
MIT Open Access Articles

DiffCloth: Differentiable Cloth
Simulation with Dry Frictional Contact

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Li, Yifei, Du, Tao, Wu, Kui, Xu, Jie and Matusik, Wojciech. 2022. "DiffCloth: Differentiable
Cloth Simulation with Dry Frictional Contact." ACM Transactions on Graphics.

As Published: http://dx.doi.org/10.1145/3527660

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/146147

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146147

2

DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact

YIFEI LI and TAO DU, MIT CSAIL, USA

KUI WU, Tencent Lightspeed & Quantum Studios, USA

JIE XU and WOJCIECH MATUSIK, MIT CSAIL, USA

Fig. 1. We present a differentiable cloth simulator with dry frictional contact and demonstrate its efficacy in multiple downstream applications, including

designing this twirl dress (10,902 degrees of freedom and 125 time steps with a step size of 1/120 s). The goal is to optimize the material parameters of

the dress so that the apex angle of the cone it forms after a twirl reaches a desired value (100 degrees in this example). Left and middle: the optimized

dress before and after a twirl. Top right and bottom right: motion sequences of the twirl dress before and after material parameter optimization using our

differentiable simulator. The final apex angles before and after optimization are 39.06 and 100.30 degrees, respectively.

Cloth simulation has wide applications in computer animation, garment

design, and robot-assisted dressing. This work presents a differentiable

cloth simulator whose additional gradient information facilitates cloth-

related applications. Our differentiable simulator extends a state-of-the-art

cloth simulator based on Projective Dynamics (PD) and with dry frictional

contact [Ly et al. 2020]. We draw inspiration from previous work [Du

et al. 2021] to propose a fast and novel method for deriving gradients in

PD-based cloth simulation with dry frictional contact. Furthermore, we

conduct a comprehensive analysis and evaluation of the usefulness of

gradients in contact-rich cloth simulation. Finally, we demonstrate the

efficacy of our simulator in a number of downstream applications, includ-

ing system identification, trajectory optimization for assisted dressing,

closed-loop control, inverse design, and real-to-sim transfer. We observe

a substantial speedup obtained from using our gradient information in

solving most of these applications.

This work was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Grant No. FA8750-20-C-0075.
Authors’ addresses: Y Li, T. Du, J. Xu, and W. Matusik, MIT Stata Center 32-321, 32 Vas-
sar Street, Cambridge, MA 02139; emails: {liyifei, taodu, jiex, wojciech}@csail.mit.edu;
K. Wu, Tencent Lightspeed & Quantum Studios, USA; email: kwwu@tencent.com.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
0730-0301/2022/09-ART2 $15.00
https://doi.org/10.1145/3527660

CCS Concepts: • Computing methodologies→ Physical simulation;

Additional Key Words and Phrases: Projective Dynamics, differentiable

simulation, cloth simulation

ACM Reference format:

Yifei Li, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik. 2022. DiffCloth:

Differentiable Cloth Simulation with Dry Frictional Contact. ACM Trans.

Graph. 42, 1, Article 2 (September 2022), 20 pages.

https://doi.org/10.1145/3527660

1 INTRODUCTION

Clothing is ubiquitous in our daily lives. With the widespread

appearance of clothing in the fashion industry, film industry,

computer animation, and video games, simulating cloth has

been an active research topic for more than two decades. Today,

research advancement in cloth simulation has unlocked various

applications such as virtual try-on [Guan et al. 2012], garment

design [Bartle et al. 2016; Montes et al. 2020; Umetani et al.

2011; Wang 2018], fold design [Li et al. 2018], garment grad-

ing [Brouet et al. 2012], sagging-free inversion [Ly et al. 2018],

and robot-assisted dressing [Clegg et al. 2020, 2018].

Inspired by the recent development of differentiable physics sim-

ulation and its success in rigid-body systems [de Avila Belbute-

Peres et al. 2018; Geilinger et al. 2020], fluidic systems [Du et al.

2020; Hu et al. 2020], and deformable-body systems [Geilinger et al.

2020; Hahn et al. 2019], we argue in this article that a large number

of cloth-related applications would also benefit from a high-quality

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

https://orcid.org/0000-0002-3770-0575
https://orcid.org/0000-0001-7337-7667
https://orcid.org/0000-0003-3326-7943
https://orcid.org/0000-0003-3510-3387
https://orcid.org/0000-0003-0212-5643
https://doi.org/10.1145/3527660
https://doi.org/10.1145/3527660

2:2 • Y. Li et al.

differentiable cloth simulator. The critical ingredient in previous

differentiable simulators is their ability to compute gradients by

backpropagating any differentiable performance metrics through

simulation. Such additional gradient information unlocks gradient-

based continuous optimization methods, which often bring a sub-

stantial speedup compared with their gradient-free counterparts

in downstream applications.

Compared with the recent active development of differentiable

simulators for rigid-body and soft-body dynamics, research work

about differentiable cloth simulation is still relatively sparse. In-

deed, cloth simulation introduces unique challenges from its

co-dimensional dynamics and, in particular, rich contact events.

While many differentiable simulators have provided solutions to

derive gradients for contact models of varying complexity, their

techniques typically do not expect contact to be as frequent as

in cloth simulation. Deriving gradients with frequent contact and

self-collisions in cloth simulation is not fully resolved even in the

state-of-the-art differentiable cloth simulators [Liang et al. 2019],

and our work attempts to fill this gap.

In this work, we present a differentiable cloth simulator

with extra care of its contact model. We base our method on

the state-of-the-art cloth simulator from Ly et al. [2020] and

employ its Projective Dynamics (PD) simulation method and

dry frictional contact described by the Signorini-Coulomb law.

Therefore, our differentiable cloth simulator inherits both the

speedup from Projective Dynamics and the physical accuracy

from the dry frictional contact model. Unlike previous papers

relying on automatic differentiation tools to derive gradients,

we present an iterative solver modified from Du et al. [2021] to

accommodate the dry frictional contact model. We show that the

modified iterative solver leads to a substantial speedup over a

standard linear solver in gradient computation.

To have well-defined gradients, a differentiable simulator

expects all quantities computed in simulation to be sufficiently

smooth. However, the non-smooth position and force changes

from large numbers of contact events question this fundamental

assumption. To fully understand the usefulness of a differentiable

simulator in contact-rich environments, our work conducts

comprehensive evaluation and analysis of the behavior of our

differentiable cloth simulation with a varying number of contact

events. While previous papers have provided similar discussions,

they primarily focus on understanding penalty-based contact

models [Geilinger et al. 2020] or discussing collisions in rigid-body

dynamics [Werling et al. 2021] where contact events are not as

frequent as in cloth simulation. To our best knowledge, our

work is the first to present such evaluation and discussion of the

usefulness of gradients in a differentiable cloth simulator with dry

frictional contact.

We demonstrate the efficacy of our simulator in various appli-

cations, including system identification of frictional coefficients in

cloth simulation, inverse garment design for computer animation,

and motion planning of robotic manipulators in robot-assisted

dressing. Many of these applications would either be impossible

or require a much longer time to solve with existing methods.

With the extra gradient information from our differentiable simu-

lator, we unlock gradient-based optimizers to solve these problems

with a much higher sample efficiency than traditional gradient-

free methods.

To summarize, our work contributes the following:

• We present a novel differentiable cloth simulator with dry fric-

tional contact and an iterative solver for speeding up its gra-

dient computation.

• We evaluate the source of non-differentiability in the dry fric-

tional contact model and discuss the usefulness of gradients

in differentiable, contact-rich cloth simulation.

• We show the efficacy of our simulator in various applications,

including system identification, trajectory optimization for as-

sisted dressing, closed-loop control, inverse design, and real-

to-sim transfer.

2 RELATED WORK

Our work is closely related to cloth simulation and its applications

in computer graphics. It is also relevant to the more recent differen-

tiable simulation methods developed in the graphics and machine

learning communities.

Cloth simulation. Physics-based cloth simulation has been a

popular topic in the graphics community for decades since cloth-

ing has been widely used in our daily lives. The implicit Euler

integration is used to simulate cloth robustly with large time

steps [Baraff and Witkin 1998; Terzopoulos et al. 1987] while in-

troducing excessive numerical damping. To alleviate this prob-

lem, implicit and explicit methods (IMEX) [Bridson et al. 2003;

Stern and Grinspun 2009] explicitly integrate elastic forces and

implicitly integrate damping forces. Researchers have also intro-

duced other variational integrators, e.g., BDF2 [Choi and Ko 2002]

and Symplectic integrator [Stern and Desbrun 2006], to conserve

the total energy of the system.

For cloth modeled as a mass-spring system, Liu et al. [2013] treat

the implicit Euler integration as an energy minimization problem.

The global linear system then remains constant on run-time, and

each spring constraint can be solved separately in a local step. That

global/local solver idea is generalized as PD [Bouaziz et al. 2014],

which supports material models whose elastic energy has a specific

quadratic form. Projective Dynamic is further extended to support

more general materials [Liu et al. 2017; Overby et al. 2017]. Though

a local step in PD can be processed in parallel, the global step

still needs to maintain a large pre-factorized sparse matrix and do

back substitutions in each step. Another relevant idea is Position-

based Dynamics (PBD) [Macklin et al. 2016; Müller et al. 2007],

which iteratively projects each constraint in a non-linear Gauss-

Seidel-like fashion, leading to highly parallelizable computation on

GPUs.

Both PD and PBD have led to a few follow-up works on more ad-

vanced speedup techniques. Komaritzan and Botsch [2018] present

techniques to speed up PD with contact for physics-based charac-

ter skinning. For PD and PBD in cloth simulation, Wang [2015] and

a follow-up work [Wang and Yang 2016] propose a Chebyshev ac-

celeration technique that can be applied to both PD and PBD to

speed up convergence. Fratarcangeli et al. [2016] also introduce a

parallel randomized Gauss-Seidel method that re-organizes the un-

knowns of the sparse linear system into a few independent blocks,

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact • 2:3

which can be solved in parallel with a single Gauss-Seidel step. Re-

cently, the computation of integration is further accelerated by

the multigrid method, e.g., geometric multigrid scheme [Wang

et al. 2018], algebraic multigrid scheme [Tamstorf et al. 2015], and

Galerkin multigrid scheme [Xian et al. 2019].

Last, our work is also relevant to previous attempts to match-

ing cloth simulation with real fabric behaviors [Clyde et al. 2017;

Miguel et al. 2012, 2013; Wang et al. 2011], which is typically done

by fitting constitutive material models with real material proper-

ties and can benefit from extra gradient information from a differ-

entiable simulator [Hahn et al. 2019].

Cloth contact and friction. Contact and friction are key ingredi-

ents in modern cloth simulation. Provot [1997] proposes a method

called “impact zones” to collect the nodes involved in multiple

collisions into impact zones, which are treated as rigid bodies. Har-

mon et al. [2008] improve the failsafe of impact zones by allow-

ing some sliding motion of the incriminated vertices. Bridson et al.

[2002] introduce a hybrid method to combine the idea of apply-

ing repulsion impulses, frictions, and impact zones to handle cloth

collision robustly, which is still widely used in modern cloth sim-

ulators [Li et al. 2020; Narain et al. 2012]. To model friction fully

implicitly, Brown et al. [2018] treat friction as an additional dissi-

pative term in optimization. Regarding contact handling, repulsive

forces or penalty methods have been widely used [Bouaziz et al.

2014; Geilinger et al. 2020; Macklin et al. 2020; Wang 2015], since

they are easy to implement. However, these methods often need

high stiffness in the penalty energy, leading to disturbing jitter-

ing artifacts that demand careful tuning. Recently, Li et al. [2020,

2021] define a smooth dissipative potential for friction using bar-

rier methods. Their method can guarantee interpenetration-free

states after each time step without the need for parameter tuning.

Unlike penalty-based methods, constraint-based collision han-

dling methods formulate contact as constraints in the physics sys-

tem. Otaduy et al. [2009] first formulate cloth contacts as a sparse

linear complementarity problem (LCP). Their key idea is to in-

terleave frictional contact iterations with normal contact iterations.

Instead of using a pyramidal approximation of the Coulomb fric-

tion cone [Otaduy et al. 2009], Li et al. [2018b] rely upon the exact

Coulomb friction cone and adaptively refine nodes to ensure an ac-

curate treatment of frictional contact. Although constraint-based

methods typically ensure the physics-based constraints character-

izing contact and friction are satisfied after time integration, their

computation cost is typically much more expensive than a penalty-

based method. Recently, Ly et al. [2020] propose an efficient algo-

rithm to incorporate frictional contact into Projective Dynamics

so that non-penetration and Coulomb constraints are satisfied si-

multaneously in a semi-implicit way.

Inverse dynamics. Inverse dynamics have been studied in robot-

ics for decades to reconstruct internal forces or torques from the

observations of robotic systems. However, existing methods usu-

ally focus on rigid-body systems only, which have less than a

hundred degrees of freedom (DoFs) [Dario Bellicoso et al. 2016;

Kang et al. 2021; Mistry et al. 2010]. Inverse dynamics for high-

DoF systems like soft bodies, fluids, and cloth are still under ex-

ploration due to the lack of high-quality numerical solutions in

robotics for both simulation and differentiation. One noticeable

distinction between inverse dynamics and differentiable simula-

tion is that differentiable simulation computes additional gradients

for initial states, system parameters, and design parameters. There-

fore, differentiable simulation enables more applications like sys-

tem identification, inverse design, and real-to-sim matching that

traditional inverse dynamics typically do not consider.

Differentiable simulation. Differentiable simulation is a rela-

tively recent concept explored in the graphics and machine learn-

ing community, but its original idea can be traced back to much ear-

lier works in graphics decades ago. Perhaps one of the earliest such

papers is Witkin and Kass [1988], which shows optimizing simula-

tion to minimize an objective. Despite the recent advances in differ-

entiable simulators in rigid-body dynamics [de Avila Belbute-Peres

et al. 2018; Degrave et al. 2019; Popović et al. 2003; Qiao et al. 2020;

Toussaint et al. 2018; Xu et al. 2021], soft-body dynamics [Du et al.

2021; Geilinger et al. 2020; Hahn et al. 2019; Hu et al. 2020, 2019],

and fluid dynamics [Holl et al. 2020; McNamara et al. 2004; Schenck

and Fox 2018; Treuille et al. 2003; Wojtan et al. 2006], differentiable

cloth simulation still lacks a good solution. One natural idea is to

use particle-based strategies that approximate a nodal system of

cloth with graph neural networks [Li et al. 2019; Sanchez-Gonzalez

et al. 2020]. Although the neural networks are naturally differen-

tiable, the physical accuracy is hard to guarantee.

To accurately predict the behavior of real-world objects, recent

papers [Geilinger et al. 2020; Hahn et al. 2019] present differen-

tiable soft-body systems and mass-spring systems with implicit

Euler time integration and penalty-based contacts. Although a few

recent papers [Li et al. 2020, 2021; Macklin et al. 2020] have in-

troduced differentiable contact handling methods, none of them

show a clothing example using the differentiability besides demon-

strating the differentiability of their methods in theory. Liang et al.

[2019] are the first to introduce a fully functional differentiable

cloth simulation with contact, friction, and self-collision. Instead

of constructing a static LCP problem, they develop a quadratic

programming (QP) problem to minimize the change between

the collision-free state and the original mesh state. Murthy et al.

[2021] also present a differentiable cloth simulator with penalty-

based frictional contact in their fully differentiable simulation and

rendering pipeline. In this article, we build upon the differentiable

PD framework [Du et al. 2021] to simulate cloth dynamics with

dry frictional contact [Ly et al. 2020] and augment it with gradient

computation.

A significant challenge in differentiable simulation is the pres-

ence of non-smooth contact events, where non-smoothness can

arise from discontinuous contact shapes [Popović et al. 2000], im-

pulsive forces [Hu et al. 2019], or branches in contact laws [Ly

et al. 2020], to name a few. Many existing differentiable simula-

tors assume such non-smoothness does not affect the usability of

gradients. Indeed, they present empirical results that observe the

benefits of using gradients in downstream applications [de Avila

Belbute-Peres et al. 2018; Du et al. 2021; Geilinger et al. 2020; Liang

et al. 2019]. While our work also observes the advantages of gra-

dients over gradient-free methods in several applications, we take

one step further by analyzing the source of non-smoothness and

discontinuities in contact-rich cloth simulation. We hope that our

experience can serve as useful heuristics for applying differen-

tiable simulation methods in the future.

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

2:4 • Y. Li et al.

3 BACKGROUND

In this section, we briefly review the Projective Dynamics cloth

simulation method with dry frictional contact described in Ly et al.

[2020], on which our differentiable cloth simulator is based. Our

core contribution lies in the development of gradient computation

in this PD framework with dry frictional contact, which we detail

in the next section.

3.1 Projective Dynamics Method

Implicit time integration. We model cloth as a nodal system with

m 3D nodes. Let x(t) and v(t) be two vector functions from R+ to

R
3m indicating the positions and velocities of all nodes at time t .

We consider the standard implicit time-stepping scheme discretiz-

ing x(t) and v(t) as follows:

xn+1 =xn + hvn+1, (1)

vn+1 =vn + hM−1[fint (xn+1) + fext], (2)

where h is the time step size, M a positive diagonal mass matrix

of size 3m × 3m, and fint and fext the internal and external forces

at each node stacked as two 3m-dimensional vectors, respectively.

Note that we assume for now fint and fext do not contain contact

forces, which will be discussed separately in Section 3.2. We use the

cloth material model described in Bouaziz et al. [2014] to define fint.

The implicit time-stepping scheme connects the state of the nodal

system (xn , vn) at time tn to (xn+1, vn+1) at new time tn+1 = tn+h.

Optimization view. As discussed by Martin et al. [2011], the im-

plicit time-stepping scheme can be rephrased as finding a saddle

point of the following energy minimization problem:

min
xn+1

1

2h2
(xn+1 − y)�M(xn+1 − y) +W (xn+1)︸���︷︷���︸

д (xn+1)

, (3)

where y = xn + hvn + h
2M−1fext is a constant vector that can be

precomputed at the beginning of the current time step. The poten-

tial energyW defines the internal force fint by its spatial gradients:

fint = −∇W (xn+1). It is easy to verify that setting the gradient of

the objective function to zero leads to a system of equations iden-

tical to Equations (1) and (2).

Local and global solvers in PD. The key assumptions in PD is

that the internal energy W can be written as a sum of quadratic

forms [Bouaziz et al. 2014; Liu et al. 2017]:

Wi (x) = min
pi ∈Mi

wi

2
‖Ai x − pi ‖22︸��������������︷︷��������������︸
W̃i (x,pi)

, (4)

W (x) =
∑

i

Wi (x). (5)

Here, each energy Wi projects Ai x, a linear transformation of x,

to its closest point in the set Mi and scales its squared distance

by a prespecified stiffness wi . Both Ai andMi are predefined and

independent of x. Here, Mi is the constraint manifold, and pi is

the auxiliary projection variable as defined in Bouaziz et al. [2014].

With such an assumption on W , PD proposes a local-global

solver to minimize a surrogate objective function:

д̃(xn+1, p) =
1

2h2
(xn+1 − y)�M(xn+1 − y) +

∑
i

W̃i (xn+1, pi), (6)

where p stacks up all pi from each Wi . In the local step, PD fixes

xn+1 and projects each pi to its correspondingMi by solving Equa-

tion (4). Such a local step can be done in parallel for each W̃i . In

the global step, PD fixes p and minimizes д̃ as a function of xn+1,

which turns out to have a closed-form solution:

��M + h2
∑

i

wi A�i Ai
��︸����������������������︷︷����������������������︸

P

xn+1 = My + h2
∑

i

wi A�i pi︸���������������������︷︷���������������������︸
b(p)

. (7)

By alternating between the local and global steps, PD monotoni-

cally decreases the surrogate energy д̃ until convergence, which

can be shown to agree with the saddle point of д [Liu et al. 2017].

The source of efficiency in PD comes from the observation that P

is a constant matrix that can be prefactorized at the beginning of

the simulation, leading to an efficient global step requiring back-

substitution only.

3.2 Dry Frictional Contact in Projective Dynamics

Signorini-Coulomb law. Ly et al. [2020] augment the standard

PD framework described above with non-penetration collision

and Coulomb friction by assuming contact applies to nodes only.

At each time step, assuming a collision detection algorithm has

identified a set I ⊆ {1, 2, 3, . . . ,m}, which describes the indices

of contact nodes. For each node j ∈ I, the Signorini-Coulomb

law [Brogliato 2016] requires its local force rj and velocity uj to

satisfy one of the following three conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Take off: rj = 0, uj |N > 0, (8a)

Stick: ‖rj |T ‖ < μrj |N , uj = 0, (8b)

Slip: ‖rj |T ‖ = μrj |N , uj |N = 0, rj |T ‖ uj |T , rj |T · uj |T ≤ 0. (8c)

Here, μ is the frictional coefficient, and uj and rj are the nodal

velocity and contact force represented in the local contact frame

spanned by the tangential plane and contact normal on the con-

tact surface. The notations j |T and j |N represent the tangential

and normal components of a 3D vector defined in the local frame.

We further define C j ⊆ R3 ×R3 as the set of valid (rj , uj) pairs de-

scribed by the conditions above, allowing us to rewrite Equation (8)

compactly: (rj , uj) ∈ C j .

Implicit time integration with dry frictional contact. The original

implicit time integration now needs to be augmented with addi-

tional constraints describing contact conditions [Ly et al. 2020]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xn+1 = xn + hvn+1,

vn+1 = vn + hM−1[fint (xn+1) + fext + J�n (xn , vn)rn+1],

un+1 = Jn (xn , vn)vn+1,

(rn+1, j , un+1, j) ∈ C j
n ,∀j ∈ In .

(9)

Here, we have added the subscript n in the definitions of the con-

tact set I and the contact condition C j described above to specify

the time step they are defined from. The notation rn+1, j and un+1, j

select the 3D force and velocity corresponding to the jth node

from rn+1 and un+1, respectively. The Jacobian matrix Jn of size

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact • 2:5

3|In | × 3m selects global vectors defined on the contact nodes and

computes their coordinates in the local contact frames. Note that

our definition of Jn implies that it is computed in an explicit man-

ner, i.e., it relies on the last state (xn , vn) entering thenth time step.

For brevity, this background section will describe simple contact

events between a node and a static plane, in which case Jn is a con-

stant matrix that does not need to be computed from (xn , vn). Ex-

tensions to more sophisticated contact events, e.g., self-collisions

between multiple contact nodes or contact events between a node

and a non-planar obstacle, can be found in Ly et al. [2020] and in

our implementation and experiments.

Projective Dynamics with dry frictional contact. The core idea

in Ly et al. [2020] is an additional local step in PD that solves each

contact node independently. Noting that the contact conditions are

primarily defined on nodal velocities instead of nodal positions, Ly

et al. [2020] first rewrite the global step in Equation (7) as an equa-

tion of velocities:

Pvn+1 =
1

h
[b(p) − Pxn]︸������������︷︷������������︸

b̂(p)

. (10)

The velocity-based PD global-local steps then alternate between

this new global solver and the original local step, which is unaf-

fected by this change of variables. By comparing Equations (9) and

(10), we can see that incorporating the contact force adds an addi-

tional impulse hJ�n rn+1 to the right-hand side of the global step:

Pvn+1 = b̂(p) + hJ�n rn+1. (11)

The goal of the global solver is now to find (vn+1, rn+1) that satisfy

contact conditions at each j. Noting that in Equation (11), P is the

only operator that couples unknown contact forces from different

j, Ly et al. [2020] propose the following iterative solver based on

the decomposition of P to solve Equation (11):

Mvk+1
n+1 = b̂(p) − ��h2

∑
i

wi A�i Ai
��︸����������������︷︷����������������︸

P−M

vk
n+1 + hJ�n rk+1

n+1, (12)

where the superscripts k and k + 1 indicate two consecutive itera-

tions in the iterative solver at fixed time step n + 1. After iteration

k , rk+1
n+1 is updated using vk

n+1 to enforce the Signorini-Coulomb

law, which is then used to update vk+1
n+1 according to Equation (12).

It is easy to see that the proposed iterative solver fully decouples

the momentum equation on each node, allowing Ly et al. [2020]

to enforce the Signorini-Columb law by adjusting (vn+1, j , rn+1, j)
on each contact node j independently in a straightforward manner.

When the iterative solver converges, Ly et al. [2020] prove that the

result is indeed a solution to Equation (9). We refer the readers to

the original paper for the details.

4 DIFFERENTIABLE CLOTH SIMULATION

We now describe in detail how we extend the forward simulator in

Section 3 to build a differentiable cloth simulator. We start by differ-

entiating implicit time integration in PD without contact, followed

by explaining how contact gradients can be added to this frame-

work. Compared with other differentiable simulators, our simula-

tor is unique because of its treatment of the contact-rich nature

of cloth simulation: many existing differentiable simulators focus

on sparse contact events in rigid-body or deformable-body dynam-

ics [Du et al. 2021; Geilinger et al. 2020; Hu et al. 2019], and the

state-of-the-art differentiable cloth simulation method [Liang et al.

2019] handles rich contact events but without physics-based con-

tact forces or friction. To our best knowledge, our work is the first

to present a differentiable cloth simulator that can handle rich con-

tact events with Coulomb’s law of friction.

4.1 Gradients without Contact

Differentiating implicit time integration. The core step in build-

ing a differentiable simulator based on implicit time-stepping

scheme is to backpropgate gradients through the implicit integra-

tion described in Equations (1) and (2), or equivalently, to derive

the Jacobian of the output (xn+1, vn+1) with respect to the input

(xn , vn). Mature techniques such as sensitivity analysis, adjoint

method, and implicit function theorem have proven to be success-

ful in computing such gradients [Du et al. 2021; Geilinger et al.

2020; Hahn et al. 2019]. To sketch the idea, we plug vn+1 from

Equation (2) into Equation (1):

xn+1 = xn + hvn + h
2M−1[fint (xn+1) + fext]

= y + h2M−1fint (xn+1),
(13)

which is essentially the first-order optimality condition in Equa-

tion (3). Differentiating xn on both sides gives

∂xn+1

∂xn
= I + h2M−1 ∂fint (xn+1)

∂xn+1

∂xn+1

∂xn

= I − h2M−1∇2W (xn+1)
∂xn+1

∂xn
,

(14)

or equivalently,

∂xn+1

∂xn
= [I + h2M−1∇2W (xn+1)]−1

= [M + h2∇2W (xn+1)]−1M.

(15)

In backpropagation, such a Jacobian matrix is coupled with the

gradients of a loss function L, which are passed to the previous

state (assuming the gradients below are both column vectors):

∂L

∂xn
=

(
∂xn+1

∂xn

)� ∂L

∂xn+1

= M [M + h2∇2W (xn+1)]−1 ∂L

∂xn+1︸���������������������������������︷︷���������������������������������︸
zn+1

.
(16)

Here, we obtain the adjoint vector zn+1 by solving the linear sys-

tem of equations with the matrix M + h2∇2W (xn+1) on the left-

hand side, which avoids an explicit inversion of the large and

sparse matrix. Backpropagating gradients of L with respect to vn

and vn+1 can be derived similarly. In fact, it solves the same linear

system but with a different vector ∂L
∂vn+1

on the right-hand side.

Differentiating with Projective Dynamics. With assumptions on

the energy formW in PD, Du et al. [2021] show that we can speed

up the computation in zn+1 by exploiting the special form of ∇2W .

The first- and second-order derivatives in Equation (5) are given

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

2:6 • Y. Li et al.

by the following equations [Du et al. 2021; Liu et al. 2017]:

∇Wi (x) = wi A�i [Ai x − p∗i (x)], (17)

∇2Wi (x) = wi A�i Ai −wi A�i
∂p∗i
∂x
, (18)

where p∗i (x) = arg minpi ∈Mi
W̃i (x, pi) is the projection of Ai x

ontoMi obtained in the local step. Interested readers can refer to

the appendix of Liu et al. [2017] for their derivation details. We

plug them to zn+1 and rewrite the linear system as follows:

�� P − h2
∑

i

wi A�i
∂p∗i
∂x

xn+1︸����������������������︷︷����������������������︸
ΔP

�� zn+1 =
∂L

∂xn+1
. (19)

Noting that a prefactorization of P exists in Projective Dynam-

ics, Du et al. [2021] propose the following iterations to solve zn+1:

Pzk+1
n+1 = ΔPzk

n+1 +
∂L

∂xn+1
. (20)

Similar to the local-global steps in Projective Dynamics, a local

step can evaluate ΔP across each∇2Wi in parallel, and a global step,

which reuses P, can solve zk+1
n+1 with backsubstitution only. Du et al.

[2021] show that such a local-global solver is empirically faster

than directly solving Equation (16), which resembles the source of

efficiency in the original PD method.

4.2 Gradients with Contact

While Du et al. [2021] have discussed extensively how to fuse

backpropagation into the Projective Dynamics framework, its sup-

port of contact is limited to non-penetration conditions without

a proper treatment on friction. However, other prior papers have

provided solutions to deriving gradients with contact governed by

Signorini-Coulomb law, but they focus on either small-scale prob-

lems (e.g., rigid bodies in de Avila Belbute-Peres et al. [2018]) or

sparse contact events on a static ground only [Geilinger et al. 2020].

Here, we present our differentiable cloth simulator that both inher-

its the speedup from PD and handles gradients with complicated

contact events like self-collisions, which are overlooked in many

existing differentiable simulators but common in cloth simulation.

Differentiating implicit time integration with contact. Consider

the nth time step in simulation with contact, which takes as

input (xn , vn) and computes (xn+1, vn+1, rn+1, un+1) that satisfy

Equation (9). In particular, for each contact node j, the forward

simulation identifies which one of the contact conditions in

Equation (8) applies to (rn+1, j , un+1, j). As an example, assuming

a contact node j satisfies Equation (8c), its constraints can be

summarized as follows:

‖rn+1, j |T ‖ − μrn+1, j |N = 0, (21a)

un+1, j |N = 0, (21b)

(un+1, j |T)x (rn+1, j |T)y − (un+1, j |T)y (rn+1, j |T)x = 0, (21c)

uj |T · rj |T ≤ 0, (21d)

where (·)x and (·)y extract the x and y components of a two-

dimensional vector, respectively. The other two cases of Equation

(8) similarly enforce three equality constraints (rn+1, j = 0 for

taking off and un+1, j = 0 for sticking) and a number of inequality

constraints on (rn+1, j , un+1, j). If the inequality constraint is inac-

tive, then slightly perturbing the inputs to the simulator will keep

(rn+1, j , un+1, j) inside its interior. Therefore, we can remove the

inactive inequality when deducing the gradients during backprop-

agation. When the inequality constraint is active, the gradients of

the simulation are not well defined, because it represents corner

cases that can be categorized into more than one contact types.

These corner cases introduce non-smoothness to the simulator,

but it is worth mentioning that they do not create discontinuities,

just like the standard rectifier (ReLU) activation function is still

continuous despite the non-smoothness at its turning point.

After removing the inequality constraint, we further define a

nonlinear vector function C
j
n (rn+1, j , un+1, j) for the left-hand side

of the three equality constraints and compactly represent the con-

straints as C
j
n (rn+1, j , un+1, j) = 0. It is convenient that C

j
n for all

three cases in Equation (8) have three dimensional outputs. We can

stack C
j
n from all contact nodes j ∈ In into a nonlinear function

Cn (·, ·) : R3 |In | ×R3 |In | → R3 |In | (note that we only evaluate the

function at valid input pairs that lie in C j), allowing us to restate

Equation (9) as follows:{
vn+1 = vn + hM−1[fint (xn + hvn+1) + fext + J�n rn+1],

Cn (rn+1, Jnvn+1) = 0.
(22)

Note that we choose vn+1 instead of xn+1 as our variable to be

consistent with the forward PD simulation with contact described

by Ly et al. [2020]. Differentiating both sides of the first equation

with respect to vn leads to the following result:

∂vn+1

∂vn
= I + hM−1

[
−h∇2W (xn + hvn+1) + J�n

∂rn+1

∂vn+1

]
∂vn+1

∂vn
,

(23)

∂vn+1

∂vn
=

[
I + h2M−1∇2W (xn + hvn+1) − hM−1J�n

∂rn+1

∂vn+1

]−1

(24)

=

⎡⎢⎢⎢⎢⎣ M + h2∇2W (xn + hvn+1) − hJ�n
∂rn+1

∂vn+1︸�������︷︷�������︸
ΔR�

⎤⎥⎥⎥⎥⎦
−1

M. (25)

Comparing it with Equation (15), we see the matrix to be inverted

now has an additional component dependent on ∂rn+1
∂vn+1

, which we

obtain from differentiating the constraint Cn = 0 in Equation (22):

∂Cn

∂r

rn+1

∂rn+1

∂vn+1
+
∂Cn

∂u

Jn vn+1

Jn = 0, (26)

∂rn+1

∂vn+1
= −

(
∂Cn

∂r

rn+1

)−1 ∂Cn

∂u

Jn vn+1

Jn . (27)

We stress that computing ∂Cn

∂r and ∂Cn

∂u
is trivial, because both

partial derivatives are 3 × 3 block-diagonal matrices. Therefore,

ΔR can be parallelized among all contact nodes. Backpropagation

through vn+1 to vn can be implemented with the same adjoint

method before, which we give in the equation below for complete-

ness with the notation zn+1 overloaded:

∂L

∂vn
= M [M + h2∇2W (x + hvn+1) − ΔR]−1 ∂L

∂vn+1︸���︷︷���︸
zn+1

. (28)

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact • 2:7

Speedup with Projective Dynamics. With additional information

aboutW from PD, we can rewrite the adjoint vector zn+1 in Equa-

tion (28) by comparing it with Equation (19):

(P − ΔP − ΔR)zn+1 =
∂L

∂vn+1
, (29)

which naturally leads to the following iterative solver:

Pzk+1
n+1 = (ΔP + ΔR)zk

n+1 +
∂L

∂vn+1
. (30)

Comparing it with Equation (20), we see the role of ΔP is re-

placed with ΔP + ΔR. Since we have shown that computing ΔR

can be massively parallelized among contact nodes, it is suitable

for contact-rich cloth simulation and preserves the efficiency of

the local-global solver.

Convergence. In theory, such an iterative solver is guaranteed to

converge from any initial guesses of zn+1 when the spectral radius

ρ[P−1 (ΔP + ΔR)] < 1. Empirically, we notice in our cloth simula-

tion that divergence is uncommon, especially when high-precision

back-propagation is not required (Section 6). When the iterative

solver fails to converge, we switch back to a direct sparse matrix

solver to solve Equation (29).

Extensions. We deliberately skipped the full definition of Jn in

all equations above for a clearer presentation of the main idea be-

hind our differentiable cloth simulation. We now elaborate on the

role of Jn and discuss its implications on more complex collisions.

When the contact surface is static but non-planar with spatially

varying surface normals, Jn is dependent on the positions of the

nodes where the contact events occur. In this case, we estimate the

contact normal based on the positions where the contact events oc-

cur, which are given by any collision detection algorithms. Replac-

ing Jn with Jn (xn , vn) requires very minimal extra work to the gra-

dients in Section 4.2, as it contributes to the gradients with respect

to vn in a straightforward manner. Another type of collisions we

consider is self-collisions between nodes. In this case, contact oc-

curs between pairs of nodes where the contact normals are defined

by the relative position between two nodes in the pair. Therefore,

we can still define Jn as a function of xn with each row block now

consisting of two blocks of nonzero elements corresponding to the

two contact nodes in the pair. Similarly, the gradient derivation re-

mains unchanged except that the dependencies between Jn and

(xn , vn) need to be added to Equation (23) . As we inherit from Ly

et al. [2020] the contact model on nodes only, we also inherit its

limitation of not handling other types of self-collisions like edge-

edge collisions or vertex-face collisions. We leave the derivation of

gradients with such cases as future work.

5 EVALUATIONS

This section evaluates and discusses numerical properties of the

proposed differentiable cloth simulation method in Section 4. We

first evaluate its gradients by analyzing their source of non-

smoothness and studying their usefulness in high-dimensional op-

timization problems. Next, we compare the dry frictional model

with the contact model in the state-of-the-art differentiable cloth

simulation method [Liang et al. 2019] and discuss their differences.

Finally, we analyze the numerical properties of our iterative solver

in back-propagation and compare its performance with a direct

linear solver.

5.1 Continuity and Smoothness

A fundamental assumption in any differentiable simulators is that

the underlying physics system is smooth so that gradients can be

well-defined. Equation (9) contains three possible sources of dis-

continuities and non-smoothness in the order of their occurrences:

determining the contact set In , computing Jn that represents the

local contact frames, and choosing between three branches from

C j
n in Equation (8). Below, we discuss the effects from each of them

in detail.

Continuity of branches in contact conditions. First, we empiri-

cally demonstrate through an experiment below that switching

between the three branches in Equation (8) does not create dis-

continuity in Equation (9). In particular, consider the nth time step

and assume that C j
n is fixed and that Jn is a continuous function of

(xn , vn), if we treat Equation (9) as a function that takes as input

(xn , vn) and returns (xn+1, vn+1), we will validate that this func-

tion is continuous. In other words, perturbing (xn , vn) a little will

not cause jumps in the resultant (xn+1, vn+1) even though the cor-

responding rn+1 may need to switch between branches during the

perturbation. The intuition is that the three branches in Equation

(8) together define a connect set C j
n in which (rn+1, j , un+1, j) from

one branch can smoothly transition to another.

We empirically validate the continuity of branch switching with

the following experiment. We simulate a piece of cloth on a rigid,

static, and frictional sphere for 200 timesteps. The sphere has one

frictional coefficient μ, and we repeat the experiments by varying

μ from 0 to 0.35 (Figure 2). When μ is large, all nodes are fixed on

the sphere due to their large static friction. When μ is close to 0,

the cloth slides on the sphere under gravity and takes off from the

sphere near the end of the simulation. As μ changes from 0.35 to 0,

each node on the cloth undergoes the transition from sticking to

slipping, and eventually takes off. However, since each node has

a different contact normal, the turning point for each of them to

switch between these branches is different. Overall, when we grad-

ually change μ, the ratio among the numbers of nodes with static

friction, dynamic friction, and no friction at the end of the simula-

tion also changes gradually, allowing us to observe how switching

between these branches affects the continuity of the physical quan-

tities in simulation.

We summarize the quantitative results from this simulation ex-

periment in Figure 2 (green curves). Specifically, we plot the veloc-

ity of three nodes A, B, andC as a function of μ at an intermediate

time step (50) and near the end of simulation (200). We select three

nodes from the corners, edge centers, and the center of the cloth,

respectively. All velocities converge to 0 when μ becomes large,

which is as expected, because a large μ leads to static friction that

freezes these nodes. We also notice a turning point in the velocity

curve for each node, indicating a switch between static and dy-

namic friction. The turning points are located at slightly different

μ values for each node, because their normals on the sphere sur-

face are different. We observe from the figure that the branches in

Equation (8) do not cause discontinuities.

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

2:8 • Y. Li et al.

While the above experiment confirms that these branches do

not create discontinuities, we note that branch switching does in-

troduce non-smoothness due to corner cases that can be arbitrarily

classified into either branch, e.g., when a node is static but about to

slip. Gradients at these corner cases are not well-defined, but the

subset these corner cases occupy in C j
n has measure zero. There-

fore, we still expect gradient-based optimization to be functional,

just like we have observed the success of gradient-based optimiza-

tion in modern deep learning with non-smooth but continuous op-

erators, e.g., ReLU, max pooling, and so on.

Continuity of local frames at contact nodes. A second source of

possible discontinuity and non-smoothness comes from comput-

ing Jn , which consists of two steps: determining a contact point on

the contact surfaces and calculating the local normal and tangent

vectors. Both steps depend on the geometric representation of the

contact surfaces. As pointed out by previous papers in rigid body

dynamics [Popović et al. 2000; Werling et al. 2021], contact surface

discretization causes jumps in surface normals, and therefore they

create discontinuities in velocity and position calculation. To con-

firm this observation in cloth simulation, we repeat the previous

experiment by replacing the analytically described sphere with

a triangulated one (pink triangulated sphere surface in Figure 2

right). After such replacement, we clearly observe jumps in the in-

termediate and final velocity from the selected contact nodes (pink

curves in Figure 2). Note that the jumps in velocities from the final

velocities are less evident than from the intermediate velocities,

because the vertical axes have different ranges. This observation

agrees with similar experiments from previous papers about rigid

body dynamics and suggests that one should favor analytical

surfaces in differentiable cloth simulation whenever possible.

We end our discussion on the discontinuities from Jn with two

more remarks. First, we notice the contact node velocity curves

in Figure 2 are partitioned into a small number of continuous seg-

ments, which is consistent with the result reported by previous

work [Popović et al. 2000] discussing contact events on rigid body

dynamics. Second, if the scene contains multiple objects the cloth

can be in contact with, it is not uncommon to see jumps in the loca-

tions of contact events, e.g., from one object to another, even with

a continuous representation of each object. Such jumps naturally

lead to large discontinuities in simulation. While we do not pro-

vide solutions to it in this work, a closely related issue has been ex-

tensively studied in differentiable rendering [Li et al. 2018a] from

which we may borrow inspirations in the future.

Continuity of contact sets. The last and most common source of

discontinuity comes from deciding the contact set at each time step,

i.e., whether a node should be added to the contact set or not. Ob-

viously, this selection process is not continuous. It is worth noting

that having a constant contact set does not cause too much trouble

for gradient computation regardless of its size (Figure 2). Instead, it

is the change in the contact set from time to time that brings in dis-

continuities, because whenever a new node is put in the contact set,

it adds an impulsive force to the right-hand side of Equation (9).

To better understand the effects of changes in contact sets, we

hang a piece of cloth above a static sphere in simulation and let the

lower half of the cloth fall and slide on the sphere due to gravity

(Figure 3 top). We equip this experiment with a system identifica-

tion task of the frictional coefficient μ and the stiffness parameterk
of the cloth: given a motion sequence of the cloth generated from a

pair of unknown μ and k , we define a loss function that sums over

all time steps the squared distance between each node position in

simulation and its corresponding location in the given motion se-

quence. We repeat the task with four settings of the sphere at dif-

ferent horizontal offsets, leading to a varying frequency of contact

events among them.

We plot the landscape of the loss function in Figure 3 (middle)

and compare its smoothness among the four settings with differ-

ent frequencies of contact events. At first glance, it seems that all

four landscapes are equally smooth. However, magnifying a small

region of each landscape shows that there is a profound distinc-

tion between their continuity and smoothness (Figure 3 bottom):

as establishing and breaking contact becomes more frequent, the

local landscape tends to be bumpier.

Summary. We have discussed the three sources of potential dis-

continuities and non-smoothness in our differentiable cloth simu-

lator ordered by their damage to the gradients: the branches in the

contact conditions only introduce non-smoothness and maintain

continuity; contact surface discretization creates discontinuities

due to the jumps of normals across adjacent triangles, but we still

expect continuity almost everywhere; adding or deleting nodes in

the contact set creates frequent and the most severe discontinuities

due to the introduction or removal of impulsive forces.

5.2 Usefulness of Gradients

One advantage of gradient-based approaches over their gradient-

free counterparts is their faster convergence rate: typically,

gradient-free methods explore the local landscape of an objective

function by evaluating it with massive samples in the neighbor-

hood. However, such a sampling approach quickly becomes less

efficient as the dimension of the decision variables grows higher.

Due to this reason, we hypothesize that using gradients from our

differentiable simulator will become most beneficial when we have

a large number of decision variables. We verify this hypothesis us-

ing a control optimization problem: we simulate a piece of cloth

with time-invariant external forces applied to each node. The goal

is to design the force at each node to pull the center of the cloth to

a target position in the end (Figure 4 top). We simulate the cloth

with four settings on its DoFs: 4× 4 nodes, 5× 5 nodes, 7× 7 nodes,

and 10 × 10 nodes. Therefore, the number of variables in the opti-

mization problem is 48, 75, 147, and 300, respectively.

Figure 4 reports in this problem the convergence rates of L-

BFGS-B [Liu and Nocedal 1989] and CMA-ES [Hansen 2006],

two representative gradient-based and gradient-free approaches,

with varying DoFs. We start with the largest setting of the cloth

(300 DoFs) and run both L-BFGS-B and CMA-ES with five ran-

domly chosen initial guesses on the force values in parallel. We

then plot the loss versus time step curves for both methods in Fig-

ure 4 bottom left. Here, the loss is the minimum loss from each

method’s five parallel runs as a function of the time steps they

have consumed during the optimization process. It is clear to see

the obvious speedup of L-BFGS-B over CMA-ES in this 300-DoF

optimization problem, just as we expected.

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact • 2:9

Fig. 2. We simulate a piece of cloth sliding on a rigid sphere (right) to study the discontinuities and non-smoothness from contact conditions and surface

geometry (Section 5.1). The two columns of plots show the velocities of three contact nodes at the 50th and 200th time steps. The “discretized” and

“continuous” labels indicate whether these velocities are computed with a triangulated sphere (visualized as pink triangles on the spherical surface) or a

smooth sphere (visualized as green sphere surface).

Additionally, we repeat the experiment with three other settings

of the cloth and plot the speedup versus DoF curves in Figure 4

bottom right, where the speedup is the ratio between the number

of time steps used by CMA-ES and L-BFGS-B when their losses

reach 0.01. Again, we observe significant speedup from L-BFGS-

B across the board, with the largest speedup from the cloth with

the highest DoFs. This observation confirms the benefits of using

gradients from our differentiable cloth simulator in inverse design

problems.

5.3 Benefits of Dry Frictional Contact

We compare the contact model in our differentiable simulator

with that in the state-of-the-art differentiable cloth simulator

from Liang et al. [2019]. Both models ensure penetration-free sim-

ulation and detect self-collisions (node-node collisions in ours and

vertex-face and edge-edge collisions in Liang et al. [2019]). How-

ever, the contact model in Liang et al. [2019] does not take into

account complementarity conditions on either contact forces or

frictional forces, which may lead to undesirable artifacts. To visu-

alize this issue, we consider a test scenario in which a napkin falls

freely onto the inner surface of a bowl (Figure 5). The differen-

tiable simulators from both Liang et al. [2019] and our work man-

age to simulate the napkin without numerical explosion. However,

the dry frictional contact model in our differentiable simulator

shows more physically realistic motion (Figure 5 middle), whereas

the contact model from Liang et al. [2019] leads to more drastic

changes in the size of the napkin with a popping artifact after its

contact with the bowl (Figure 5 top and bottom). These artifacts

are explainable, because the collision handling algorithm in Liang

et al. [2019] modifies node positions after penetration without veri-

fying whether such an update requires sticky contact forces. When

the napkin becomes in contact with the concave inner surface of

the bowl, such a direct modification injects extra elastic energies.

This experiment confirms supporting a more advanced contact and

friction model in differentiable cloth simulation is both viable and

beneficial.

5.4 Evaluation of Iterative Solver in Backpropagation

Another key component in our differentiable cloth simulation is

the iterative solver in Equation (29) that utilizes the prefactorized P

in PD. In a standard differentiable simulator, solving Equation (29)

would be done with a sparse matrix solver treating (P − ΔP − ΔR)
as a whole. To understand the performance of the proposed itera-

tive solver, we design two benchmark tests: a “Wind” test where

a hanging napkin moves under synthetic wind and a “Slope” test

where a ribbon slides on a slanted plane (Figure 6). These two

tests represent two extreme cases in contact handling: the nap-

kin in “Wind” barely has any contact or self-collisions, whereas

every single node of the ribbon in “Slope” is in contact with the

plane. We then compare the time cost of our iterative solver with

a sparse LU solver in both tests. We implement both solvers us-

ing Eigen [Guennebaud et al. 2010] and choose LU factorization,

because (P − ΔP − ΔR) is usually not a symmetric or positive

definite matrix, preventing us from using more specialized sparse

matrix solvers like Cholesky factorization or Conjugate Gradient

methods. For the iterative solver, we report two results from low-

precision (1e-4) and high-precision (1e-6) convergence thresholds

that control the termination condition in the iterations. We find

these thresholds by varying it from 1e-1 to 1e-9 until the gradients

computed from the iterative solver start to agree with the direct

solver, which we treat as the ground-truth gradients. We repeat

the experiments with three mesh resolutions to test the scalability

of our method.

We summarize the statistics from both tests in Table 1. Over-

all, the iterative solver in backpropagation is faster than the direct

solver, and the speedup becomes more substantial as we increase

the mesh resolution. The speedup is also more evident with low-

precision threshold, which is consistent with the results reported

in previous PD papers [Bouaziz et al. 2014; Du et al. 2021; Liu et al.

2017]. A further decomposition of time confirms that solving the

linear system takes up the majority of backpropagation time, so

any improvement in the choice of solver has a dominating posi-

tive effect. Although the low-precision results may not match the

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

2:10 • Y. Li et al.

Fig. 3. We simulate collisions between a piece of cloth and a rigid sphere at

four different horizontal locations to study the effects of varying numbers

of collisions on the smoothness of the simulation. Top: rendering of one

of the time steps when the cloth is expected to be in contact with the

sphere. The four scenes are ordered by their number of collisions. Bottom:

landscapes of the loss defined as a function of the frictional coefficient μ

and the stiffness k of the cloth (Section 5.1). The zoomed-in views of the

landscapes show increasing discontinuity and non-smoothness as more

collisions occur.

ground-truth gradients as closely as their high-precision counter-

parts, their backpropagation is significantly faster and can still ben-

efit gradient-based optimization. This is because even an imperfect

gradient can still guide gradient descent algorithms to converge as

long as it is along the descending direction. This is confirmed em-

pirically by our experiments in Section 6, in most of which we use

low-precision convergence threshold and still observe successful

gradient-based optimization results. It is also worth mentioning

that contact-related operators, whose time cost is included in the

“Other” and “ΔR” columns in Table 1, add very little extra over-

head to the backpropagation. Finally, we observe uncommon but

non-negligible failure cases of the iterative solvers in one experi-

ment (48×48 with 1e-6 as the threshold in Table 1) “Wind.” For the

15% failed timesteps, we switch to the sparse LU solver, adding an

extra 11.5% time in backpropagation.

6 APPLICATIONS

In this section, we demonstrate a variety of cloth-related applica-

tions that can benefit from our proposed differentiable cloth simu-

lation with dry frictional contact. We repeat all experiments with

multiple random seeds and use the same random seed set (there-

fore same initial parameter set) for all methods. We report the op-

Fig. 4. Flying Napkin. Comparisons between gradient-based and gradient-

free methods for optimizing high-dimensional decision variables in differ-

entiable cloth simulation. Top: the motion sequence of a piece of cloth

with external forces parametrized with 300 variables. The goal is to find

proper external forces with which the cloth ends at a target position. The

loss function is defined as the position discrepancy between the simulated

motion sequence and the reference motion. Bottom left: the loss vs. time

step curves (300 DoF) from gradient-based (L-BFGS-B) and gradient-free

(CMA-ES) methods. Both L-BFGS-B and CMA-ES use the same random

seeds. Bottom right: we vary the degrees of freedom in the external force

parametrization and repeat the experiment three times. For each experi-

ment, we compute the ratio between the number of time steps used by

gradient-free and gradient-based methods until they converge or use up

the time budget and plot them as a speedup vs. DoFs curve.

timization results and comparisons with other gradient-free algo-

rithms in Table 2. In Table 3, We report the time steps used by each

optimization method to reach minimum final loss as well as the

convergence ratio of our iterative solver during back-propagation.

For gradient-free algorithms, the number of time steps counts the

total steps of forward simulation (each steps the simulation for-

ward in time by h). For our gradient-based method, we double this

number to include the number of back-propagation steps. Note

that in practice, back-propagation takes much less time than for-

ward simulation. We have included the wall clock time for run-

ning forward simulation and back-propagation of all examples in

Appendix A. In Table 2 and all loss versus time steps plot below,

we report the minimum loss or plot the minimum loss envelop

achieved across all random seeds. See Appendix C for the complete

optimization results for each random seed. Below, we describe each

application and highlight major results. More information of each

example is detailed in Appendix B.

Implementations. We write the backbone of our simulator in

C++ and use Eigen for matrix and vector operations. Each ap-

plication defines an optimization problem that we solve with

L-BFGS-B, a classic gradient-based optimizer that can leverage

the differentiability of our cloth simulator while limiting param-

eters to physically-plausible ranges . We use the implementation

of LBFGS++ [Yixuan 2021] for L-BFGS-B, which implements the

Moré-Thuente line search [Moré and Thuente 1994].

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact • 2:11

Table 1. Comparison between the Iterative Solver (Ours) and the Sparse LU Direct Solver in Backpropagation

Under Various Mesh Resolutions in the “Wind” and “Slope” Tests

Test Res. Solver Backprop Time (s) ΔP (%) ΔR (%) Iter. (%) Direct (%) Other (%) Fail (%) Speedup

Wind

12x12

Direct 0.606 13.9

0

- 84.4 1.7

0

-

Ours (1e-4) 0.212 39.9 55.5 - 4.6 2.9x

Ours (1e-6) 0.424 19.2 78.5 - 2.3 1.4x

24x24

Direct 3.360 9.9

0

- 89.1 1.0

0

-

Ours (1e-4) 0.591 58.2 36.3 - 5.5 5.7x

Ours (1e-6) 2.858 11.7 87.2 - 1.1 1.2x

48x48

Direct 24.001 6.8

0

- 92.5 0.7 0 -

Ours (1e-4) 2.262 63.2 29.7 - 7.1 0 10.6x

Ours (1e-6) 29.255 5.4 82.6 11.5 0.6 15 0.8x

Slope

12x12

Direct 0.978 13.0 3.4 - 82.4 1.2

0

-

Ours (1e-4) 0.312 70.1 9.4 16.1 - 4.5 3.1x

Ours (1e-6) 0.643 18.9 2.7 76.8 - 1.6 1.5x

24x24

Direct 5.331 10.4 1.5 - 87.4 0.7

0

-

Ours (1e-4) 0.781 70.1 9.4 16.1 - 4.5 6.8x

Ours (1e-6) 1.507 34.7 4.9 58.1 - 2.4 3.7x

48x48
Direct 37.296 6.5 0.7 - 92.5 0.4

0

-

Ours (1e-4) 3.095 68.1 8.2 19.8 - 3.8 12.0x

Ours (1e-6) 6.825 31.2 3.5 63.6 - 1.8 5.5x

The numbers in the “Res.” column report the mesh resolution. The number in parentheses in the “Solver” column indicates the epsilon value controlling the
convergence of the Jacobi solver. The “Backprop Time” column reports the net time in backpropagation and is further decomposed into the next five
columns, from which the sum of ratios is 100%: “ΔP” and “ΔR” report the time spent on assembling ΔP and ΔR, respectively, “Iter.” and “Direct” shows the
time cost by either solver, and operations not covered by these four columns are in the “Other” column. The “Fail” column reports the ratio between the
number of timesteps seeing nonconvergence in our iterative solver and the number of total timesteps. The “Speedup” column is the ratio between the
direct solver’s time and our time in “Backprop. Time” in each test.

6.1 System Identification

We start by showing two system identification examples: “T-shirt”

(Figure 7) and “Sphere” (Figure 8).

T-shirt. In the “T-shirt” example, we are given a sequence of mo-

tions of a hanging T-shirt under synthetic wind generated from a

parameterized sinusoidal function. The goal is to estimate a mate-

rial parameter in the cloth (1 DoF) and identify the wind model pa-

rameters (5 DoFs controlling the amplitude, phase, and frequency

of the sinusoidal function in three dimensions) from the motion

data. We define the loss function as the L2-distance between the

nodal positions of the T-shirt from the simulation and the given

motion sequence.

Unlike the “Wind” example in Section 5, contacts and frictions

are much more frequent in this example due to self-collision be-

tween the front and back layer of the T-shirt under the wind. We

show the simulation of the T-shirt with parameters before and af-

ter optimization in Figure 7 and compare the three optimizers in

Tables 2 and 3: L-BFGS-B, CMA-ES, and (1+1)-ES. Both CMA-ES

and (1+1)-ES are standard gradient-free evolutionary strategies

(ES). We can conclude from Figure 7 and Tables 2 and 3 that all

three methods manage to optimize system parameters leading to

motion sequences visually identical to the given input, but L-BFGS-

B converges much faster due to the extra knowledge of gradients.

Sphere. To highlight the effect of dry frictional contact in our

simulator, we create the “Sphere” example with the goal of match-

ing the motion sequence of a cloth interacting with a sphere by es-

timating the frictional coefficient between the sphere and the cloth.

In this example, we let a piece of square cloth fall freely on a sphere,

whose motion after being in contact with the sphere is largely con-

trolled by the frictional coefficient. This example involves both self-

collisions between nodes on the cloth and external contacts with

the sphere. Similar to the example above, we run both L-BFGS-B

and two ES baselines and report their statistics in Tables 2 and 3.

All methods can optimize to a frictional coefficient that generates

a motion sequence visually identical to the given input. However,

this optimization problem is special in that it only has one param-

eter and the landscape of the loss function is bumpy due to the

large variation in the collision set as a function of the frictional co-

efficient, as suggested by the Continuity of contact sets experiment

in Section 5.1. In this case, evolutionary strategies can achieve a

lower final loss, because the samples can freely explore the full

range of frictional contact, while L-BFGS-B can get trapped in a

local optimum.

6.2 Robot-assisted Dressing

Another line of research that can benefit from a differentiable cloth

simulator is robot-assisted dressing. The mainstream solution to

these tasks is typically gradient-free methods like evolutionary

strategies, reinforcement learning, or inverse dynamics before a

differentiable cloth simulator becomes available. We present two

examples to demonstrate the usage of gradients in robot-assisted

dressing: “Hat” (Figure 9) and “Sock” (Figure 10). In both examples,

the goal is to find trajectories for a kinematic robotic manipulator

to put on the hat or the sock. The end effectors of the manipula-

tor pick a few prespecified vertices on the cloth meshes and pull

them along the kinematic trajectories, which are parametrized as

B-splines. By optimizing the parameters of the B-splines (18 DoFs

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

2:12 • Y. Li et al.

Table 2. Comparison between the Performance of Gradient-based and Gradient-free Optimization on All Examples (Except “Hat Controller”) in Section 6.

The “Param #” and “Seed #” columns report the number of optimization parameters and random seeds used in the experiments, respectively. All methods start the optimization
with the same initial random seed set. The “Min Init. Loss” column reports the minimum initial loss across all random seeds. The “Optimized Loss Percentage” column reports
the optimized loss as a percentage (0–100%) of the minimum initial loss reached across all random seeds for each method: “Final” reports the loss reached when the optimization
stops, and “Equal Step #” reports the loss reached by CMA-ES and (1+1)-ES using the same number of time steps for L-BFGS-B convergence. We color the values of loss
percentage using a green-orange color scale: green corresponds to 0% and orange corresponds to 100%.

Fig. 5. Bowl. We simulate the motion sequence of the napkin (50 × 50 ×
2 triangles, h = 5 ms, 500 time steps) with the contact models from two

differentiable cloth simulators: Liang et al. [2019] (top) and ours (middle).

The area ratio (bottom) is the ratio between the napkin’s area at the current

timestep and in the rest shape. Refer to our video for the full motions.

in “Hat” and 36 DoFs in “Sock”), we can direct the manipulator

to move the hat until it reaches the target location on top of the

sphere. We define the loss function in “Hat” as the L2-distance be-

tween the hat’s final position at the last time step and a prede-

fined target position, which we generate by translating the hat’s

rest shape onto the top of the sphere. The loss function for “Sock”

is defined as the L2-distance between the desired and simulated

locations of a few key points manually chosen on the sock and

evaluated at the middle and the end of the simulation.

With the gradient information at hand, we run the L-BFGS-B op-

timizer to tune the parameters of the trajectories and compare its

performance with CMA-ES and (1+1)-ES (Tables 2 and 3). We no-

tice that within the same time steps, L-BFGS-B converges substan-

tially faster than the gradient-free baselines to a better solution

Fig. 6. Wind and Slope. Motion sequences from the two benchmark tests

for comparing iterative and direct solvers in back-propagation. Top: the

“Wind” test (h = 1/90s, 200 time steps) where a piece of cloth moves under

synthetic wind. Bottom: the “Slope” test (h = 1/100s, 300 time steps) where

a ribbon slides along a slanted plane.

(Figures 9 and 10). We can safely conclude that the fast conver-

gence of L-BFGS-B unlocked by our differentiable cloth simulator

is a clear advantage over gradient-free methods.

6.3 Inverse Design

The next application we present is “Dress,” an inverse design exam-

ple that aims to optimize cloth material parameters in a dress so

that its dynamic motion can satisfy certain design intents. Specifi-

cally, we optimize the material parameters of a twirl dress so that

after the dress spins, the apex angle of the cone-like dress agrees

with the target value (100 degrees in our experiment). We define

the loss function as the difference between the hemline height cor-

responding to the target apex angle and the estimated apex angle

from points on the hemline of the dress at the last frame of the

simulation. We report the optimization results from L-BFGS-B and

two ES baselines in Table 2 and visualize the simulation results

before and after optimization in Figure 1. Similar to the previous

tasks, we notice that L-BFGS-B achieves better optimized results

using fewer time steps.

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact • 2:13

Table 3. The “Convergence Time Steps” Column Reports the

Number of Simulation Time Steps used for Each Optimization

Method Until Convergence on all Examples Shown in Section 6

Name
Convergence Time Steps

Iter. Conv. %
L-BFGS-B CMA-ES (1+1)-ES

T-shirt 4,500 53,500 47,750 99.75

Sphere 2,450 18,900 11,200 100.00

Hat 11,200 159,200 106,000 90.58

Sock 17,600 176,800 91,600 99.41

Dress 2,750 3,125 10,000 84.80

Flag 6,800 17,300 24,800 96.00

For a fair comparison, the time steps shown for L-BFGS-B include both
forward simulation and backward propagation time. The “Iter. Conv. %”
column reports the percentage of time steps in backward propagation
where the iterative solver converges.

Fig. 7. T-shirt (4278 DoFs, h = 1/90s, 250 time steps). Estimating the cloth

material and wind parameters based on a given synthetic motion sequence

of the T-shirt. From left to right, we show the simulated T-shirt at 0, 80, 160,

and 240 time steps. Top: the ground-truth motion sequence; Middle: sim-

ulation with the initial guess on the cloth and wind parameters; Bottom:

simulation after optimization with L-BFGS-B.

6.4 A Real-to-Sim Example

In this section, we present a real-to-sim “Flag” example (Figure 11).

In this example, we use the real-world motion sequence captured

on a flag flapping in the wind from previous work [White et al.

2007] and aim to reconstruct a digital twin of the scene in simu-

lation. This includes not only estimating the material parameters

of the flag but also modeling the unknown wind condition at the

capture time, which is particularly challenging due to its intricate

stochastic model with unknown degrees of freedom. We model

the wind force at each time step as a 3D force applied near the

Fig. 8. Sphere (1875 DoFs, h = 1/180s, 350 time steps). Estimating the fric-

tional coefficient μ between the sphere and the cloth based on the cloth’s

contact with the sphere. From top to bottom, we show the simulation at

0, 100, 200, and 300 time steps. Top: the ground-truth motion sequence;

Middle: simulation with the initial guess on μ ; Bottom: simulation after

optimization with L-BFGS-B.

Fig. 9. Hat (1737 DoFs, h = 1/100s, 400 time steps). Optimizing trajec-

tories for a manipulator to move a hat onto the sphere. Top left: Initial

trajectory from one random seed before optimization overlaid with inter-

mediate hat positions in simulation. Top right: the optimized trajectory

from L-BFGS-B (which shares a visually similar trajectory with the ones

optimized by ES algorithms). Bottom: The loss vs. time step curves for all

methods.

center of the scene and spatially decaying proportional to the in-

verse distance to the center. To model the transient nature of the

wind force, we modulate magnitude of the 3D vector of a sinu-

soidal wave as a function of time with parameterized frequency

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

2:14 • Y. Li et al.

Fig. 10. Sock (3165 DoFs, h = 1/160s, 400 time steps). Optimizing trajec-

tories for a manipulator to put a sock onto the foot model. Top left: One

initial trajectory before optimization. We show the intermediate time steps

on the left and the final state of the sock on the right. Top right: one con-

trol trajectory optimized by L-BFGS-B. The end effectors successfully put

the sock onto the foot using the optimized trajectory. Bottom: the loss vs.

time step curves for all methods.

and phase offset. Together, the material and wind model define

an eight-dimensional parameter space to be optimized. We define

the loss function as the L2-distance between the positions of all

nodes at each time step in simulation and the ground-truth motion

sequence.

We solve this task using L-BFGS-B and the two ES methods

and report their performance in Tables 2 and 3 and Figure 11. All

three methods substantially reduce the loss after optimization, but

L-BFGS-B achieves a lower final loss. We plot the trajectories of

6 key nodes before and after optimization (orange) along with

the ground-truth reference trajectories (yellow) from the motion-

captured data in Figure 11. By comparing the left and right images

in Figure 11, we can see that the L-BFGS-B optimizer reduces the

discrepancy substantially between the simulated and actual trajec-

tories after optimization. The real-to-sim matching is still imper-

fect as indicated by the nonzero final loss, which we suspect could

be due to the simplistic nature of our synthetic wind model. A more

sophisticated and expressive wind model, e.g., a neural network,

may serve a better role in modeling and matching the real-world

physics, which we leave as future work.

6.5 Hat Controller

We end this section with an advanced “Hat” task. Unlike the pre-

vious open-loop trajectory optimization with a fixed starting posi-

tion, the goal of this new task is to train a generalizable closed-loop

controller that can put on the hat from a random starting position

sampled from a fixed-radius hemisphere around the head. Specif-

ically, we train a closed-loop control policy at = πθ (st), which

takes as input the current state st of the task and outputs an action

vector at at each time step t . The state vector st includes the hat

node positions, the orientation of the hat, and the distance between

Fig. 11. Flag. A real-to-sim example that reconstructs a digital flapping

flag (540 vertices, 1026 triangles, h = 1/120s, 100 time steps) based on

motion data captured from real-world experiments. Top: We plot the tra-

jectories of 6 nodes on the cloth from the ground-truth motion (yellow

curves) and the simulation results with guesses on the material and wind

parameters before optimization (orange curves, left) and after optimiza-

tion (orange curves, right). Bottom: The loss vs. time step curves for all

methods.

the two end effectors, and the action vector at represents the posi-

tion of the two end effectors at the next time step. We represent the

control policy πθ as a neural network parametrized by θ consist-

ing of two fully-connected hidden layers with 64 neurons and tanh
activation functions (117,126 parameters in total). To train the con-

troller with gradient-based optimization, we integrate the neural

network policy with our differentiable simulator as described in

Figure 13.

In each epoch during training, we randomly sample 20 start-

ing positions of the hat and compute a loss averaged from all

simulation sequences. The loss function of each sequence is de-

fined by L = Ldeform + Ltarget + Ldir, where Ldeform measures

the stretching of the hat using the distance change between the

two end-effectors, Ltarget measures the L2-distance between the

last-time-step pose of the hat and the target pose, and Ldir is the

orientation difference between the last-time-step pose and the tar-

get pose of the hat. The gradient of the loss is then computed by

our differentiable simulation framework and used by a gradient-

based optimizer (Adam [Kingma and Ba 2017]) to update the policy

parameters. For testing, we evaluate the controller from 20 fixed

starting position configurations uniformly sampled on the hemi-

sphere surface.

To compare our method with gradient-free methods, we also

solve the task with Reinforcement Learning (RL), which has

been widely used to train complex neural network policies for

robot-assisted dressing problems [Clegg et al. 2018]. Specifically,

we compare our gradient-based method with PPO [Schulman et al.

2017], a state-of-the-art RL algorithm. We similarly sample a start-

ing position from the hemisphere in each iteration when training

PPO. For a fair comparison, we design the reward function rt to

be the sum of the negative counterpart of L plus a constant to

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact • 2:15

Fig. 12. Hat Controller. We train a closed-loop controller for the advanced “Hat” task (Section 6.5), which aims to move the hat from different initial positions

(sampled from a fixed-radius hemisphere) onto the head. Top two rows: We visualize the control trajectories of the hat in ten initial positions denoted by

their elevation and azimuth angle at the bottom of each subfigure. Bottom: The loss vs. time step curve for our gradient-based optimization and PPO.

Fig. 13. We present the computation graph of the “Hat Controller” task in

Section 6.5. We embed the neural network policy into our differentiable

simulation pipeline. At time step t during forward simulation (blue ar-

rows), the current particle states (xt , vt) are transformed into a state vec-

tor st , which is input to the neural network policy πθ to produce an ac-

tion vector at = πθ (st). DiffCloth then simulates a new state (xt+1, vt+1)
using current particle state and the generated action vector. The whole

simulation sequence {xi , vi } is used to compute a loss. During backward

propagation (red arrows), the above computation pass is reversed.

avoid negative rewards, and observation of the environment to be

st . We evaluate Adam and PPO using L as the common metric and

plot the optimization curve at the bottom of Figure 12. We see that

both methods reach a similar final loss, but with our differentiable

simulation framework, the gradient-based method reaches its final

loss with a 85× speedup (Adam uses 23,200 time steps; PPO uses

1,978,000 time steps).

After the training process converges, both our gradient-based

method and PPO successfully move the hat onto the head from

all 20 testing positions. We visualize the trajectories generated by

Adam’s trained policy from 10 testing starting positions at the top

of Figure 12. Unlike existing differentiable simulation papers [Du

et al. 2021; Hu et al. 2019, 2020; Liang et al. 2019] that train a closed-

loop network controller only for a fixed state, we highlight that

we use differentiable simulation to train the network from multi-

ple, random states and study its generalizability in a test set of un-

seen states. This allows us to conduct a fairer comparison between

gradient-based optimization method and RL methods, which is typ-

ically overlooked in previous papers.

7 CONCLUSIONS, LIMITATION, AND FUTURE WORK

In this article, we presented a differentiable cloth simulator built

on PD with Signorini-Coulomb frictional contact. Our differen-

tiable simulator is different from existing papers in its simultane-

ous accommodation of rich and frequent (self-)contact, Signorini-

Coulomb contact law, and differentiability in cloth simulation. We

analyzed the numerical properties of gradients from our differen-

tiable simulator, including the source of discontinuities and its em-

pirical speedup over gradient-free approaches in high-dimensional

problems. We additionally presented an iterative solver that ex-

ploits the contact gradients to speed up the backpropagation and

observed a substantial speedup (up to an order of magnitude with

low-precision simulation) over direct solvers. Our differentiable

cloth simulator enabled gradient-based optimization methods in

a diverse set of applications, for which traditional gradient-free

methods are generally much less sampling efficient. In particu-

lar, we presented a preliminary study on training a generalizable

closed-loop controller using differentiable simulation, in which

our approach and PPO achieved comparable performance and gen-

eralizability, but we used much less time.

There are still quite a few limitations in our method that are

worth further investigation. First, since our method is built on

PD, it also limits the choice of material models. It would be useful

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

2:16 • Y. Li et al.

to generalize the current framework and support more physically

accurate cloth material models, e.g., the piecewise linear elastic

model described in Wang et al. [2011].

Second, the contact model we use from Ly et al. [2020] does

not take into account vertex-face or edge-edge self-collisions.

While we empirically observed that handling only vertex-vertex

self-collisions managed to produce plausible results with medium

mesh resolution, vertex-face and edge-edge collision detection

and handling is still highly desirable for a more physically realistic

cloth simulator.

Third, although we have identified some possible sources of dis-

continuities and non-smoothness in our differentiable simulator

with empirical experiments, their effects on gradient-based opti-

mization still require a thorough investigation. In particular, the

locally bumpy energy landscape we observed in Figure 3 due to

changes in contact sets makes us question both the necessity and

the usefulness of exact gradients in optimization, although Sec-

tion 6 implies that gradients were still helpful in many downstream

applications. Noting that the bumpiness in Figure 3 is local and the

global view of the energy landscape is still smooth, we hypothesize

an inexact but smoothed gradients would be more powerful, which

we leave as future work.

Fourth, there is no theoretical guarantee on the convergence of

the iterative solver we implemented in backpropagation. Although

non-convergence is uncommon in our experiments, it introduces

a costly switch to the slower direct solver, which we hope to fully

resolve in future work.

Finally, many of our applications were in simulation only. It

would be more exciting if these results could be replicated in real-

world settings. We consider connecting our differentiable cloth

simulator to more real-world applications, including real-world

robot-assisted dressing, material parameter identification for real-

world fabric samples, computational design for sports suits, and so

on. Closing the sim-to-real gap is a nontrivial problem, in which

we believe our differentiable simulator could play a beneficial role.

APPENDICES

A EXPERIMENT RUN TIME

We run all optimizations on a workstation of 80 CPU cores and

80G memory. Depending on the problem complexity, the wallclock

time of running these optimizations varies from less than 30 min

to 2 h for all methods. We report the run time for optimizing the

examples shown in Section 6 using our gradient-based method in

Table 4.

B EXPERIMENT DETAILS

We provide detailed information for the examples shown in Sec-

tion 6, including their setup, the exact form of their loss function,

and their decision variables in optimization.

B.1 System Identification

T-shirt. The loss function is defined as

L =
N∑

n=1

���xcurrent
n − x

target
n

���2
, (31)

Table 4. Run Time for our Gradient-based Optimization

Name Dof Time Steps h [s] Fwd.[s] Back.[s]

T-shirt 4,278 250 1/90 141.5 13.2

Sphere 1,875 350 1/180 5.1 4.2

Hat 1,737 400 1/100 57.9 20.7

Sock 3,165 400 1/160 89.9 14.3

Dress 10,902 125 1/120 266.3 84.7

Flag 1,620 100 1/120 13.7 1.6

We report the average wall-clock time for optimizing the examples shown
in Section 6. We recall the simulation complexity of each example by
reiterating its total Degrees of Freedom (“Dof”), number of time steps in
each forward simulation sequence and back-propagation (“Time Steps”)
and time interval (“h[s]”). “Fwd.[s]” and “Back.[s]” report the mean
wall-clock time for performing one iteration of forward simulation and
back-propagation, respectively, averaged across all optimization iterations
for all initial seeds.

where N = 240 is the total number of time steps, xcurrent
n

the position of the mesh during optimization, and x
target
n the

position of the ground-truth simulation generated using our

system. There are 4 parameters (6 DoFs) to be optimized:

θT-shirt = (kstretch,ϕ,ω, d), where kstretch controls the stretching

stiffness of the cloth material and (ϕ,ω, d) controls the parameter-

ized external wind force: each node receives a three-dimensional

wind force 0.5[sin(ωt + ϕ) + 1.0]d.

Sphere. The loss function is defined the same as in the “T-shirt”

example above except that the total time N = 300. The decision

variable is the 1-DoF frictional coefficient of the sphere.

B.2 Robot-assisted Dressing

Hat. The loss function is defined as the L2 norm between the

last-time-step position of the hat xcurrent
N

and a target position

x
target
N

generated by translating the initial pose of the hat onto the

head:

L = ���xcurrent
N − xcurrent

N
���2
, (32)

where N = 400 is the total number of time steps. The trajec-

tory of each of the two end effectors is controlled by a cubic

Hermite spline. Each spline has 3 parameters (9 DoFs): θspline =

(t1, t2, pend), where t1 and t2 are the two tangents of the spline

and pend is the endpoint of the spline.

Sock. The goal is to optimize for the trajectory of the three end

effectors holding onto a sock so that the sock can be put onto a

synthetic foot model from an initial starting position. To guide the

end effectors to first hook the opening of the sock onto the tip of

the foot, then slide the sock upward onto the leg, the loss function

is designed as

L =
∑

n∈{ N

2 ,N }

∑
(pfoot,psock)∈Pn

����x
target
N ,pfoot

− xcurrent
n,psock

����2
, (33)

where Pt defines a set of manually selected keypoint correspon-

dence pairs (pfoot,psock) between the sock mesh xcurrent
n and the

foot model x
target
N

at halfway t = N
2 and the end of the simulation

t = N , respectively. We sum up the L-2 norm of the position differ-

ence between each correspondence. The optimization parameters

are the Hermite spline parameters for each of the four end effectors

defined similarly as in the “Hat” example (36 DoFs in total).

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact • 2:17

Table 5. We Report the Optimization Results for all Random Seeds of All Methods in the “T-shirt” and “Flag” Examples

Final Loss Final Loss Percentage (%) Convergence Time Steps
Initial Loss

L-BFGS-B CMA-ES (1+1)-ES L-BFGS-B CMA-ES (1+1)-ES L-BFGS-B CMA-ES (1+1)-ES

T-shirt

22.49 0.042 0.052 1.416 0.2 0.2 6.2 2,500 41,750 42,000

60.00 0.079 0.269 0.248 0.1 0.4 0.4 7,250 46,750 9,750

6.62 6.560 0.169 0.115 99.0 2.7 1.8 3,250 17,500 47,750

30.93 0.035 0.286 0.213 0.1 0.9 0.7 2,250 41,000 36,750

10.32 0.035 0.078 0.159 0.3 0.8 1.6 6,250 27,000 19,750

MIN 0.035 0.052 0.115 0.1 0.2 0.4 2,250 17,500 9,750

AVERAGE 1.350 0.171 0.430 20.0 1.0 2.1 4,300 34,800 31,200

MEDIAN 0.042 0.169 0.213 0.2 0.8 1.6 3,250 41,000 36,750

Flag

2.88 0.137 1.118 1.154 4.8 38.9 40.1 3,400 17,300 24,800

3.84 1.136 0.945 1.079 29.6 24.6 28.1 1,100 900 27,600

4.07 1.175 0.304 1.021 28.9 7.5 25.1 5,200 1,200 28,500

5.08 0.595 0.958 1.043 11.7 18.9 20.5 3,800 4,500 26,600

4.08 1.980 0.997 1.053 48.6 24.5 25.8 200 29,200 27,600

3.26 0.190 0.743 0.952 5.8 22.8 29.2 4,500 27,500 28,400

3.59 0.863 0.697 1.134 24.0 19.4 31.5 800 9,900 28,100

3.68 0.156 0.711 1.089 4.2 19.3 29.6 9,800 22,500 24,600

3.73 1.095 1.077 1.109 29.4 28.9 29.8 3,100 12,600 28,900

9.98 0.861 1.086 0.715 8.6 10.9 7.2 1,800 5,400 9,200

MIN 0.137 0.304 0.715 4.2 7.5 7.2 200 900 9,200

AVERAGE 0.819 0.864 1.035 19.6 21.6 26.7 3,370 13,100 25,430

MEDIAN 0.862 0.952 1.066 17.9 21.1 28.7 3,250 11,250 27,600

For each random seed, we report its initial loss and final loss achieved by each optimization method. “Final Loss Percentage (%)” reports the optimized loss as a
percentage (0–100%) of the initial loss. “Convergence Time Steps” reports the number of time steps used by each method to reach its final loss. For all tasks, we
also summarize the minimum, average and median statistics across all random seeds for each column. For each metric (“Final Loss,” “Final Loss Percentage (%),”
“Convergence Time Steps”) and each row, the minimum number across the three optimization methods is marked in bold.

B.3 Inverse Design

Dress. The loss function is defined as

L =
∑
p∈P

(hp − h)2, (34)

where h is the calculated target height of the bottom of the dress

when the desired apex angle is reached. P is the set of all points

located at the bottom of the dress, and hp is the height of the point

p (corresponding to the y coordinate of the point in our implemen-

tation). There are 2 parameters (2 DoFs) that are being optimized:

θDress = (d,kbend) where d is the density of the fabric and kbend is

the bending stiffness of the fabric.

B.4 Real-to-Sim Example

In this task, we optimize for the material parameters of the flag

and the parameters of a simple wind model to match the motion

trajectory of a flag to real-world captured data. The wind model is

defined as

fext =
sin(ωt + ϕ) + 1.0

2
kd�, (35)

where d is a 3D vector to be optimized and k ∈ Rm a constant co-

efficient vector with each entry equal to a node’s inverse distance

to the flag center evaluated at the first time step. There are 8 pa-

rameters to be optimized θflag = (kstretch,kbend, ρ,ϕ,ω, d), where

kstretch and kbend are the stretching and bending stiffness of the

fabric, ρ the density of the fabric, and ϕ,ω, d the parameters of the

wind model defined above.

B.5 Hat Controller

In this task, the goal is to optimize for the neural network parame-

ters of the hat controller so that the two end effectors put a hat

on a head model from any starting position defined on a fixed-

radius hemisphere centered at the head model. During training,

we uniformly sample 20 starting positions on the hemisphere for

each epoch, and compute the loss averaged from all simulation se-

quences. We define the loss function as

L = Ldeform + Ltarget + Ldir. (36)

Ldeform minimizes the distance change between the two end effec-

tors and is defined as Ldeform =
∑N

n=1 ‖xn,e1 − xn,e2 ‖2 where e1

and e2 are the indices of the nodes pulled by the two end effectors.

Ltarget minimizes the L2-distance between the poses of the hat and

the target pose at the last few frames (20 in our implementation)

and is defined as

Ltarget =

N∑
n=N−20

���xcurrent
n − x

target
n

���2
. (37)

Ldir minimizes the orientation difference between the last-time-

step pose and the target pose of the hat and is defined as

Ldir = dtarget · dcurrent, (38)

where dtarget is the up vector of the hat at the target pose and

dcurrent is defined similarly to the hat at the last time step.

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

2:18 • Y. Li et al.

Table 6. Similar Table as Table 5 for the “Hat,” “Sock,” “Sphere,” and “Dress” Examples

Final Loss Final Loss Percentage (%) Convergence Time Steps
Initial Loss

L-BFGS-B CMA-ES (1+1)-ES L-BFGS-B CMA-ES (1+1)-ES L-BFGS-B CMA-ES (1+1)-ES

Hat

54.60 10.391 0.754 0.330 19.0 1.4 0.6 4,400 47,600 50,000

33.81 0.402 0.665 0.105 1.2 1.9 0.3 2,000 46,000 36,400

43.45 0.091 0.723 0.236 0.2 1.6 0.5 5,600 42,800 44,000

48.63 0.105 0.283 1.290 0.2 0.6 2.6 4,000 48,000 45,600

21.83 0.096 0.946 0.314 0.4 4.3 1.4 2,800 38,800 30,000

MIN 0.091 0.283 0.105 0.2 0.6 0.3 2,000 38,800 30,000

AVERAGE 2.217 0.674 0.455 4.2 2.0 1.1 3,760 44,640 41,200

MEDIAN 0.105 0.723 0.314 0.4 1.6 0.6 4,000 46,000 44,000

Sock

46.02 1.980 7.267 5.335 4.3 15.8 11.6 8,800 42,800 47,600

41.22 3.243 6.131 8.396 7.9 14.9 20.4 16,000 44,000 32,400

39.10 8.856 10.547 3.047 22.6 27.0 7.8 4,400 38,400 46,000

17.08 2.589 4.149 7.830 15.2 24.3 45.8 15,200 31,200 24,000

33.29 2.652 4.126 5.791 8.0 12.4 17.4 5,200 49,200 48,000

MIN 1.980 4.126 3.047 4.3 12.4 7.8 4,400 31,200 24,000

AVERAGE 3.864 6.444 6.080 11.6 18.9 20.6 9,920 41,120 39,600

MEDIAN 2.652 6.131 5.791 8.0 15.8 17.4 8,800 42,800 46,000

Sphere

0.46 0.002 0.000 0.003 0.4 0.0 0.6 2,450 18,900 11,200

0.90 0.064 0.000 0.000 7.2 0.0 0.0 3,500 36,050 5,600

0.58 0.002 0.000 0.000 0.3 0.0 0.0 1,400 24,850 10,150

2.20 0.904 0.000 0.000 41.1 0.0 0.0 700 31,850 8,050

4.03 0.904 0.000 0.031 22.4 0.0 0.8 700 15,050 26,250

0.90 0.903 0.000 0.020 100.0 0.0 2.0 350 26,600 44,100

0.90 0.002 0.002 0.000 0.2 0.2 0.0 6,650 5,600 18,200

0.89 0.893 0.000 0.008 100.0 0.0 0.8 350 48,300 46,550

0.88 0.861 0.000 0.001 97.6 0.0 0.1 1,400 49,700 9,100

0.85 0.514 0.000 0.000 60.4 0.0 0.0 3,150 35,700 15,400

MIN 0.002 0.000 0.000 0.2 0.0 0.0 350 5,600 5,600

AVERAGE 0.505 0.000 0.006 43.0 0.0 0.4 2,065 29,260 19,460

MEDIAN 0.688 0.000 0.001 31.7 0.0 0.1 1,400 29,225 13,300

Dress

2.41 1.820 0.712 0.845 75.4 33.3 39.6 375 3,125 12,750

1.35 0.716 0.830 0.696 53.2 60.4 50.6 1,125 49,875 10,000

1.57 1.406 0.824 0.782 89.3 52.3 49.6 1,625 31,875 9,750

1.03 0.841 0.825 0.822 82.0 80.3 80.0 1,625 29,375 19,750

0.90 0.880 0.824 0.823 97.7 90.3 90.1 750 19,750 16,250

1.49 1.490 0.832 0.698 99.9 55.4 46.5 875 44,000 20,750

1.09 0.875 0.828 0.830 80.3 75.2 75.4 250 35,000 17,250

1.88 0.693 0.861 0.792 37.0 45.4 41.8 1,375 25,875 40,625

1.83 1.305 0.823 0.858 71.2 56.1 58.5 1,125 50,000 10,250

1.27 1.219 0.824 0.854 96.1 64.4 66.8 500 49,500 14,000

1.31 1.178 0.814 0.872 90.1 62.2 66.6 2,375 4,125 10,250

1.26 0.856 0.824 0.823 68.2 65.0 65.0 1,000 47,125 11,000

MIN 0.693 0.712 0.696 37.0 33.3 39.6 250 3,125 9,750

AVERAGE 1.107 0.818 0.808 78.4 61.7 60.9 1,083 32,469 16,052

MEDIAN 1.029 0.824 0.823 81.1 61.3 61.7 1,063 33,438 13,375

C OPTIMIZATION RESULTS FOR ALL RANDOM SEEDS

In this section, we report the optimization results for all random

seeds in Tables 5 and 6. For most experiments, L-BFGS-B achieves

lower or comparable optimized loss than the gradient-free meth-

ods using a fraction (often to an order of magnitude) of time steps,

thanks to the gradient information provided by our differentiable

simulator. For some random seeds, L-BFGS-B converges to a rel-

atively large final loss percentage, possibly due to being stuck in

a local minimum. In practice, it is common and recommended to

run gradient-based optimizations with several initial seeds to al-

leviate this problem, and is the rationale behind why we choose

to report the minimum loss achieved across all random seeds in

the results shown in Table 2 and plot the minimum loss envelop

in Figures 4, 9, 10, and 11. It is also worth mentioning that the

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact • 2:19

examples shown Section 6 have a relative low number of design

variables, while the speed-up of gradient-based methods becomes

more evident with more design variables as demonstrated by the

“Flying Napkin” experiment in Figure 4.

ACKNOWLEDGMENTS

We thank Marco Renedo for his helpful discussions on the precon-

ditioners, Junbang Liang for his help with running the baseline

comparison code, and the anonymous reviewers for their helpful

comments.

REFERENCES
David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings

of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH’98). Association for Computing Machinery, New York, NY, 43–54.

Aric Bartle, Alla Sheffer, Vladimir G. Kim, Danny M. Kaufman, Nicholas Vining, and
Floraine Berthouzoz. 2016. Physics-driven pattern adjustment for direct 3D gar-
ment editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly.
2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM
Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages. https://doi.org/10.1145/
2601097.2601116

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of col-
lisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (July
2002), 594–603.

R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of clothing with folds and wrin-
kles. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA’03). Eurographics Association, Goslar, DEU, 28–36.

Bernard Brogliato. 2016. Nonsmooth Lagrangian Systems. Springer International Pub-
lishing, Cham, 241–370.

Remi Brouet, Alla Sheffer, Laurence Boissieux, and Marie-Paule Cani. 2012. Design
preserving garment transfer. ACM Trans. Graph. 31, 4, Article 36 (July 2012),
11 pages.

George E. Brown, Matthew Overby, Zahra Forootaninia, and Rahul Narain. 2018. Ac-
curate dissipative forces in optimization integrators. ACM Trans. Graph. 37, 6,
Article 282 (Dec. 2018), 14 pages.

Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but responsive cloth. ACM Trans.
Graph. 21, 3 (July 2002), 604–611.

Alexander Clegg, Zackory Erickson, Patrick Grady, Greg Turk, Charles C. Kemp, and
C. Karen Liu. 2020. Learning to collaborate from simulation for robot-assisted
dressing. IEEE Robot. Autom. Lett. 5, 2 (2020), 2746–2753.

Alexander Clegg, Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. 2018. Learning
to dress: Synthesizing human dressing motion via deep reinforcement learning.
ACM Trans. Graph. 37, 6, Article 179 (Dec. 2018), 10 pages.

David Clyde, Joseph Teran, and Rasmus Tamstorf. 2017. Modeling and data-driven
parameter estimation for woven fabrics. In Proceedings of the ACM SIGGRAPH /
Eurographics Symposium on Computer Animation (SCA’17). Association for Com-
puting Machinery, New York, NY, Article 17, 11 pages.

C. Dario Bellicoso, Christian Gehring, Jemin Hwangbo, Péter Fankhauser, and Marco
Hutter. 2016. Perception-less terrain adaptation through whole body control and
hierarchical optimization. In Proceedings of the IEEE-RAS 16th International Con-
ference on Humanoid Robots (Humanoids’16). 558–564. https://doi.org/10.1109/
HUMANOIDS.2016.7803330

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico
Kolter. 2018. End-to-end differentiable physics for learning and control. Advances
in Neural Information Processing Systems 31 (2018), 7178–7189.

Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. 2019. A differen-
tiable physics engine for deep learning in robotics. Front. Neurorobot. 13 (2019),
6.

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and
Wojciech Matusik. 2021. DiffPD: Differentiable projective dynamics. ACM Trans.
Graph. 41, 2, Article 13 (Oct. 2021), 21 pages. https://doi.org/10.1145/3490168

Tao Du, Kui Wu, Andrew Spielberg, Wojciech Matusik, Bo Zhu, and Eftychios Sifakis.
2020. Functional optimization of fluidic devices with differentiable stokes flow.
ACM Trans. Graph. 39, 6, Article 197 (Dec. 2020), 15 pages. https://doi.org/10.1145/
3414685.3417795

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A practi-
cal gauss-seidel method for stable soft body dynamics. ACM Trans. Graph. 35, 6,
Article 214 (Nov. 2016), 9 pages.

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard
Thomaszewski, and Stelian Coros. 2020. ADD: Analytically differentiable
dynamics for multi-body systems with frictional contact. ACM Trans. Graph. 39,
6 (2020), 1–15.

Peng Guan, Loretta Reiss, David A. Hirshberg, Alexander Weiss, and Michael J. Black.
2012. DRAPE: DRessing any PErson. ACM Trans. Graph. 31, 4, Article 35 (July
2012), 10 pages.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. Retrieved from http://eigen.
tuxfamily.org.

David Hahn, Pol Banzet, James M. Bern, and Stelian Coros. 2019. Real2sim: Visco-
elastic parameter estimation from dynamic motion. ACM Trans. Graph. 38,
6 (2019), 1–13. https://doi.org/10.1007/3-540-32494-1_4

Nikolaus Hansen. 2006. The CMA Evolution Strategy: A Comparing Review.
David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2008. Ro-

bust treatment of simultaneous collisions. In Proceedings of the ACM SIGGRAPH
(SIGGRAPH’08). Association for Computing Machinery, New York, NY, Article 23,
4 pages.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. 2020. Learning to control PDEs with
differentiable physics. In Proceedings of the International Conference on Learning
Representations.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Frédo Durand. 2020. DiffTaichi: Differentiable programming for
physical simulation. In Proceedings of the International Conference on Learning
Representations.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T.
Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019. Chainqueen: A
real-time differentiable physical simulator for soft robotics. In Proceedings of the
International Conference on Robotics and Automation (ICRA’19). IEEE, 6265–6271.

Dongho Kang, Simon Zimmermann, and Stelian Coros. 2021. Animal gaits on
quadrupedal robots using motion matching and model-based control. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’21). IEEE.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization.
Retrieved from https://arXiv:cs.LG/1412.6980.

Martin Komaritzan and Mario Botsch. 2018. Projective skinning. Proc. ACM Comput.
Graph. Interact. Tech. 1, 1, Article 12 (July 2018), 19 pages. https://doi.org/10.1145/
3203203

Cheng Li, Min Tang, Ruofeng Tong, Ming Cai, Jieyi Zhao, and Dinesh Manocha. 2020.
P-Cloth: Interactive complex cloth simulation on multi-GPU systems using dy-
namic matrix assembly and pipelined implicit integrators. ACM Trans. Graph. 39,
6, Article 180 (Nov. 2020), 15 pages.

Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes, Matthew Overby,
George E. Brown, and Laurence Boissieux. 2018b. An implicit frictional contact
solver for adaptive cloth simulation. ACM Trans. Graph. 37, 4, Article 52 (July
2018), 15 pages.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin,
Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental
potential contact: Intersection-and inversion-free, large-deformation dynamics.
ACM Trans. Graph. 39, 4, Article 49 (July 2020), 20 pages.

Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremen-
tal potential contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 170 (2021).

Minchen Li, Alla Sheffer, Eitan Grinspun, and Nicholas Vining. 2018. Foldsketch: En-
riching garments with physically reproducible folds. ACM Trans. Graph. 37, 4,
Article 133 (July 2018), 13 pages.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018a. Differen-
tiable monte carlo ray tracing through edge sampling. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 37, 6 (2018), 222:1–222:11.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua Tenenbaum, and Antonio Torralba. 2019.
Learning particle dynamics for manipulating rigid bodies, deformable objects,
and fluids. In Proceedings of the International Conference on Learning Represen-
tations.

Junbang Liang, Ming Lin, and Vladlen Koltun. 2019. Differentiable cloth simulation for
inverse problems. In Advances in Neural Information Processing Systems, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates. Retrieved from https://proceedings.neurips.cc/paper/
2019/file/28f0b864598a1291557bed248a998d4e-Paper.pdf.

Dong C. Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for large
scale optimization. Math. Program. 45 (1989), 503–528.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast sim-
ulation of mass-spring systems. ACM Trans. Graph. 32, 6, Article 214 (Nov. 2013),
7 pages.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for
real-time simulation of hyperelastic materials. ACM Trans. Graph. 36, 3 (2017),
1–16.

Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Lau-
rence Boissieux. 2018. Inverse elastic shell design with contact and friction. ACM
Trans. Graph. 37, 6, Article 201 (Dec. 2018), 16 pages.

Mickaël Ly, Jean Jouve, Laurence Boissieux, and Florence Bertails-Descoubes. 2020.
Projective dynamics with dry frictional contact. ACM Trans. Graph. 39, 4, Article
57 (July 2020), 8 pages.

M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T. Y. Kim. 2020. Pri-
mal/dual descent methods for dynamics. In Proceedings of the ACM SIGGRAPH/

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1109/HUMANOIDS.2016.7803330
https://doi.org/10.1145/3490168
https://doi.org/10.1145/3414685.3417795
http://eigen.tuxfamily.org
https://doi.org/10.1007/3-540-32494-1_4
http://arxiv.org/abs/cs.LG/1412.6980.
https://doi.org/10.1145/3203203
https://proceedings.neurips.cc/paper/2019/file/28f0b864598a1291557bed248a998d4e-Paper.pdf.

2:20 • Y. Li et al.

Eurographics Symposium on Computer Animation (SCA’20). Eurographics Associ-
ation, Goslar, DEU, Article 9, 12 pages.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-
based simulation of compliant constrained dynamics. In Proceedings of the 9th
International Conference on Motion in Games (MIG’16). Association for Comput-
ing Machinery, New York, NY, 49–54.

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based elastic materials. ACM Trans. Graph. 30, 4, Article 72 (July 2011),
8 pages. https://doi.org/10.1145/2010324.1964967

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control
using the adjoint method. ACM Trans. Graph. 23, 3 (Aug. 2004), 449–456.

E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. A. Otaduy, and
S. Marschner. 2012. Data-driven estimation of cloth simulation models. Comput.
Graph. Forum 31, 2 (May 2012), 519–528.

Eder Miguel, Rasmus Tamstorf, Derek Bradley, Sara C. Schvartzman, Bernhard
Thomaszewski, Bernd Bickel, Wojciech Matusik, Steve Marschner, and Miguel A.
Otaduy. 2013. Modeling and estimation of internal friction in cloth. ACM Trans.
Graph. 32, 6, Article 212 (Nov. 2013), 10 pages.

Michael Mistry, Jonas Buchli, and Stefan Schaal. 2010. Inverse dynamics control of
floating base systems using orthogonal decomposition. In Proceedings of the IEEE
International Conference on Robotics and Automation. 3406–3412. https://doi.org/
10.1109/ROBOT.2010.5509646

Juan Montes, Bernhard Thomaszewski, Sudhir Mudur, and Tiberiu Popa. 2020. Com-
putational design of skintight clothing. ACM Trans. Graph. 39, 4, Article 105 (July
2020), 12 pages.

Jorge J. Moré and David J. Thuente. 1994. Line search algorithms with guaranteed
sufficient decrease. ACM Trans. Math. Softw. 20, 3 (Sept. 1994), 286–307. https:
//doi.org/10.1145/192115.192132

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. J. Vis. Comun. Image Represent. 18, 2 (April 2007), 109–118.

J. Krishna Murthy, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Mar-
tin Weiss, Breandan Considine, Jérôme Parent-Lévesque, Kevin Xie, Kenny Er-
leben, Liam Paull, Florian Shkurti, Derek Nowrouzezahrai, and Sanja Fidler. 2021.
gradSim: Differentiable simulation for system identification and visuomotor con-
trol. In Proceedings of the International Conference on Learning Representations.
Retrieved from https://openreview.net/forum?id=c_E8kFWfhp0.

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive anisotropic remesh-
ing for cloth simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages.

Miguel A. Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009. Im-
plicit contact handling for deformable objects. Comput. Graph. Forum 28, 2 (2009),
559–568.

Matthew Overby, George E. Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ projec-
tive dynamics: Fast simulation of hyperelastic models with dynamic constraints.
IEEE Trans. Visual. Comput. Graph. 23, 10 (Oct 2017), 2222–2234.

Jovan Popović, Steven Seitz, and Michael Erdmann. 2003. Motion sketching for control
of rigid-body simulations. ACM Trans. Graph. 22, 4 (Oct. 2003), 1034–1054.

Jovan Popović, Steven M. Seitz, Michael Erdmann, Zoran Popović, and Andrew
Witkin. 2000. Interactive manipulation of rigid body simulations. In Proceed-
ings of the 27th Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH’00). ACM Press/Addison-Wesley Publishing, 209–217. https:
//doi.org/10.1145/344779.344880

Xavier Provot. 1997. Collision and self-collision handling in cloth model dedicated
to design garments. In Computer Animation and Simulation’97, Daniel Thalmann
and Michiel van de Panne (Eds.). Springer Vienna, Vienna, 177–189.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming Lin. 2020. Scalable differen-
tiable physics for learning and control. In Proceedings of the International Confer-
ence on Machine Learning.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec,
and Peter Battaglia. 2020. Learning to simulate complex physics with graph net-
works. In Proceedings of the International Conference on Machine Learning.

Connor Schenck and Dieter Fox. 2018. SPNets: Differentiable fluid dynamics for deep
neural networks. In Proceedings of the Conference on Robot Learning (CoRL’18).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. Retrieved from https://arXiv:1707.
06347\/.

Ari Stern and Mathieu Desbrun. 2006. Discrete geometric mechanics for variational
time integrators. In Proceedings of the ACM SIGGRAPH Courses (SIGGRAPH’06).
Association for Computing Machinery, New York, NY, 75–80.

Ari Stern and Eitan Grinspun. 2009. Implicit-explicit variational integration of highly
oscillatory problems. Multiscale Model. Simul. 7, 4 (2009), 1779–1794.

Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed aggrega-
tion multigrid for cloth simulation. ACM Trans. Graph. 34, 6, Article 245 (Oct.
2015), 13 pages.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-
formable models. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 205–214.

Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua Tenenbaum. 2018. Differen-
tiable physics and stable modes for tool-use and manipulation planning. In Ro-
botics: Science and Systems, Vol. 2.

Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe
control of smoke simulations. ACM Trans. Graph. 22, 3 (July 2003), 716–
723.

Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun. 2011.
Sensitive couture for interactive garment modeling and editing. ACM Trans.
Graph. 30, 4, Article 90 (July 2011), 12 pages.

Huamin Wang. 2015. A chebyshev semi-iterative approach for accelerating projective
and position-based dynamics. ACM Trans. Graph. 34, 6, Article 246 (Oct. 2015),
9 pages.

Huamin Wang. 2018. Rule-free sewing pattern adjustment with precision and effi-
ciency. ACM Trans. Graph. 37, 4, Article 53 (July 2018), 13 pages.

Huamin Wang, James F. O’Brien, and Ravi Ramamoorthi. 2011. Data-driven elas-
tic models for cloth: Modeling and measurement. In Proceedings of the ACM
SIGGRAPH (SIGGRAPH’11). Association for Computing Machinery, New York,
NY, Article 71, 12 pages.

Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on
the GPU. ACM Trans. Graph. 35, 6, Article 212 (Nov. 2016), 10 pages.

Zhendong Wang, Longhua Wu, Marco Fratarcangeli, Min Tang, and Huamin Wang.
2018. Parallel multigrid for nonlinear cloth simulation. Comput. Graph. Forum 37,
7 (2018), 131–141.

Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis Exarchos, and C. Karen Liu.
2021. Fast and feature-complete differentiable physics engine for articulated rigid
bodies with contact constraints. In Proceedings of the Conference on Robotics: Sci-
ence and Systems. https://doi.org/10.15607/RSS.2021.XVII.034

Ryan White, Keenan Crane, and David Forsyth. 2007. Capturing and animating oc-
cluded cloth. In Proceedings of the ACM Conference on Transactions on Graphics
(SIGGRAPH’07).

Andrew Witkin and Michael Kass. 1988. Spacetime constraints. In Proceedings of
the 15th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH’88). Association for Computing Machinery, New York, NY, 159–168.
https://doi.org/10.1145/54852.378507

Chris Wojtan, Peter Mucha, and Greg Turk. 2006. Keyframe control of complex par-
ticle systems using the adjoint method. In Proceedings of the ACM SIGGRAPH/
Eurographics Symposium on Computer Animation (SCA’06). Eurographics Associ-
ation, Goslar, DEU, 15–23.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable galerkin multigrid
method for real-time simulation of deformable objects. ACM Trans. Graph. 38, 6,
Article 162 (Nov. 2019), 13 pages.

Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Wojciech Matusik, Shinjiro Sueda,
and Pulkit Agrawal. 2021. An end-to-end differentiable framework for contact-
aware robot design. In Proceedings of the Conference on Robotics: Science and Sys-
tems. https://doi.org/10.15607/RSS.2021.XVII.008

Qiu Yixuan. 2021. LBFGS++. Retrieved from https://github.com/yixuan/LBFGSpp/.

Received 10 October 2021; revised 11 February 2022; accepted 18 March

2022

ACM Transactions on Graphics, Vol. 42, No. 1, Article 2. Publication date: September 2022.

https://doi.org/10.1145/2010324.1964967
https://doi.org/10.1109/ROBOT.2010.5509646
https://doi.org/10.1145/192115.192132
https://openreview.net/forum?id=c_E8kFWfhp0.
https://doi.org/10.1145/344779.344880
https://arXiv:1707.06347\/
https://doi.org/10.15607/RSS.2021.XVII.034
https://doi.org/10.1145/54852.378507
https://doi.org/10.15607/RSS.2021.XVII.008
https://github.com/yixuan/LBFGSpp/

