
executed and the entire process repeats. The optimal flow shift is
achieved when either A* = Ax* or infeasibility is not decreased for
any further flow shift.

If step 7 1is executed, existing commodity flows are shifted

between shortest paths and a net decrease in the total amount of pri-
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mal infeasibility 1is achieved. Thus, the Flow Adjustment Algorithm
successfully locates a flow shift satisfying all of the design fea-

tures and criterion of the PDN algorithm.

2:2.9 FAA Step 8: Remove Cyclearc 1j and Cycle I' Pair from Stack S

Step 8 shown in Figure 5.2 is executed when the cost of arc ij is
equal to zero or no negative cost cycle is associated with the arc ij.
In either case, the search for a negative cost cycle for arc ij is
considered complete and cyclearc ij and its paired cycle I' are removed
from the top of stack S. (If arc ij has cost équal to zero and a nega-
tive cost cycle containing it exists, then there must be at least one
other arc with non-zero cost contained in the cycle. When that other
arc is selected and a search is launched, the negative cost cycle will

be found.)

5.2.10 FAA Step 9: Compute Ir

Step 9 is executed when the cyclearc popped off Stack S is paired
with a previously located cycle I'. When located, cycle I' had negative
cost:, However, subsequent adjustments to arc costs (Step 6) may have
altered the cycle cost. Thus, the cost of cycle TI', denoted Yp, 1is

computed using equation [4.34] and the currently assigned arc costs.

5.2.12: Step 10: 0 Change in AI due to Cycle I
Equation [4.33] is used to compute the value of the change in
infeasibility associated with:

i) the composite flow shift containing cycle I'; and
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ii) the composite flow shift not containing cycle T.
Then, the change in AI caused by adding cycle I' to the composite

flow shift is computed as follows:

A(AI) = AI(T') - AI(\D) [5.5]
where:
A(AL): change in the AI value realized when cycle T is
added to the composite flow shift;
AI(T): the value of AI achieved for the composite flow
shift containing cycle T;
AI(\I): the value of AI achieved for the composite flow

shift not containing cycle T.

Even though cycle I' has positive cost and Theorem 4.5 states that
a flow shift around a single positive cost cycle results in AI > 0, it
1s possible that A(AI) is less than zero for the composite cycle case.

Thus, the computations of this step are necessary.

5.2.12 FAA Step 1i: Remove Cycle Shifts from List Q

Step 11 is executed when the value of A(AI) (as computed in step
10) is strictly positive. This means that in adding cycle T to the
composite cycle, infeasibility is increased. Since the objective is
to construct a composite negative cost cycle, cycle I' (which has
non-negative cost) should not be included in the composite cycle.
Thus, cycle T is removed from list Q, thereby removing it from the

composite flow shift.
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The original inclusion of cycle shift I' in the composite flow
shift may trigger a succession of flow shifts, each one undoing an
ill-effect of the previous ocne. It is not necessary, or reasonable,
to include in the composite flow shift these flow shifts triggered by
the now eliminated cycle shift I'. Therefore, along with cycle T, Step
11 removes from list 0} each of the cycle shifts triggered by cycle
shift T. Special data structures are used to facilitate the removal

of all appropriate cycles and cyclearcs from list Q and stack §S.

5.2.13 FAA Step 12: Update Stack S

Step 12 changes the cycle in the cyclearc ij and cycle I' pair to
an unspecified (not yet located) cycle, thus modifying, not removing,
the cyclearc and cycle pair in Stack S. This allows anothei search to

be performed for an alternative negative cost cycle containing arc ji.

5.2.14 FAA Step 13: Test if Terminate

Step 13 is executed when Stack S is empty. In this case, a search
for negative cost cycles has been performed for all arcs with negative
cost. However, subsequent to the search, adjustments to arc costs
(Step 6) may result in the creation of negative cost cycles. Thus,
Step 13 checks to ensure that, indeed, all negative cost cycles in RN
have been eliminated. This test is performed by first initializing
stack S to contain all arcs ijeRN with positive cost. For each arc in
stack S, a search for a negative cost cycle (step 2) is performed. If

no negative cost cycle exists, the arc is removed from Stack S. How-
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ever, if a negative cost cycle does exist and the arc has flow not
equal to capacity, the arc and negative cost cycle pair remain in
Stack S. If a negative cost cycle does exist but the arc has flow
exactly equal to capacity, its cost and the cost of the parallel,
opposing arc are set to zero and the arc is removed from Stack S. This
ensures that Stack S contains only problem arcs with primal infeasible
flows which can be corrected through appropriate flow shifts. There
is no motivation to locate a flow-shift centered about an arc with
flow exactly equal to capacity because:

i) its flow assignment is not primal infeasible; and

ii) a flow shift is likely to transform the feasible flow assign-
ment into an infeasible flow assignment.

If after testing each arc, Stack S is empty, the quit flag is set
to true and the algorithm terminates. Othkarwise, Stack S has new ele-
ments and the algorithm reiterates beginning with Step 1.

Thus, the following proposition holds by design of the Flow
Adjustment Algorithm:

Proposition 5.1: If Stack S is empty and the Quit flag status is

equal to true, there are no negative cost cycles in RN. ]

5.3 Termination of the Flow Adjustment Algorithm

If an infeasibility-reducing flow shift is located, or Stack S is
empty, the Flow Adjustment Algorithm of Figure 5.2 terminates. Termi-
nation of the algorithm with a flow shift implies that infeasibility

is reduced with an appropriately bounded flow shift around a negative
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cost composite cycle (Observation 5.2). From Theorem 4.2, a reduction
in primal infeasibility can be interpreted as advancement towards
optimality in the CMCF problem, P. Thus, the flow shift of step 7
represents a successful execution of the primal-based Flow Adjustment
Step. Existing commodity flows are shifted between shortest paths
such that total primal infeasibility is reduced and advancement
towards optimality is achieved.

The Flow Adjustment Algorithm cén also terminate when Stack S is
empty. In this case, no flow shift is executed and consequently, the
flow adjustment step faills in its quest to move the primal solution
closer to feasibility. However, this so-called failed flow adjustment
step 1s successful in optimally solving the RP/DRP problem, as demon-
strated in the following proofs. First it is shown that the primal-
based Flow Adjustment Algorithm generates dual feasible solutions to
the DRP problem. Then, it is shown that the dual and primal solutions
existing at the termination of the failed flow adjustment step opti-
mally solve the RP/DRP problem.

Theorem 5.2: Using the arc costs generated in the failed flow
adjustment step, a feasible solution to the DRP problem can be easily
constructed.

Proof: The flow adjustment algorithm fixes the costs on OCarcs
and UCarcs in accordance with equations [4.31] and then adjusts costs
only on arcs with flow exactly at capacity. The size of the cost

adjustment for arcs with flow at capacity is bounded (equation [5.1])
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such that the cost of the arc in RN is < 1; is = 0 for arcs with 7 =
0; and is 2 -1 for arcs n = 0.

Let Vi be the cost assigned arc ij when the failed flow adjust-
ment step terminates and let Awij equal Vigo VijeRN. Then, the values
of A”ij satisfy constraints ([2.23]) and [2.24] in the DRP problem
formulation. Furthermore, using arc costs of Amyy and restricting the
analysis to the set of shortest paths only, let ack represent the cost
(i.e. length) of the shortest path fof commodity k. It follows then

that for all keK:
Aok < Tjjepy Ami5615P0K%,  vped(k) [5.6]

Equation [5.6] shows that Aak, VkeK, as defined above, satisfy
constraints [2.22] of the DRP problem. Hence, using the solution to
the failed flow adjustment step, = feasible solution to the DRP prob-
lem is generated by setting Amgy = vij, VijERN and letting Ack -
shortest path length in RN, VkeK. 5

The above definitions of An and A¢ lead to the following theorem:

Theorem 5.3 For each commodity, all flow carrying paths have

minimum length, i.e.:
Aak = ZijeRN Aﬂ'ijSijp'k, vpeJ (k)nIX (k) [5.7]

where:

JX(k): set of all paths with flow of commodity k.
Proof: Proving by contradiction, assume that some path pk
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carrying flow of commodity k has length greater than the shortest
path, denoted p*k, for commodity k. At least one non-zero cost cycle
is formed by paths pk and p*k since the paths are of unequal length
and have at least two nodes in common, namely the origin and destina-
tion node for commodity k. Call the non-zero cost cycle ' and compute
its cost by traversing the arcs on path pk in the reverse direction
(all these arcs exist because path pk has flow of commodity k) and
traversing the arcs on path p*k in the forward direction. Then, since
path p*k is the shortest path and pk is longer, the cycle has negative
cost. This is a contradiction however, because by Proposition 5.1,
whnen the flow adjustment step terminates with stack S empty, all nega-
tive cost cycles in RN have been eliminated. a8

Theorem 5.4: The primal and dual solutions existing at the
termination of the failed Flow Adjustment Step optimally solve the RP
and DRP problems, respectively.

Proof: The initialization step of the Flow Adjustment Algorithm
(Step 0) begins with a flow assignment satisfying feasibility for the
RP problem and then proceeds to shift flow around cycles such that
flow non-negativity and conservation of flow are preserved. Thus, the
Flow Adjustment Algorithm maintains primal feasibility in RP through-
out and therefore, terminates with a solution feasible to the RP prob-
lem.

Second, as shown in Theorem 5.2, when the failed Flow Adjustment

Algorithm terminates, a feasible solution to the DRP problem is con-
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K = shortest path length

structed by setting Awij - vij, YijeA and Ao
for commodity k in RN, VkeRN.
Finally, the complementary slackness conditions for the RP/DRP

problem are as follows:

#la: -Anij(zkeK Zpepk xpksijp'k + wij+ - Wi - djj)= 0,

vijerdt(n); [5.8a]

#lb:  -Amjj(Sek Zpepk xpR613P K - Wiyt + sy - dip)= 0,

vijeldt(x)C; [5.8b]
#2:  8oK(Zepk xpK - B = 0, Vv kek; [5.9]
#3: % K(-Zjjep Ompj615P K - 80K = 0, vpePK, vikek; [5.10]
#ha:  (Amgi-1)(wi57) = 0, v ijea. [5.11a]
#4b:  (Amyy+l) (wigt) = 0, v 1je1d*(n) [5.11b]
#4e:  Amgj(sij) = O, v ijeldt(mx)C [5.11c]

The primal and dual solutions existing at the termination of the
failed Flow Adjustment Step satisfy:

i) complementary slackness conditions #l and #2 by feasibility in
RP of the primal solution; |

ii) complementary slackness conditions #3 by Theorem 5.3; and

iii) complementary slackness conditions #4 by equations [4.31]
together with the Flow Adjustment Algorithm which fixes the cost (=
A"ij) on over-capacitated arcs (i.e. arcs with wij- > 0) to +1; the
cost on under-capacitated arcs (i.e. arcs with wij+ > 0) to -1; and

all other arcs with flow strictly less than capacity (i.e. arcs with
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Sij > 0) to 0. Furthermore, as shown in Section 2.4 of Chapter 2, it
is possible only for the above defined arcs to have positive values
for wij+' wij- and Sij-

Thus, the primal and dual solutions existing at the termination of
the failed Flow Adjustment Step satisfy primal feasibility, dual
feasibility and complementary slackness conditions and therefore,
optimally solve the RP and DRP problems, respectively. ]

The above results will be used inIChapter 6 to show how the arc

costs generated in the failed flow adjustment step are used to alter

the dual solution in the Price Adjustment Step.

5.4 Finjteness and Flow Adjustment Steps

Although the CMCF problem is a network flow problem, the integral-
ity property (which states that the solution is integer if upper and
lower bounds on variables and right-hand side values are integer) does
not hold because of the bundle constraints (equations [2.2]). As a
result, the optimal solution may not contain integer flow assignments
to paths. This implies that the quantity of flow shifted in a Flow
Adjustment Step need not be integer and thus, the decrease in infeasi-
bility attained for each flow shift may be non-integral. Hence, the
number of flow adjustment steps necessary to solve the RP/DRP problem
may not be finite.

Consider the example depicted in Figures 5.4. First, Figure 5.4a
shows the initial assignment of flows input into the Flow Adjustment

Algorithm. Arc al is over-capacitated by one unit and all other arcs
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Arc capacities: Commodity Demands: Fiow Assigmants:

arcal: 1 all: 1 o :ki
arc a2: 2 Arc Costs: o k2
all others: infinity all: -1 : k3

1 ké

Destination Nodes x4

, S o

Figure 5.4a: Infinite Sequence of Flow Adjustment Steps-- Part I

have primal feasible flow assignments. Figure 5.4b shows the flow
shift located by the Flow Adjustment Algorithm. Using equations
[5.2], [5.3] and [5.4], the size of this flow shift is determined to
be 1/2 unit. 1In executing the flow shift, one unit of flow is removed
from OCarc al, arc a2 is over-capacitated by 1/2 unit and all of the
other arc flows remain primal feasible (AI = -1/2). The resulting
assignment of flows is shown in Figure 5.4c. Next, arc a2 is selected
as the problem arc and the flow shift of Figure 5.4d is located. The

size of this flow shift is determined to be J/4 wunit. In executing

-121-



Arc capacities: Commodity Demands: Flow Asslgments:

arcal: 1 all: 1 o ﬂ
: —&» : flow shift cycle for

arc a: 2 Arc Costs: commodltyym

all others: infinity all: -1

o —& : flow shift cycle for
A* =1/2: Optimal Flow Shiit Size commodity k2

k3
k3

Figure 5.4b: Infinite Sequence of Flow Adjustment Steps-- Part II

the flow shift, 1/2 unit of flow is removed from OCarc a2, arc al is
over-capacitated by 1/4 unit and all other arc flows remain primal
feasible (AT = -1/4). The Flow Adjustment Algorithm continues by
selecting OCarc al and again, locating the infeasibility reducing flow
shift shown in Figure 5.4b. This time however, the size of the flow
shift is reduced to 1/8. Notice the emerging pattern. The flow
shifts of Figure 5.4b and 5.4d, although decreasing in size, can be

repeatedly performed to achieve a decrease in infeasibility.
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Arc capacities: Commodity Demands: Arc Costs:
arcat: 1 all: 1 all: -1
arc a2: 2
all others: infinity

Flow Assigments:

o : 1unitof k1 e : 1unitof k3

g : 1/2 unit of k1 8 : 1/2unitof k3
o : 1unitof k2 @ : 1unitofkd

o1 @ 1/2 unit of k2

¢ 1/2 unit of k4

k1_~ oOrigin Nodes k4,

=]

O O 0.5

Figure 5.4c: Infinite Sequence of Flow Adjustment Steps-- Part III
The size of the ith flow shift, denoted si, is expressed as:
si = 1/(¢2%). [5.12]

Thus, to reduce infeasibility to zero, an infinite sequence of
flow shifts must be executed. To ensure th..t an infinite number of
flow adjustment steps does not occur in solving the RP/DRP prcblen,
finiteness is guaranteed by employing the simplex algorithm.

When this "unacceptable" advancement towards feasibility is

achieved for a specified number of flow adjustment steps, the simplex
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Arc capacities Commodity Demands:  Flow Asslgmants:

arcat: 1 .
arc a2: 2 Al e ~p> : ifow shift cycle
' rc Costs: for commodity k3
all others: infinity all: -1 or coi ty
&> : flow shift cycle
A* = 1/4: Optiwml Flow Shift Size for commodity k4
@3 K1 W ® k2

Origin Nodes

Figure 5.4d: Infinite Sequence of Flow Adjustment Steps-- Part IV

method is used to solve either the RP or the DRP problem formulation.
The DRP problem may be favored over the RP problem since DRP has
potentially far fewer rows than does RP. Given the path formulation
of the CMCF problem, the number of rows in the RP problem formulation
is equal to the number of capacitated arcs plus the number of commodi-
ties. In cases where the capacitated network is very large, the size
of the RP problem is excessive. In the DRP problem formulation, how-

ever, the number of rows is equal to the number of wutilized shortest
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paths for each commodity. Thus, depending of course on the nature of
the problem, the simplex method may be able to accommodate the DRP
problem size, even in cases where the RP problem size is unmanageable.

The question which then arises is why the RP/DRP problems at each
iteration of the PDN algorithm cannot be solved by applying the sim-
plex method to the DRP problem formulation. The answer lies in the
issue of efficiency. 1In solving the DRP problem, the optimal solution
to the itP iteration DRP problem is not a feasible solution to the
i+15% iteration DRP problem with its additional constraints. (In the
case of the RP problem, the optimal solution at the ith iteration is
always a feasible starting solution to the i+15%t RP problem with its
additional wvariables., Thus, wusing the simplex methed to solve the
DRP problem at each iteration of the Primal-Dual method would be inef-
ficient. A good starting solution is not readily available and each
LP must be solved starting with Phase I.

If the simplex algorithm is unable to solve ecither the DRP or the
RP problem (because of size limitations), the PDN algorithm is not
guaranteed to produce the optimal solution to the CMCF problem. It
can, however, advance towards feasibility using a diferent starting
cyclearc and, in the end, may achieve optimality or near-optimality in
the CMCF problem. A measure of the closeness of the final solution to
optimality can be determined using a heuristic to find a feasible flow
assignment in P. This feasible flow assignment is constructed by

altering the solution existing when the Flow Adjustment Algorithm
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unsuccessfully terminates. The objective function value of this pri-
mal feasible solution in P is an upper bound on the optimal objective
function wvalue, z*P. The 1lower bound on Z*P is obtained by
calculating the value of z correspording to the current (always)

feasible solution in D existing at the termination of the Flow Adjust-

ment Algorithm.

5.5 Cycling and Flow Adjustment Steps

Another preblem with the Flow Adjustment Algorithm with respect to
finiteness involves cycling in the search for an infeasibility-
reducing flow shift. Consider the example shown in Figures 5.5. Arc
al 1is over-capacitated and thus, cycle shift 1 is located by the Flow

Adjustment Algorithm (Figure 5.5a). Cycle shift 1 removes flow from

X g : arc cost given proposed fiow shift
=iy : O-cost arc
¥ (J: costofcycle.

-1 13* ] +1  ai 3 .

+1 9 -
oﬂgln for -1 Mﬁlmgﬂn
commodity k for eommonddity ki

Figure 5.5a: Cycling in the Flow Adjustment Algorithm-- Part I
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the over-capacitated arc al but over-capacitates arc a2 and under-
capacitates arc a3 in the process. The value of AI associated with
this flow shift is +1. In an attempt to make this value negative, the
Flow Adjustment Algorithm selects cycle arc a2, adjusts its cost,

locates cycle 2 and adds it to the composite cycle (Figure 5.5b).

= g : are coet for proposed flow shift
—f>r : O-cost erc
‘¥ (.): costotcycle.

cycle 1
¥ (142) = +1

b6 b —B

originfor * P destination
commodity k for commodity k1

Figure 5.5b: Cycling in the Flow Adjustment Algorithm-- Part II

Cycle 2 removes the over-capacitating flow from arc a2 but further
under-capacitates arc a3. As a result, for the composite shift con-
sisting of cycles 1 and 2, AI remains equal to +1. Thus, the Flow
Adjustment Algorithm continues by selecting arc a3, adjusting its cost

and locating cycle 3 (the reverse of cycle 1), as shown in Figure
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5.5c.  Cycle shift 3 results in under-capacitating arc a2 and further
over-capacitating arc al. As a result, the value of AI is 1increased

to +2. Consequently, the Flow Adjustment Algorithm proceeds by

X . : arc cost for proposed fiow shift
—> : O-coatarc

¥ (.): costofcycle.

cycle 1
(142+43) = +2

o G O ——bé; —9

&1 deostination
origin for -1
c:s'mw « for commodity ki

Figure 5.5c: Cycling in the Flow Adjustment Algorithm-- Part III

selecting arc a2, adjusting its cost to reflect its current status as
an UCarc and locating cycle 4 (the reverse of cycle 2), as shown in
Figure 5.5d. Notice that the composite cycle constructed to this
point contains only cycles which counter the effects of one anoth-
er--i.e. cycle 3 "undoes" the effects of cycle 1 and cycle 4 "undoes"
the effects of cycle 2. As a result, a flow shift around the current

composite cycle is equivalent to no flow shift at all. The Flow
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Adjustment Algorithm process can continue, again selecting OCarc al,

and then repeatedly and endlessly finding cycles 1, 2, 3 and 4.

X g : arc cost for proposed tiow shiit
—fp : O-costarc

¥ {): costofcycle.

< S

o2 ‘

y - cycle 1
Y (1424344) = 41

¢1- nf

d ﬂ:::B
28 on
origin for -1 for commodity k1

commodity k

Figure 5.5d: Cycling in the Flow Adjustment Algorithm-- Part IV

To avoid cycling in the Flow Adjustment Algorithm, an upper limit
is set on the number of cycle searches performed prior to the discov-
ery of a negative cost composite cycle. If no flow shift is located,
the search process begins from a different starting point by selecting
a different initial problem arc, if one exists. If cycling continues
to result, then, as before, to guarantee that only finitely many calls
to the flow adjustment algorithm are necessary to solve the RP prob-

lem, the simplex method is invoked.

-129-



In summary, where insufficient progress is achieved using the flow
adjustment algorithm, the RP/DRP problem is solved by applying the

simplex method to the DRP problem (if problem size permits).

5.6 _Summary

Each iteration of the Flow Adjustment Algorithm attempts to reduce

the infeasibility measure by selecting a problem arc and searching for

a flow shift which improves its condition while satisfying the algo-
rithmic design features. If AI = O for the located flow shift, then
the condition of the selected problem arc is improved at the expense
of at least one other arc with flow exactly at capacity (Theorem 5.1)

This new problem arc is selected, its cost is modified, and a search
to nullify the wundesired results of the previous flow shift is
launched. In a domino-like pattern, a succession of flow shifts is
triggered, each flow shift undoing the damage caused by earlier
shifts. If AI becomes strictly less than zero, a flow shift can be
executed which strictly reduces infeasibility (Observation 5.2) and
the algorithmic design criterion is achieved. 1If, however, AI remains
positive and the algorithm terminates, then the accomplishment of the
Flow Adjustment Algorithm is the elimination of all negative cost
cycles in RN (Proposition 5.1) and the determination of an optimal
solution to the RP/DRP problem (Theorem 5.4). In this situation, the
algorithmic design criterion is satisfied, not in the Flow Adjustment
Step, but rather, in the Price Adjustment Step (as demonstrated in

Chapter 6).
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If insufficient progress or cycling occurs in the search for a
flow shift, the simplex algorithm can be invoked (if problem size per-
mits) and the RP/DRP subproblems will be optimally solved. Otherwise,
if the subproblems are too large to be solved using the simplex
method, the PDN algorithm is not guaranteed to produce an optimal
solution to the CMCF problem. Instead, the best the PDN algorithm can
do is to provide a primal feasible solution to T, a dual feasible
solution to D and thus, upper and lowér bounds or. the optimal solution
value.

Chapter 6 presents the PDN algorithm and shows how the Flow

Adjustment Algorithm fits inty its framework.
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6. The PDN Algorithm

Figure 6.1 depicts the PLN Algorithm. A "one-time" initialization
step (Step 0) is followed by an iterative process wherein a restated
problem, RP, 1is defined (Steps 1 and 4) and solved (Step 2). If, in
solving the RP problem, the original problem is also solved, the algo-
rithm terminates (Step 3). Otherwise, another RP problem is defined
and solved. The process repeats in this manner until the original
problem is optimally solved. The following sections (6.1 through 6.5)

describe in detail the steps (shown in Figure 6.1) of the PDN Algo-

rithm. Then, —section 66 presents the PDNalgorithm itself and Sec———

tion 6.7 discusses finiteness. Finally, section 6.8 summarizes the

PDN Algorithm.

Step 0; Sten 1;
Generate Define
initial Dual Admissible
]
Stap 4; 2Mep 2;
Generate New | ° Sten 3 Solve Resiricted
Dual Feasible Optimal? Primal and

Soluilon Dual Probiem

Figure 6.1: The PDN Methodology
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6.1 PDN Step 0: TInitialization

The purpose of the initialization component is to determine a set
of initial dual prices and flow assignments which satisfy both dual
feasibility (equations [2.6] through [2.8]) and complementary slack-
ness conditions (equatlons [2.10] through [2.13]). These criteria can
be easily satisfied. In fact, the only algorithmic tool necessary is
a shortest path procedure. The Initialization procedure 1is as fol-
lows:

Step 1) Set all dual prices to zero;

Step 2) Using these initial dual prices, run a shortest path
algorithm for each commodity and assign all commodity flows to short-
est paths without regard to arc capacity constraints.

Step 1 ensures the satisfaction of complementary slackness condi-
tions #1 and #4 (equations [2.10] and [2.13) respectively). Dual
feasibility and the satisfaction of demand requirements (equations
[2.3]), flow non-negativity (equations [2.4]), and complementary
slackness conditions #2 and #3 (equations [2.11] and [2.12]) are guar-
anteed by Step 2. In the initialization step, however, flow is
assigned without regard to arc capacity constraints and thus, satis-
faction of the bundle constraints (equations [2.2]) is not guaranteed.

To summarize, the initialization component provides initial dual
and primal solutions which satisfy all of the design features of the

PDN Algorithm.
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6.2 PDN Step 1: Define Admissible Elements

The PDN algorithm determines the set J of admissible elements
using the admissibility conditions defined for the primal-dual methcd
(equations [2.14] and [2.15]). For a given dual feasible solution,
admissible elements are:

1) shortest origin to destination paths for each commodity; and

ii) slack wvariables Sij for arcs ijeA with dual arc price equal
to zero.

These admissible elements are used to construct the residual,

restricted network, RN, described in detail in Definition 4.4.

6.3 PDN Step 2: Solve RP and DRP Problem

Step 2 is motivated by Result #l which states that any feasible
solution to P exclusively utilizing the elements of the admissible set
J, is an optimal solution to P. Thus, the objective of the RP problem
is to find a flow assignment in the residual, restricted network which
minimizes total infeasibility. Chapter 5 showed that repeated execu-
tions of the primal-based Flow Adjustment Step can achieve this objec-
tive. Each Flow Adjustment Step terminating with a flow shift,
strictly advances the primal solution closer to feasibility (Observa-
tion 5.2) and therefore, to optimality in P. A Flow Adjustment Step
failing to locate an infeasibility reducing flow shift and instead,
terminating with the elimination of all negative-cost cycles in RN,
optimally solves the RP/DRP problem. If repeated executions of the

Flow Adjustment Algorithm reduce the infeasibility measure to zero or
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eliminate all negative-cost cycles in RN, the RP/DRP problems are
optimally solved and the iterative Flow Adjustment Step terminates. If
cycling or insufficient progress results in the solution process, the
PDN algorithm either invokes the simplex algorithm to solve the RP/DRP

problem or terminates prematurely with a non-optimal solution.

6.4 PDN Step 3: Test for Optimality

Step 3 performs the test for optimality by computing the value of
infeasibility associated with the flow assignment generated in Step 2.
By Corollary 4.1, the CMCF problem P 1is optimally solved if the
infeasibility measure I 1is equal to zero. Thus, the PDN Algorithm
terminates 1f I = 0, otherwise I > 0 and feasibility in P cannot be

achieved for the current solution for D.

6.5 PDN Step 4: Generate New Solution for D

If feasibility in P cannot be achieved for the current dual solu-
tion, a new dual solution for D is generated using a dual-based Price
Adjustment Step. The purpose of the Price Adjustment Step is to move
the dual solution closer to optimality in D and to create the possi-
bility for an improved (i.e. less infeasible) primal solution for P.

These criteria are satisfied by defining the PRICE ADJUSTMENT STEP as

follows:
Definition 6.1: The Price Adjustment Step adjusts the dual

prices, m, on a set of arcs in RN such that:

i) the dual arc prices, n2, remain non-negative;
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ii) all utilized admissible elements remain admissible;

iii) at least one inadmissible element becomes admissible; and

iv) the dual objective function value increases.

To satisfy the requirement that all utilized admissible elements
remain admissible, the Price Adjustment Step must ensure that all flow
carrying shortest paths remain shortest; and must not increase dual
prices on arcs with total flow less than capacity.

To satisfy the requirement that ;t least one inadmissible element
become admissible, the Price Adjustment step must either ensure that
at least one longer path becomes a shortest path for some commodity or
at least one dual arc price is raduced to zero.

The requirement that the price adjustment step augment the set of
admissible elements is significant because by enhancing RN, it creates
the possibility for a flow shift which can lead to a reduction in pri-

mal infeasibility.

6.5, Satisfaction of Design Features and Criterion

The following points show that the price adjustment step of Defi-
nition 6.1 satisfies all of the design features of the PDN algorithm:

Point 1) Dual feasibility (equations [2.6] through [2.8]) is
always satisfied because by definition, arc prices are restricted to
non-negative values and the commodity-specific dual nodes prices are
correctly determined using a shortest path procedure;

Point 2) Since all of the utilized admissible elements remain

admissible, complementary slackness conditions #3 (equations [2.12])
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are satisfied for the current flow assignments;

Point 3) Since the price adjustment step does not alter any of
the primal flow assignments, demand (equations [2.3]) and flow non-
negativity (equations [2.4]) requirements are satisfied.

The algorithmic design criterion requires advancement of the solu-
tion towards optimality at each iteration of the PDN Algorithm. By
Definition 6.1, the price adjustment step is required to increase the
dual objective function value, thus advancing it towards optimality.

In addition to improving the dual solution, the Price Adjustment
Step 1s 1instrumental in the improvement of the primal solution. It
alters the set of shortest paths and admissible slack variables so as
to create the potential for a Flow Adjustment Step to reduce the
infeasibility measure.

The next section describes the implementation of the Price Adjust-
ment Step and shows that the requirements of definition 6.1 are satis-

fied.

6.5.2 Implementation

A dual price adjustment step is invoked (as shown in Figure 6.1),
when a Flow Adjustment Step fails to locate an infeasibility-reducing
flow shift. As shown in Chapter 5, using the arc costs generated 1in
the Failed Flow Adjustment Step, an optimal solution to the DRP prob-
lem can be easily constructed. Then, as in the Primal-Dual algorithm
presented in Chapter 2, the optimal prices for the DRP problem are

used in the Price Adjustment Step to create & new solution for D. The
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new solution is achieved by adjusting the current solution using equa-

tions [2.32] as follows:

W'ij - i + eiAﬂ'iJ, ijea; and
oK' - oK + eiAak, keK.
where:
Ty oK: current dual prices for D;

”'ij' oK': revised dual prices for D;

aryy, aok: optimal solution to the DRP problem-- outputs
of the failed Flow Adjustment Step;

0;: multiplier at iteration i.

The value of the multiplier 6; 1is determined using equation

[2.33}:

65 = MIN [(MIN,(cpk + Zyjeq 7yy614P°K - o)/
(-Zijea Axij6ijp:k + AcK)); MINg(-my5/0my4)]
where:
a = (p|pe(PK), VKeK, -Zjjep 8myj615P K + Aok = v K > 0);

B = (i]|ijeA n any4<0);

For the set B, the value of 8; corresponding to each arc ijef is
determined simply by computing the ratio of 7 and Anr. In the case of
the set a, however, the value of @i must be computed for each path p
and commodity k with 1pk > 0. Since there are potentially an

exponential number of such computations, a label-correcting algorithm
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was developed. This algorithm, by searching the arcs of RN (and not
the paths) determines and sets node prices which are used to expedite
the calculation of the minimum 8; for the set of paths p € a.

Using the same arguments presented in Result #3, the revised dual
prices for D, n’ and o', satisfy all feasibility requirements (equa-
tions |[2.6] through ([2.8]) and maintain admissibility for all basic
elements in the solution to the ith Rp problem. Similarly, using the
same arguments presented in the proof of Result #4, at least one inad-
missible element becomes admissible with the revised dual prices.
Finally, the arguments presented in the proof of Result #5 can be used
to show that, barring degeneracy, the revised dual prices achieve
ascent of the objective function of the CMCF dual problem D. This
statement can be unqualified as follows:

Theorem 6.1: 1In the PDN Algorithm, each Price Adjustment Step
leads to strict ascent of the objective function value for D.

Proof: From Result #5, if dual prices are altered by a non-zero
amount (equations [2.32) and [2.33]), ascent of the objective function
value for D 1is achieved. Dual prices are unaltered by the Price
Adjustment Step only if Am equals zero for each arc or 6; equals zero.
First, 1t is impossible for Am to equal zero for each arc because the
Price Adjustment Step is invoked only if optimality is not achieved
and the Flow Adjustment Step fails to locate an infeasibility reducing
flow shift. Since infeasibilities exist for the current flow assign-

ment, there is at least one OCarc or UCarc. Thus, by design of the
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Flow Adjustment Algorithm and equationus [4.31], at least one arc has a
non-zero Ax value. Second, it is impossible for the vélue of 81 to
equal zero. This can be seen be examining equation [2.33] which shows
that 6; is either equal to:

i) the difference between the shortest path p&J(k) and the short-
est path peJ(k) divided by a non-zero quantity; or

ii) the ratié of two non-zero quantities.

In the PDN algorithm, the admissiSIe set J includes gll shortest
paths. Thus, the difference between the shortest path not in set J
and the shortest path in set J is a non-zero quantity. Hence, ©; is a
non-zero quantity. It follows that at least one dual price is altered
by a non-zero amount in the Price Adjustment Step of the PDN algorithm
and hence, by Result #5, strict ascent of the dual objective function
for D is attained. 1

Hence, Result #3 and Theorem 6.1 and Results #4 and #5, show that
a price adjustment using equations [2.32] and [2.33], together with
the current dual solution and information generated in the failed flow .

adjustment step, meets the specifications of Definition 6.1, thereby

satisfying the algorithmic design features and criterion.

6.6 Algorithm

In summary, the PDN algorithm begins with a feasible solucion to
the dual CMCF problem, D. This dual feasible solution defines the set
~ of admissible elements used to build the restricted, residual networlk,

RN, over which all flow is assigned. Flow Adjustment Steps shift flow
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among the paths in RN such that conservation of flow is maintained and
total primal infeasibility is reduced. These Flow Adjustment Steps
are repeatedly performed until the infeasibility measure is reduced to
zero or until no further reduction in infeasibility is possible. (If
insufficient progress is achieved, it may be necessary to use the sim-
ilex algorithm to ensure that one of these two conditions is
achieved.) If infeasibility is eliminated (i.e. I = 0), the CMCF
problem is optimally solved and the éDN Algorithm terminates. Other-
wise, the dual feasible solution for D is altered in the Price Adjust-
ment Step and the entire process repeats. The pseudo-code for the PDN

Algorithm is presented in Figure 6.2.

6.7 Finiteness

Theorem 6.2: The PDN Algorithm (using standard perturbation
techniques in the simplex method to bar degeneracy) optimally solves
the CMCF problem in a finite number of steps.

Proof: Let an iteration of the PDN Algorithm be defined by the
outer DO WHILE loop shown in Figure 6.2. Then, each algorithmic iter-
ation includes a series of Flow Adjustment Steps and a Price Adjust-
ment Step. Assuming that the simplex algorithm can be used to solve
the RP or DRP subproblems if necessary and using Theorem 5.4, the pri-
mal and dual solutions existing at the termination of the failed Flow
Adjustment Step optimally solve the RP and DRP problems, respectively.
Results #6 and #7 show that the optimal solution to the RP problem,

when the simplex method is used, is a basic feasible solution to P.
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Program PDN Algorithm

Given: =, o dual feasible

infeas + .false.
opt « .false.

DO WHILE (.not.opt .and. .not. infeas) !Until optimal
solved + .false.

CALL DEFINE_SET J . !Finds admissible paths
DO WHILE (.not.solved) !'Until solve RP/DRP
solved + .false.
fail « .false.

CALL Flow_Adjust(fail) tShift flows

IF (fail) THEN

Call Simplex !Solve RE/DRP Problem
solved « true. lwith Simplex Method
ELSE IF (I = O .or. Stack S = @) THEN
solved + true. !Solved RP/DRP w/ FAA
END IF
END DO
IF (I = 0) THEN 'Optimality test

opt + .true.
ELSE IF (yX<0 vpesk, vkeK .and. amjj = O VijeA) THEN
infeas « .true.

ELSE
CALL CALC_84 1Calculate optimal value
Call Price_Adjust !Update dual prices
END IF
END DO
RETURN
END.

Figure 6.2: Pseudo-code for the PDN Algorithm
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Although the PDN algorithm is not guaranteed to generate basic solu-
tions, the arguments used ir the proof of Results #6 and #7 can be
used to show that the optimal solution to the RP problem generated by
the PDN Algorithm can be considered a solution to the CMCF problem, P.
Thus, it can be observed that for each solution to P generated in the
PDN algorithm, there exists a basic feasible solution to P with equal
Z*RP value. Applying the arguments used in the proof of Result #6 and
using perturbation techniques tc eliminate degeneracy in the simplex
method, the optimal objective function value obtained by the PDN Algo-
rithm for the i+1St RP problem is strictly less than the corresponding
value for the ith Rrp problem. Thus, the failed Flow Adjustment Step
generates solutions at each iteration which have decreasing Z*RP
values and are therefore, non-repeating. Corresponding to each of
these solutiors is a basic feasible solution for P with equal Z*RP
values. Thus, for an& sequence of solutions to P generated by the PDN
algorithm, there exists a corresponding sequence of non-repeating
basic feasible solutions to P. Hence, the PDN problem optimally

solves the CMCF problem in a finite number of steps. 2

At each iteration of the PDN algorithm, the Flow Adjustment Algo-
rithm must be repeatedly executed to solve the RP/DRP problem. To
expedite this solution process, advance start solutions are employed
by the Flow Adjustment Algorithm. The advance start is achieved by
taking the solution existing at the termination of the preceding Flow

Adjustment Algorithm as the initial solution for the current Flow
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Adjustment Algorithm. For the current admissible set, this 1initial
solution satisfies all the algorithmic design criteria irrespective of
the manner in which the preceding Flow Adjustment Algorithm terminated
(Result #6). If the Flow Adjustment Algorithm terminated with a flow
shift, the set of admissible elements is unchanged and the flow
assignment continues to satisfy all of the design features. Simi-
larly, if the preceding Flow Adjustment Algorithm terminated with
failure to 1locate a flow shift, éhe set of admissible elements is
altered by a follow-on Price Adjustment Step but all utilized admis-
sible elements remain admissible and hence, all flow remains assigned
to shortest paths. Thus, the solution existing at the termination of
the Flow Adjustment Step is a valid starting solution for the succeed-

iIng Flow Adjustment Step.

6.8 Summary

The need to solve large-scale CMCF problems of the size encoun-
tered in practice motivated the development of a new network-based
algorithm named PDN. The PDN algorithm is modeled after the primal-
c¢ual method and therefore, never directly solves the original problem.
Instead, it indirectly solves the original problem by repeatedly
solving smaller, simpler restricted problems.

The algorithm begins by using a given dual feasible solution in D
to define admissible elements. Then it tries to construct, through
flow adjustment steps, a feasible primal solution for P using only

these admissible elements. Flow adjustment steps are repeatedly
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executed, each one moving the primal sc tion quantifiably closer to
feasibility, until no further improvement in the primal solution can
be achieved and the RP problem is optimally solved. To guarantee that
the RP problem is solved to optimality, the PDN algorithm relies upon
the assumption that the simplex method is capable of solving problems
of the DRP (or RP) problem size. If this assumption does not hold,
the PDN algorithm is not guaranteed to optimally solve the CMCF prob-
lem. Instead, the PDN algorithm consfructs a primal feasible solution
to P and determines both upper and lower bounds on the optimal solu-
tion value.

If the restricted problem size is not prohibitive, the PDN algo-
rithm is guaranteed to optimally solve the RP/DRP problems at each
iteration. (For very large problems which cannot be solved using the
simplex method, this guarantee does not hold because the Flow Adjust-
ment Algorithm may get "stuck". If this situation does not occur, the
PDN algorithm will optimally solve the RP/DRP problems at each iter-
atior.) If the optimal primal solution to the RP problem is feasible
for the original CMCF problem, the PDN algorithm terminates with opti-
mality in P. If not, the dual prices are adjusted and the entire pro-

cess repeats.
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7. Experimental Design

Several solution methods for the capacitated, multi-commodity net-
work flow problem were investigated. These sclution methods are clas-
sified within the following major categories:

i) LP methodology;

ii) DW Methodology;

iii) PD Methodology; and

iv) PDN methodology.

For each methodology, different algorithmic strategies were imple-
mented and then used to solve a variety of CMCF test problems. The
test problems differ in network topology; number of commodities; and
amount of congestion in the network. Several performance measures are
used to evaluate the performance of each algorithmic implementation.

Sections 7.1 through 7.5 describe the characteristics of the CMCF
algorithmic implementations and test problems. Section 7.6 then
defines the computing environment. Finally, Section 7.7 describes the

performance measures used to evaluate and compare the algorithms.

7.1 LP Solution Methodology

The LP Solution Methodology formulates the CMCF problem using the
node-arc formulation described iIn equations [l1.1] - [1.4]. The
resulting linear program (LP) is then directly solved without any form
of decomposition using MINOS: "A Modular In-Core Nonlinear Optimiza-
tion System" [41]. (MINOS implements, among other things, the simplex

method.)
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0f all four solution methodologies tested, the LP solution method
is the most general. It does not use specialized decomposition
strategies and does not exploit the specific structure of the CMCF
problem. The purpose of the LP solution method is to provide a "base"

to which other solution methods can be compared.

7.2 DW Solution Methodology

The DW solution methodology solves the CMCF problems using the
Dantzig-Wolfe algorithm (Chapter 1). The Dantzig-Wolfe Algorithm was
implemented because Assad [5,6,7] and Swoveland [49,50] reported that
price-directive decomposition (such as Dantzig-Wolfe) outperforms pri-
mal partitioning and resource-directive solution methodolcgies.

The DW methodology involves LP subproblems which are solved using
the XMP [39] software package. XMP is particularly well-suited for
the column-generation strategy used in Dantzig-Wolfe decomposition.
When the solution process is interrupted by the addition of columns,
XMP 1incorporates these columns into the simplex tableau and resumes
pivoting, beginning with the solution existing prior to the addition
of the columns.

At each iteration of the DW method, the added columns are gener-
ated using Moore’s [40] label-correcting shortest path algorithm with
Pape’s [43] suggested sequence list management scheme. This shortest
path algorithm is performed on a network which is generated from the

input data and stored in forward star form (Bradley, et. al. [12]).
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7.3 PD Solution Methodology

The PD Solution Methodology solves CMCF problems using the primal-
dual methodology, described in Chapter 2. As in the DW solution
method, XMP 1is used to solve the restricted subproblems and Moore-
Pape’'s label-correcting algorithm is used to generate the new columns
at each iteration.

Two distinct primal-dual schemes, using different RP problem for-
mulations, were implemented and teste&. The objective was to assess
the impact of the RP problem formulation on efficiency of the primal-
dual method.

In the first implementation, called PD1, the RP problem is formu-
lated with equations [2.16] - [2.20]. Two artificial variables, w+‘
and w~ , are added for each bundle constraint in P (equations [2.12]).
The artificial variables associated with the bundle constraint for
each arc ij can be interpreted as parallel, opposing artificial arcs
which permit additional flow to travel from node i to node j or from
node j to node i. These artificial arcs allow flow to over-capacitate
or under-capacitate the original arcs and thus, create the possibility
for primal infeasibilities in the form of OCarcs and UCarcs. The
objective is to eliminate all of the infeasibilities by reducing the
flow on each artificial arc to zero.

In the second primal-dual implementation, called PD2, the RP prob-
lem is formulated by adding a single artificial variable, denoted w+.,

to each equation in P, i.e.:
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MIN zgp = Zjjea wij+ + Sper Vi [7.1]

subject to:

. p.k +
ek Tpesk xp<6iiPr K + wijt = dij,

v ijeldt(n), [7.2a]
Zper Zpegk xpkﬁijp'k +sg5 +wigt = dgy,

v ijelgt(n)C; [7.2b]
Tpegk xpk + .t = bk, V kek; [7.3]
xpkzo, v peik, Vv kek; xpk-O, v pe(J¥)C, V keK; [7.4]
wij+ >0, Vijea; wt =0, V kek. [7.5a]
sijj 2 6, V ijeA; sjy =0, V ijerat(n). [7.5b]

where:
w'+: artificial variables measuring infeasibility of the

flow assignment.

The artificial variables in the bundle constraints of the PD2 for-
mulation (equations [7.2]) can be interpreted again, as artificial
arcs. This time, however, since only one artificial variable exists
per constraint, the artificial arcs can create the possibility for
infeasibilities in the network in the form of UCarcs only, and not
OCarcs. If insufficient shortest path capacity exists for some commo-
dity k, the PD2 formulation, rather than permit the over-capacitation
of an arc in RN, assigns the excess flow to the artificial wvariable
Wk+- Since wk+ is the artificial variable associated with the demand

constraint for commodity k (equations [2.3]), wk+ can be interpreted
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as an artificial arc spanning from the origin to the destination of
commodity k. This artificial origin to destination arc holds the flow
of commodity k which cannot be feasibly assigned to the restricted
network. (Hence, artificial arcs containing flow can be considered
OCarcs since the "true" capacity of these arcs is zero.)

Parallels can be "loosely" drawn between the DW solution methodol-
ogy and the PD2 algorithmic implementation using the RP formulation of
equations [7.1] - [7.5]). 1In both céses, commodity flow which cannot
be feasibly assigned to the restricted network is instead assigned to
the artificial origin-to-destination arcs. These artificial arcs have
essentially infinite cost and thus, the objective is to find a flow
assignment not utilizing any of these artificial arcs. The parallels
between the two methods cannot, however, be taken too far. Although
both methods formulate the problem similarly, the way in which the two
methods define the restricted network and achieve the common objective

is significantly different.

1.4 PDN Solutfion Methodology
The PDN Solution Methodology solves the CMCF problem using the

Primal-Dual Network algorithm, described in Chapters 3 through 6.

In the interest of increased efficiency, a commodity is defined,
in all PDN implementations, as a set of demands originating at a
common node. A commodity then, is represented by a tree of origin to
destination demands (all rooted at a common origin). Efficiencies are

gained using this tree representation because the number of required
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executions of such routines as the shortest path is reduced.

Both the PDN and LP solution methodologies can effortlessly accom-
modate the tree representation of commodities. The PDN implementa-
tions are completely network based and are thus, unaffected by a com-
modity having several destinations rather than a single destination.
Similarly, the LP solution method formulates the CMCF problem in node-
arc form and can thus, easily accommodate either the path or the tree
commodity definition. The DW and PD implementations, however, use the
path formulation of the CMCF problem and employ column generation
techniques where each column is associated with a specific path for
one origin to destination demand. The value of the LP variable corre-
sponding to any particular column (or path) measures the amount of
total flow on that path. Hence, in the DW and PD solution methodolo-
gies, commodities are represented as origin-to-destination pairs and
not origin or destination-based trees.

For the PDN solution methodclogy, like the PD solution methodol-
ogy, the effect of the RP problem formulation on algorithmic perfor-
@ance was tested. The PDN algorithm using the RP formulation of equa-
tions [2.16] - [2.20] was implemented and is referred to as PDN1. PDN2
1s a variation of PDN1 which uses the RP formulation of equations
(7.1] - [7.5]. Thus, the PDN1 implementation, like PD1, permits the
existence of both OCarcs and UCarcs in RN. PDN2, 1like PD2, allows
arcs in RN to be UCarcs but permits only the artificial origin to

destination arcs to be OCarcs. PDl1 and PDN1, like PD2 and PDN2, have
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the same problem formulation and solution strategy. The only differ-
ence between the corresponding PD and PDN formulations is in the solu-
tion of the XP subproblems: the PD methodology uses the simplex algo-
rithm and the PDN methodology uses repetitions of the Flow Adjustment
Algorithm (Chapter 5).

For the PDN1 and PDN2 implementatiomns, the effect of flow shift
strategies on algorithmic efficiency was also tested. PDNla and PDN1b
(similarly PDN2a and PDN2b) refer té two distinct implementations of
PDN1 (PDN2) which differ in the flow shift criterion exercised. In
PDNla (PDN2a), each flow adjustment step is required to strictly
reduce overall infeasibility (i.e. Azpp = AI < 0) without 1iIncreasing
Infeasibility on any arc (i.e. AIij < 0, VijeA; where AIij is the
change in the infeasibility measure for arc ij resulting from the flow
shift.) Thus, in PDNla (PDN2a), each flow shift reduces the flow on
an OCarc or increases the flow on an UCarc without (further)
over-capacitating or (further) under-capacitating any other arc in RN.
In PDN1b (PDN2b), as in PDNla (PDN1b), each flow adjustment step is
required to strictly reduce total infeasibility in RN. In PDN1b
(PDN2b), however, no additional restrictions are placed on individual
arc Infeasibilities. As long as total infeasibility is rec .ed (and
adherence to the RP formulation guidelines is maintained), the
infeasibility level for a specific arc can improve, worsen or stay the
same. Thus, PDNlb (PDN2b) is, in a sense, a relaxation of PDNla

(PDN2a).
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No
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No
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a b
No No
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tions to multi-commodity, multi-period, production-distribution prob-
lems or to problems involving the scheduling of vehicles on a time-
space network. Problems P2 and P4 have the structure of undirected

communications networks.

Problem # Nodes # Arcs # Capacitated Arcs
Pl 47 98 98
P2 25 96 96
P3 83 205 95
P4 44 268 98
REAL 1195 2820 1256

Table 7.2: Characteristics of the Test Problems

In problems Pl and P2 all arcs are capacitated whereas in problems
P3 and P4, the ratio of capacitated arcs to total number of arcs is
approximately 0.48 and 0.38 respectively.

For each network topology (l.e. problem classification), there 1is
an associated set of test problems in which the number and the size
(demand) of commodities are varied. Table 7.3 shows the variations in
commodity data for problems Pl through P4.

To evaluate the performance of the various algorithmic implementa-

tions and the effect of network topology and commodity characteris-

-154-



tics, all of the algorithmic implementations were run on every network

for each variation in commodity data.

Problem # of Commodities Total Demand
paths trees
P1.1 3 3 28
P1.2 5 3 28
P1.3 7 3 28
Pl.4 6 3 30
P1.5 10 3 30
Pl1.6 15 3 30
P2.1 10 8 60
P2.2 14 12 84
P2.3 20 15 120
P3.1 6 6 36
P3.2 12 6 72
P3.3 6 6 105
P4.1 6 6 90
P4.2 10 8 150
P4.3 14 11 210
P4.4 20 14 300
P4.5 30 17 450
REAL 2227 50 9751347

Table 7.3: Variations within Test Problems

Furthermore, since the PDN algorithmic development was motivated
by the desire to solve "real-world" size problems, another test prob-
lem, called REAL, was generated using data provided by a 1large U.S.
trucking firm. The data, which corresponds to a freight assignment

problem, includes information concerning the required pick-up and
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delivery of 1less-than-truckload shipments. In servicing these ship-
ments, the trucking firm incurs a per-mile charge. Thus, to minimize
the number of miles driven, the objective is to achieve maximum in-
vehicle consolidation (subject, of course, to level of service con-
straints). The potential for consolidation is enhanced by the com-
pany's use of consolidation terminals. These consolidation terminals,
located throughout the country, perform the function of gathering
together shipments destined for the séme location.

The trucking company uses forecasted demands to define and fix
routes for each vehicle. Once the vehicle routes are fixed, the
transportation costs are considered "sunk" and the objective is to
minimize the total service time for the shipments. This problem can
be formulated as a CMCF problem where the vehicle routes, capacities
and travel times define the network over which the shipments (commodi-
ties) are to be serviced and the objective is to minimize total time
(cost). As shown in Tables 7.2 and 7.3, the company’s multi-commodity
network flow problem contains 1195 nodes, 2820 arcs (of which 1256

have finite capacity limitations) and 2227 demands (shipments).

7.6 Computing Environment

The computational testing was performed on a Digital VAXStation II
operating under the MicroVMS V4.7 operating system. All of the algo-
rithmic implementations were programmed in Vax Fortran V4.5 and all
run times were determined (with no users on the system) using SECNDS--

the intrinsic subprogram which calculates clock time.
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7.7 _Performance Measures

To evaluate the performance of the various algorithmic implementa-
tions, total run time and total number of iterations were recorded. In
the evaluation process, each test problem was solved to optimality
using each of the algorithmic implementations. (The PDN implementa-
tions optimally soived all of the test problems without resorting to

the simplex algorithm.)

7.7.1 HNumber of Iterations

Caution must be exercised in comparing, among algorithmic imple-
mentations, the statistics reporting total number of iterations. An
iteration is not defined the same for all of the alternative solution
methods. For example, in the LP solution implementation, the number
of iterations corresponds to the number of pivots of the simplex
method. With respect to the remaining solution methods, however, the
number of iterations corresponds to the number of times a new RP prob-
lem is generated. Even with this "common" definition, there is a dif-
ference between an iteration of the PDN method and an iteration of the
DW and PD methods. In the DW and PD solution methodologies, an iter-
ation corresponds to the solution of a RP subproblem and the follow-on
dual price adjustment step. In the PDN solution methodology however,
an iteration corresponds to finding and executing a dual price adjust-
ment step which ascends the dual objective function. Hence, at the
termination of a PDN iteration, the RP problem is not necessarily

solved. In fact, it may be that only one commodity was involved in the
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iteration. In the extreme case, to solve the RP problem, the PDN
algorithm may require one iteration for each commodity. In the PD and
DW solution methodolegies, however, at most one iteration is required
to solve the RP problem.

To summarize, given the definitions of an iteration and holding
all else constant, the total number of iterations is expected to be
greater for the PDN implementations than for either che DW or PD

implementations.

7.7.2 Run Time

Run time is another measure used in comparing the algorithmic
implementations. Run time is the total amount of time required to
read the input data and solve the resulting problem. Run time can be
divided into three mutually exclusive time components. These time
components, whose sum equals tetal run time, are called:

i) Initialization;

ii) RP Solution; and

iii) Dual.

The 1initialization time component measures the amount of time
required to read in the input data and to manipulate the data into the
required form necessary for the algorithmic implementation. In the
DW, PD and PDN methodologies, the data manipulation involves gener -
ation of the network over which commodities fiow. 1In addition, for
the simplex-based methods, i.e. LP, DW and PD, the data manipulation

involves the generation of the original simplex tableau.
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The RP solution time component, (relevant for all but the LP solu-
tion methodology), measures the total amount of time expended in sol-
ving the RP subproblems. This value measures the amount of time the
simplex algorithm is run in the DW and PD methodologies and the amount
of time the Flow Adjustment algorithm is run in the PDN methodologies.

Finally, the dual time component (also relevant for all but the LP
solution methodology) measures the amount of time necessary to either
prove optimality or find new paths éi.é. generate new columns). For
the DV implementation, this dual adjustment component involves only
the execution of a shortest path algorithm for the commodities. In
the PD and PDN implementations, however, this component involves the
determination of 8 (equation 2.33); the adjustment of dual prices; and
then finally, the execution of a shortest path algorithm for the com-
modities.

To summarize, total run time is the sum of the times required for
initialization, solution of RP subproblems, and adjustment of dual
prices followed by generation of new paths (columns).

The next chapter describes the results of the computational exper-

iments.
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8. Computational Results

The algorithmic implementations presented in Chapter 7 were run on
the set of test problems described in Tables 7.2 and 7.3. In this
chapter, the results of these computational experiments are reported
and analyzed. Section 8.1 analyzes the relationship between run time
and the number of iterations. Then, Sections 8.2 through 8.4 examine
the effects of variations in the problem data on algorithmic perfor-
mance. Specifically, the results of éhe PDNla algorithmic implementa-
tion are analyzed to determine the impact of total demand, number of
demands, and average demand size on total run time. (PDN1la, as
explained in Chapter 7, permits the existence of both OCarcs and
UCarcs and performs flow shifts which strictly reduce total infeasi-
bility without increasing the infeasibility for any one arc.) The
PDNla results are examined in particular because:

i) the PDN algorithm is newly developed; and

ii) the performance of the PDNla implementation (as shown later in
this chapter) is representative of the PDN implementations.

The effects of variations in the flow shift criterion are examined
In Section 8.5. Then, in Sections 8.6 through 8.10, the performance
of the four methodologies, (i.e. LP, PDN, PD and DW) are evaluated and
compared. Next, Section 8.11 reports results concerning the solution
of the large scale problem (Real) introduced in Chapter 7. Finally,
Section 8.12 summarizes the conclusions drawn from the computational

experiments.

-160-



8.1 Run Time vs. Number of Iterations

Intuitively, one would expect that run times are heavily influ-
enced by the number of iterations performed to achieve optimality. As
the number of iterations increases, run times should correspondingly
increase and likewise, as the number of iterations decreases, run
times should decrease. This reasoning is substantiated by Figures 8.1
and 8.2. The number of iterations and the run time plots follow the
same general pattern. This indicates the strong correlation between

run time and the number of iterations performed.
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Figure 8.1: Run Time and Number of Iterations (Pl & P3)
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8.2. Run Time vs. Total Demand

For problems P2, P3 and P4, total demand increases with problem
number (Figures 8.3 and 8.4). For example, total demand is greater
for problem P3.2 than for problem P3.1, just as total demand in prob-
lem P3.3 exceeds that in problem P3.2. This leads to the next general
observation drawn from the plots of Figures 8.3 and 8.4-- total run
time Increases as total demand increases.

To explain this relationship, consider that as total demand

increases, more of the available network capacity will be utilized. In
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other words, more of the network paths will have assigned flow. As
the number of paths with assigned flow increases, the number of dual
price adjustments (or equivalently, the number of iteratioms) required
in the PDN algorithms to equilibrate the lengths of these paths (so
that all are shortest) increases. Hence, increases in total demand
should result in increases in the number of iterations required to
achieve optimality. Figure 8.5 verifies this conclusion by showing
for problems P2, P3 and P4, an increase in the number of iterations as

total demand 1increases. As previously discussed, the total run time
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Figure 8.4: Run Time, Total Demand and Number of Demands (P2 & P4)

is strongly influenced by the number of iterations. Hence, the
increase in run time resulting from increases in total demand is
explained, at least in part, by the increased number of iterations

performed to achieve optimality.

8.3 Run Time vs. Number of Demands

The increases in total run time with problem number for problems
P4, are in part due to increases in dual times. In the dual adjust-
ment step of the PDN algorithms, the optimal value of 8 (equation

[2.33]) is determined and then, the dual arc and node prices are
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updated. These steps are achieved with label-correcting algorithms,
one performed for each commodity. In problems P4, since the number of
commodities 1increases with increasing problem number, there is a
resulting increase in the number of label-correcting algorithms per-
formed for each dual adjustment step. This means that the number of
label-correcting algorithms performed per iteration increases as the
number of commodities increases. Hence, as shown in Figure 8.6, the
average dual time per iteration increases when moving from problem

P4.1 up to problem P4.5. Contrast this with the corresponding pattern
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for Problem P3, also shown in Figure 8.6. Although the number of
demands for problems P3 increases with problem number, the number of
commodities (defined as trees) stays constant. In a PDN dual adjust-
ment step, the label-correcting algorithms are performed for each com-
modity and not for each demand. Hence, the average dual time per

iteration for problem P3 does not display the same increasing pattern

as in problem P4.
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Figure 8.6: Dual Time Per Iteration and Number of Commodities

8.4 Run time vs. Av.rage Demand Size

For problems 1.1 through 1.3 and problems 1.4 through 1.6, Figure
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8.3 shows that a general pattern of decreased run times results when
total demand is held constant and the number of demands is increased.
This result can be explained by first observing that the average size
of each demand decreases as the number of demands increases for a
fixed total demand level. It 1is expected that as the number of
demands increases for a fixed total demand level, flow will be more
evenly distributed across the mnetwork and thus, the demand for arc
capacity will be less concentrated. As a result, it is more likely
that one demand will not have to split among paths but instead, will
be fully assigned to a single path. Since each single path assignment
can be simply determined in the PDN algorithm with a shortest path
algorithm, the total time required to solve the RP problems is
expected to decrease as the number of demands increases for a fixed
demand level. Figure 8.7 supports thi; line of reasoning by showing a
decrease in the PDNla RP solution time as the average demand size

decreases in problems P1.

The following conclusions are drawn from the preceding analysis:
i) algorithmic run time is expected to increase as the number of
iterations increases;

ii) the number of iterations is expected to increase as total

demand increases;

iii) RP solution time is expected to increase as the average size

of each demand increases; and
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iv) dual time is expected to increase as the number of commodi-

ties increases.

Next, the effects of variations in the algorithmic solution

strategy are examined.

8.5 Rup Time vs, Flow Shift Criterion

The (a) and (b) versiomns of the PDN1l (PDN2) algorithmic implemen-
tations differ from one another only in the rules governing the flow
shifts. Both the (a) and (b) versions shift flow to achieve a strict

decrease in total infeasibility. However, wunlike PDNla (PDN2a), a
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flow shift in PDN1b (PDN2b) may result in an increase in infeasibility
on a particular arc. In comparing the results of the two implementa-
tions, it was first observed that for each test problem, the same pat-
tern of dual objective function ascent was achieved from onz iteratior
to the next for both the (a) and (b} versions of PDN1 (PDN2). Thus,
any possible difference between the (a) and (b) versions lies in the
flow adjustments executed between dual ascents. Figure 8.8 shows that
the (a) and (b) implementations of PDﬁl (and of PDN2) are very similar
in the total number of flow shifts required. As a result, the total
RP times for the (a) and (b) implementations of PDN1 are not signifi-
cantly different (Figure 8.9). The total RP solution times, however,
are about 5% less for PDN2a than for PDN2b (Figure 8.9). This indi-
cates that PDN2a is more efficient than PDN2b in finding "acceptable"
flow shifts. This is counter-intuitive, however, since an "accept-
able” flow shift is more strictly defined for the PDN2a case than the
PDN2b case. However, since PDN2b is more "relaxed" in its flow shift
criterion, it may be that the initial flow shifts reassign too much
flow and must later be partially undone. As a result, the later flow
shifts of PDN2b might be more involved (i.e. including more commodi-
ties) than those of PDN2a. This perhaps explains the slight increase
in efficiency achieved by the PDN2a RP implementation over that of
PDN2b.

The overall conclusion, however, is that no significant difference

in the solution process or run times is achieved by altering the rules
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governing flow shifts.

Average Total Number of Flow Shifts
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Figure 8.8: Average Total Number of Flow Shifts

Next, in Sections 8.6 through 8.10, the performance of each algo-
rithmic implementation is evaluated by comparing among implementations
the number of iterations; initlialization time; RP solution time; dual

time; and total run time.

8.6 LP Solution Methodology
In the LP solution Methodology, as described in Chapter 7, the

linear program for each test problem is solved using MINOS. To reduce
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(sometimes substantially) the number of commodities and hence, the
size of the corresponding LP, commodities are defined by the tree
representation rather than the path representation. Even with this
more efficient problem formulation, the LP solution method is not com-
petitive with the other solution methods in terms of run times.

As shown in Figure 8.10, all other solution methods (i.e. the DW,
PD and PDN implementations) averaged together, outperform the LP
implementation. Averaging over problems P1l, P2 and P3, the run time

for the LP solution method is about 100 times greater than that for
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Figure 8.10: Run Time Ratio: LP vs. All Others

the other methodologies averaged together. (This rather sharp con-
trast in run times between the LP and all other solution methods actu-
ally wunderescimates the "true" difference. The average run times
shown in Figure 8.10 do not include results for problems P4 which the
LP solution method did not solve because too many iterations were
required.) Figure 8.10 shows that as the number of arcs or nodes in
the network 1s increased (problems P3) or as the number of commodities
is increased (problems P2), run times of the LP solution methodology

grow much faster than do the corresponding run times for the other
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solution methodologies. The LP solution methodology is particularly
sensitive to problem size because expected solution times grow with
the size of the linear program. The size of the linear program, in
turn, is determined by the number of nodes, the number of commodities

and the number of arcs in the problem to be solved. Specifically:

m = N¥K + C;
n = A*K. : [8.1]
vhere:

m: number of rows in the LP;

n: number of columns in the LP;

N: number of nodes in the test problem;

K: number of commodities in the test problem;

C: number of arcs with finite capacity in the test

problem;

A: total number of arcs in the test problem.

It should not be surprising that the LP solution method is outper-
formed by the DW, PD and PDN sclution methodologies. Unlike the other
methods, the LP solution method exploits neither the block-angular nor
the network structure of the CMCF problem.

The remainder of this chapter will focus on the more specialized

solution methods.

8.7 PDN Solution Methodnlogy

As stated in Chapter 7, the PDN1 and PDN2 implementations differ
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in the formulation of the RP problem. PDNl formulates the RP problem
using equations [2.16] - [2.20], whereas PDN2 formulates the RP prob-

lem using equations [7.1] - [7.5].

8.7.1 PDN]l vs. PDN2 Implementations

As shown in Figure 8.11, the total run times and the individual
component times (averaged over all problems Pl through P4) are essen
tially equal for PDNla and PDN1b, and similarly for PDN2a and PDN2b.

However, between the PDN1 and PDN2 implementations, there is some

PDN Run Time by Components
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Figure 8.11: Run Time by Cemponents
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variation in the these times. Although, the PDN2 and PDN1 implementa-
tions both require the same average number of iterations to achieve
optimality, the PDN2 implementations outperform the PDN1 implementa-
tions with respect to total run time. A component hy component com-
parison shows that the initialization times are the same for each
implementation; RP solution times are less for PDN1 than for PDN2; and

the dual times are greater for PDN1 than for PDN2.

8.7.2 PDNl vs. PDN2: Number of Iterations

As shown in Figure 8.12, the PDN1 and PDN2 algorithmic implementa-
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Figure 8.12: PDN Mean Number of Iterations
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tions require essentially the same average number of iterations to
achieve optimality. However, it is interesting to note that the dual
objective function value achieved at each iteration, differs for the
two methods. Figure 8.13, for example, shows for Problem 4.3 (a rep-
resentative case) the dual objective function value achieved at each
iteration of the PDNla and PDN2a implementations. Although both algo-
rithms require the same number of iterations to solve the problem, the
path followed in attaining the optimal solution is different for the

two methods.

PDN Dual Objective Function Ascent
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Figure 8.13: PDN Dual Objective Function Ascent
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8.7.3 PDNl1 vs. PDN2: Initialization Times

The equivalence of the PDN1 and PDN2 initialization times (shown
in Figure 8.11) is expected since the 1initialization components are

exactly the same for each of the PDN implementations.

8.7.4 PDN1 vs. PDN2: Dual Times

Dual adjustment steps are executed when a flow adjustment search
fails to find an acceptable flow shifé. In the PDN algorithm, the
search for a flow shift may involve only one commodity or, if the dom-
ino-effect is encountered, may involve several or all commodities. 1In
order to determine and set the new dual prices, it is necessary to run
the label-correcting algorithms only for those commodities involved in
the failed flow shift search. Ir all of the PDN algorithms, the dual
adjustment step implementation is the same. Thus, any difference in
the average time for a dual adjustment step between PDN1 and PDN2 is
attributed (in part anyway) to the difference in the number of label-
correcting algorithms performed. In the PDN2 implementations, the
average time for a dual adjustment step, or equivalently, the average
dual time per iteration 1is less than the corresponding time in the
PDN1 implementations (Figure 8.14). This means that, on average, the
RP formulation of PDN2, as compared to that of PDN1l, results in the

involvement of fewer commodities in the flow shift search.

8.7.5 PDNl1l vs. PDN2: RP Solution Times

The average number of flow shifts performed in the PDN1 impleuen-
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Figure 8.14: PDN Dual Time per Iteration

tations exceeds the number performed in the PDN2 implementations (Fig-
ure 8.8). Even so, the total RP solution time is less for the PDN1
implementations than for the PDN2 implementations. Hence, the average
time per flow shift in PDN1 is less than the average time in PDN2.
This 1indicates that the search for a flow shift is taking longer in
the PDN2 implementation than in the PDN1 implementation. The longer
search process of PDN2 indicates that either:

i) more commodities are involved in a typical flow shift for PDN2

than for PDN1l; or
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ii) a greater portion of the network is searched in PDN2 than in
PDN1.

As described in Section 8.7.4, the PDN1 and PDN2 dual times do not
support the first hypothesis above. Since the average dual time per
iteration is 1less for PDN2 than for PDNl, fewer commodities are
involved in the flow shift search of PDN2 than that of PDNl. Since the
first hypothesis above is rejected, it follows that a greater portion
of the network is examined in the PDNi search than in the PDN1 search.
To understand why, compare typical PDN1 and PDN2 search processes.

In the PDN2 search, an objective is to remove flow from the arti-
ficial origin-to-destination arcs for each commodity. In the search
for such a flow shift, a cycle must be found which contains a path
from the origin node to the destination node of the commodity under
consideration. Hence, the entire network must be examined in the
search for this origin to destination path. Contrast this search pro-
cess with that of the PDNl algorithm. In the PDNl algorithm, the
objective is to remove flow from an OCarc or add flow to an UCarc.
Again, to achieve this goal, a cycle must be found which contains a
path, this time, from the origin node to the destination node of the
selected problem arc. Hence, it may not be hecessary to search the
entire network, but rather only that small portion of the network
centered about the problem arc.

Thus, the greater RP solution time for the PDN2 implementations as

compared to the PDN1 implementations is explained by the fact that a
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greater portion of the restricted network is involved in the search

for flow shifts.

8.7.6 PDNl1 vs. PDN2: Total Run Time

Table 8.1 compares the performance of the PDN algorithmic imple-
mentations. The PDN1 and PDN2 methods follow a different path in
achieving the optimal solution but both methods execute zpproximately
the same number of iterations in attaining optimality. PDN2, as com-
pared to PDN1, determines the size of the dual adjustment as a func-
tion of fewer commodities on average and thus, spends less time per-
forming the dual adjustment step at each iteration. The PDN1 imple-

mentation, however, spends less time in finding appropriate flow

PDN1 vs. PDN2

Total Run Time >
Average Number of Iterations =
Average Initialization Time -
Average RP Solution Time/Iteratiocn <
Average Dual Time/Iteration >

Table 8.1: PDNl1 vs. PDN2

shifts because it more severely restricts 1its network search. The

amount of time saved by PDN1 in solving the RP subproblems, however,
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does not compensate for the extra time spent in the dual adjustment
steps. As a result, for the set of test problems, the overall average
run time for the PDN2 implementations is slightly better than that for

the PDN1 implementations (Figure 8.11).

8.8 PD Solution Methodology

The PD solution methodclogy, as explained in Chapter 7, implements
the primal-dual method (Chapter 2) and uses the simplex algorithm to
solve the RP subproblems. The PD1 and PD2 implementations differ only
in the formulation of the RP problems. In the PD1 implementation, the
RP problems are formulated using equations {2.16] - [2.20] whereas, in
the PD2 implementation, the RP problems are formulated using equations

[7.1]) - [7.5]).

8.8.1 PDl vs. PD2 Implementations

The total run times and the individual component times (averaged
over all problems Pl through P4) for the PD1 and PD2 implementations
are compared in Figure 8.15. Overall, the PD2 implementation solves
the test problems faster than does the PD1 implementation. A compo-
nent by component comparison reveals that the initialization and dual
times per iteration are greater for PD1 than for PD2 and their RP

solution times per iteration are essentially equal.

8.8.2 PDl vs. PD2: Number of Iterations

To solve the test problems, the PD2 implementations require an

average of approximately 7% fewer iterations than the PD1 implementa-
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Figure 8.15: PD Run Time by Components

tions, as 1indicated by Figure 8.16. Figure 8.17 shows, for Problem
P1.1, the tracing of the dual objective functicen value at each 1iter-
ation of the PD1 and PL2 methods. This particular example highlights
the differences in the solution processes for the two algorithmic
implementations. The PD2 implementation achleves steeper ascent of
the objective function value than does PD1. PD2 tends to follow a
repeating sequence where steep ascent fecllowed by no ascent is
achieved. (The "nc-ascent” step occurs when another equal length

"shortest" path which has not yet been added into the simplex tableau
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is found.) Unlike PD2, PD1 tends to achieve ascent, however slight,
at each iteration. This phenomenon is best explained through an

example.

Mean Number of PD Iterations
Problems P1—-P4

12

PD1 PD2

Figure 8.16: Mean Number of PD Iterations

Consider the network, for a single commodity k, depicted in Figure
8§.18. In the PD1 implementation, (Figure 8.19), the initialization
process assigns, without regard to arc capacities, all of commodity k
to the origin-to-destination path denoted pl. This assignment results
in the over-capacitation of arcs al, a2 and a3. By complementary

slackness conditions for the RP problem (equations [5.1la]), the RP
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ER1DUAL PRICE ADJUSTMENTS: #1:  pl(al) =1(p2) - I(p1)
#2: pl(a2) = I(p3) - {(p2)
#3: pl(a3) = I(p4) - I(p3)

whare: [(p.) : length of path p.;
pl(a.): dual price for arc a.

path p3
origin for
commodity k /
, n2 n3 _ ai ' a n7 pathp1i ng
’ & R . S : =l i ‘B%
destination
for commodity k
path p2
path p4
Figure 8.19: PD1 Solution Approach
solution sets the Ax dual prices for each of these¢ arcs to +1. Next,

the dual price adjustment step finds that arc al determines the size
of the price adjustment such that the length of path pl 1is increased
to that of the next shortest path-- path p2. The next iterations of
PD1 are as follows:

i) arc a2 determines the size of the dual price adjustment and the
length of paths pl and p2 are increased up to the length of path p3;
and

1i) arc a3 determines the size of the dual price adjustment and
the 1lengths of paths pl, p2 and p3 are increased up to the length of
path p4.

Thus, in PD1, three iterations are required to increase the length
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of the admissible paths up to the length of path p4.

Compare the PD1 solution process with the PD2 solution process. In
PD2 (Figure 8.20), the initial flow assignment capacitates arc a3 and
assigns the excess flow of commodity k to the artificial origin to
destination arc, denoted a0. In solving the resulting RP problem, the
dual price on arc a3 is set to +1. Then, the dual adjustment step
determines the size of the price adjustment such that path pl (as well
as paths p2 ;nd p3) are increased in length up to that of path p4.

Hence, PD2 accomplishes in one iteration the work performed in three

iterations of PD1.

2D2 DUAL PRICE ADJUSTMENTS: #1: pl@)a0
#2: pl{a2)=0
#3: pl(al) = I(p4) - i(p1)
whare: |(p.) : length of path p.;
pl(a.): dual price for ere a.

origin for
commodity k
n2 n3 at n?  pathpi ng
n destination for
commedity k

path p4

Figure 8.20: PD2 Solution Approach

The above example shows that increased efficiency of the PD2 algo-

rithm is achieved (at least partially) because the RP formulation of
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PPl results in more non-zero An arc prices than does the RP formula-
tion of PD2. When more arcs have non-zero Ar values, more alternative
paths are located and hence, more algorithmic iterations are per-

formed.

8.8.3 PDl vs. PD2: Initialization Times

The average initialization time for the PD1 algorithm is 22%
greater than the Initialization time for the PD2 algorithm. In the
initialization step, both PD algorithms read in the input data and set
up the initial simplex tableau. The number of artificial variables in
the PD1 formulation (i.e. columns in the simplex tableau) roughly
doubles the number in the PD2 formulation. It is this difference
which accounts for the discrepancies in the initialization times Ffor

the two implementations.

8.8.4 PDl vs. PD2: Dual Times

As with the PDN algorithmic implementations, the dual adjustment
step in the PD1 and the PD2 algorithms are exactly the same. However,
unlike the PDN implementations, in the PD implementations, the RP
problem is solved to optimality with the simplex algorithm. Hence,
each commodity is involved in the sc-called "failed flow adjustment
step" and thus, the label-correcting algorithms must be run for every
commodity. Thus, the dual time per iteration should be the same for
the PD1 and PD2 algorithms. The average dual time per jteration for

the PD1 algorithm, however, is approximately 25% greater than that for
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the PD2 algorithm. To explain this difference, the 1label-correcting
algorithm determining the optimal value of ® must be more explicitly
described.

Equation [2.33] shows that the optimal value of © is calculated by
performing a calculation for each path p in the set a, where a =
(plpe(P¥), -Zjjep omij613P K + ack - 4K > 0; vkek). Let ppk
represent the amount by which path p exceeds the shortest path length
for commodity k. Then, to calculate é, the path with associated posi-
tive y value and with the minimum p to v ratio must be determined. The
label-correcting algorithm accomplishes this task by finding for each
commodity and for each possible positive vy value, the path of minimum
length having that v value. The © computation can then follow
directly using these paired p and v values to determine the minimum
p/v ratio. Consider applying this algorithm to the examples in Fig-
ures 8.19 and 8.20.

To perform the 8 calculation for the PDl implementation, since Ao
equals 3, the minimum length paths with y values of 0, 1 and 2 have to
be determined. (Path nl-n2-n7-n8 has y = 0; path nl-n2-n3-n4-n6-n7-n8
has y = 1; etc.) In the PD2 implementation however, Ac equals 1 and
hence, the only computation required is the determination of the mini-
mum length path with y value of C. Note that for problems with more
than one commodity, these minimum length paths must be computed for
every commodity and for each distinct positive v value.

Thus, as a result of the RP formulation of PDl1, as compared to
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that of PD2, additicnal work may be required to determine the optimal
8 value. This added work results in longer dual times per iteration

in the PD1l implementation than in the PD2 implementation.

8.8.5 PDl1 vs. PD2: RP Solution Times

The RP time per iteration for PD2 and PDl are essentially equal.
This relationship is explained in Figure 8.21 which shows the average
number of columns added to the simplex tableau at each iteration.

Approximately the same number of columns are added and about the same

No. of Columns Added per Iteration
Problems P1-P4
%
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\
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\

2

DW PD1 PD2

Figure 8.21: Number of Columns Added per Iteration
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number of pivots occur per iteration in both PD1 and PD2.
Consequently, the average RP time per iteration in the PDl algorithm

is about equal to that for the PD2 algorithm.

8.8.6 PD]l vs. PD2: Total Run Time

Table 8.2 summarizes the performance of the.PD algorithmic imple-
mentations. As compared to the PDl1 algorithm, the PD2 algorithm
achieves optimality with fewer iterations because its RP formulation
results in move efficient Anr arc price assignments. Furthermore, both
the average initialization time and the average dual time per iter-

ation are shorter for PD2 than for PD1. The difference in the average

PD1 vs. PD2

Total Run Time >
Average Number of Iterations >
Average Initialization Time >

Average RP Solution Time/Iteration =

Average Dual Time/Iteration >

Table 8.2: PDl1 vs. PD2

dual time per iteration for the two implementations is, again, attrib-
uted to the more efficient Ar arc price assignments resulting from the

PD2 formulation as compared to those resulting from the PD1 formula-
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tion. The end result, is that the average total run time for PD2 is

approximately 20% less than that for PDl, as shown in Figure 8.15.

8.9 PDN vs. PD Implementations

The total run times and the individual component times (averaged
over all problems Pl through P4) for the PDN and PD implementations
are compared in Figure 8.22. The PDN implementations outperform the
PD implementations in every respect. The number of iterations, ini-
tialization time, RP solution time and dual time are all less for the

PDN implementations than for their PD counterparts.

PDN and PD Run Time by Components
Problems P1—-P4

45

40 4 [ Initiclization

o B2 o

T
PDN1 PDN2 PD1 PD2

Figure 8.22: PDN and PD Run Time by Components
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8.9.1 PDN vs. PD: HNumber of Iterations

On average, the PD implementations perform 13% more iterations
than do the PDN implementations. To explain this result, first recall
from Chapter 7 that an iteration refers to the number of dual adjust-
ment steps performed. Hence, the PD implementations perform 13% more
dual adjustment steps than do the PDN implementations. Figure 8.23
compares the sequence of dual objective function values generated by
the PDN and PD implementations for problem P3.2. The PD implementa-

tions, in general, either achieve relatively substantial ascent of the

Dual Objective Function Ascerit
2.270 Problem P3.2

2.230 PD2
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Figure 8.23: PDN vs. PD: Dual Objective Function Ascent
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objective function or achieve no ascent at all. In those steps where
ascent is not achieved, an alternative shortest path is located which
is not yet included in the simplex tableau. In the PDN implementa-
tions, although relatively 1little ascent per iteration is achieved,
each iteration does achieve strict ascent. (Theorena 6.1 shows that
the PDN algorithm achieves strict ascent at each iteration because the
network based nature of the algorithm permi<s the consideration of all
shortest paths simultaneously, Heﬂce, the "next" shortest path not
included in RN is always strictly longer and strict ascent is achieved
with each dual price adjustment.)

As Figure 8.23 shows, if it were not for these "no-ascent” iter-
ations, the PD algorithm would achieve the optimal solution in fewer
iterations than the PDN algorithm. However, since the PD algorithm
generates ps~ths on an "as-needed” basis, it gets "stuck" at the same
dual objective function value for repeated iterations. Meanwhile, the
PDN algorithm continues itc "slow buf sure" ascent. The end result
being that PDN achieves optimality in fewer dual adjustment steps
(1.e. iterations) than PD.

Although on average the PD implementations perform fewer iter-
ations than the PDN implementations, the PDN implementations require
more iterations in problems P4 than the PD implementations. Figure
8.24 shows that as total demand increases in problems P4, the number
of required iterations grows more quickly for PDN than for PD. This

difference stems from the inconsistent definition of an iteration. One
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Total Demand

iteration of the PD method corresponds to the solution of one RP sub-
problem. However, as explained in Chapter 7, possibly several iter-
ations of the PDN algorithm correspond to the solution of one RP sub-
problem. As total demand and congestion increase in the network, more
RP subproblems must be solved. It is expected that as the number of
RP subproblems increases, the number of iterations required in the PDN
algorithm will surpass the number required in the PD algorithm. It is

important te note however, that although the number of iterations of
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the PDN glgorithm exceeds that of the PD algorithm, the PDN average
total run time for problems P4 is about 63% of that for the PD imple-
mentations. Averaging over all problems Pl through P4, the PDN imple-
mentations require about 55% of the time required by the PD implemen-
tations. Hence, as total demand increases, the PDN method, as com-
pared to the PD method, lcses some ground due to increases in the num-
ber of iterations required to achieve optimality. However, even with
increased total demand, the PDN 1mp1eﬁentations continue to outperform
the PD implementations.

To conclude, the PDN implementations solve the test problems, on
average, in fewer iterations than the PD implementations because all
admissible paths are considered simultaneously and not added one by

one as in the PD methods.

8.9.2 PDN vs. PD: Initialization Times

The average initialization times for the PDN implementations are
about 3 times less than those for the PD implementations. The sharp
contrast in these initialization times is attributable to the rela-
tively large amount of time required to set up the simplex tableaus

for the PD implementations. The PDN implementations do not require

the set-up of a simplex tableau and thus, within less time, are able
to set up the problem as well as determine dual and primal starting

solutions.
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8.9.3 PDN vs. PD: Dual Times

The average dual time per iteration is about 25% greacer for the
PD implementations than for the PDN implementations. This is because
the PD methods perform more label-correcting proce .res for each dual
price adjustment than do the PDN methods. As previously stated, the
PD methods determine 6 by running a label-correcting algorithm for
each commodity. The PDN methods, however, determine 8 by running a
label-correcting algorithm for only those commodities involved in the

failed flow adjustment step.

8.9.4 PDN vs. PD: RP Solution Times

The average RY solution time per iteration and the total RP solu-
tion time is less in the PDN algorithmic implementations than in the
PD algorithmic implementations. In fact, repetitions of the Flow
Adjustment Algorithm solve the RP subproblems in about 70% of the time
it takes the simplex method to solve the RP subproblems. These
results should not be further analyzed because both the PD and PDN
methods use different RP solution techniques; solve different RP sub-

problems; and define iterations differently.

8.9.5 PDN vs. PD: Total Run Time

As indicated by Figure 8.22, the PDN implementations solve the
test problems in approximately 55% of the time required by the PD
implementations. The PDN implementations perform the initialization

step; solve the RP problem; and adjust the dual prices faster than do
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the PD implementations (Table 8.3).

PDN wvs. PD
Total Run Time <
Average Numbz=r of Iterations <
Average Initialization Time <
Average RP Solution Time/Iteration <
Average Dual Time/Iteration <

Table 8.3: PDN vs. PD

The greatest inefficiency of the PD algorithms is captured in Fig-
ure 8.23. The number of dual ascent iterations achieved by the PD
implementation for Problem P3.2 is 5, which represents roughly 25% of
the total number of iterations performed. The remaining 75% of the
iterations do not achieve ascent of the dual objective function
because shortest paths are not included in the simplex tableau. If
the PD methods were able to indeed include (efficiently) all ‘“neces-
sary" paths of shortest length in the tableau at each iteration, then
the number of iterations of the PD algorithms would be significantly
reduced. The difficulty, of course, is in determining the "optimal"
number or "optimal" selection of paths to incurporate into the simplex

tableau at each iteration. This highlights the benefit of the net-
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work-based strategy used in the PDN algorithm. It allows the network
to be examined on an arc, rather than a path, basis. Consequently, by
determining the set of arcs on shortest paths (using a shortest path
labeling algorithm), the PDN algorithm can consider all shortest
paths without specifically generating them, as potentially required in

the PD algorithms.

8.10 DW vs. PDN and PD Implementations

The average total run times and the individual component times
(averaged over all problems Pl through P4) can be compared for the DW,
PDN and PD solution methodologies. As shown in Figure 8.25, the DW
algorithmic implementation outperforms all other implementations.
Averaging over all problems, the number of iterations required to
achieve optimality; the total RP solution time; the total dual time;
and consequently, the total run time are less for the DW implementa-
tion than for any other implementation. Initialization time for the
DW method 1is less than that for the PD methods but greater than that

for the PDN methods.

8.10.1 DW vs. PDN and PD: Number of Iterations

In the Dantzig-Wolfe and primal-dual methods, additional columns
or paths are generated as necessary at each iteration. It stands to
reason that the method which generates the most (good) paths at each
iteration is most 1likely to solve the problem with the fewest iter-

ations. Figure 8.21 shows that the DW method generates at each iter-
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Figure 8.25: PDN vs. PD vs. DW: Run Time by Components

ation, more than twice the average number of columns (paths) generated
by the primal-dual methods. This can be explained by the fact that at
each iteration the DW method can generate a new path for each commo-
dity, whereas the primal-dual based methods can generate only a new
path for those commodities determining the optimal value for 6. Hence,
applying the logic above and assuming the generated paths are "good",
the DW method should solve the test problems in fawer iterations than

the PD method. This deduction is supported by Figure 8.26.
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Figure 8.26: PDN, PD & DW: Number of Iterations and Total Demand

Figure 8.26 shows the relationship between total demand and the
number of iterations in the PD, PDN and DW solution methods for prob-
lems Pl and P4. As the graph indicates, the PD and PDN solution meth-
ods are much more sensitive to total demand than are the DW solution
methods: the number of iterations grows much more sharply with
increases in demand for the PD and PDN methods than for the DW method.
For problems Pl, with relatively 1little demand, the PDN solution
method requires fewer average iterations than does the DW method.

(The PD methods, however, require about twice as many iterations as
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the DW methods, even for problems Pl1.) For problems P4, however,
where total demand increases by a factor of 5 with problem number, the
number of iterations in the DW method is about 1/4 the number in the
PDN methods and about 1/3 the number in the PD methods. Averaging
over all problems, the number of iterations in the DW method is about
1/2 the number in the primal-dual based methods. The sensitivity of
the PD and PDN methods with respect to total demand, and the relative
lack of sensitivity of the DW methods, can be explained by considering
the sequence of paths generated by the alternative methods at each

iteration.

8.10.1.1 DW vs. PDN and PD: Path Generation

As the total demand increases, the congestion level in the network
increases and consequently, the competition among commodities for
capacity increases. This means that unlike the uncongested case, flow

will not simply be assigned to its one shortest path. Instead, as

congestion grows, it is expected that more and more commodities will
have to be assigned to longer and longer paths. In the PD and PDN
methods, since flow can be assigned only to shortest paths, dual
prices (for each commodity) must be adjusted so that the lengths of
all the paths are at least as great as the longest path to which flow
is assigned. Hence, as the number and the lengths of paths used by
commodities increase, the expected number of dual price adjustments or
equivalently, the expected number of iterations should 1likewise

increase.
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Consider now the DW methodology. As before, with an increase in
congestion comes an increase in the length of paths utilized by each
commodity. The DW method, however, requires only that flow be
assigned to the set of shortest paths (i.e. columns) considered at the
time of the iteration. Hence, dual prices (for each commodity) are
assigned such that the lengths of all the considered paths are at
least as great as the lcngest path to which flow is assigned. Unlike
the primal-dual based methods, the DW method does not have to generate
all the paths which are shorter than the longest utilized path. There-
fore, longer paths will be generated in fewer iterations of the DW
method than of the primal-dual methods. To illustrate this, the fol-
lowing example is considered.

Figure 8.27 shows the initial set of shortest paths considered by
the PD, PDN and DW methods. The first iteration of the PD and PDN
methods assigns all flow to shortest paths. Consequently, arcs
(n3,n4) and (n4,n5) become (over-)capacitated by commodity k1l and arc
(n8,n9) becomes (over-)capacitated by commodity k2. Using equations
[2.32] and [2.33], the PDN and PD algorithms update dual prices as
shown in Figure 8.28. Then, the "next" shortest path, denoted p3
(n1l-n2-n8-n9-n5-n6), is located. Notice that sinca path p2 is fully
capacitated by commodity k2, path p3 has no residual capacity and
thus, will not help advance the solution towards primal feasibility.

Examine now, the path generation processes of the DW implementa-

tion. Applying the DW method to the network in Figure 8.27 results in
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the assignment of the dual prices and the generation of the new paths,
denoted p4 (nl-n2-n5-n6) and p5> (n7-n8-nl0-nll), shown in Figure 8.29.
Paths p4 and p5 are longer than path p3 buc unlike p3, both p4 and p5
have residual capacity and both have total length less than the arti-
ficial arc. Thus, paths p4 and p5 can be used to advance the primal

solution closer to optimality.

pl: dual arc price ao(k.): artificial arc cost for commodity k.
I(p.): length of path p. e=——==== : (over)capeacitated arce

destinatlon for
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n7 ng e
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commodity k1 pl = a0(k1) - i(p1) for commodity k1

n2 5 path p1

path p4

a0(k1)

Figure 8.29: DW Solution Methodology
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This example provides 1insight into the differences between the
path generation processes of the Dantzig-Wolfe and primal-dual solu-
tion methodologies. The Dantzig-Wolfe method is less likely than the
primal-dual based methods to generate "capacitated" paths. This 1is
because in solving the RF problem, the Dantzig-Wolfe method determines
actual dual prices, unlike the primal-dual methods which determine
directions of change 1in dual prices. For the Dantzig-Wolfe method,
the dual prices on the capacitated arcs, in general, are large enough
sc that the capacitated arcs will not be included in the newly gener-
ated paths. Thus, the Dantzig-Wolfe method is successful in generat-
ing paths with residual capacity which can be then used to held flow
assigned to the artificial arcs. In the primal-dual methods, however,
the dual prices on the capacitated arcs represent only directions of
change. The actual revised dual prices ensure only that the new path
generated is the next shortest path, without regard to residual capac-
ity. This shortest path generation scheme is not very successful in
satisfying the objective of reducing infeasibilities in the network.
The added problem with the shortest path generation scheme is that a
path can be generated only for those commodities determining the next
shortest path. In the DW method however, one path can be generated
for each commodity. Hence, more paths can be generated per iteration
in the DW method than in the primal-dual methods.

To conclude, the number of iterations is less for the DW method

than for the primal-dual methods because the "uncapacitated" path
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scheme, as compared to "shortest” path scheme, results in:
i) the generation of more paths; and
ii) the generation of paths which are more effective in achieving

the problem objective.

8.10.1.2 DW vs. PDN and PD: Tailing-Off Effect

Dantzig-Wolfe decomposition has been known to exhibit the "tail-
ing-off effect" in solving problems. 1In other words, as the optimal
solution 1is approached, the improvement in the objective function
value achieved at each iteration becomes smaller and smaller. In sol-
ving test problems Pl through P4 with the Dantzig-Welfe decomposition
method, Assad [5,6,7] reported that no tailing-off effect occurred.
This result is substantiated (as shown for Problems P1, Figure 8.30)

when the DW implementation is used to solve these same problems.

8.10.2 DW vs. PDN and PD: Initialization Times

The average initialization time for the PDN implementations is
about one-half that for the DW implementation. This results because
the DW implementation must, in addition to data input and network gen-
eration, set-up the initial simplex tableau.

The average initialization time for the DW implementation, on the
other hand, 1is about 1.5 times less than that for the PD implementa-
tions. The increased time for the PD implementations results from the
large number of artificial variables and hence, columns which must be

generated in the initial tableau.
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Figure 8.30: Tailing-Off Effect

8.10.3 DW vs. PDN and PD: Dual Times

The total dual time is €6 to 13 times greater for the primal-dual

based implementations than for the DW implementation because of dif-

ferernces in:

i) the dual time per iteration required by the two methodologies;

and
11) the number of iterations.

In the DW method, the dual adjustment step 1involves only the

execution of shortest path algorithms for each commodity-- the 8 com-
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putation is eliminated. As a result, the average dual time per iter-
ation in the DW method takes from 3 to 6 times less than that required
in the primal-dual methcds. To magnify the difference in total dual
times, the number of iterations performed in the DW implementation is
about 1/2 the number performed in the primal-dual based implementa-

tions.

8.10.4 DW vs. PDN and PD: RP Solution Times

The RP solution times for the primal-dual based methods are
roughly 1.5 to 2.5 times longer than those for the DW method. How-
ever, the RP time per iteration for the two methods are about the same
when averaged over all problems. Thus, the difference in total RP
solution times is explained by the increased number of iterations per-

formed by the primal-dual methods as compared to the DW method.

8.10.5 DW vs. PDN and PD: Total Run Time

For the problems with relatively little demand, the PDN solution
method requires fewer average iterations than does the DW method.
Consequently, as shown in Figure 8.31, the total run time in solving
problems Pl 1is less for the PDN methods than for the DW methods. The
PD methods however, require about twice as many iterations as the DW
methods, even for problems Pl. As a result, for problems Pl, the
total run time for the PD implementations are about twice that of the

DW implementation.
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Figure 8.31: Problem Pl1: Run Time by Components

Contrast the run time results of problems Pl with those for prob-
lems P4, shown in Figure 8.32. This time, in the DW method (which is
less sensitive to total demand than the primal-dual methods), the num-
ber of iterations is about 1/3 the number in the PDN methods and about
1/4 the number in the PD methods. Consequently, for problems P4, the
DW run time is about 55% of that for the PDN methods and about 25% of
that for the PD methods.

Averaging over all problems, the DW method is about 1.5 to 2 times

faster than the PDN implementations and about 3 times faster than the
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PD implementations (Figure 8.25).
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Figure 8.32: Problem P4: Run Time by Components

Table 8.4 summarizes the comparative performance of the DW and
primal-dual based algorithmic implementations. On average, the DW
implementation solves the test problems faster than the PDN and PD
implementations. The success of the DW implementation is attributed
to:

i) the efficiency of the DW path generation scheme; and

ii) the reduction in dual time.
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DW vs. PD vs. PDN

Total Run Time < <
Average Number of Iterations < <
Average Initialization Time < >
Average RP Solution Time/Iteraticn = =
Average Dual Time/Iteration ) < <

Table 8.4: DW vs. PD/PDN

The DW methods, which tend to generate "useful, wuncapacitated"
paths, require fewer iterations than the primal-dual based methods,
which instead tend to generate "capacitated, shortest" paths.

In addition, the simplified dual adjustment step of the DW method
further increases the run time variation with respect to the PD/PDN
methods. The end result is that the DW method is able to solve the
CMCF test problems more efficiently than the primal-dual based meth-

ods.

8.11 Solution of Large-Scale Problems

As stated in Chapters 1 and 7, the specific application motivating
this thesis-- the freight assignment problem, requires the transport
of a set of shipments from their crigins to their destinations using a

fleet of wvehicles. In particular, data describing the required
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pick-up and delivery of less-than-truckload shipments was provided by
a large U.S. trucking firm. This problem can be formulated as a lin-
ear CMCF problem where:

i) the objective is to minimize total service time for the ship-
ments; and

ii) the underlying network represents the possibilities for ship-
ment service.

For this "real-world" problem (REAL), the nodes of the network are
classified into three categories. The first type of node, called a
stop node, represents "stops" or locations along a vehicle route. The
second type of node, called a source or a sink node, represents ship-
ment origin and destination locations, respectively. An arc joining
two stop nodes corresponds to a leg of a vehicle route. The capacity
of such an arc equals the vehicle capacity and its cost equals the
total time to travel between the locations represented by the from
node and the to node of the arc. Arc cost is taken as travel time
because the objective of the freight assignment problem is to minimize
the total time to service (i.e. load/ transport/ unload) all shipments
between their respective origins and destinations. It is assumed that
the transportation costs are "sunk" because:

i) the vehicle routes are "fixed": and

ii) the actual cost incurred is a function only of the number of
miles driven and not the size of the shipments transported.

An arc joining shipment k's source node to one of vehicle m’'s stop
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nodes represents the possibility of vehicle m picking-up shipment k.

Similarly, an arc from one of vehicle m’s stop nodes to the sink node
of shipment k corresponds to the possibility of vehicle m delivering
shipment k. The capacities of these arcs is "infinite" and their
costs are equal to zero.

The final node type, called a consolidation node, represents a
consolidation terminal at a particular point in time. Consolidation
terminals are located throughout the Eountry and serve as "warehouses"
where freight can be removed from vehicles, sorted by destination,
stored, and transshipped to another vehicle. These terminals help to
achieve maximum in-vehicle consolidation. Assignment of a shipment to
an arc connecting two consolidation nodes represents "holding" or sto-
rage of that shipment at *he consolidation terminal for the time
period represented by the two nodes. Thus, an arc between two conso-
lidation nodes has cost equal to the time period spanned by the two
nodes and capacity equal to the capacity of the consolidation termi-
nal.

The nodes and arcs described above are used to construct the net-
work of service possibilities. For REAL, 2227 shipments must be ser-
viced by this network which contains 1195 nodes and 2820 arcs (of
which 1256 are capacitated). Figure 8.33 depicts the way in which a
shipment might typically be serviced. Shipment k is picked-up by
vehicle m at its origin (node a) and transported through location b

before being dropped-off at consolidation center c. Shipment k is
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then held for two time periods at the consolidation center before it
is transferred to vehicle n. Vehicle n transports k through locations

d and e before dropping it off at its destination location (node f).

time period
n+2 d e f
>E— Bg— -&%
time pstiod
n+1
a b c
® O ::me period
Origin Destination :
fork for k

Figure 8.33: Freight Assignment Example

A review of the literature, summarized in Table 1.1, shows that
relative to the size of REAL, only small CMCF problems are solved
using existing solution techniques. In fact, the largest randomly
generated problem reportedly solved (Swoveland [49]) contains up to
356 nodes, 1279 arcs (50 - 60 of which were capacitated) and 6 commo-
dities. Comparatively, REAL has 3.4 times as many nodes, 2.2 times as
many arcs, 23 times as many capacitated arcs and 372 times as many
commodities.

With respect to real-world size problems, Ali et. al. [3] solves
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problems whose corresponding LP formulations contain 1395 to 2191 rows
and 3165 to 21676 columns. Contrast these LP sizes with that corre-
sponding to REAL. The REAL LP (even using the more efficient tree
definition for commndities) contains 61,006 rows and 141,000 columns--
approximately 30 times as many rows and 6 to 45 times as many columns
as the real-world problems solved by Ali et. al.

In attempting to solve REAL, the simplex-based methods, i.e. LP,
DW, and PD, are unable to even begin the solution process. For these
solution methodologies, more memory is required to set-up the simplex
tableau than is available. Using the DW or PD solution methodologies,
the LP for REAL contains 3483 rows and an absolute minimum of 4454
columns. Even using a conservative estimate of the number of columns
required, this translates to a memory requirement for the DW and PD
methods which is approximately 30 times greater than that for the PDN
solution methodology. Specifically, to solve REAL, the PDN algorith-
mic implementations require approximately 11,500 pages (5,888,000
bytes) whereas, the DW solution methodology requires over 320,000
pages (164,398,080 bytes). The difficulty is that the VAXStation Il
restricts the paging file to at most 20,000 pages and thus, is unable
to soclve REAL using the DW algorithm. Memory limitations are not
exceeded, however, by the PDN algorithm which 1s able to optimally
solve REAL in 117.83 seconds, or approximately 2 minutes on the VAX-

Station II.
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8.12 Conclusions

The objective of running the LP, PDN, PD and DW algorithmic imple-
mentations on the set of test problems (Pl through P4) was not to per-
form extensive run time analyses but rather, to gain an deeper wunder-
standing of the intricate workings of each type of solution methodcl-
ogy and the effect on these methodologies of changes in problem char-
acteristics.

The analysis led to the following generalizations concerning vari-
ations in problem data:

i) run time increases as total demand increases;

ii) run time decreases as the average demand size decreases; and

iii) the PDN implementations are more impacted by increases in
total demand than are the PD implementations, which are more impacted
than the DW implementation.

Variations in the PDN algorithmic implementations showed that
essentially no difference results when the flow shift criterion is
relaxed to allow a flow adjustment to increase infeasibility on a par-
ticular arc. Alterations in the RP formulation, however, do affect
algorithmic performance. The most efficient RP formulation, for beth
the PDN and PD solution methodologies, disallows the creation of
OCarcs and assigns all excess flow to artificial origin to destination
arcs.

Finally, each algorithmic implementation was evaluated by compar-

ing the number of iterations; initialization time; RP solution time;

-216-



dual time; and total run time. For problems Pl through P4, an overall
ranking of the solution methodologies, based on these performance mea-
sures, is as follows:

1) DW methodology;

2) PDN methodology;

3) PD methodology; and finally,

4) LP methodology.

Overall, the DW methodology was the most effective in solving the
CMCF problems. 1Its effectiveness is attributed to the fact that it
requires fewer iterations than either the PDN or PD methodologies.
Fewer iterations are required in the DW implementation, as compared to
the PDN and PD implementations, because:

i) more columns (paths) are generated per iteration; and

ii) relatively more "uncapacitated" paths are generated.

The more effective path generation scheme of the DW implementation
results because, unlike the primal-dual based methods, the DW method
does not guarantee the satisfaction of the complementary slackness
condition (equation [2.12]) requiring that all flow be assigned to
shortest paths at all times.

Attaining second rank is the PDN methodology. Its superior per-
formance over the PD method is primarily attributed to the fact that
the network-based nature of the PDN algorithm, as opposed to the col-
umn generation-based nature of the PD algorithm, allows the consider-

ation of all shortest paths without explicit generation. In addition
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to this benefit, in the PDN algorithm, the initialization time, the RP
time per iteration and the dual time per iteration are all less than
in the PD algorithm. This is explained, at least partially, by the
fact that at each iteration, the PDN algorithm can restrict its con-
sideration to a subset of commodities, whereas the PD algorithm con-
siders all commodities.

Finishing 1last, the LP solution methodology is unablie to compete
with any of the other solution methodologies, particularly as the num-
ber of commodities, nodes and/or ercs in the problem increase. The
downfall of the LP solution methodology is that it uses no decomposi-
tion and hence, the size of the problem to be solved becomes inordi-
nately large very quickly.

Lastly, only the PDN implementations are able to solve the test
problem (REAL) generated from actual data. The LP, PD and DW solution
methodologies cannot be used to solve REAL because the simplex algo-
rithm cannot accomm;date its large size, even for the DW and PD decom-
position methodologies. However, the PDN algorithm, designed specifi-
cally to solve large-scale problems, solves REAL to optimality in
under 2 minutes on a VAXStation II.

Finally, the in-depth analysis presented in this chapter provides
insight which 1is useful in targeting and evaluating areas for future
CMCF research, Some of the ideas and intuition obtained are discussed

in Chapter 9.
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9. Conclusions

This chapter concludes this thesis by describing in Section 9.1,
the major contributions of this research work and in Section 9.2, the

proposed directions for future multi-commodity flow research.

9.1 Contributions

Unfortunately the "simple" properties of the single-commndity
problem do not carry over to the multi-commodity problem and hence,
the multi-commodity flow problem is particularly difficult to solve.
Even so, a review of the literature indicates that for CMCF problems
of small to moderate size, rather effective decomposition solution
methodologies exist. These decomposition procedures solve the CMCF
problem indirectly through an iterative process which uses the simplex
algorithm to solve a series of smaller, restricted problems. However,
as problem size increases and the size of the restricted problems
exceed the limitations of the simplex method, these existing solution
techniques are rendered useless. Thus, the research described in this
thesis is motivated by the need for a new algorithm to solve large-
scale CMCF problems.

Given this motivation, a network-based, primal-dual algorithm
(PDN) was developed. The major difference between the PDN algorithm
and the conventional primal-dual algorithm (PD) (Chapter 2) is in the
solution of the RP and DRP subproblems. The RP/DRP subproblems are
solved in the PDN method through repetitions of a network-based Flow

Adjustment Algorithm while the PD method uses the simplex algorithm.
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The Flow Adjustment Algorithm, by eliminating the size limitations
imposed by the simplex algorithm, provides PDN with the flexibility to
solve large-scale problems. Besides this primary benefit, the net-
work-based nature of the Flow Adjustment Algorithm affords PDN addi-
tional advantages with respect to efficiency.

For example, without explicitly generating every path, the PDN
algorithm can assign node labels and simultaneously consider all paths
of shortest 1length. This 1is a di§tinct advantage over the column-
generation technique of the classical primal-dual algorithm. PD tends
to get "stuck" for repeated iterations at the same objective function
value because columns (shortest-paths) are generated on an as-needed
basis.

Another advantage of the network-based strategy is that the large
overhead required in the set-up of the initial simplex tableau is not
necessary. As a result, the average initialization times for the PDN
algorithms are about 1/3 that of the simplex-based PD algorithms.

Finally, as compared to the simplex-based primal-dual algorithms,
the PDN algorithms require less time per iteration to solve the RP
problems; update the dual prices; and generate new paths. The time
savings is attributed to the fact that the network-based PDN algo-
rithm, unlike the simplex-based PD algorithm, can perform flow shifts
and dual price updates for a subset of commodities.

The final result is that even for prcblems of moderate size (i.e.

Pl through P4-- described in Tables 3.2 and 3.3), the PDN algorithm
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optimally solves the CMCF problems in about 55% of the time required
by the PD methods. (Although the proof of optimality for the PDN
algorithm relies on the simplex method, optimality was achieved by PDN
for all test problems without invoking the simplex algorithm.)

In addition to outperforming the simplex-based primal-dual algo-
rithm, the network-based primal-dual algorithm achieves its primary
goal of solving large-scale problems. For the large-scale problem
(REAL-- Tables 3.2 and 3.3), the siﬁplex-based methods are unable to
accommodate the size of the restricted subproblems. However, the PDN
algorithm solves REAL to optimality in under 2 minutes on a VAXStation
II.

The contribution of this research work then, is the development of
a solution methodology which can be used to solve large-scale CMCF
problems which previously could not be solved. Furthermore, even for
moderate-size problems (Pl through P4), this new network-based solu-
tion methodology is able to solve the CMCF problems in less time than

that required by its simplex-based counterpart.

9.2 Future Research

The following sections discuss the following ideas for future mul-
ti-commodity flow research:

i) a network-based Dantzig-Wolfe algorithm,;

ii) a preprocessing dual-ascent step for the PDN algorithm;

iii) a strategy to relax the conservaticn of flow constraints

rather than the bundle constraints of the CMCF problem; and
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iv) a CMCF algorithm using parallel-processing techniques.

6.2.1 Network-Based Dantzig-Wolfe Algorithm

The computational experiments, described in Chapters 7 and 8, show
that the Dantzig-Wolfe method solves the test problems (Pl through P4)
in less time and with fewer iterations than either the simplex-based
or the network-based primal-dual algorithms. The increased efficiency
of the Dantzig-Wolfe algorithm is attributed primarily to two points.
First, the Dantzig-Wolfe algorithm requires fewer iterations because:

i) it is able to generate more paths at each iteration; and

ii) the paths which are generated tend to be more effective in
minimizing total cost as compared to the shortest paths generated by
the primal-dual method.

Second, the Dantzig-Wolfe method has the added advantage that only
a shortest path algorithm is required to update dual prices and gener-
ate new paths. The elimination of the dual adjustment size (i.e. 9)
computation results in substantial dual time savings for the Dantzig-
Wolfe algorithms over the primal-dual algorithms.

Given that the Dantzig-Wolfe algorithm outperforms the primal-dual
algorithms, the question arises as to whether a network-based imple-
mentation of the Dantzig-Wolfe algorithm would be more effective than
the network-based primal-dual algorithm. To gain insight into the
answer to this question, consider why the primal-dual methodology, and
not the Dantzig-Wolfe methodology, was selected as the theoretical

basis of the new network-based algorithm.
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The primal-dual algorithmic strategy to maintain satisfaction of
complementary slackness conditions alters the formulation of the RP
subproblem hy:

i) permitting the elimination of actual arc costs; and

ii) simplifying the objecrive to that of finding a feasible flow
assignmant.

The real benefit of this simplified RP problem is that its corre-
sponding DRP protlem is also simplified. In fact, the optimal dual
prices for the DRP problem can be immediately determined for all arcs
with flow strictly less than or strictly greater than capacity. Fur-
thermore, for all arcs with flow exactly equal to capacity, the opti-
mal value of the dual arc price is bounded between 0 or -1 and +1.

By comparison, consider the RP and DRP problems associated with
the Dantzig-Wolfe methodology. The Dantzig-Wolfe RP subproblems
require the solution, over a restricted network, of a minimum-cost
CMCF problem. The optimal dual arc prices for the corresponding DRP
problem, unlike the DRP problem for the primal-dual method, are
bounded only by non-negativity requirements. Furthermore, the only
restriction placed on the duzl arc prices is that their value be equal
to zero if total arc flow does not equal capacity. This does not
mean, as in the primal-dual method, that the dual prices can be imme-
diately fixed at the start for all arcs with flow not equal to capac-
ity. Inscead, since the solution of the RP problem may (and should,

if sufficient demand requires) alter the flow assignment for any arc
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up to the capacity of that arc, all dual arc prices are subject to
change throughout the RP solution process. This problem is not
encountered in the primal-dual methodology because the apriori "fix-
ing" of dual arc prices requires only that the flow level on every arc
not increase or decrease beyond (pot up to as in the Dantzig-Wolfe
case) the capacity of the arc, i.e. no arc with flow less than capac-
ity can become over-capacitated and no arc with flow greater than
capacity can become under-capacitated;

Consider the implications of the above discussion on the solution
of the RP and DRP problems. If the simplex algorithm is used to solve
the RP/DRP subproblems, then the differences in the primal-dual and
Dantzig-Wolfe RP formulations have no impact. The simplex algorithm
i1s essentially indifferent to solving a LP with objective function
costs reflecting true arc costs or one with costs reflecting infeasi-
bilities. However, if the simplex algorithm is not used to solve the
CMCF problems, then the primal-dual methodology clearly has an advan-
tage in that the elimination of arc costs; the need to find only a
feasible flow assignment rather than an optimal one; the ability to
immediately determine the optimal dual arc prices for an entire class
of arcs; and the tight bounds placed on the optimal dual arc prices
can all prove to be very valuable simplifications in the development
of a solution procedure for the restricted subproblems.

The above arguments indicate that the simplifications which eased

the development of the network-based primal-dual algorithm are not
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present for the development of a network-based Dantzig-Wolfe algo-
rithm. In addition, the gains achieved by the network-based primal-
dual algorithm, relative to the simplex-based primal-dual algorithm,
would not be realized in the Dantzig-Wolfe implementations. Specifi-
cally, the PDN algorithm is able to outperform the PD algorithm, 1in
large part, because it is able to consider all shortest paths simulta-
neously-- without specifically generating each one. A network-based
implementation of Dantzig-Wolfe would not, however, have this same
advantage. Since the Dantzig-Wolfe algorithm does not explicitly con-
sider shortest paths, node labels cannoct be used to define the set of
paths to be considered in the restricted network. Hence, unlike the
PDN implementation, a network-based implementation of the Dantzig-
Wolfe algorithm would not allow the possibility of considering paths
which are not yet generated. Lastly, unlike the PDN algorithm, the
dual update and path generation step of the Dantzig-Wolfe algorithm is
relatively simple and quick. Thus, it would be impossible, even by
considering only a subset of all commodities in the network-based
implementation, to achieve substantial savings in the dual time.

Thus, the gains achieved by the network-based strategy for the
primal-dual method do not materialize for the Dantzig-Wolfe method.
Hence, it 1is expected that a network-based version of the Dantzig-
Uolfe algorithm, besides being very difficult to implement, would be
outperformed by both its simplex-based counterpart and the PDN algo-

rithm.
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9.2.2 Preprocessing Dual Ascent Step for the PDN Algorithm

The PDN algorithm begins by setting all dual arc prices to zero
and then running shortest path algorithms to determine the commodity-
specific dual node prices. If this rather simplistic initialization
step were replaced by a more sophisticated initialization process, it
is conceivable that the total number of iterations and hence, the run
time in the PDN algorithm could be reduced (possibly substantially).

Saviozzi [46] reported some preliminary results using subgradient
techniques with a Lagrangean relaxation of the CMCF problem to achieve
an advanced starting basis. The idea presented here is to use a pre-
processing dual ascent step to determine a "smart" initial set of dual
arc prices and then, proceed with the PDN algorithm as previously
described. A step by step description of the "simplistic version" of
the dual ascent algorithm (which examines one commedity at a time) is
as follows:

DO_FOR EACH COMMODITY k:

Step 1) Determine the restricted network, RNk, containing only

shortest paths for commodity k;

Step 2) Separate the nodes contained in RNX into two sets S and
S€-- where set S contains the source node for commodity k
and set SC contains all nodes in RNK except those in set
S.

Step 3) Define the cut set as all arcs in RNK with from node in

set S and to node in set SC.
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Step 4) Test if the cut set capacity (i.e. the sum of the capaci-
ties of all arcs in the cut set) is less than the total
quantity of commodity k demanded, i.e. bK. If so, go to
Step 5; otherwise gn to Step 7.

Step 5) Alter the dual prices on all arcs in the cut set such
that the lengths of the shortest paths and the next
shortest path for commodity k become equal. (From Result
#5, equation [2.30] and the fact that all shortest paths
for commodity k are "cut" by the removal from RNK of the
arcs in the cut set, this price adjustment will result in
strict ascent of the dual objective function value.)

Step 6) Update RNK to reflect the addition of the new shortest
path(s) and go to Step 3.

Step 7.) For one arc in the cut set, add its to node to set S and
remove it from set S€.

Step 8.) If the destination node for commodity k is included in
set S then STOP; else go to step 3.

This preprocessing dual ascent algorithm can be further enhanced
by examining more than one commodity (i.e. pairs, several, or all)
simultaneously. The expected result is that the simultaneous consid-
eration of commodities will result in more non-zero dual arc prices
and hence, further ascent of the dual objective function value. The
improved solution, however, will be achieved at the expense of

increased complexity and run time. The best strategy can be deter-
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mined, of course, only through computational experimentation.

9.2.3 Relaxation Strategy snd Parallel Computation

A particularly appealing solution strategy for the CMCF would be
to relax, rather than the bundle constraints, the conservation of low
constraints at each node. This solution approach offers interesting
possibilities and, given the single-commodity resuits of Bertsekas and
Tseng [10,11], has the potential of performing well.

Finally, the possibility for parallel computaticns provides an
interesting and possibly fruitful area of multi-commodity flow
research. The CMCF problem and the decomposition-based solution
approaches lend themselves naturally to parallel computation methods.
For example, the commodity-specific shortest path subproblems in the
Dantzig-Wolfe method can be simultaneously solved on a parallel com-
puter using a separate processor for each commodity. Similarly,
assigning one processor to each commodity in the Primal-Dual methods,
results in the simultaneous determination of thz optimal dual price
adjustment size and likewise, the simultaneous generation of new
shortest paths. These parallel solution techniques have the potential
of outperforming sequential solution methods by several orders of mag-

nitude.
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