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Interprocedural analysis is at the heart of numerous applications in programming languages, such as alias
analysis, constant propagation, and so on. Recursive state machines (RSMs) are standard models for inter-
procedural analysis. We consider a general framework with RSMs where the transitions are labeled from a
semiring and path properties are algebraic with semiring operations. RSMs with algebraic path properties
can model interprocedural dataflow analysis problems, the shortest path problem, the most probable path
problem, and so on. The traditional algorithms for interprocedural analysis focus on path properties where
the starting point is fixed as the entry point of a specific method. In this work, we consider possible multiple
queries as required in many applications such as in alias analysis. The study of multiple queries allows us to
bring in an important algorithmic distinction between the resource usage of the one-time preprocessing vs
for each individual query. The second aspect we consider is that the control flow graphs for most programs
have constant treewidth.

Our main contributions are simple and implementable algorithms that support multiple queries for alge-
braic path properties for RSMs that have constant treewidth. Our theoretical results show that our algorithms
have small additional one-time preprocessing but can answer subsequent queries significantly faster as com-
pared to the current algorithmic solutions for interprocedural dataflow analysis. We have also implemented
our algorithms and evaluated their performance for performing on-demand interprocedural dataflow analy-
sis on various domains, such as for live variable analysis and reaching definitions, on a standard benchmark
set. Our experimental results align with our theoretical statements and show that after a lightweight prepro-
cessing, on-demand queries are answered much faster than the standard existing algorithmic approaches.
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Additional Key Words and Phrases: Interprocedural analysis, constant treewidth graphs, dataflow analysis,
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1 INTRODUCTION

Interprocedural analysis and RSMs. Interprocedural analysis is one of the classic algorithmic prob-
lems in programming languages, which is at the heart of numerous applications, ranging from
alias analysis, to data dependencies (modification and reference side effect), to constant propa-
gation, to live and use analysis [Reps et al. 1995; Sagiv et al. 1996; Callahan et al. 1986; Grove
and Torczon 1993; Landi and Ryder 1991; Knoop et al. 1996; Cousot and Cousot 1977; Giegerich
et al. 1981; Knoop and Steffen 1992; Naeem and Lhoták 2008; Zhang et al. 2014; Chatterjee et al.
2015b]. In seminal works Reps et al. [1995] and Sagiv et al. [1996], it was shown that a large class
of interprocedural dataflow analysis problems can be solved in polynomial time. A standard model
for interprocedural analysis is recursive state machines (RSMs) [Alur et al. 2005] (a.k.a. supergraph

in Reps et al. [1995]). An RSM is a formal model for control flow graphs of programs with recur-
sion. We consider RSMs that consist of component state machines (CSMs), one for each method
that has a unique entry and unique exit, and each CSM contains boxes that are labeled as CSMs
that allow calls to other methods. This class of (so-called) single-entry single-exit RSMs is compu-
tationally less expressive than multi-entry, multi-exit RSMs, and as expressive as the class of Basic
Pushdown Systems, which are pushdown systems with a single state [Clarke et al. 2018].

Algebraic path properties. To specify properties of traces of an RSM, we consider a very gen-
eral framework, where edges of the RSM are labeled from a complete semiring (which subsumes
bounded and finite distributive semirings), and we refer to the labels of the edges as weights. For a
given path, the weight of the path is the semiring product of the weights on the edges of the path,
and to choose among different paths, we use the semiring plus operator. For example, (i) with
Boolean semiring (with semiring product as AND, and semiring plus as OR), we can express the
reachability property; (ii) with tropical semiring (with real-edge weights, semiring product as stan-
dard sum, and semiring plus as minimum), we can express the shortest path property; and (iii) with
Viterbi semiring (with probability value on edges, semiring product as standard multiplication
and semiring plus as maximum), we can express the most probable path property. The algebraic
path properties expressed in our framework subsumes the IFDS/IDE frameworks [Reps et al. 1995;
Sagiv et al. 1996] that consider finite semirings and meet over all paths as the semiring plus op-
erator. Since IFDS/IDE are subsumed in our framework, the large and important class of dataflow
analysis problems that can be expressed in IFDS/IDE frameworks can also be expressed in our
framework.

On-demand analysis. Exhaustive data-flow analysis is computationally expensive and often
unnecessary. A topic of great interest in the software engineering community is that of on-demand

dataflow analysis [Babich and Jazayeri 1978; Zadeck 1984; Duesterwald et al. 1995; Horwitz et al.
1995; Reps 1995, 1997; Yuan et al. 1997; Naeem et al. 2010]. On-demand analyses have several
applications, such as (quoting from Horwitz et al. [1995] and Reps [1997]) (i) narrowing down
the focus to specific points of interest, (ii) narrowing down the focus to specific data-flow facts
of interest, (iii) reducing work in preliminary phases, (iv) side-stepping incremental updating
problems, and (v) offering demand analysis as a user-level operation. On-demand analysis is also
very useful for speculative optimizations in just-in-time compilers [Chen et al. 2004; Lin et al.
2004; Bebenita et al. 2010; Flückiger et al. 2017], where dynamic information can dramatically
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Fig. 1. A partial program. Whether the function h is called in line 8 depends on the value of the argument b
of function f .

increase the precision of the analysis. In this setting, it is crucial that the on-demand analysis
runs fast, to incur as little overhead as possible.

A motivating example. As a toy motivating example, consider the partial program shown in
Figure 1, compiled with a just-in-time compiler that uses speculative optimizations. Whether the
compiler must compile the expensive function h depends on whether x is 0 in line 7. In turn, this
depends on the value of the Boolean variable b. Performing a value analysis from the entry of f
reveals that x can have the values {0, 1} in line 7. Hence, if the decision to compile h relies only on
an offline static analysis, h is always compiled, even when not needed.

Now consider the case where the execution of the program is in line 5, and at this point the
compiler decides on whether to compile h. It is clear that given this information, the set of possible
values for x in line 7 is the singleton {1}, and thus h does not have to be compiled. As we have seen
above, this decision cannot be made based on offline analysis. However, an on-demand analysis
starting from the current program location will correctly conclude that x will have the value 1.
Note, however, that this decision is made by the compiler during runtime. Hence, such an on-
demand analysis is useful only if it can be performed fast. It is also highly desirable that the time
for running this analysis is predictable, so the compiler can decide whether to run the analysis or
simply compile h proactively.

In this work, we address the above challenge algorithmically. We exploit the low-treewidth prop-
erty of control-flow graphs to devise fast algorithms for on-demand analysis that have minimal
preprocessing overhead.

Preprocess vs query. On-demand analyses can be naturally phrased in a preprocess vs query
setting. In the preprocessing phase, the program is analyzed without knowledge of the precise
analysis queries. Afterwards, in the query phase, analysis queries arrive in an online fashion (i.e.,
the analyzer is oblivious to future queries). In graph theoretic parlance, graph algorithms can
consider two types of queries: (i) a pair query that, given nodes u and v (called (u,v )-pair query),
asks for the algebraic path property from u to v ; and (ii) a single-source query that, given a node
u, asks for the answer of (u,v )-pair queries for all nodes v . In this vocabulary, the traditional
algorithms for offline interprocedural analysis have focused on the answer for one single-source
query. This consideration opens up a wide spectrum with regards to the resources spent in each
phase. On the one hand, we have no preprocessing, where each arising query is treated anew,
as an offline analysis problem. On the other hand, we have complete preprocessing, where we
precompute the answer to every possible query and store the answer in a lookup table. Hence, in
the query phase, every query is answered by a simple table lookup. The key technical challenge
faced by the static analyzer is to achieve the best possible tradeoff in this spectrum: spend as few
resources as possible in the preprocessing phase (in terms of running time and space usage) so,
afterwards, on-demand queries are answered fast.
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Table 1. Interprocedural Same-context Algebraic Paths on RSMs with b Boxes

and Constant Treewidth, for Stack Height h

Preprocessing time Space Query Reference

Single-source Pair

Our O (n · logn + h · b · logn) O (n · logn) O (n) O (1) Theorem 4.2

Results O (n + h · b · logn) O (n) O (n) O (logn) Theorem 4.2

Treewidth property of control-flow graphs. A very well-known concept in graph theory is the
notion of treewidth of a graph, which is a measure of how similar a graph is to a tree (a graph
has treewidth 1 precisely if it is a tree) [Robertson and Seymour 1984]. The treewidth of a graph
is defined based on a tree decomposition of the graph [Halin 1976] (see Section 2 for a formal
definition). Beyond the mathematical elegance of the treewidth property for graphs, there are
many classes of graphs that arise in practice and have constant treewidth. The most important
example is that the flow graph for goto-free programs in many classic programming languages
have constant treewidth [Thorup 1998]. The low treewidth of flow graphs has also been confirmed
experimentally for programs written in Java [Gustedt et al. 2002], C [Klaus Krause et al. 2019],
Ada [Burgstaller et al. 2004], and Solidity [Chatterjee et al. 2019].

Algorithmic considerations. The current work focuses on the algorithmic problem of constructing
algebraic path oracles for handling general algebraic path queries on RSMs, as well as on the special
cases of IFDS/IDE and shortest-path semirings. In particular, we consider RSMs where every CSM
has constant treewidth and the algorithmic question of answering multiple single-source and mul-
tiple pair queries, where each query is a same-context query. (A same-context query starts and ends
with an empty stack; see Chaudhuri [2008] for the significance of same-context queries.) Although
these problems are of great practical importance, this work makes an algorithmic treatment aimed
at improved worst-case complexities. We address the practical side of our algorithms in an exper-
imental evaluation that, although not extensive, gives a promising indication that our algorithms
can be relevant in practice (e.g., w.r.t the hidden constant in the asymptotic complexity analysis).

Our contributions. Our main contributions are as follows:

(1) (General result). Since we consider arbitrary semirings (i.e., not restricted to finite semir-
ings), we consider the stack-height-bounded problem, where the input contains a stack-
height bound h, and we are interested in semiring distances as witnessed by interpro-
cedural paths of stack height at most h. While in general for arbitrary semirings there
does not exist a bound on the stack height, if the semiring does not have infinite descend-
ing chains, then the stack height bounded problem gives an exact answer to the general
problem (i.e., without a bound on the stack height) for large enough h. This is especially
the case for the main semirings of interest, as in the case of reachability and the case of
IFDS. Our main result is an algorithm where the one-time preprocessing phase requires
O (n · logn + h · b · logn) semiring operations, and then each subsequent bounded stack
height pair query can be answered in constant number of semiring operations, where n is
the number of nodes of the RSM and b the number of boxes (see Table 1 and Theorem 4.2).

(2) IFDS/IDE If we specialize our result to the IFDS/IDE setting with finite semirings from a
finite universe of distributive functions 2D → 2D and meet over all paths as the semiring
plus operator, then we obtain the results shown in Table 2 (Corollary 4.5). For example,
our approach with a factor ofO (logn) overhead for one-time preprocessing, as compared
to no preprocessing, can answer subsequent pair queries by a factor of Ω(n · |D |) faster.
Additionally, when |D | = Ω(logn), our algorithm requires only O (n · |D |3) preprocessing
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Table 2. Interprocedural Same-context Algebraic Paths on RSMs with b Boxes and Constant

Treewidth, Where the Semiring Is Over the Subset of |D | Elements and the Plus Operator

Is the Meet Operator of the IFDS Framework

Preprocessing time Space Query Reference

Single-source Pair

IFDS/IDE (complete
preprocessing)

O (n2 · |D |3) O (n2 · |D |) O (n · |D |) O ( |D |) [Reps et al. 1995]

IFDS/IDE (no
preprocessing)

- O (n · |D |) O (n · |D |3) O (n · |D |3) [Reps et al. 1995]

Our O (n · log n · |D |3) O (n · log n · |D |2) O (n · |D |2) O ( |D |2) Corollary 4.5

Results O ((n + b · log n) · |D |3) O (n · |D |2) O (n · |D |2) O (log n · |D |2) Corollary 4.5

|D | = Ω(log n) O (n · |D |3) O (n · |D |2) O (n · |D |2/ log n) O ( |D |2/ log n) Corollary 4.6

Existing results are taken from Reps et al. [1995]. Our results are obtained from Corollary 4.5 and Corollary 4.6.

Table 3. Interprocedural Same-context Distances with Non-negative Weights for RSMs

with n Nodes, k CSMs, b Boxes, and Constant Treewidth

Preprocessing time Space Query Reference

Single-source Pair

Complete preprocessing1 O (n2 · logn) O (n2) O (n) O (1) [Schwoon 2002]

No preprocessing2 - O (n) O (n · logn) O (n · logn) [Schwoon 2002]

Our O (n · logn) O (n · logn) O (n) O (1) Corollary 4.7

Result O (n + b · logn) O (n) O (n) O (logn) Corollary 4.7

1The preprocessing time is obtained by executing Dijkstra’s algorithm b times in each of the k CMSs, followed by executing

Dijkstra’s algorithm from n source nodes.
2The single-source and pair query times are obtained by executing Dijkstra’s algorithm b times in each of the k CMSs.

after which pair queries are answered in O ( |D |2/ logn) time. Note that the complexity
of the standard IFDS/IDE algorithm is O (n · |D |3) for answering one single-source
query, whereas in the same preprocessing time, our algorithm handles every pair query
efficiently.

(3) (Shortest path). We now consider the problem of distances with non-negative weights,
where the current best-known algorithm for RSMs with unique entries and exits comes
from Schwoon [2002]. Each single-source query requiresO (n · logn) based on a variant of
Dijkstra’s shortest-path algorithm phrased on RSMs. The complete preprocessing requires
O (n2 · logn) time for computing the transitive closure using n single-source queries. The
complete preprocessing additionally requires Θ(n2) space, at the cost of which single-
source and pair distance queries are handled in O (n) and O (1) time, respectively. In
contrast, we show that (i) with O (n + b · logn) preprocessing time and O (n) space, we
can answer single-source (respectively, pair) queries inO (n) (respectively,O (logn)) time;
and (i) with O (n · logn) time and space, we can answer single-source (respectively, pair)
queries in O (n) (respectively, O (1)) time. See Table 3.

An important feature of our algorithms is that they are simple and implementable. Besides the
theoretical improvements, we demonstrate the effectiveness of our approach for performing on-
demand analysis on several standard benchmarks. We have used the tool JTDec [Chatterjee et al.
2017] for computing tree decompositions, and all benchmarks of our experimental results have
small treewidth, and hence our treewidth considerations are justified. We have evaluated the per-
formance of our algorithms for six different interprocedural dataflow analyses, expressed in the
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IFDS framework: control-flow reachability, unused variables, reaching definitions, live variables,
simple uninitialized variables, and possibly uninitialized variables. Our experiments show that our
new treewidth-based algorithms succeed in answering both single-source and pair on-demand
queries efficiently, only after a lightweight preprocessing.

Intuition and main technical contribution. Conceptually, the process of solving the algebraic-path
problem on an RSM can be viewed as an iterative process: First, every control-flow graph of the
RSM (corresponding to every method of the program) is analyzed independently to solve the in-
traprocedural algebraic-path problem, from the entry to the exit of the module. This information
is then summarized to the calling site of every invocation to the respective RSM, and the process
repeats. The intuition behind our improvements is that, assuming the constant-treewidth property
of the control-flow graphs, the tasks of (i) updating each control-flow graph with summary infor-
mation and (ii) querying each control-flow graph for the semiring distance between the entry and
the exit nodes can be done efficiently. Our main technical contribution is a dynamic algorithm (also
referred to as an incremental algorithm in the literature on graph algorithms) that given a graph
with constant treewidth, after a preprocessing phase ofO (n · logn) semiring operations, supports
(1) changing the label of an edge with O (logn) semiring operations; (2) answering pair queries
with O (logn) semiring operations; and (3) answering single-source queries with O (n) semiring
operations. These results are presented in Theorem 3.8.

Preliminary versions of this work have appeared in Chatterjee et al. [2015a] and Chatterjee
et al. [2016].

1.1 Related Work

In this section, we compare our work with several related works from interprocedural analysis as
well as for constant treewidth property.

Interprocedural analysis. Interprocedural analysis is a classic algorithmic problem in static anal-
ysis and several diverse applications have been studied in the literature [Reps et al. 1995; Sagiv
et al. 1996; Callahan et al. 1986; Grove and Torczon 1993; Landi and Ryder 1991; Knoop et al. 1996;
Cousot and Cousot 1977; Giegerich et al. 1981; Knoop and Steffen 1992; Chatterjee et al. 2015a].
Our work is most closely related to the IFDS/IDE frameworks introduced in seminal works Reps
et al. [1995] and Sagiv et al. [1996]. In both IFDS/IDE framework the semiring is finite, and they
study the algorithmic question of solving one single-source query. While in our framework the
semiring is not necessarily finite, we consider the stack height bounded problem. We also con-
sider the multiple pair and single-source, same-context queries, and the additional restriction that
RSMs have constant treewidth. Our general result specialized to finite semirings (where the stack
height bounded problem coincides with the general problem) improves the existing best-known
algorithms for the IFDS/IDE framework where the RSMs have constant treewidth. Additionally,
the shortest path problem cannot be expressed in the IFDS/IDE framework [Reps et al. 2005], but
can be expressed in the GPR framework [Reps et al. 2005, 2007]. The GPR framework considers the
more general problem on weighted pushdown systems. Although the RSMs that we consider in
this work are a special case of pushdown systems, the GPR framework is efficient only for semir-
ings of small height. For example, although the shortest path problem can be phrased in the GPR
framework, the solution might take exponential time in the worst case. A solution to the shortest
path problem for RSMs is presented in Schwoon [2002] by replacing the work queue data structure
of the GPR framework with a priority queue. The related problem of determining the minimum-
mean cycle in RSMs was addressed in Chatterjee et al. [2015b] without the constant-treewidth
consideration. Finally, several works such as Horwitz et al. [1995] ask for on-demand interproce-
dural analysis and algorithms to support dynamic updates, and our main technical contributions
are algorithms to support dynamic updates in interprocedural analysis.
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Recursive state machines (RSMs). Recursive state machines, which in general are equivalent to
pushdown graphs, have been studied as a formal model for interprocedural analysis [Alur et al.
2005]. However, in comparison to pushdown graphs, RSMs are a more convenient formalism for
interprocedural analysis. Games on recursive state machines with modular strategies have been
considered in Alur et al. [2006] and Chatterjee and Velner [2012], and subcubic algorithm for
general RSMs with reachability has been shown in Chaudhuri [2008]. We focus on RSMs with
unique entries and exits and with the restriction that the components have constant tree width.
RSMs with unique entries and exits are less expressive than pushdown graphs, but remain a very
natural model for efficient interprocedural analysis [Reps et al. 1995; Sagiv et al. 1996].

Treewidth of graphs. The notion of treewidth for graphs as an elegant mathematical tool to
analyze graphs was introduced in Robertson and Seymour [1984]. The significance of constant
treewidth in graph theory is huge mainly because several problems on graphs become complexity-
wise easier. Given a tree decomposition of a graph with low treewidth t , many NP-complete prob-
lems for arbitrary graphs can be solved in time polynomial in the size of the graph, but exponen-
tial in t [Arnborg and Proskurowski 1989; Bern et al. 1987; Bodlaender 1988, 1993b, 2005]. Even
for problems that can be solved in polynomial time, faster algorithms can be obtained for low
treewidth graphs; for example, for the distance problem [Chaudhuri and Zaroliagis 2000]. The
constant-treewidth property of graphs has also been used in the context of logic: Monadic Second
Order (MSO) logic is a very expressive logic, and a celebrated result of Courcelle [1990] showed
that for constant-treewidth graphs the decision questions for MSO can be solved in polynomial
time; and the result of Elberfeld et al. [2010] shows that this can even be achieved in determinis-
tic log-space. Dynamic algorithms for the special case of 2-treewidth graphs has been considered
in Bodlaender [1994] and extended to various tradeoffs by Hagerup [2000]; and [Lacki 2013] shows
how to maintain the strongly connected component decomposition under edge deletions for con-
stant treewidth graphs. However, none of these works consider RSMs or interprocedural analysis.
Various other models (such as probabilistic models of Markov decision processes and games played
on graphs for synthesis) with the constant-treewidth restriction have also been considered [Chat-
terjee and Lacki 2013; Obdrzálek 2003]. The problem of computing a balanced tree decomposition
for a constant treewidth graph was considered in Reed [1992], and we use this algorithm in our
preprocessing phase.

2 PRELIMINARIES

We will in this section give definitions related to semirings, graphs, and recursive state machines.

2.1 Semirings

Definition 2.1 (Semirings). We consider complete semirings S = (Σ, ⊕, ⊗, 0, 1) where Σ is a count-
able set, ⊕ and ⊗ are binary operators on Σ, and 0, 1 ∈ Σ, and the following properties hold:

(1) ⊕ is infinitely associative, infinitely commutative, and 0 is the neutral element,
(2) ⊗ is associative, and 1 is the neutral element,
(3) ⊗ infinitely distributes over ⊕,
(4) 0 absorbs in multiplication, i.e., ∀a ∈ Σ : a ⊗ 0 = 0.

Additionally, we consider that

(1) S is idempotent, i.e., for every s ∈ Σ, we have that s ⊕ s = s , and
(2) S is equipped with a closure operator ∗, such that ∀s ∈ Σ : s∗ = 1 ⊕ (s ⊗ s∗) = 1 ⊕ (s∗ ⊗ s )

(i.e., the semiring is closed).

Conventionally, we let ⊕(∅) = 0 and ⊗(∅) = 1.
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2.2 Graphs and Tree Decompositions

Definition 2.2 (Graphs and Weighted Paths). Let G = (V ,E) be a finite directed graph where V
is a set of n nodes and E ⊆ V ×V is an edge relation of m edges, along with a weight function
wt : E → Σ that assigns to each edge of G an element from Σ. A path P : u � v is a sequence of
nodes (u1, . . . ,uk ) such that for each 1 ≤ i < k , we have (ui ,ui+1) ∈ E. The length of P is k − 1. A
path P is simple if no node repeats in the path (i.e., it does not contain a cycle). A single node is
by itself a 0-length path. Given a path P = (u1, . . . ,uk ), we use the set notation u ∈ P to denote
that u appears in P , and A ∩ P to refer to the set of nodes that appear in both P and A. The weight
of P is ⊗(P ) =

⊗
(wt(u1,u2), . . . ,wt(uk−1,uk )) if |P | ≥ 1 else ⊗(P ) = 1. Given nodes u,v ∈ V , the

distance d (u,v ) is defined as d (u,v ) =
⊕

P :u�v ⊗(P ), and d (u,v ) = 0 if no such P exists.

Definition 2.3. A (rooted) tree T = (VT ,ET ) is an undirected graph with a distinguished node r
that is the root such that there is a unique simple path Pv

u : u � v for each pair of nodes u,v . The
size of T is |VT |. Given a tree T with root r , the level Lv(u) of a node u is the length of the simple
path Pr

u from u to the root r , and every node in Pr
u is an ancestor of u. If v is an ancestor of u, then

u is a descendant of v . Note that a node u is both an ancestor and descendant of itself. For a pair of
nodes u,v ∈ VT , the lowest common ancestor (LCA) of u and v is the common ancestor of u and v
with the largest level. Given a node u with Lv(i ) > 0, the parent u of v is the unique ancestor of v
in level Lv(v ) − 1, and v is a child of u. A leaf of T is a node with no children. For a node u ∈ VT ,
we denote by T (u) the subtree of T rooted in u (i.e., the tree consisting of all descendants of u).
The treeT is binary if every node has at most two children. The height ofT is maxu Lv(u) (i.e., it is
the length of the longest path Pr

u ), and T is balanced if its height is bounded by c · log |VT |, where
c is a constant that does not depend on T . Given a tree T , a connected component C ⊆ VT of T is a
set of nodes of T such that for every pair of nodes u,v ∈ C , the unique simple path Pv

u in T visits
only nodes in C .

Definition 2.4 (Tree Decomposition and Treewidth [Robertson and Seymour 1984]). Given a graph
G, a tree-decomposition T = (VT ,ET ) is a tree with the following properties:

T1: VT = {B1, . . . ,Bb : for all 1 ≤ i ≤ b . Bi ⊆ V } and
⋃

Bi ∈VT
Bi = V . That is, each node of T

is a subset of nodes of G, and each node of G appears in some node of T .
T2: For all (u,v ) ∈ E there exists Bi ∈ VT such that u,v ∈ Bi . That is, the endpoints of each

edge of G appear together in some node of T .
T3: For all Bi , Bj and any bag Bk that appears in the simple path Bi � Bj in T , we have

Bi ∩ Bj ⊆ Bk . That is, every node of G is contained in a contiguous subtree of T .

To distinguish between the nodes of G and the nodes of T , the sets Bi are called bags. The width

of a tree-decomposition T is the size of the largest bag minus 1 and the treewidth of G is the
width of a minimum-width tree decomposition of G. We refer to the treewidth t of G as constant

if t = O (1), i.e., the treewidth does not depend on G. It follows from the definition that if G has
constant treewidth, thenm = O (n).

Example 2.5 (Graph and Tree Decomposition). The treewidth of a graphG is an intuitive measure
that represents the proximity of G to a tree, though G itself is not a tree. The treewidth of G is 1
precisely if G is itself a tree [Robertson and Seymour 1984]. Consider an example graph and its
tree decomposition shown in Figure 2. It is straightforward to verify that all the three conditions
of tree decomposition are met. Each node in the tree is a bag and labeled by the set of nodes it
contains. Since each bag contains at most three nodes, the tree decomposition has width 2.

Notation on tree decompositions. LetG be a graph,T = (VT ,ET ) a tree decomposition ofG, and
B0 be the root of T . Denote with Lv (Bi ) the depth of Bi in T , with Lv (B0) = 0. For u ∈ V , we say
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Fig. 2. A graph G of treewidth 2 (left) and a corresponding tree-decomposition T (right).

that a bag B is the root bag ofu if B is the bag with the smallest level among all bags that containu,
i.e., Bu = arg minB∈VT :u ∈B Lv (B). By definition, there is exactly one root bag for each node u. We
often write Bu for the root bag of nodeu, and denote with Lv(u) = Lv (Bu ). We assume w.l.o.g. that
all tree decompositions mentioned in this work have the property that every leaf bag is the root
bag of some node, as otherwise, we can remove that bag and obtain a valid tree decomposition.
Finally, we denote with B(u,v ) the bag of the largest level that is the root bag of one of u, v .

Example 2.6 (Root Bags). In the example of Figure 2, the bag {2, 8, 10} is the root of T , the level
of node 9 is Lv(9) = Lv({8, 9, 10}) = 1, and the bag of the edge (9, 1) is B(9,1) = {1, 8, 9}.

Separator property. A key property of a tree-decomposition T = (VT ,ET ) of a graph G is that
the nodes of each bag B form a separator of G. Removing B splits T into a number of connected
components. The separator property states that every path between nodes that appear in bags of
different components has to go through some node in B. This is formally stated in the following
lemma:

Lemma 2.7 ([Bodlaender 1998, Lemma 3]). Consider a graph G = (V ,E), a tree-decomposition

T = (VT ,ET ) of G, and a bag B of T . Let (Ci )i be the components of T created by removing B from

T , and let Vi be the set of nodes that appears in bags of component Ci . For every i � j, nodes u ∈ Vi ,

v ∈ Vj and path P : u � v , we have that P ∩ B � ∅ (i.e., all paths between u and v go through some

node in B).

Using Lemma 2.7, we prove the following stronger version of the separator property, which will
be useful throughout the article:

Lemma 2.8. Consider a graphG = (V ,E) and a tree-decompositionT = (VT ,ET ) ofG. Letu,v ∈ V ,

and consider two distinct bags B1 and Bj such that u ∈ B1 and v ∈ Bj . Let P ′ : B1,B2, . . . ,Bj be the

unique simple path inT from B1 to Bj . For each i ∈ {2, . . . , j} and for each path P : u � v , there exists

a node xi ∈ (Bi−1 ∩ Bi ∩ P ).

Proof. Fix a number i ∈ {2, . . . , j}. We argue that for each path P : u � v , there exists a node
xi ∈ (Bi−1 ∩ Bi ∩ P ). We construct a treeT ′, which is similar toT except that instead of having an
edge between bag Bi−1 and bag Bi , there is a new bag B that contains the nodes in Bi−1 ∩ Bi , and
there is an edge between Bi−1 and B and one between B and Bi . It is easy to see that T ′ satisfies
the properties T1-T3 of a tree-decomposition of G. By Lemma 2.7, each bag B′ in the unique path
P ′′ : B1, . . . ,Bi−1,B,Bi , . . . ,Bj in T ′ separates u from v in G. Hence, each path u � v must go
through some node in B, and the result follows. �
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The following lemma states that for nodes u andv that appear in bags B, B′, respectively, of the
tree-decompositionT = (VT ,ET ) ofG, their distance can be written as a sum of distancesd (xi ,xi+1)
between pairs of nodes (xi ,xi+1) that appear in bags Bi that constitute the unique B � B′ path inT .
This holds, because every path P : u � v can be decomposed to j subpaths of the form xi � xi+1.
This yields a constructive way to compute d (u,v ), assuming that all distances d (xi ,xi+1) have
already been computed.

Lemma 2.9. Consider a weighted graph G = (V ,E,wt) and a tree-decomposition T = (VT ,ET ) of

G. Let u,v ∈ V , and P ′ : B1,B2, . . . ,Bj be a simple path in T such that u ∈ B1 and v ∈ Bj . Let A =

{u} ×
(∏

1<i≤j (Bi−1 ∩ Bi )
)
× {v}. Then d (u,v ) =

⊕
(x1, ...,x j+1 )∈A

⊗j
i=1 d (xi ,xi+1).

Proof. Consider the set of all paths {P� : u � v}� , and we have d (u,v ) =
⊕

� wt(P� ). By

Lemma 2.8, for each path P� and i ∈ {1, . . . , j}, there exists some node x �i ∈ (Bi−1 ∩ Bi ∩ P� ). We
let xi range over the ith node of each path of A, and we have

d (u,v ) =

j⊗
i=1

⊕
xi ,xi+1

⊕
P :xi�xi+1

wt(P )

=

j⊗
i=1

⊕
xi ,xi+1

d (xi ,xi+1)

=
⊕

(x1, ...,x j+1 )∈A

j⊗
i=1

d (xi ,xi+1).

The desired result follows. �

The following lemma states that balanced tree decompositions of constant-treewidth graphs can
be constructed efficiently:

Lemma 2.10 ([Bodlaender and Hagerup 1998, Lemma 2]). Given a graph G = (V ,E) of

treewidth t = O (1), a balanced tree decomposition of G with width O (t ) can be constructed in O (n)
time.

The following crucial lemma states that given a tree decomposition of constant width, the local

distance between every pair nodes that appear together in some bag can be computed in time linear
in the size of the tree-decomposition.

Lemma 2.11 ([Chaudhuri and Zaroliagis 2000]). Given a weighted graph G = (V ,E,wt) of

treewidth t and a tree-decomposition T = (VT ,ET ) of G of width O (t ), we can compute for all bags

B ∈ VT a local distance map LDB : B × B→ Σ with LDB (u,v ) = d (u,v ) in total timeO ( |VT | · t3) and

space O ( |VT | · t2).

Nicely rooted tree decompositions. A tree-decomposition T = (VT ,ET ) of a graph G is nicely

rooted if every bag is the root bag of at most one node of G.

Lemma 2.12. Given a tree decomposition T = (VT ,ET ) of G of width O (t ) and O (n) bags, a nicely

rooted, binary tree decomposition T ′ = (VT ′,ET ′ ) of G of width O (t ) can be constructed in O (n · t )
time. If t = O (1) and T is balanced, then so is T ′.

Proof. First,T can be turned into a binary tree decompositionT1 by a standard tree-binarization
process [Chaudhuri and Zaroliagis 2000, Fact 3], which increases the size by at most a factor 2.
Hence, T1 remains balanced. Then, we can make T1 nicely rooted simply by replacing each bag
B that is the root of k > 1 nodes x1, . . . xk with a chain of bags B1, . . . ,Bk = B, where each Bi is
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the parent of Bi+1, and Bi+1 = Bi ∪ {xi+1}. Note that this keeps the tree binary and increases its
height by at most a factor t , hence if t = O (1) and T is balanced, then the resulting tree is also
balanced. �

Hence, combined with Lemma 2.10, a nicely rooted, balanced tree decomposition of a constant-
treewidth graph can be constructed in O (n) time.

Small tree decompositions. A tree-decomposition T = (VT ,ET ) of a graph G of n nodes and
treewidth t is called small if |VT | = O ( n

t
).

Lemma 2.13. Given a tree decomposition T = (VT ,ET ) of G of width O (t ) and O (n) bags, a small,

binary tree decompositionT = (VT ′,ET ′ ) of width O (t ) can be constructed in O (n · t ) time. Moreover,

if T is balanced, then so is T ′.

Proof. Let k = O (t ) be the width ofT . The construction is achieved using the following steps:

(1) Following the steps of Bodlaender [1993a, Lemma 2.4], we turn T to a smooth tree-
decomposition T1 = (V1,E1), which has the properties that (i) for every bag B ∈ V1, we
have |B| = k + 1, and (ii) for every pair of bags (B1,B2) ∈ E1, we have |B1 ∩ B2 | = k . The
process of Bodlaender [1993a, Lemma 2.4] can be performed O (n · t ) time and increases
the height by at most a factor 2, hence if T is balanced, T1 is also balanced, and by Bod-
laender [1993a, Lemma 2.5], we have |V1 | = O (n).

(2) We turnT1 to a binary tree-decompositionT2 = (V2,E2), as follows: We traverseT1 bottom-
up, and we replace every bag B of T1 with k > 2 children with a binary tree TB of height
�logk� and k leaves. The leaves of TB are the children of B, whereas every internal node
ofTB consists of a copy of B. We call these copies the new bags ofT2. Note thatTB has size
O (k ), and thusT2 has size O (n). Finally, note that a bag inT2 has a single child iff it is not
a new bag in T2, and it has a single child in T1 as well. Hence, the height of T2 increases
by at most a O (logn) term compared toT1, and thus ifT1 is balanced, so isT2. Finally, it is
easy to see that T2 is a tree decomposition of G and has the same width as T1.

(3) We construct a tree-decomposition T3 = (V3,E3) by partitioning T2 to disjoint connected

components of size between k
2 and k each (the last component might have size less than

k
2 ) and contracting each such component to a single bag in T3. Since T2 is smooth, the
number of nodes in the union of the bags of each component is at most 2 · k . Hence, the
width of T3 is O (k ). The partitioning is done as follows: We traverse T2 bottom-up and
group bags into components in a greedy way. In particular, given that the traversal is on a
current bag B, we keep track of the number of bags iB below B (not including B) that have
not been grouped to a component yet. The first time we find iB ≥ t , let B′ be the child of
B with the largest number iB′ among the children of B. We group B′ and its ungrouped
descendants into a new component C and continue with the traversal. Observe that the

size of C is k
2 ≤ |C | < k .

(4) Finally, we construct T ′ by turning T3 to a binary tree-decomposition as in Step 2.

Note that all steps above require O (n · t ) time. The desired result follows. �

Hence, combined with Lemma 2.10, a small, balanced tree decomposition of a constant-treewidth
graph can be constructed in O (n) time.

The algebraic path problem on graphs of constant treewidth. Given a graph G = (V ,E), a
balanced tree-decompositionT = (VT ,ET ) ofG with constant width t = O (1), a complete semiring
(Σ, ⊕, ⊗, 0, 1), and a weight function wt : E → Σ, the algebraic paths problem on input u,v ∈ V ,
asks for the distance d (u,v ) from node u to node v . In addition, we allow the weight function to
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change between successive queries. We measure the time complexity of our algorithms in a number
of operations, with each operation being either a basic machine operation or an application of one
of the operators of the semiring.

2.3 Recursive State Machines

In this section, we define recursive state machines (RSMs), which are a standard model for inter-
procedural analysis. Intuitively, an RSM represents a program as a collection of component state
machines (CSMs), where each CSM represents a method of the program as a graph. Additionally,
each CSM has distinguished nodes that represent method calls and returns to other CSMs. These
notions are made clear in the following definitions:

Definition 2.14 (RSMs and CSMs). A single-entry single-exit recursive state machine (RSM from
now on) over an alphabet Σ, as defined in Alur et al. [2005], consists of a set {A1,A2, . . . ,Ak },
such that for each 1 ≤ i ≤ k , the component state machine (CSM) Ai = (Bi ,Yi ,Vi ,Ei ,wti ), where
Vi = Ni ∪ {eni } ∪ {exi } ∪ ci ∪ ri , consists of:

—A set Bi of boxes.
—A map Yi , mapping each box in Bi to an index in {1, 2, . . . ,k }. We say that a box b ∈ Bi

corresponds to the CSM with index Yi (b).
—A set Vi of nodes, consisting of the union of the sets Ni , {eni }, {exi }, ci , and ri . The number
ni is the size ofVi . Each of these sets, besidesVi , are w.l.o.g. assumed to be pairwise disjoint.
—The set Ni is the set of internal nodes.
—The node eni is the entry node.
—The node exi is the exit node.
—The set ci is the set of call nodes. Each call node is a pair (x ,b), where b is a box in Bi and
x is the entry node enYi (b ) of the corresponding CSM with index Yi (b).

—The set ri is the set of return nodes. Each return node is a pair (y,b), where b is a box in
Bi and y is the exit node exYi (b ) of the corresponding CSM with index Yi (b).

—A set Ei of internal edges. Each edge is a pair in (Ni ∪ {eni } ∪ ri ) × (Ni ∪ {exi } ∪ ci ).
—A map wti , mapping each edge in Ei to a label in Σ.

Definition 2.15 (Control Flow Graph of CSMs and Treewidth of RSMs). Given an RSM A =
{A1,A2, . . . ,Ak }, the control flow graphGi = (Vi ,E

′
i ) for CSMAi consists ofVi as the set of vertices

and E ′i as the set of edges, where E ′i consists of the edges Ei of Ai and for each box b, each call
node (v,b) of that box (i.e., for v = enYi (b )) has an edge to each return node (v ′,b) of that box
(i.e., for v ′ = exYi (b )). We say that the RSM has treewidth t if t is the smallest integer such that
for each index 1 ≤ i ≤ k , the graph Gi = (Vi ,E

′
i ) has treewidth at most t . Programs are naturally

represented as RSMs, where the control flow graph of each method of a program is represented as
a CSM.

Example 2.16 (RSM and Tree Decomposition). Figure 3 shows an example of a program for matrix
multiplication consisting of two methods (one for vector multiplication invoked by the one for
matrix multiplication). The corresponding control flow graphs and their tree decompositions that
achieve treewidth 2 are also shown in the figure.

Box sequences. For a sequence L of boxes and a box b, we denote with L ◦ b the concatenation
of L and b. Also, ∅ is the empty sequence of boxes.

Configurations and global edges. A configuration of an RSM is a pair (v,L), where v is a node
in (Ni ∪ {eni } ∪ ri ) and L is a sequence of boxes. The stack height of a configuration (v,L) is the
number of boxes in the sequence L. The set of global edges E are edges between configurations. The
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Fig. 3. Example of a program consisting of two methods: their control flow graphsGi = (Vi ,E
′
i ) where nodes

correspond to line numbers, and the corresponding tree decompositions, each one achieving treewidth 2.

map wt maps each edge in E to a label in Σ. We have an edge between configuration C1 = (v1,L1),
where v1 ∈ Vi , and configuration C2 = (v2,L2) with label σ = wt(C1,C2) if and only if one of the
following holds:

—Internal edge: v2 is an internal node in Ni and each of the following: (i) L1 = L2;
(ii) (v1,v2) ∈ Ei ; and (iii) σ = wti ((v1,v2)).

—Entry edge: v2 is the entry node enYi (b ) , for some box b, and each of the following: (i) L1 ◦
b = L2; (ii) (v1, (v2,b)) ∈ Ei ; and (iii) σ = wti ((v1, (v2,b))).

—Return edge: v2 = (v,b) is a return node, for some exit node v = exi and some box b and
each of the following: (i) L1 = L2 ◦ b; (ii) (v1,v ) ∈ Ei ; and (iii) σ = wti ((v1,v )).

Note that in a configuration (v,L), the nodev cannot be exi or in ci . In essence, the correspond-
ing configuration is at the corresponding return node, instead of at the exit node, or corresponding
entry node, instead of at the call node, respectively.

Execution paths. An execution path is a sequence of configurations P = 〈C1,C2, . . . ,C�〉, such
that for each integer i where 1 ≤ i ≤ � − 1, we have that (Ci ,Ci+1) is a global edge. The length of P
is |P | = � − 1, and a single configuration by itself is 0-length execution path. Also, we say that the
stack height of an execution path is the maximum stack height of a configuration in the execution
path. For a pair of configurations C,C′, the set C � C′ is the set of execution paths 〈C1,C2, . . . ,C�〉
for any �, where C = C1 and C′ = C� . For a set X of execution paths, the set B (X ,h) ⊆ X is the
subset of execution paths, with stack height at most h. Given a complete semiring (Σ, ⊕, ⊗, 0, 1),
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the weight of an execution path P = 〈C1,C2, . . . ,C�〉 is ⊗(P ) =
⊗

(wt(C1,C2), . . . ,wt(C�−1,C� )) if

|P | ≥ 1 and wt(P ) = 1 otherwise. Given configurations C,C′, the configuration distance d (C,C′) is
defined as d (C,C′) =

⊕
P :c�C′ ⊗(P ) (the empty sum is 0). Also, given configurations C,C′ and a

stack height h, where c ′ is h-reachable from c , the bounded height configuration distance d (C,C′,h)
is defined as d (C,C′,h) =

⊕
P :B (C�C′,h) ⊗(P ). Note that the above definition of execution paths

only allows for so-called valid paths [Reps et al. 1995; Sagiv et al. 1996], i.e., paths that fully respect
the calling contexts of an execution.

The algebraic path problem on RSMs of constant treewidth. Given (i) an RSM A =
{A1,A2, . . . ,Ak }; (ii) for each 1 ≤ i ≤ k a balanced tree-decompositionTi = (VTi

,ETi
) of the graph

(Vi ,E
′
i ) with constant treewidth at most t = O (1); and (iii) a complete semiring (Σ, ⊕, ⊗, 0, 1), the

algebraic path problem on input nodes u,v , asks for the distance d ((u, ∅), (v, ∅)), i.e., the distance
between the configurations with the empty stack. Similarly, also given a height h, the bounded

height algebraic path problem on input configurations c, c ′, asks for the distance d ((u, ∅), (v, ∅),h).
When it is clear from the context, we will write d (u,v ) to refer to the algebraic path problem of
nodes u and v on RSMs.

Remark 2.17. Note that the empty stack restriction implies that u and v are nodes of the same
CSM. However, the paths from u to v are, in general, interprocedural, and thus involve invo-
cations and returns from other CSMs. This formulation has been used before in terms of same-

context [Chaudhuri 2008] and same-level [Reps et al. 1995] realizable paths and has several appli-
cations in program analysis, e.g., by capturing balanced parenthesis-like properties used in alias
analysis [Sridharan et al. 2005].

2.4 Problems

A wide range of interprocedural problems can be formulated as bounded height algebraic path
problems. Some examples follow.

(1) Reachability, i.e., given nodes u, v in the same CSM, is there a path from u to v? The
problem can be formulated on the Boolean semiring ({True, False},∨,∧, False, True).

(2) Shortest path, i.e., given a weight function wt : E → R≥0 and nodes u, v in the same CSM,
what is the weight of the minimum-weight path from u to v? The problem can be formu-
lated on the tropical semiring (R≥0 ∪ {∞},min,+,∞, 0).

(3) Most probable path, i.e., given a probability function P : E → [0, 1] and nodes u, v in the
same CSM, what is the probability of the highest-probable path from u tov? The problem
can be formulated on the Viterbi semiring ([0, 1],max, ·, 0, 1).

(4) The class of interprocedural, finite, distributive, subset (IFDS) problems defined in Reps
et al. [1995]. Given a finite domain D, a universe of flow functions F containing distribu-
tive functions f : 2D → 2D , a weight function wt : E → F associates each edge with a flow
function. The weight of an interprocedural path is then defined as the composition ◦ of the
flow functions along its edges, and the IFDS problem given nodes u,v asks for the meet �
(union or intersection) of the weights of all u � v paths. The problem can be formulated
on the meet-composition semiring (F ,�, ◦, ∅, I ), where I is the identity function.

(5) The class of interprocedural distributive environment (IDE) problems defined in Sagiv
et al. [1996]. This class of dataflow problems is an extension to IFDS, with the differ-
ence that the flow functions (called environment transformers) map elements from the
finite domain D to values in an infinite set (e.g., of the form f : D → N). An environ-
ment transformer is denoted as f [d → �], meaning that the element d ∈ D is mapped to
value �, while the mapping of all other elements remains unchanged. The problem can be
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formulated on the meet-environment-transformer semiring (F ,�, ◦, ∅, I ), where I is the
identity environment transformer, leaving every map unchanged.

Note that if we assume that the set of weights of all interprocedural paths in the system is finite,
then the size of this set bounds the stack heighth. Additionally, several problems can be formulated
as algebraic path problems in which bounding the stack height can be viewed as an approximation
to them (e.g., the probability of reaching a node v from a node u).

Model and word tricks. We consider the standard RAM model with word size W = Θ(logn),
where poly(n) is the size of the input. Our reachability algorithm (in Section 5) uses so-called
“word tricks” heavily. We use constant-time LCA queries that also use word tricks [Harel and
Tarjan 1984; Bender and Farach-Colton 2000].

3 DYNAMIC ALGORITHMS FOR PREPROCESS, UPDATE, AND QUERY

In the current section, we present data structures that take as input a constant treewidth graph G
of n nodes and a nicely rooted, balanced, binary tree decompositionT = (VT ,ET ) ofG, and achieve
the following tasks:

(1) Preprocessing the tree-decomposition T to answer algebraic path queries fast.
(2) Updating the preprocessed T upon change of the weight wt(u,v ) of an edge (u,v ).
(3) Querying the preprocessed T to retrieve the distance d (u,v ) of any pair of nodes u,v .

Note that by Lemma 2.10 and Lemma 2.12, a nicely rooted, balanced tree decomposition can be
constructed in time linear in the size of the input. In the following section, we use the results of
this section to preprocess RSMs fast to answer interprocedural same-context algebraic path queries
fast. Refer to Example 4.1 of Section 4 for an illustration on how these algorithms are executed on
an RSM.

Intuition and U-shaped paths. A central concept in our algorithms is that of U-shaped paths.
Given a bag B and nodes u,v ∈ B, we say that a path P : u � v is U-shaped in B if one of the
following conditions hold:

(1) Either |P | > 1 and for all intermediate nodes w ∈ P , we have that B is an ancestor of the
root bag Bw of w ,

(2) or |P | ≤ 1 and B is Bu or Bv (i.e., B is the root bag of u or v).

Informally, given a bag B, a U-shaped path in B is a path that traverses intermediate nodes whose
root bag is either B or some descendant bag of B in T .

Example 3.1 (U-shaped Paths). Here, we present some examples of U-shaped paths on the tree
decomposition of the control-flow graph of method dot_vector of Figure 3.

(1) The path 3→ 4→ 2 is U-shaped in bag B3, since the root bag of the intermediate node 4
is B4, which is a child of B3. The same path is also U-shaped in bag B4, since a node of the
tree is considered ancestor of itself.

(2) The path 1→ 2 is U-shaped in bag B2, since B2 is the root bag of node 2.

In the following, we present three algorithms for (i) preprocessing a tree decomposition, (ii) up-
dating the data structures of the preprocessing upon a weight change wt(u,v ) of an edge (u,v ),
and (iii) querying for the distanced (u,v ) for any pair of nodesu,v . The intuition behind the overall
approach is that for every path P : u � v and z = argminx ∈P Lv(x ), the path P can be decomposed
to paths P1 : u � z and P2 : z � v . By Lemma 2.8, if we consider the path P ′ : Bu � Bz and any
bag Bi ∈ P ′, we can find nodes x ,y ∈ Bi ∩ P1 (not necessarily distinct). Then P1 is decomposed to
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a sequence of U-shaped paths P i
1, one for each such Bi , and the weight of P1 can be written as

the ⊗-product of the weights of P i
1, i.e., ⊗(P1) =

⊗
(⊗(P i

1)). A similar observation holds for P2.
Hence, the task of preprocessing and updating is to summarize in each Bi the weights of all such
U-shaped paths between all pairs of nodes appearing in Bi . To answer the query, the algorithm
traverses upwards the tree T from Bu and Bv and combines the summarized paths to obtain the
weights of all such paths P1 and P2, and eventually P , such that ⊗(P ) = d (u,v ).

Informal description of preprocessing. Algorithm Preprocess associates with each bag B a
local U-shaped distance map LUDB : B × B→ Σ. Upon a weight change, algorithm Update updates
the local U-shaped distance map of some bags. It will hold that after the preprocessing and each
subsequent update, LUDB (u,v ) =

⊕
P :u�v {⊗(P )}, where all P are U-shaped paths in B. Given this

guarantee, we later present an algorithm for answering (u,v ) queries with d (u,v ), the distance
fromu tov . Algorithm Preprocess is a dynamic programming algorithm. It traversesT bottom-up,
and for a currently examined bag B that is the root bag of a node x , it calls the method Merge to
compute the local U-shaped distance map LUDB. In turn, Merge computes LUDB depending only
on the local U-shaped distance maps LUDBi

of the children {Bi } of B, and uses the closure operator
∗ to capture possibly unbounded traversals of cycles whose smallest-level node is x . See Method 1
and Algorithm 2 for a formal description.

Method 1: Merge

Input: A bag Bx with children {Bi }i
Output: A local U-shaped distance map LUDBx

1 Assign wt′(x ,x ) ←
(⊗
{LUDB1 (x ,x )∗, . . . , LUDBj

(x ,x )∗}
)∗

2 foreach u ∈ Bx with u � x do

3 Assign wt′(x ,u) ←
⊕
{wt(x ,u), LUDB1 (x ,u), . . . , LUDBj

(x ,u)}
4 Assign wt′(u,x ) ←

⊕
{wt(u,x ), LUDB1 (u,x ), . . . , LUDBj

(u,x )}
5 end

6 foreach u,v ∈ Bx do

7 Assign δ ←
⊗

(wt′(u,x ),wt′(x ,x ),wt′(x ,v ))

8 Assign LUDBx
(u,v ) ←

⊕
{δ , LUDB1 (u,v ), . . . , LUDBj

(u,v )}
9 end

ALGORITHM 2: Preprocess

Input: A tree-decomposition T = (VT ,ET )
Output: A local U-shaped distance map LUDB for each bag B ∈ VT

1 Traverse T bottom up and examine each bag B with children {Bi }i
2 if B is the root bag of some node x then

3 Assign LUDB ← Merge on B

4 else

5 foreach u,v ∈ B do

6 Assign LUDB (u,v ) ←
⊕
{LUDB1 (u,v ), . . . , LUDBj

(u,v )}
7 end

8 end

Lemma 3.2. At the end of Preprocess, for every bag B and nodes u,v ∈ B, we have LUDB (u,v ) =⊕
P :u�v {⊗(P )}, where all P are U-shaped paths in B.

Proof. The proof is by induction on the parents. Initially, B is a leaf, and hence the root bag of
some node x (recall that we assume w.l.o.g. that every leaf bag is the root bag of some node). Thus,
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Fig. 4. Illustration of the inductive argument of Preprocess when the algorithm processes a bag Bx that is the

root bag of node x . Every u � v path is decomposed to three paths P1 : u � x , P2 : x � x , and P3 : x � v
such that x is not an intermediate node of either P1 or P3. All paths P1 and P3 are U-shaped in some child bag

of Bx , thus their weights have been captured in the corresponding LUD maps by the induction hypothesis,

and hence as weights wt′(u,x ) and wt′(x ,v ). The path P2 is not necessarily U-shaped in Bx , as it might

contain x as an intermediate node. However, P2 is decomposed to paths P i
2 : x � x such that x does not

appear as an intermediate node of any P i
2. Hence, every such path is also U-shaped, and the argument

proceeds as in the case of P1 and P3. Note that this is where the algorithm makes use of the semiring closure

operator ∗ to capture the effect of (unbounded) cycle traversals, since P2 is a cycle around x .

each such path P can only go through x , and hence will be captured by Preprocess. Now consider
the case that the algorithm examines a bag B, and by the induction hypothesis the statement is true
for all {Bi } children of Bx . The correctness follows easily if B is not the root bag of any node, since
every such P is a U-shaped path in some child Bi of B, and Preprocess propagates the contents
of all LUDBi

to LUDB in the else block of line 4. Now consider that B is the root bag of some
node x (recall that, since the tree decomposition is nicely rooted, B can be the root bag of at most
one node) and any U-shaped path P ′ : u � v that additionally visits x , and decompose it to paths
P1 : u � x , P2 : x � x and P3 : x � v , such that x is not an intermediate node in either P1 or P3

(see Figure 4 for an illustration). By distributivity, we have:⊕
P ′
⊗(P ′) =

⊕
P1,P2,P3

⊗
(⊗(P1), ⊗(P2), ⊗(P3))

=
⊗ ���

⊕
P1

⊗(P1),
⊕

P2

⊗(P2),
⊕

P3

⊗(P3)��� .
Note that P1 and P3 are also U-shaped in one of the children bags Bi of Bx , hence by the induction
hypothesis in lines 3 and 2 of Merge, we have wt′(u,x ) =

⊕
P1
⊗(P1) and wt′(x ,v ) =

⊕
P3
⊗(P3).

Also, by decomposing P2 into a (possibly unbounded) sequence of paths P i
2 : x � x such that x is

not an intermediate node in any P i
2, we get that each such P i

2 is a U-shaped path in some child Bli

of B, and we have by distributivity and the induction hypothesis⊕
P2

⊗(P2) =
⊕

P 1
2 ,P

2
2 , ...

⊗ (
⊗(P1

2 ), ⊗(P2
2 ), . . .

)

=
⊕

Bl1
,Bl2

, ...

⊗ ����
⊕

P 1
2

⊗(P1
2 ),

⊕
P 2

2

⊗(P2
2 ), . . .

����
=

⊕
Bl1

,Bl2
, ...

⊗ (
LUDBl1

(x ,x ), LUDBl2
(x ,x ), . . .

)
,
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and the last expression equals wt′(x ,x ) from line 1 of Merge. It follows that in line 6 of Merge, we
have δ =

⊕
P ′ ⊗(P ′).

Finally, each U-shaped path P : u � v in B either visits x or is U-shaped in one of the children
Bi . Hence, after line 8 of Method Merge has run on B, for all u,v ∈ B, we have that LUDB (u,v ) =⊕

P :u�v ⊗(P ) where all paths P are U-shaped in B. The desired results follow. �

Lemma 3.3. Preprocess requires O (n) semiring operations.

Proof. Merge requires O (t2) = O (1) operations, and Preprocess calls Merge at most once for
each bag, hence requiring O (n) operations. �

Informal description of updating. Algorithm Update is called whenever the weight wt(x ,y) of
an edge ofG has changed. Given the guarantee of Lemma 3.2, after Update has run on an edge up-
date wt(x ,y), it restores the property that for each bag B, we have LUDB (u,v ) =

⊕
P :u�v {⊗(P )},

where all P are U-shaped paths in B. See Algorithm 3 for a formal description.

ALGORITHM 3: Update

Input: An edge (x ,y) with new weight wt(x ,y)
Output: A local U-shaped distance map LUDB for each bag B ∈ VT

1 Assign B← B(x,y ) , the highest bag containing the edge (x ,y)

2 repeat

3 Call Merge on B

4 Assign B← B′ where B′ is the parent of B

5 until Lv(B) = 0

Lemma 3.4. At the end of each run of Update, for every bag B and nodes u,v ∈ B, we have

LUDB (u,v ) =
⊕

P :u�v {⊗(P )}, where all P are U-shaped paths in B.

Proof. First, by the definition of a U-shaped path P in B it follows that the statement holds for
all bags not processed by Update, since for any such bag B and U-shaped path P in B, the path
P cannot traverse (u,v ). For the remaining bags, the proof follows an induction on the parents
updated by Update, similar to that of Lemma 3.2. �

Lemma 3.5. Update requires O (logn) operations per update.

Proof. Merge requires O (t2) = O (1) operations, and Update calls Merge once for each bag in
the path from B(u,v ) to the root. Recall that the height of T is O (logn), and the result follows. �

Informal description of querying. Algorithm Query answers a (u,v ) query with the distance
d (u,v ) from u to v . Because of Lemma 2.8, every path P : u � v is guaranteed to go through the
least common ancestor (LCA) BL of Bu and Bv , and possibly some of the ancestors B of BL . Given
this fact, algorithm Query uses the procedure Climb to climb up the tree from Bu and Bv until it
reaches BL and then the root of T . For each encountered bag B along the way, it computes maps
δu (w ) =

⊕
P1
{⊗(P1)} and δv (w ) =

⊕
P2
{⊗(P2)}where all P1 : u � w and P2 : w � v are such that

the root bag of each intermediate node y is a descendant of B. This guarantees that for path P such
that d (u,v ) = ⊗(P ), when Query examines the bag Bz that is the root bag of z = argminx ∈P Lv(x ),
it will bed (u,v ) =

⊗
(δu (z),δv (z)). Hence, for Query it suffices to maintain a current best solution

δ and update it with δ ←
⊕
{δ ,

⊗
(δu (x ),δv (x ))} every time it examines a bag B that is the root

bag of some node x . Figure 5 presents a pictorial illustration of Query and its correctness. Method 4
presents the Climb procedure that, given a current distance map of a node δ , a current bag B and a
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Fig. 5. Illustration of Query in computing the distance d (u,v ) = ⊗(P ) as a sequence of U-shaped paths,

whose weight has been captured in the local distance map of each bag. When Bz is examined, with

z = argminx ∈P Lv(x ), it will be δu (z) = d (u, z) and δv (z) = d (z,v ), and hence by distributivity d (u,v ) =⊗
(δu (z),δv (z)).

flag Up, updates δ with the distance to (if Up = True), or from (if Up = False) each node in B. See
Method 4 and Algorithm 5 for a formal description.

Method 4: Climb

Input: A bag B, a map δ , a flag Up

Output: A new map δ

1 Remove from δ all w � B

2 Assign δ (w ) ← 0 for all w ∈ B and not in δ

3 if B is the root bag of some node x then

4 if Up then /* Climbing up */
5 Update δ with δ (w ) ←

⊕
{δ (w ),

⊗
(δ (x ), LUDB (x ,w ))}

6 else /* Climbing down */
7 Update δ with δ (w ) ←

⊕
{δ (w ),

⊗
(δ (x ), LUDB (w,x ))}

8 end

9 return δ

Lemma 3.6. Query returns δ = d (u,v ).

Proof. Let P : u � v be any path from u to v , and z = argminx ∈P Lv(x ) the lowest level node
in P . Decompose P to P1 : u � z, P2 : z � v , and it follows that ⊗(P ) =

⊗
(⊗(P1), ⊗(P2)). We ar-

gue that when Query examines Bz , it will be δu (z) =
⊕

P1
⊗(P1) and

⊕
P2
δv (z) = ⊗(P2). We only

focus on the δu (z) case here, as the δv (z) is similar. We argue inductively that when algorithm
Query examines a bag Bx , for allw ∈ Bx , we have δu (w ) =

⊕
P ′ {⊗(P ′)}, where all P ′ are such that

for each intermediate node y, we have Lv(y) ≥ Lv(x ). Initially (line 1), it is x = u, Bx = Bu , and
every such P ′ is U-shaped in Bu , hence LUDBx

(x ,w ) =
⊕

P ′ {⊗(P ′)} and δu (w ) =
⊕

P ′ {⊗(P ′)}.
Now consider that Query examines a bag Bx (lines 7 and 18) and the claim holds for Bx ′ a

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 23. Publication date: November 2019.



23:20 K. Chatterjee et al.

ALGORITHM 5: Query

Input: A pair (u,v )
Output: The distance d (u,v ) from u to v

1 Initialize map δu with δu (w ) ← LUDBu
(u,w )

2 Initialize map δv with δv (w ) ← LUDBv
(w,v )

3 Assign BL ← the LCA of Bu , Bv in T

4 Assign B← Bu

5 repeat

6 Assign B← B′ where B′ is the parent of B

7 Call Climb on B and δu with flag Up set to True

8 until B = BL

9 Assign B← Bv

10 repeat

11 Assign B← B′ where B′ is the parent of B

12 Call Climb on B and δv with flag Up set to False

13 until B = BL

14 Assign B← BL

15 Assign δ ←
⊕

x ∈BL
⊗(δu (x ),δv (x ))

16 repeat

17 Assign B← B′ where B′ is the parent of B

18 Call Climb on B and δu with flag Up set to True

19 Call Climb on B and δv with flag Up set to False

20 if B is the root bag of some node x then

21 Assign δ ←
⊕
{δ ,

⊗
(δu (x ),δv (x ))}

22 until Lv(B) = 0

23 return δ

descendant of Bx previously examined by Query. If x does not occur in P ′, then it is a conse-
quence of Lemma 2.8 that w ∈ Bx ′ , hence by the induction hypothesis, P ′ has been considered
by Query. Otherwise, x occurs in P ′ and decompose P ′ to P ′1, P ′2, such that P ′1 ends with the
first occurrence of x in P ′, and it is ⊗(P ) =

⊗
(⊗(P ′1), ⊗(P ′2)). Note that P ′2 is a U-shaped path

in Bx , hence LUDBx
(x ,w ) =

⊕
P ′2
{⊗(P ′2)}. Finally, as a consequence of Lemma 2.8, we have that

x ∈ Bx ′ , and by the induction hypothesis, δu (x ) =
⊕

P ′1
{⊗(P ′1)}. It follows that after Query pro-

cesses Bx , it will be δu (w ) =
⊕

P ′ {⊗(P ′)}. By the choice of z, when Query examines the bag
Bz , it will be δu (z) =

⊕
P1
{⊗(P1)}. A similar argument shows that at that point it will also be

δv (z) =
⊕

P2
{⊗(P2)}, hence at that point δ =

⊗
(⊗(P1), ⊗(P2)) = d (u,v ). �

Lemma 3.7. Query requires O (logn) semiring operations.

Proof. Climb requiresO (t2) = O (1) operations and Query calls Climb once for every bag in the
paths from Bu and Bv to the root. Recall that the height ofT isO (logn), and the result follows. �

We conclude the results of this section with the following theorem:

Theorem 3.8. Consider a graphG = (V ,E) of n nodes and treewidth t = O (1), and a nicely rooted,

balanced and binary tree-decomposition T = (VT ,ET ) of G that has constant width. The following

assertions hold:
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(1) Preprocess requires O (n) semiring operations;

(2) Update requires O (logn) semiring operations per edge weight update; and

(3) Query correctly answers distance queries in O (logn) semiring operations.

Example 3.9 (Illustration of Preprocess, Update, and Query). Here, we illustrate the operations
Preprocess, Update, and Query on the tree decomposition of the control-flow graph of method
dot_matrix in Figure 3 for the Boolean semiring ({True, False},∨,∧, False, True) that expresses
reachability.

• Preprocess. We illustrate Preprocess along the path B6 � B1 of the tree decomposition. The
algorithm traverses the tree decomposition bottom-up starting from B6, which is passed as
argument to Merge. The map LUDB6 contains the reachability information as obtained by
the edge set of the algorithm, i.e., we have LUDB6 (8, 9) = LUDB6 (9, 12) = LUDB6 (12, 8) =
True, and all other entries of LUDB12 between different nodes equal False. These values of
LUDB12 are stored in function wt′ constructed in the first five lines of Merge. Note that B6

is the root bag of node 12, and hence Merge will perform path-shortening on paths that
go through node 12. In particular, after the loop in line 6 is executed, we also have that
LUDB12 (9, 8) = True (i.e., the algorithm discovers new reachability information from 9 to
8), and Merge terminates. Next, Preprocess calls Merge on bag B3, which is the root bag
of node 9. Due to initialization, we have LUDB3 (8, 9) = True, since (8, 9) is an edge of the
graph, and thus wt′(8, 9) = True in line 4 of Merge. However, LUDB3 (9, 8) = False, as (9, 8)
is not an edge of the graph. However, due to the previous step, we have LUDB6 (9, 8) = True,
and line 3 of Merge sets wt′(9, 8) = True. This shows how the reachability information
discovered in the child bag B6 is propagated to the parent bag B3. After the loop of
line 6 is executed, this reachability information is stored to the map LUDB3 , i.e., we have
LUDB3 (8, 9) = LUDB3 (9, 8) = True. Finally, Preprocess processes bags B2 and B1 without
discovering any new reachability information.

• Update. We illustrate Update after inserting the reachability information 10 � 11, i.e., set-
ting wt(10, 11) = True. Before the update, we assume that we have wt(10, 11) = 0, i.e., there
is no edge (10, 11) in the graph. This is because 10 is a call node and 11 is the correspond-
ing return node, hence it is not to be assumed that 10 � 11, as the invocation might never
return. By calling Update on the pair (10, 11), the algorithm in line 1 identifies B5 as the
highest bag that contains both nodes and calls Merge on that bag. In turn, Merge constructs
the weight function wt′ with wt′(9, 10) = wt′(10, 11) = wt′(11, 9) = True. Note that B5 is
the root bag of node 11, hence the loop in line 6 performs path shortening through node
11 and will set LUDB5 (10, 11) = LUDB5 (10, 9) = True. After Merge has terminated, Update

will move to the parent bag B4 of B5, which is passed to Merge. Due to the previous step, we
have LUDB5 (10, 9) = True, and line 3 of Merge sets wt′(10, 9) = True. This bag is the root
bag of node 10, and the path shortening in the loop of line 6 will set LUDB4 (10, 9) = True.
After Merge terminates, Update will move to bags B3, B2, and B1, and the corresponding
invocations to Merge will not discover any new reachability information.

• Query. We illustrate Query on the pair (10, 13). The root bag of nodes 10 and 13 are B4 and
B7, respectively, and their LCA bag is B2. In line 1 and line 2, Query initializes the maps
δ10 and δ13, respectively, with δ10 (10) = δ10 (9) = True and δ13 (13) = δ13 (8) = True. The first
step is to execute the loop in line 5, which will call Climb on input the parent bag B3 of
B4 and the map δ10. Note that B3 is the root bag of node 8, and, since LUDB3 (8, 19) = True

due to the preprocessing, line 5 of Climb will insert δ10 (8) = True. Afterwards, Query will
proceed with the parent bag B2 of B3, and the call to Climb will not modify the map δ10. The
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second step is to execute the loop in line 10, which will call Climb on input the parent bag B2

of B7 and the map δ13. Note that B2 is the root bag of node 8, and, since LUDB2 (7, 8) = True

due to the preprocessing, line 7 of Climb will insert δ13 (7) = True. Finally, line 15 of Query

will set δ = δ10 (8) ⊗ δ13 (8) = True, and the reachability relation between nodes 10 and 13
is discovered. Note that the loop of line 16 will further process the parent bag B1 of B2

without any effect in the returned value δ , hence Query will return True (i.e., indeed, node
13 is reachable from node 10) as desired.

4 ALGORITHMS FOR CONSTANT TREEWIDTH RSMS

In this section, we consider the bounded height algebraic path problem on RSMs of constant
treewidth. That is, we consider (i) an RSM A = {A1,A2, . . . ,Ak }, where Ai consists of ni nodes
and bi boxes; (ii) a complete semiring (Σ, ⊕, ⊗, 0, 1); and (iii) a maximum stack height h. Our task
is to create a data structure that after some preprocessing can answer queries of the form: Given a
pair ((u, ∅), (v, ∅)) of configurations compute d ((u, ∅), (v, ∅),h) (also recall Remark 2.17). For this
purpose, we present the algorithm RSMDistance, which performs such preprocessing using a data
structureD consisting of the algorithms Preprocess, Update, and Query of Section 3. At the end of
RSMDistance it will hold that algebraic path pair queries in a CSMAi can be answered inO (logni )
semiring operations. Although our algorithms apply to RSMs of arbitrary treewidth, they are effi-
cient only when treewidth is small. We later present some additional preprocessing that suffers a
factor of O (logni ) in the preprocessing space, but reduces the pair query time to constant.

4.1 Algorithms for the Bounded Stack Height Problem

We start with our general solution to the bounded-stack height problem. We first describe the
algorithm RSMDistance for preprocessing the RSM, and afterwards the algorithms for performing
same-context queries.

Algorithm RSMDistance for bounded-stack-height preprocessing. Our algorithm
RSMDistance can be viewed as a Bellman-Ford computation on the call graph of the RSM
(i.e., a graph where every node corresponds to a CSM, and an edge connects two CSMs if one
appears as a box in the other). Informally, RSMDistance consists of the following steps:

(1) In a preprocessing phase, it computes a nicely rooted, balanced, binary tree decomposition
Ti = (VTi

,ETi
) of each CSM Gi .

(2) It preprocesses the control flow graphs Gi = (Vi ,E
′
i ) of the CSMs Ai using Preprocess

of Section 3, where the weight function wti for each Gi is extended such that
wti ((en,b), (ex ,b)) = 0 for all pairs of call and return nodes to the same box b. This allows
the computation of d (u,v, 0) for all pairs of nodes (u,v ), since no call can be made while
still having zero stack height.

(3) Then, iteratively for each �, where 1 ≤ � ≤ h, given that we have a dynamic data structure
D (concretely, an instance of the dynamic algorithms Update and Query from Section 3)
for computing d (u,v, � − 1), the algorithm does as follows: First, for eachGi whose entry-
to-exit distance d (eni , exi , � − 1) has changed from the last iteration and for each G j that
contains a box pointing to Gi , it updates the call to return distance of the corresponding
nodes using Query.

(4) Then, it obtains the entry-to-exit distance d (enj , ex j , �) to see if it was modified and con-
tinues with the next iteration of � + 1.

See Algorithm 6 for a formal description.
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ALGORITHM 6: RSMDistance

Input: A set of control flow graphs G = {Gi }1≤i≤k , stack height h

1 foreach Gi ∈ G do

2 Construct a nicely rooted, balanced, binary tree-decomposition Ti = (VTi
,ETi

)

3 Call Preprocess on Ti

4 end

5 distances← [Call Query on (eni , exi ) of Gi ]1≤i≤k

6 modified← {1, . . . ,k }
7 for � ← 1 to h do

8 modified′ ← ∅
9 foreach i ∈ modified do

10 foreach G j that contains boxes bj1 , . . . ,bjl
s.t. Yj (bjx ) = i do

11 Call Update on G j for the weight change wt((eni ,bjl
), (exi ,bjx )) ← distances[i]

12 δ ←Query(enj , ex j )

13 if δ � distances[j] then

14 modified′ ← modified′ ∪ {j}
15 distances[j]← δ

16 end

17 end

18 modified← modified′

19 end

Correctness and logarithmic pair query time. The algorithm RSMDistance is described so a
proof by induction is straightforward for correctness. Initially, running the algorithm Preprocess

from Section 3 on each of the graphs Gi allows queries for the distances d (u,v, 0) for all pairs of
nodes (u,v ), since no method call can be made. Also, the induction follows directly, since for every
CSM Ai , updating the distance from call nodes (en,b) to the corresponding return nodes (ex ,b)
of every box b that corresponds to a CSM Aj whose distance d (enj , ex j ) was changed in the last
iteration �, ensures that the distance d (u,v, � + 1) of every pair of nodes u,v in Ai is computed
correctly. This is also true for the special pair of nodes eni , exi , which feeds the next iteration of

RSMDistance. Finally, RSMDistance requires O (
∑k

i=1 ni ) time to construct a nicely rooted, bal-
anced, binary tree decomposition (Lemma 2.10 and Lemma 2.12), O (n) time to preprocess all Gi

initially, and O (
∑k

i=1 (bi · logni )) to update all Gi for one iteration of the loop of line 10 (from

Theorem 3.8). Hence, RSMDistance uses O (
∑k

i=1 (ni + h · bi · logni )) preprocessing semiring op-
erations. Finally, it is easy to verify that all preprocessing is done in O (

∑
i ni ) = O (n) space.

After the last iteration of algorithm RSMDistance, we have a data structure D that occupies
O (n) space and answers distance queries d (u,v,h) in O (logni ) time, with u,v ∈ Vi , by calling
Query from Theorem 3 for the distance d (u,v ) in Gi .

Example 4.1 (Illustration of RSMDistance). We now present a small example of how
RSMDistance is executed on the RSM of Figure 3 for the case of reachability. In this case, for
any pair of nodes (u,v ), we have d (u,v ) = True iff u reaches v . Table 4(a) illustrates how the local
distance maps LUDBx

look for each bag Bx of each of the CSMs of the two methods dot_vector
and dot_matrix. Each column represents the local distance map of the corresponding bag Bx , and
an entry (u,v ) means that LUDBx

(u,v ) = True (i.e., u reaches v). For brevity, in the table, we hide
self loops (i.e., entries of the form (u,u)) although they are stored by the algorithms. Initially, the
stack height � = 0, and Preprocess is called for each graph (line 3). The new reachability relations
discovered by Merge are shown in bold. Note that at this point, we have wt(10, 11) = False in
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Table 4. Illustration of RSMDistance on the Tree Decompositions of Methods

dot_vector and dot_matrix from Figure 3

Table (a) shows the local distance maps for each bag and stack height � = 0, 1. Table (b) shows how the distance query

d (1, 6) in method dot_vector is handled.

method dot_matrix, as we do not know whether the call to method dot_vector actually returns.
Afterwards, Query is called to discover the distance d (1, 6) in method dot_vector (line 5). Ta-
ble 4(b) shows the sequence in which Query examines the bags of the tree decomposition and the
distances δ1, δ6, and δ it maintains. When B2 is examined, δ = True, and hence at the end Query

returns δ = True. Finally, since Query returns δ = True, the weight wt(10, 11) between the call-
return pair of nodes (10, 11) in method dot_matrix is set to True. An execution of Update (line 11)
with this update on the corresponding tree decomposition (Table 4(a) for � = 1) updates the entries
(10, 11) and (10, 9) in LUDB5 of method dot_matrix (shown in bold). From this point, any same-
context distance query can be answered in logarithmic time in the size of its CSM by further calls
to Query.

Linear single-source query time. To handle single-source queries, some additional preprocess-
ing is required. The basic idea is to use RSMDistance to process the graphs Gi and then use
additional preprocessing on each Gi by applying existing algorithms for graphs with constant
treewidth. This is achieved using Lemma 2.11, which states that for each bag B of each tree-
decompositionTi , a local distance map LDB : B × B→ Σ with LDB (u,v ) = d (u,v ) can be computed
in time and space O (ni ). After all such maps LDB have been computed for each B, it is straight-
forward to answer single-source queries from some node u in linear time. The algorithm simply
maintains a map A : Vi → Σ, and initially A(v ) = d (u,v ) for all v ∈ Bu , and A(v ) = 0 otherwise.
Then, it traversesTi in a BFS manner starting at Bu , and for every encountered bag B andv ∈ B, if
A(v ) = 0, it setsA(v ) =

⊕
z∈B

⊗
(A(z),d (z,v )). The correctness follows directly from Lemma 2.9.

For constant treewidth, this results in a constant number of semiring operations per bag, and hence
O (ni ) time in total.

Constant pair query time. After RSMDistance has returned, it is possible to further preprocess
the graphs Gi to reduce the pair query time to constant, while increasing the space by a factor of
logni . For constant treewidth, this can be obtained by adapting Chaudhuri and Zaroliagis [2000,
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Theorem 10] to our setting, which in turn is based on a rather complicated algorithmic technique
of Alon and Schieber [1987]. We present a more intuitive, simpler, and implementable approach
that has a dynamic programming nature. In Section 6, we present some experimental results ob-
tained by this approach.

Recall that the extra preprocessing for answering single-source queries in linear time consists
in computing the local distance maps LDB for every bag B. To handle pair queries in constant
time, we further traverse each Ti one last time, bottom-up, and for each node u, we store maps

Fu , Tu : V Bu

i → Σ, where V Bu

i is the subset of Vi of nodes that appear in Bu and its descendants in
Ti . The maps are such that Fu (v ) = d (u,v ) and Tu = d (v,u). Hence, Fu stores the distances from

u to nodes in V Bu

i , and Tu stores the distances from nodes in V Bu

i to u. The maps are computed in
a dynamic programming fashion, as follows:

(1) Initially, the maps Fu andTu are constructed for allu that appear in a bag B, which is a leaf
of Ti . The information required has already been computed as part of the preprocessing
for answering single-source queries. Then, Ti is traversed up, level by level.

(2) When examining a bag B such that the computation has been performed for all its children,
for every node u ∈ B and v ∈ V B

i , we set Fu (v ) =
⊕

z∈B

⊗
{d (u, z), Fz (v )}, and similarly

for Tu =
⊕

z∈B

⊗
{d (z,u), Tz (v )}.

An application of Lemma 2.8 inductively on the levels processed by the algorithm can be used
to show that when a bag B is processed, for every node u ∈ B and v ∈ V B

i , we have Tu (v ) =⊕
P :v�u ⊗(P ) and Fu (v ) =

⊕
P :u�v ⊗(P ). Finally, there are O (ni ) semiring operations done at

each level ofTi and, since there are O (logni ) levels, O (ni · logni ) operations are required in total.
Hence, the space used is alsoO (ni · logni ). We furthermore preprocessTi in linear time and space
to answer LCA queries in constant time (note that, sinceTi is balanced, this is standard). To answer
a pair query u,v , it suffices to first obtain the LCA B of Bu and Bv , and it follows from Lemma 2.9
that d (u,v ) =

⊕
z∈B

⊗
{Tz (u), Fz (v )}, which requires a constant number of semiring operations.

We conclude the results of this section with the following theorem. Afterwards, we obtain the
results for the special cases of the IFDS/IDE framework, reachability, and shortest path.

Theorem 4.2. Fix the following input: (i) an RSM A = {A1,A2, . . . ,Ak } with treewidth t = O (1),
whereAi consists ofni nodes andbi boxes; (ii) a complete semiring (Σ, ⊕, ⊗, 0, 1); and (iii) a maximum

stack height h. Let n =
∑

i ni . RSMDistance operates in the following complexity bounds:

(1) Using O (
∑k

i=1 (ni + h · bi · logni )) semiring operations and O (n) space, it correctly answers

same-context algebraic pair queries in O (logni ) and same-context algebraic single-source

queries in O (ni ) semiring operations.

(2) Using O (
∑k

i=1 (ni · logni + h · bi · logni )) semiring operations O (
∑k

i=1 (ni · logni )) space, it

correctly answers same-context algebraic pair queries inO (1) semiring operations and same-

context algebraic single-source queries in O (ni ) semiring operations.

Remark 4.3. We note that the pair query time of Item 1 in Theorem 4.2 can be improved further
to O (α (ni )) time, where α (ni ) is the inverse of the Ackermann function on input (ni ,ni ). This
is achieved using Chaudhuri and Zaroliagis [2000, Theorem 10, Item (ii)], instead of the process
described above. This result is only of theoretical interest, as (i) the hidden constants are large, and
(ii) the data structure for achieving such bounds is hard to be implemented in practice.

Remark 4.4. Our complexity analysis so far has neglected the precise dependency on treewidth,
since we assume that the treewidth t of the RSM is bounded by a constant, i.e., t = O (1). Here,
we clarify this dependency. Assuming that the tree decompositions in line 2 are given, all our
algorithms have dependency of factor O (t2) in their complexity. This can be traced to the proofs
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Lemma 3.3, Lemma 3.5, and Lemma 3.7, which state explicitly that the time dependency of the
algorithms Preprocess, Update, and Query, respectively, isO (t2). Since, in general, computing the
treewidth of a graph is NP-hard, the complexity of computing the tree decompositions in line 2 is
at least 2t , depending on the precise algorithm used.

4.2 IFDS Framework

In the special case where the algebraic path problem belongs to the IFDS/IDE framework, we have
a meet-composition semiring (F ,�, ◦, ∅, I ), where F is a set of distributive flow functions 2D → 2D ,
D is a set of data facts, � is the meet operator (either union or intersection), ◦ is the flow function
composition operator, and I is the identity flow function. For a fair comparison, the ◦ semiring
operation does not induce a unit time cost, but instead a cost of O ( |D |) per data fact (as functions
are represented as bipartite graphs [Reps et al. 1995]). Because the set D is finite and the meet
operator is either union or intersection, it follows that the image of every data fact will be updated
at most |D | times. Hence, in the preprocessing phase where Preprocess(Gi ) is called for each graph
Gi , the total time spent for each Gi is O (ni · |D |3). Additionally, line 7 of RSMDistance needs to
change so instead of h iterations, the body of the loop is carried up to a fixpoint. The amortized
cost for all edge updates per Gi is then O (bi · logni · |D |3) (as there are |D | data facts).

In the query phase, we fix a source node u (in the case of single-source queries) or a
source/destination pair (u,v ) (in the case of pair queries), as well as the set of data factsX that hold
in the source node u (of either query). Since we deal with sets of data facts and not flow functions,
each application of the composition operator yields a new set of data facts, and the meet operator
corresponds to the union or intersection of two data-fact sets. Each such operation incurs a cost
O ( |D |2). We thus arrive at the following corollary (also see Table 2):

Corollary 4.5 (IFDS/IDE). Fix the following input: (i) an RSM A = {A1,A2, . . . ,Ak } with

treewidth t = O (1), where Ai consists of ni nodes and bi boxes; and (ii) a meet-composition semiring

(F ,�, ◦, ∅, I ), where F is a set of distributive flow functions D → D, ◦ is the flow function composition

operator, and� is the meet operator. Letn =
∑

i ni . RSMDistance operates in the following complexity

bounds:

(1) Using O (
∑k

i=1 (ni + bi · logni ) · |D |3) preprocessing time and O (n · |D |2) space, it correctly

answers same-context algebraic pair queries in O (logni · |D |2) time and same-context alge-

braic single-source queries in O (ni · |D |2) time.

(2) Using O (
∑k

i=1 (ni · logni · |D |3)) preprocessing time and O ( |D |2 ·∑k
i=1 (ni · logni )) space, it

correctly answers same-context algebraic pair queries in O ( |D |2) time and same-context al-

gebraic single-source queries in O (ni · |D |2) time.

A speedup for large data-fact domains. Here, we outline a speedup for the algebraic path prob-
lem w.r.t the IFDS framework when the domain of data facts D is such that |D | = Ω(logn). In this
case, sets of data facts can be represented as bit sets, where the ith bit of a bit set X is one iff it
contains the ith data fact. When |D | = Ω(logn), such bit sets can be stored compactly in machine
words. Since in the standard RAM model each machine word has size Θ(logn), such a set X can
be stored using O ( |D |/ logn) words. The meet � (union/intersection) of two data-fact sets can
be performed in O ( |D |/ logn) time by computing the bit-wise OR/AND operation on the corre-
sponding machine words. Similarly, a distributive flow function f : 2D → 2D can be represented
usingO ( |D |2/ logn) words by storing a bit setXi for every data fact di for which f (di ) = Xi . Using
bit sets, every update of a flow function with a new data flow pair di → dj incurs a O ( |D |/ logn)
time cost, simply by performing the bit-wise OR/AND operation (depending on whether the meet
operator is union/intersection) between the data-fact sets f (di ) and f (dj ). Since there can be at
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most |D |2 updates of data flow pairs di → dj per graph edge, the total preprocessing cost for each
graph Gi is ni · |D |3/ logn. Similarly, in the update phase (line 7) the amortized cost per Gi is
bi · logni · |D |3/ logn. Finally, in the query phase, where we track data facts rather than data-flow
functions, data-fact operations requireO ( |D |/ logn) word operations per data fact. We thus arrive
at the following corollary:

Corollary 4.6 (IFDS/IDE, large domain). Fix the following input: (i) an RSM A =
{A1,A2, . . . ,Ak } with treewidth t = O (1), where Ai consists of ni nodes and bi boxes; and (ii) a

meet-composition semiring (F ,�, ◦, ∅, I ), where F is a set of distributive flow functions D → D with

|D | = Ω(logn), ◦ is the flow function composition operator and � is the meet operator. Let n =
∑

i ni .

RSMDistance operates in the following complexity bounds:

(1) Using O (
∑k

i=1 (ni + bi · logni ) · |D |3/ logn) preprocessing time and O ((n/ logn) · |D |2)
space, it correctly answers same-context algebraic pair queries in O ( |D |2) time and same-

context algebraic single-source queries in O (ni · |D |2/ logn) time.

(2) UsingO (n · |D |3) preprocessing time andO (n · |D |2) space, it correctly answers same-context

algebraic pair queries inO ( |D |2/ logn) time and same-context algebraic single-source queries

in O (ni · |D |2/ logn) time.

Finally, we note that the special case of reachability is obtained by setting |D | = 1 in Corollary 4.5.
In the next section, we present some further improvements that allow to reduce the cost of pre-
processing and querying.

4.3 Distances with Non-negative Weights

The distance (or shortest path) problem can be formulated on the tropical semiring (R≥0 ∪
{∞},min,+,∞, 0). We consider that both semiring operators cost unit time (i.e., the weights oc-
curring in the computation fit in a constant number of machine words). Since we consider non-
negative weights, the distance between any pair of nodes is realized by an interprocedural path
of stack height at most b, as no boxes need to appear more than once at any time in the stack
of the path. Hence, we can solve the distance problem by setting h = b in Theorem 4.2. However,
our restriction to non-negative weights allows for a significant speedup, achieved by algorithm
RSMDistanceTrop (see Algorithm 7). RSMDistanceTrop is obtained from RSMDistance by using
a priority queue to store the distances from entries to exits. In each iteration of the while loop in
line 7, we extract the element of the queue with the smallest entry-to-exit distance and update
the entry-to-exit distances of all remaining elements in the queue that correspond to CSMs that
invoke the CSM that corresponds to the extracted element. The algorithm has similar flavor to the
classic Dijkstra’s algorithm for distances on finite graphs with non-negative edge weights [Dijk-
stra 1959; Cormen et al. 2001]. The time complexity is O (n) time for executing Preprocess, plus
the time required for each execution of Update and Query. Note that Update is executed at least
as many times as Query, and, since both require time logarithmic in the size of the respective Gi ,
it suffices to count the total time spent on Update. Since line 10 is executed at most once per box,

the total time spent on Update is O (
∑k

i=1 bi · logni ). We thus obtain the following corollary for
distances with non-negative weights:

Corollary 4.7 (Interprocedural Shortest Paths). Fix the following input: (i) an RSM A =
{A1,A2, . . . ,Ak } with treewidth t = O (1), where Ai consists of ni nodes and bi boxes; (ii) a tropi-

cal semiring (R≥0 ∪ {∞},min,+,∞, 0). Let n =
∑

i ni . RSMDistanceTrop operates in the following

complexity bounds:
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ALGORITHM 7: RSMDistanceTrop

Input: A set of control-flow graphs G = {Gi }1≤i≤k

1 foreach Gi ∈ G do

2 Construct a nicely rooted, balanced, binary tree-decomposition Ti = (VTi
,ETi

) of Gi

3 Call Preprocess on Ti

4 end

5 distances← [Call Query on (eni , exi ) of Gi ]1≤i≤k

6 PriorityQueueQ ← [(i,Call Query on (eni , exi ) of Gi )]1≤i≤k

7 while Q is not empty do

8 (i,δ ) ← Q .pop ()

9 foreach G j that contains boxes bj1 , . . . ,bjl
s.t. Yj (bjx ) = i do

10 Call Update on G j for the weight change wt((eni ,bjl
), (exi ,bjx )) ← δ

11 δ ′ ←Query(enj , ex j )

12 if δ ′ < distances[j] then

13 distances[j]← δ ′

14 Decrease the key of j in Q to δ ′

15 end

16 end

(1) UsingO (n +
∑k

i=1 bi · logni )) preprocessing time and O (n) space, it correctly answers same-

context shortest path pair queries in O (logni ) and same-context single-source distance

queries in O (ni ) time.

(2) Using O (
∑k

i=1 ni · logni ) preprocessing time and O (
∑k

i=1 (ni · logni )) space, it correctly an-

swers same-context pair distance queries in O (1) time.

4.4 A Note on Non-Same-Context Queries

The focus of this work is on exploiting the constant-treewidth property of control-flow graphs for
speeding up same-context interprocedural algebraic path queries. In full generality, interprocedu-
ral static analyses are also concerned with non-same-context queries, i.e., where the endpoints of a
query are control nodes of different CSMs. We note that our techniques do not extend straightfor-
wardly to general queries. Since non-same-context queries take place at the RSM level instead of
the local CSM, fast algorithms for such queries will likely have to depend on the structural prop-
erties of the RSM rather than the CSM. However, although it is well known that the control-flow
graphs of programs have small treewidth [Thorup 1998], this property is not guaranteed for the
whole RSM (e.g., when viewed as a supergraph [Sagiv et al. 1996]). Although in practice a non-
same-context query can be broken down to multiple same-context queries, this does not lead to
complexity improvements (compared to doing the analysis offline) unless further restrictions are
assumed about the structure of the RSM.

5 OPTIMAL REACHABILITY FOR LOW-TREEWIDTH GRAPHS

In this section, we turn our attention to the problem of reachability on low-treewidth graphs. We
present algorithms for building and querying a data-structure Reachability, which handles single-
source and pair reachability queries over an input graphG ofn nodes and treewidth t . In particular,
we establish the following:

Theorem 5.1. Given a graph G of n nodes and treewidth t , let T (G ) be the time and S (G ) be the

space required for constructing a balanced tree-decomposition T = (VT ,ET ) of O (n) bags and width
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O (t ) on the standard RAM with wordsize W = Θ(logn). The data-structure Reachability correctly

answers reachability queries and requires

(1) O (T (G ) + n · t2) preprocessing time;

(2) O (S (G ) + n · t ) preprocessing space;

(3) O (� t
log n
�) pair query time; and

(4) O ( n ·t
log n

) single-source query time.

For constant-treewidth graphs, we have that T (G ) = O (n) and S (G ) = O (n) (Lemma 2.10), and
thus along with Theorem 5.1, we obtain the following corollary:

Corollary 5.2. Given a graph G of n nodes and treewidth t = O (1), the data-structure

Reachability requires O (n) preprocessing time and space and correctly answers (i) pair reachability

queries in O (1) time, and (ii) single-source reachability queries in O ( n
log n

) time.

Implications on the reachability of constant-treewidth RSMs. In conjunction with Theo-
rem 4.2, we obtain the following corollary for RSMs: This is achieved by executing the algorithm
RSMDistance as before to infer in every CSM Ai the reachability information between every pair
of call and return nodes (c, r ). Afterwards, every corresponding graph Gi can be viewed indepen-
dently, so we can use Reachability to further preprocess it to handle same-context reachability
queries. This approach yields the following corollary:

Corollary 5.3 (Interprocedural Reachability). Fix the following input: a (i) constant

treewidth RSM A = {A1,A2, . . . ,Ak }, where Ai consists of ni nodes and bi boxes. Let n =
∑

i ni . Using

O (
∑k

i=1 (ni + bi · logni )) preprocessing time and O (n) space, one can correctly answer same-context

algebraic pair queries inO (1) time and same-context algebraic single-source queries inO ( ni

log n
) time.

In the remainder of this section, we focus on a single input graph G = (V ,E) of treewidth t
without further mention of RSMs.

Intuition. Informally, the preprocessing consists of first obtaining a small, balanced and binary
tree-decomposition T of G, and computing the local reachability information in each bag B (i.e.,
the pairs (u,v ) ∈ E∗ with u,v ∈ B) using Lemma 2.11. Then, the whole of preprocessing is done
on T , by constructing two types of sets, which are represented as bit sequences and packed into
words of lengthW = Θ(logn). Initially, every node u receives an index iu , such that for every bag
B, the indices of nodes whose root bag is in T (B) form a contiguous interval. Additionally, for
every appearance of node u in a bag B, the node u receives a local index lB

u in B. For brevity, a
sequence (A0,A1, . . .Ak ) will be denoted by (Ai )0≤i≤k . When k is implied, we simply write (Ai )i .
The following two types of sets are constructed:

(1) Sets that store information about subtrees. Specifically, for every node u, the set Fu stores
the relative indices of nodes v that can be reached from u and whose root bag is inT (Bu ).
These sets are used to answer single-source queries.

(2) Sets that store information about ancestors. Specifically, for every node u, two sequences
of sets are stored (Fi

u )0≤i≤Lv(u ) , (Ti
u )0≤i≤Lv(u ) , such that Fi

u (respectively, Ti
u ) contains the

local indices of nodes v in the ancestor bag Bi
u of Bu at level i , such that (u,v ) ∈ E∗ (re-

spectively, (v,u) ∈ E∗). These sets are used to answer pair queries.

The sets of the first type are constructed by a bottom-up pass, whereas the sets of the sec-
ond type are constructed by a top-down pass. Both passes are based on the separator property of
tree decompositions (recall Lemma 2.7 and Lemma 2.8), which informally states that reachability
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properties between nodes in distant bags will be captured transitively, through nodes in interme-
diate bags.

Reachability Preprocessing. We now give a formal description of the preprocessing of
Reachability that takes as input a graph G of n nodes and treewidth t , and a balanced tree-
decomposition T = (VT ,ET ) of G that has O (t ). After the preprocessing, Reachability supports
single-source and pair reachability queries. We say that we “insert” set A to set A′, meaning that
we replace A′ with A ∪A′. Sets are represented as bit sequences where 1 denotes membership in
the set, and the operation of inserting a setA “at the ith position” of a setA′ is performed by taking
the bit-wise logical OR between A and the segment [i, i + |A|] of A′. The preprocessing consists of
the following steps:

(1) Turn T to a small, balanced binary tree-decomposition of G of width O (t ), using
Lemma 2.13.

(2) Preprocess T to answer LCA queries in O (1) time [Harel and Tarjan 1984].
(3) Compute the local distance map LDB : B × B→ R for every bag B w.r.t reachability, using

Lemma 2.11. Hence, for any bag B and nodesu,v ∈ B, we have LDB (u,v ) = 1 iff (u,v ) ∈ E∗.
(4) Apply a pre-order traversal onT and assign an incremental index iu to each node u at the

time the root bag B of u is visited. If there are multiple nodes u for which B is the root
bag, then assign the indices to those nodes in some arbitrary order. Additionally, store the
number su of nodes whose root bag is in T (B) and have index at least iu . Finally, for each
bag B and u ∈ B, assign a unique local index lB

u to u, and store in B the number of nodes
(with multiplicities) aB contained in all ancestors of B and the number bB of nodes in B.

(5) For every node u, initialize a bit set Fu of length su , pack it into words, and set the first bit
to 1.

(6) Traverse T bottom-up, and for every bag B execute the following step: For every pair
of nodes u,v ∈ B such that B is the root bag of v and iu < iv and LDB (u,v ) = 1, insert
Fv to the segment [iv − iu , iv − iu + sv ] of Fu (the nodes reachable from v now become
reachable from u, through v).

(7) For every node u, initialize two sequences of bit sets (Ti
u )0≤i≤Lv(u ) , (Fi

u )0≤i≤Lv(u ) , and pack
them into consecutive words. Each set Ti

u and Fi
u has size bBi

u
, where Bi

u is the ancestor of
Bu at level i .

(8) Traverse T top-down, and for B the bag currently visited, for every node x ∈ B, maintain

two sequences of bit sets (T
i

x )0≤i≤Lv(B) and (F
i

x )0≤i≤Lv(B) . Each set T
i

x and F
i

x has size bBi ,
where Bi is the ancestor of B at level i . Initially, B is the root of T (hence, Lv(B) = 0), and

set the position lB
w of F

0
x (respectively, T

0
x ) to 1 for every node w such that LDB (x ,w ) = 1

(respectively, LDB (w,x ) = 1). For each other bag B encountered in the traversal, do as
follows: Let S = B ∩ B′, where B′ is the parent of B in T , and let x range over S .

(1) For each node x , create a set Tx (respectively, Fx ) of 0s of length bB, and for every

w ∈ B such that LDB (x ,w ) = 1 (respectively, LDB (w,x ) = 1), set the lB
w th bit of Fx (re-

spectively, Tx ) to 1. Append the set Tx (respectively, Fx ) to (T
i

x )i (respectively, (F
i

x )i ).

Now each set sequence (T
i

x )i and (F
i

x )i has size aB + bB.

(2) For each u ∈ B whose root bag is B, initialize set sequences (F
i

u )i and (T
i

u )i with 0s of

length aB + bB each, and set the bit at position lB
u of F

Lv(B)
u and T

Lv(B)
u to 1. For everyw ∈

B with LDB (u,w ) = 1 (respectively, LDB (w,u) = 1), insert (F
i

w )i to (F
i

u )i (respectively,

(T
i

w )i to (T
i

u )i ). Finally, set (Fi
u )i equal to (F

i

u )i (respectively, (Ti
u )i equal to (T

i

u )i ).

Figure 6 illustrates the constructed sets on a small example.
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Fig. 6. (a), (c): A graphG and a tree-decompositionT = (VT ,ET ) ofG. (b): The sets Fu constructed from step 5

to answer single-source queries. The jth bit of a set Fu is 1 iff (u,v ) ∈ E∗, where v is such that iv − iu = j.
(d): The set sequences (Fi

u )i and (Ti
u )i constructed from step 6 to answer pair queries, for u = 6. For every

i ∈ {0, 1, 2, 3} and ancestor Bi
6 of B6 at level i , every node v ∈ Bi

u is assigned a local index l
Bi

6
v . The jth bit of

set Fi
6 (respectively, Ti

6) is 1 iff (6,v ) ∈ E∗ (respectively, (v, 6) ∈ E∗), where v is such that l
Bi

6
v = j.

It is fairly straightforward that at the end of the preprocessing, the ith position of each set Fu

is 1 only if (u,v ) ∈ E∗, where v is such that iv − iu = i . The following lemma states the opposite
direction—namely, that each such ith position will be 1—as long as the path P : u � v only visits
nodes with certain indices:

Lemma 5.4. At the end of preprocessing, for every pair of nodes u and v with iu ≤ iv ≤ iu + su , if

there exists a path P : u � v such that for everyw ∈ P , we have iu ≤ iw ≤ iu + su , then the (iv − iu )-
th bit of Fu is 1.

Proof. We prove inductively the following claim: For every ancestor B of Bv , if there exists
w ∈ B and a path P1 : w � v , then exists x ∈ B ∩ P1 such that ix ≤ iv ≤ ix + sx and the iv − ix -th
bit of Fx is 1. The proof is by induction on the length of the simple path P2 : B � Bv .

(1) If |P2 | = 0, then the statement is true by taking x = v , since the 0th bit of Fv is 1.
(2) If |P2 | > 0, then examine the child B′ of B in P2. By Lemma 2.8, there exists x ∈ B ∩ B′ ∩

P , and let P3 : x � v . By the induction hypothesis, there exists some y ∈ B′ ∩ P3 with
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iy ≤ iv ≤ iy + sy and the iv − iy -th bit of Fy is 1. Ify ∈ B, then we take x = y. Otherwise, B′

is the root bag ofy, and by the local distance computation of Lemma 2.11, it is LDB′ (x ,y) =
1. By the choice of x , y, we have that Bx is an ancestor of By . Thus, by construction,
we have ix < iy and sx ≥ sy + iy − ix , and hence ix ≤ iv ≤ ix + sx . Then in step 5, Fy is
inserted in position iy − ix of Fx , thus the bit at position iy − ix + iv − iy = iv − ix of Fx

will be 1, and we are done.

When Bu is examined, by the above claim there exists x ∈ P such that ix ≤ iv and the iv − ix -th
bit of Fx is 1. If x = u, then we are done. Otherwise, by the choice of P , we have iu < ix , which can
only happen if Bu is also the root bag of x . Then in step 5, Fx is inserted in position ix − iu of Fu ,
and hence the bit at position ix − iu + iv − ix = iv − iu of Fx will be 1, as desired. �

Similarly, given a node u and an ancestor bag Bi
u of Bu at level i , the jth position of the set

Fi
u (respectively, Ti

u ) is 1 only if (u,v ) ∈ E∗ (respectively, (v,u) ∈ E∗), where v ∈ Bi
u is such that

l
Bi

u
v = j. The following lemma states that the inverse is also true:

Lemma 5.5. At the end of preprocessing, for every node u, for every v ∈ Bi
u where Bi

u is the an-

cestor of Bu at level i , we have that if (u,v ) ∈ E∗ (respectively, (v,u) ∈ E∗), then the l
Bi

u
v -th bit of Fi

u

(respectively, Ti
u ) is 1 .

Lemma 5.6. Given a graph G with n nodes and treewidth t , let T (G ) be the time and S (G ) be the

space required for constructing a balanced tree-decomposition of G with O (n) bags and width O (t ).
The preprocessing phase of Reachability on G requires O (T (G ) + n · t2) time and O (S (G ) + n · t )
space.

Proof. First, we construct a balanced tree-decomposition T = (VT ,ET ) of G in T (G ) time and
S (G ) space. We establish the complexity of each preprocessing step separately.

(1) Using Lemma 2.13, this step requires O (n · t ) time. From this point on, T consists of
b = O ( n

t
) bags, has height η = O (logn), and width t ′ = O (t ).

(2) By a standard construction for balanced trees, preprocessing T to answer LCA queries
in O (1) time requires O (b) = O ( n

t
) time.

(3) By Lemma 2.11, this step requiresO (b · t ′3) = O ( n
t
· t3) = O (n · t2) time andO (b · t ′2) =

O ( n
t
· t2) = O (n · t ) space.

(4) Every bag B is visited once, and each operation on B takes constant time. We make
O (t ′) such operations in B, hence this step requires O (b · t ′) = O (n) time in total.

(5–6) The space required in this step is the space for storing all the sets Fu of size su each,
packed into words of lengthW :

∑
u ∈V

⌈ su

W

⌉
=

η∑
i=0

∑
u :Lv(u )=i

⌈ su

W

⌉
≤

η∑
i=0

∑
u :Lv(u )=i

( su

W
+ 1

)

=
1

W
·

η∑
i=0

∑
u :Lv(u )=i

su +

η∑
i=0

∑
u :Lv(u )=i

1 ≤ 1

W
·

η∑
i=0

n · (t ′ + 1) + n = O (n · t ),

since η = O (logn), t ′ = O (t ), and W = Θ(logn). Note that we have
∑

u :Lv(u )=i su ≤ n ·
(t ′ + 1), because |⋃u Fu | ≤ n (as there are n nodes) and every element of

⋃
u Fu belongs

to at most t ′ + 1 such sets Fu (i.e., for those u that share the same root bag at level i).
The time required in this step is O (n · t ) in total for iterating over all pairs of nodes
(u,v ) in each bag B such that B is the root bag of either u or v , and O (n · t2) for the set
operations, by amortizing O (t ) operations per word used.
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6. The time and space required for storing each sequence of the sets (Fi
u )0≤i≤Lv(u ) and

(Ti
u )0≤i≤Lv(u ) is:

∑
u ∈V

2 ·
⌈
aBu
+ bBu

W

⌉
≤ 2 · n ·

⌈
(t ′ + 1) · η

W

⌉
= O (n · t ),

since aBu
+ bBu

≤ (t ′ + 1) · η, η = O (logn) andW = Θ(logn).

7. The space required is the space for storing the set sequences (T
i

v )i and (F
i

v )i , which
is O (t2) by a similar argument as in the previous item. The time required is O (t ) for

initializing every new set sequence (T
i

u )i and (F
i

u )i and this will happen once for each
node u at its root bag Bu , hence the total time is O (n · t ). �

Reachability Querying. We now turn our attention to the querying phase.

Pair query. Given a pair query (u,v ), find the LCA B of bags Bu and Bv . Obtain the sets F
Lv(B)
u

and T
Lv(B)
v of size bB. Each set starts in bit position aB of the corresponding sequence (Fi

u )i
and (Ti

v )i . Return True iff the logical-AND of F
Lv(B)
u and T

Lv(B)
v contains an entry that is 1.

Single-source query. Given a single-source query u, create a bit set A of size n, initially all 0s.

For every node x ∈ Bu with ix ≤ iu , if the lBu
x -th bit of F

Lv(u )
u is 1, insert Fx to the segment

[ix , ix + sx ] ofA. Then traverse the path from Bu to the root ofT and let Bi
u be the ancestor

of Bu at level i < Lv(Bu ). For every node x ∈ Bi
u , if the l

Bi
u

x -th bit of Fi
u is 1, set the ix -th bit

of A to 1. Additionally, if Bi
u has two children, let B be the child of Bi

u that is not ancestor
of Bu , and jmin and jmax the smallest and largest indices, respectively, of nodes whose root
bag is in T (B). Insert the segment [jmin − ix , jmax − ix ] of Fx to the segment [jmin, jmax] of
A. Report that the nodes v reached from u are those v for which the iv -th bit of A is 1.

The following lemma establishes the correctness and complexity of the query phase:

Lemma 5.7. After the preprocessing phase of Reachability, pair and single-source reachability

queries are answered correctly in O (� t
log n
�) and O ( n ·t

log n
) time, respectively.

Proof. Let t ′ = O (t ) be the width of the small tree-decomposition constructed in Step 1. The
correctness of the pair query comes immediately from Lemma 5.5 and Lemma 2.7, which implies
that every path u � v must go through the LCA of Bu and Bv . The time complexity follows from

the O (� t
W
�) word operations on the sets F

Lv(B)
u and T

Lv(B)
v of size O (t ) each.

Now consider the single-source query from a node u and let v be any node such that there is
a path P : u � v . Let B be the LCA of Bu ,Bv , and by Lemma 2.7, there is a node y ∈ B ∩ P . Let x
be the last such node in P , and let P ′ : x � v be the suffix of P from x . It follows that P ′ is a path
such that for every w ∈ P ′, we have ix ≤ iw ≤ ix + sx .

(1) If Bv is an ancestor of Bu , then necessarily x = v , and by Lemma 5.5, the lB
v -th bit of F

Lv(B)
u

is 1. Then the algorithm sets the iv -th bit of A to 1.
(2) Else, Bx is an ancestor of Bv (recall that a bag is an ancestor of itself), and by Lemma 5.4,

the (iv − ix )-th bit of Fx is 1.
(a) If B is Bu , then the algorithm will insert Fx to the segment [ix , ix + sx ] of A, thus the

ix + iv − ix = iv -th bit of A is set to 1.
(b) If B is not Bu , then it can be seen that jmin ≤ iv ≤ jmax, where jmin and jmax are the

smallest and largest indices of nodes whose root bag is in T (B′), with B′ the child of
B that is not ancestor of Bu . Since the (iv − ix )-th bit of Fx is 1, the (iv − jmin)-th bit
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of the [jmin, jmax] segment of Fx is 1, thus the jmin + iv − jmin = iv -th bit of A is set
to 1.

Regarding the time complexity, the algorithm performs O (η · t ′) = O (η · t ) set insertions to A. For
every position j of A, the number of such set insertions that overlap on j is at most t ′ + 1 (once for
every node in the LCA of Bu and Bv , where v is such that iv = j). Hence, if Hi is the size of the
ith insertion in A, then we have

∑
i Hi ≤ n · (t ′ + 1). Since the insertions are word operations, the

total time spent for the single source query is

η∑
i=0

⌈Hi

W

⌉
≤ η +

η∑
i=0

Hi

W
≤ η +

n · (t ′ + 1)

W
= O

(
n · t
logn

)
,

since η = O (logn), t ′ = O (t ) andW = Θ(logn). �

6 EXPERIMENTAL RESULTS

In the previous sections, we have dealt with the algebraic path problem on RSMs in a purely algo-
rithmic way. In this section, we make an experimental evaluation of our algorithms on a standard
benchmark set for various types of specific data-flow analyses.

Experimental setup. We have implemented our preprocessing and query algorithms for the IFDS
framework, which is the most widely used static dataflow analysis framework. Our benchmark set
consists of the DaCapo benchmark suite [Blackburn 2006], which contains several real-world Java
applications. Every benchmark is represented as an RSM that consists of several CSMs, and each
CSM corresponds to the control flow graph of a method of the benchmark. We have used the Soot
framework [Vallée-Rai et al. 1999] for obtaining the control flow graphs, where every node of the
graph corresponds to one Jimple statement of Soot. The tree decompositions were computed using
the tool JTDec [Chatterjee et al. 2017], which computes tree decompositions of control flow graphs
using a variant of Thorup’s algorithm [Thorup 1998] for Java source code.

Compared algorithms. We have instantiated our preprocessing and query algorithms for the
IFDS framework for six different types of interprocedural data-flow analysis: control-flow reacha-

bility, unused variables, reaching definitions, live variables, simple uninitialized variables, and pos-

sibly uninitialized variables. In each case, we compared the performance of our algorithms with
three standard variants of the IFDS framework:

(1) The standard, offline IFDS algorithm of Reps et al. [1995], where each query is treated as
a new analysis.

(2) The complete preprocessing IFDS algorithm, where the transitive closure (w.r.t the re-
spective analysis semiring) is computed in the preprocessing phase, and each query is
answered by a simple table lookup.

(3) The On-Demand (OD) IFDS algorithm [Horwitz et al. 1995], which does no preprocessing,
but uses memoization to speed-up subsequent queries in the query phase.

For our algorithm and the complete preprocessing (i.e., the ones that have an explicit preprocessing
phase), we have imposed a timeout (TO) of 1 hour for performing the preprocessing. In the query
phase, we have performed 500 random same-context single-source/pair queries in each bench-
mark and computed the average time taken to answer each query. We have imposed a timeout of
one hour in the query phase, and in cases where a timeout occurred, we have averaged the query
time over the number of queries that were completed successfully by the timeout. Our experiments
were run on a Debian machine with an Intel Xeon E5-1650 3.2GHz CPU on a single thread.

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 23. Publication date: November 2019.



Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with Constant Treewidth 23:35

Table 5. Statistics of Our Benchmark Set

Benchmarks

Name n | f | t Name n | f | t
antlr 506 5 3 JFlex 17, 272 145 8
bloat 122 5 1 jython 264 5 2
chart 7, 688 26 3 luindex 716 7 4

eclipse 600 10 2 lusearch 1, 296 6 4
fop 138 3 2 pmd 546 5 3

hsqldb 4, 294 18 3 polyglot 41, 294 338 5
javac 404 13 3 xalan 950 12 3

Table 5 reports the statistics of our benchmark set. Recall that each benchmark is represented as
an RSM. In each table entry, n denotes the number of nodes in the corresponding RSM, | f | denotes
the number of CSMs in the RSM,3 and t denotes the treewidth of the RSM. We see that in all cases,
the treewidth of the corresponding RSM is small compared to its size. We now proceed with results
on each individual analysis. In each case, |D | denotes the size of the analysis domain (i.e., the set of
data facts) in the IFDS formulation. Entries with 1μs denote that the corresponding running time
is 1μs or less.

6.1 Control-Flow Reachability

Our first analysis is simple control-flow reachability, and the goal is to decide for pairs (u,v ) of
control-flow nodes, whether v may be reachable from u in some same-context execution. Given
that this is a may analysis, the meet operator is union, i.e., a node is reachable if it is reachable by
at least one path. The domain of the analysis is the singleton set D = {1}, i.e., we have one data
fact per node, encoding whether it is reachable or not. For each edge (v1,v2) of the interprocedural
control flow graph, its weight is defined as {1} �→ {1} and ∅ �→ ∅ (the identity function). In other
words, if v1 is reachable from some source node, then so is v2. However, if we know that v1 is not
reachable from a specific source node, this fact cannot be used to deduce that v2 is reachable. The
results of control-flow reachability analysis are shown in Table 6.

Preprocessing. We see that our algorithm spends less than one second in the preprocessing of all
benchmarks, except polyglot. However, the complete preprocessing spends more than two seconds
in several benchmarks. We note that, in some cases, the complete preprocessing is faster than our
algorithm. However, this happens on benchmarks where the overall preprocessing time is small for
both algorithms, i.e., in orders of hundredths of a second. This is expected, as our algorithm is more
involved than the complete preprocessing, which leads to larger hidden constants. However, when
the size of the benchmark is large, our preprocessing is always faster. This finding is consistent in
all analyses.

Querying. In the query phase, we see that the complete preprocessing always requires the smallest
time, which is expected, as every query is a simple table lookup. Compared with the offline and
on-demand algorithms, our queries are always faster, often by orders of magnitude. We note that
control-flow reachability is a simple problem, and the exact running times are small enough to not
have a practical significance. However, we included this analysis, as it is a common basis to all

3We have excluded libraries from our analysis to avoid having the large library determine the running times.
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Table 6. Comparison Table for Control-flow Reachability Analysis

Control-Flow Reachability

Benchmarks Preprocessing Query

Single Source Pair

Name |D | Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 1 53ms 77ms 850μs 1μs 7ms 14ms 5μs 1μs 788μs 332μs

bloat 1 8ms 1ms 173μs 1μs 653μs 350μs 6μs 1μs 199μs 7μs

chart 1 421ms 2.89s 1ms 1μs 65ms 57ms 5μs 1μs 15ms 2ms

eclipse 1 20ms 35ms 304μs 1μs 2ms 9ms 5μs 1μs 871μs 245μs

fop 1 4ms 2ms 81μs 1μs 517μs 1ms 2μs 1μs 228μs 19μs

hsqldb 1 158ms 3.38s 3ms 1μs 134ms 26ms 6μs 1μs 8ms 1ms

javac 1 17ms 7ms 163μs 1μs 1ms 2ms 5μs 1μs 576μs 49μs

JFlex 1 661ms 2.80s 1ms 1μs 40ms 14ms 5μs 1μs 33ms 2ms

jython 1 9ms 5ms 138μs 1μs 1ms 3ms 5μs 1μs 399μs 62μs

luindex 1 36ms 36ms 427μs 1μs 5ms 6ms 5μs 1μs 1ms 190μs

lusearch 1 74ms 365ms 1ms 1μs 28ms 21ms 6μs 1μs 2ms 793μs

pmd 1 37ms 12ms 397μs 1μs 2ms 6ms 5μs 1μs 770μs 206μs

polyglot 1 1.65s 3.89s 900μs 1μs 91ms 25ms 5μs 1μs 84ms 2ms

xalan 1 82ms 69ms 734μs 1μs 6ms 10ms 5μs 1μs 1ms 451μs

other, more involved analyses. Indeed, every dataflow analysis needs to at least compute control-
flow reachability. In the more involved examples that follow, the difference in running times is
much more amplified.

6.2 Unused Variables

Our second analysis is unused variables detection, which is a common analysis in IDEs such as Jet-
Brains [ReSharper 2019] and Visual Studio [Warren et al. 2016]. Its goal is to identify the variables
that must be unused until a point of the program (usually the endpoint of a method) is reached.
Such variables can then be removed from the program to enhance its performance. This analysis
has different domains in each method. In a methodm, with local variables v1, . . . ,vn , the analysis
domain is {v1, . . . ,vn }, where vi denotes the fact that the variable vi is unused. This is a must

analysis, and hence its meet operator is intersection, i.e., a variable is flagged as unused if it is
unused in every execution. The results of unused variables analysis are shown in Table 7.

Example 6.1. Consider the program in Figure 7 (left). Its control-flow graph is given in Fig-
ure 7 (right). The edges are labeled with their weights, which are distributive data-flow functions.
Note that we divided the node corresponding to line 4 in two. This is a standard practice (follow-
ing Reps et al. [1995]) to model the state before and after the method call.

We now review how the weights were assigned. In line 1, three new variables a,b, and c are
introduced, all of which are yet unused. Hence, the edge (1, 2) adds three new data-flow facts ā, b̄,
and c̄ . In line 2, the variable a is assigned, but its value is not used. Hence, line 2 does not use
any variables and therefore the edge (2, 3) does not change the current set of data-flow facts. In
contrast, the value of b is used in line 3, hence the edge (3, 4) removes the data-flow fact b̄. Now
consider the edge (8, 4′), which returns control from д to f . Note that the variable c of f is used
in the call to д iff the variable n of д is used in this call. This is reflected by adding the data-flow
fact c̄ at point 4′ iff the fact n̄ holds at 8.
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Table 7. Comparison Table for Unused Variables Analysis

Unused Variables

Benchmarks Preprocessing Query

Single Source Pair

Name |D | Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 45 2.37s 41.7s 10ms 1μs 1.99s 2.46s 3μs 1μs 800ms 26ms

bloat 11 17ms 20ms 300μs 1μs 5ms 1ms 2μs 1μs 2ms 37μs

chart 146 12m26s TO 123ms TO 6m23s 52.6s 10μs TO 5m45s 122ms

eclipse 30 737ms 12.9s 4ms 1μs 515ms 566ms 5μs 1μs 185ms 22ms

fop 11 67ms 56ms 659μs 1μs 13ms 19ms 4μs 1μs 6ms 626μs

hsqldb 271 39m16s TO 589ms TO 23m4s 1m22s 12μs TO 24m6s 211ms

javac 21 189ms 311ms 1ms 1μs 69ms 10ms 3μs 1μs 33ms 312μs

JFlex 149 11m55s TO 76ms TO 3m30s 5.09s 6μs TO 3m7s 174ms

jython 17 76ms 276ms 669μs 1μs 38ms 55ms 2μs 1μs 17ms 2ms

luindex 39 2.63s 13.54s 9ms 1μs 1.30s 537ms 5μs 1μs 585ms 23ms

lusearch 91 1m2s 52m42s 62ms 4μs 37.8s 10.8s 9μs 1μs 20.5s 94ms

pmd 30 1.04s 2.56s 4ms 1μs 308ms 355ms 4μs 1μs 223ms 12ms

polyglot 186 31m6s TO 60ms TO 6m30s 20.7s 10μs TO 7m21s 196ms

xalan 32 2.35s 35.5s 9ms 1μs 1.33s 640ms 4μs 1μs 714ms 24ms

Fig. 7. An example program (left) and its unused variables analysis in IFDS (right).

Consider an arbitrary same-context path in the control-flow graph that starts at 1 and ends at
5 and assume that no initial data-flow facts hold at 1. By the time we reach 5, the data-flow fact
ā always holds, no matter which path was taken. Hence, a is an unused variable. However, after
traversing the path 〈1, 2, 3, 4, 6, 7, 8, 4′, 5〉, the fact c̄ does not hold. Given that the meet operator is
intersection over all paths, this means that c̄ does not hold at 5. Hence, c is not an unused variable.

Preprocessing. We see that the domain of the analysis is much larger than in the previous case
of control-flow reachability and varies per benchmark. The unused variables analysis is more in-
volved than reachability, and this has an immediate effect on preprocessing times. Both our algo-
rithm and the complete preprocessing use significantly more time for larger domains. However, our
algorithm always terminates within one hour, and typically much earlier, whereas the complete
preprocessing times out in four cases. In all cases, our algorithm preprocesses the corresponding
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Table 8. Comparison Table for Reaching Definitions Analysis

Reaching Definitions

Benchmarks Preprocessing Query

Single Source Pair

Name |D | Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 54 2.16s 28.4s 17ms 3μs 2.37s 3.24s 3μs 1μs 337ms 20ms

bloat 11 18ms 7ms 384μs 1μs 2ms 1ms 5μs 1μs 1ms 39μs

chart 170 8m16s TO 209ms TO 3m29s 1m7s 11μs TO 2m9s 85ms

eclipse 31 404ms 11.1s 3ms 1μs 203ms 530ms 3μs 1μs 71ms 17ms

fop 12 51ms 40ms 528μs 1μs 9ms 15ms 4μs 1μs 2ms 495μs

hsqldb 289 12m17s TO 809ms TO 5m22s 1m23s 8μs TO 4m8s 114ms

javac 21 144ms 119ms 1ms 1μs 31ms 9ms 3μs 1μs 13ms 192μs

JFlex 149 9m26s TO 102ms TO 1m22s 5.09s 9μs TO 55.5s 101ms

jython 18 69ms 102ms 755μs 1μs 19ms 45ms 4μs 1μs 7ms 1ms

luindex 40 1.51s 7.06s 6ms 1μs 595ms 619ms 3μs 1μs 192ms 19ms

lusearch 95 1m5s 33m31s 95ms 5μs 32.5s 11.5s 9μs 1μs 7.24s 64ms

pmd 31 637ms 929ms 3ms 1μs 157ms 441ms 3μs 1μs 81ms 12ms

polyglot 212 16m6s TO 69ms TO 2m8s 17.9s 10μs TO 2m26s 165ms

xalan 33 1.54s 16.4s 6ms 1μs 1.49s 663ms 4μs 1μs 340ms 14ms

RSM faster than complete preprocessing, and hence the advantages of our preprocessing technique
become apparent in this analysis.

Querying. As expected, the complete preprocessing is the fastest in answering both single-source
and pair queries in the cases where the preprocessing phase was completed in time. However, we
have seen that this comes at a cost of significantly larger preprocessing times. At the same time,
our algorithm answers queries very fast, only at the cost of lightweight preprocessing. However,
the offline and on-demand algorithms handle queries much more slowly. It is also worth noting
that these two approaches experience high variance in their running times. This is expected, as,
e.g., the memoization heuristics of the on-demand algorithm have no theoretical guarantees.

6.3 Reaching Definitions

Our third analysis is reaching definitions. Reaching definitions is one of the most classic data-flow
analyses and is often used as the textbook example for this family (see, e.g., Cooper and Torczon
[2011], Appel and Palsberg [2002], and Nielson et al. [2015]). In this analysis, the data-flow facts in
D correspond to definition sites, i.e., points in the program where a value is assigned to a variable.
Consider a definition site s that assigns a value to variable x . The data-flow fact corresponding
to s holds at a node u of the control-flow graph if the value assigned at s may remain unchanged
until the program reaches u, i.e., if there is a path from s to u in which no new value is assigned
to x . Given that reaching definitions is a may analysis, its meet operator is union. The results for
reaching definitions analysis are shown in Table 8.

Example 6.2. Consider the program in Figure 8 (left). Its control-flow graph, and its weights
for reaching definitions analysis, are given in Figure 8 (right). Here, we have D = {2̄, 4̄, 6̄}, where
ī denotes that the definition in line i reaches the current node. Note that every time there is an
assignment to the variable a, the new definition becomes active and deactivates every other defini-
tion of the same variable. Consider a reaching definitions analysis starting at node 1. Since reaching

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 4, Article 23. Publication date: November 2019.



Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with Constant Treewidth 23:39

Fig. 8. An example program (left) and its reaching definitions analysis in IFDS (right).

definitions is a may analysis, the data-flow fact 4̄ holds at node 7, because there is at least one path
starting at 1 and ending at 7, which contains 4̄. The fact 6̄ has a similar situation. However, 2̄ does
not hold at 7, because every path excludes it.

Preprocessing. This analysis uses the largest domain in all our experiments. Again, the com-
plete preprocessing is consistently slower than our algorithm and times out in 4 cases. However,
our algorithm always completes in time, and the most challenging benchmark requires around
16 minutes.

Querying. The comparison in the query phase is qualitatively similar to that of the unused vari-
ables analysis. Although our algorithm is not as fast as the complete preprocessing, its running
times are small enough to make the difference negligible in practice. In addition, they are always
smaller than each of offline and on-demand algorithms.

6.4 Live Variables

Our fourth analysis is live variables [Horwitz et al. 1995; Appel and Palsberg 2002], and its goal is
to determine which variables may be live in specific program locations. A variable is considered
live in a program location if its current value may be used later in the program execution, i.e., if
its value might be read in the future, before first being overwritten by a new value. The domain of
the analysis is similar to that of unused variables. In a method m, with local variables v1, . . . ,vn ,
the analysis domain is {v1, . . . ,vn }, wherevi denotes the fact that the variablevi is live. However,
unlike our previous examples, live variables is a backwards analysis. Concretely, whether a variable
is live at a nodev should be deduced from its liveness in successors ofv . A standard trick to address
this is by reversing the edges of the control-flow graph to perform this analysis [Bodden 2012].

The results for live variables analysis are shown in Table 9. Although the running times differ
from the previous analyses, the qualitative conclusions are the same.

Example 6.3. Figure 9 shows an example program (left) and its reversed control-flow graph
labeled by weights for live variables analysis (right). Suppose that the analysis starts at node 6,
i.e., endpoint of the program. At this point no variable is live, given that the program has just
ended. The same is true at node 5; i.e., after execution of the print command, no variable is used,
and hence no variable is live. However, at point 4, the variable b is live, because its value needs to
be printed at 5. However, b is not live at 3′, because it will be overwritten (at 4) before ever being
used again. Finally, note that b is live at 3, because its value will later be used in line 8. In contrast,
a is not live at 3, because its value is not used in д.4

4Alternatively, we could assume that the function call statement д (a, b ) uses the value of a, but this is a detrimental

assumption and leads to an intraprocedural, rather than interprocedural, data-flow analysis.
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Table 9. Comparison Table for Live Variables Analysis

Live Variables

Benchmarks Preprocessing Query

Single Source Pair

Name |D | Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 45 2.42s 29.4s 16ms 2μs 2.04s 1.86s 5μs 1μs 220ms 19ms

bloat 11 18ms 14ms 369μs 1μs 4ms 958μs 4μs 1μs 1ms 31μs

chart 146 6m38s TO 173ms TO 3m56s 54.2s 7μs TO 1m33s 96ms

eclipse 30 325ms 13.7s 3ms 1μs 465ms 405ms 3μs 1μs 67ms 24ms

fop 11 49ms 63ms 435μs 1μs 14ms 9ms 2μs 1μs 3ms 507μs

hsqldb 271 11m30s TO 792ms TO 4m53s 1m22s 12μs TO 3m48s 145ms

javac 21 160ms 168ms 1ms 1μs 39ms 7ms 3μs 1μs 14ms 282μs

JFlex 149 9m56s TO 106ms TO 1m34s 3.36s 6μs TO 54.6s 170ms

jython 17 88ms 224ms 1ms 1μs 27ms 50ms 4μs 1μs 8ms 1ms

luindex 39 2.04s 11.4s 9ms 2μs 811ms 454ms 6μs 1μs 189ms 21ms

lusearch 91 52.7s 32m5s 92ms 4μs 35.4s 9.20s 9μs 1μs 5.58s 76ms

pmd 30 732ms 1.39s 4ms 1μs 170ms 268ms 5μs 1μs 79ms 12ms

polyglot 186 43m31s TO 59ms TO 1m41s 18.1s 7μs TO 1m58s 130ms

xalan 32 2.42s 40.1s 10ms 1μs 1.39s 416ms 6μs 1μs 235ms 15ms

Fig. 9. An example program (left) and its live variables analysis in IFDS (right).

6.5 Uninitialized Variables

Finally, we report on two variations of uninitialized variables analysis, namely, simple uninitial-
ized variables and possibly uninitialized variables. For these analyses, we follow the description in
Horwitz et al. [1995]. In both cases, the task is to determine the variables that may be uninitialized
in specific program locations, i.e., the meet operator is union. The difference between these two
analyses is very subtle. In the simple uninitialized variables analysis, a variable is considered to be
initialized as soon as it appears in the left-hand side of any assignment, no matter what appears on
the right-hand side. In contrast, in possibly uninitialized variables analysis, a variable that appears
on the left-hand side of an expression whose right-hand side contains another possibly uninitial-
ized variable is not considered to be initialized. In both cases, the data-flow facts domain is similar
to previous analyses. In a method m, with local variables v1, . . . ,vn , the domain is {v1, . . . ,vn },
where vi denotes the fact that the variable vi is uninitialized.
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Table 10. Comparison Table for Simple Uninitialized Variables Analysis

Simple Uninitialized Variables

Benchmarks Preprocessing Query

Single Source Pair

Name |D | Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 45 1.45s 9.22s 10ms 2μs 1.17s 2.34s 3μs 1μs 207ms 13ms

bloat 11 14ms 7ms 321μs 1μs 3ms 1ms 4μs 1μs 1ms 34μs

chart 146 6m13s TO 178ms TO 2m1s 49.8s 11μs TO 1m37s 40ms

eclipse 30 310ms 1.49s 3ms 1μs 192ms 565ms 3μs 1μs 66ms 12ms

fop 11 38ms 18ms 488μs 1μs 7ms 14ms 4μs 1μs 2ms 462μs

hsqldb 271 11m34s TO 770ms TO 4m39s 1m15s 8μs TO 3m23s 100ms

javac 21 154ms 79ms 1ms 1μs 25ms 9ms 3μs 1μs 12ms 192μs

JFlex 149 7m41s TO 110ms TO 1m15s 4.36s 10μs TO 52.2s 98ms

jython 17 62ms 50ms 723μs 1μs 16ms 47ms 4μs 1μs 6ms 1ms

luindex 39 1.23s 3.36s 7ms 1μs 518ms 672ms 3μs 1μs 171ms 12ms

lusearch 91 41.8s 8m49s 89ms 4μs 22.0s 10.3s 9μs 1μs 5.19s 52ms

pmd 30 458ms 454ms 3ms 1μs 134ms 421ms 3μs 1μs 72ms 6ms

polyglot 186 13m52s TO 90ms TO 1m31s 15.9s 10μs TO 1m42s 128ms

xalan 32 1.23s 6.63s 10ms 1μs 575ms 667ms 4μs 1μs 215ms 10ms

Table 11. Comparison Table for Possibly Uninitialized Variables Analysis

Possibly Uninitialized Variables

Benchmarks Preprocessing Query

Single Source Pair

Name |D | Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 45 2.26s 25.9s 16ms 2μs 1.61s 2.74s 3μs 1μs 218ms 18ms

bloat 11 17ms 8ms 370μs 1μs 3ms 1ms 5μs 1μs 1ms 38μs

chart 146 6m43s TO 165ms TO 1m59s 1m2s 11μs TO 1m32s 53ms

eclipse 30 419ms 7.63s 3ms 1μs 349ms 528ms 5μs 1μs 63ms 16ms

fop 11 52ms 135ms 471μs 1μs 13ms 15ms 3μs 1μs 2ms 493μs

hsqldb 271 10m27s TO 708ms TO 4m34s 1m26s 12μs TO 3m49s 103ms

javac 21 155ms 110ms 1ms 1μs 32ms 9ms 3μs 1μs 13ms 208μs

JFlex 149 10m42s TO 76ms TO 1m15s 4.84s 9μs TO 52.7s 93ms

jython 17 63ms 98ms 718μs 1μs 21ms 61ms 3μs 1μs 7ms 1ms

luindex 39 1.42s 4.73s 9ms 1μs 564ms 833ms 3μs 1μs 175ms 16ms

lusearch 91 55.9s 44m6s 92ms 4μs 42.8s 8.87s 9μs 1μs 5.24s 60ms

pmd 30 506ms 879ms 3ms 1μs 157ms 395ms 3μs 1μs 72ms 8ms

polyglot 186 14m36s TO 77ms TO 1m33s 17.9s 10μs TO 1m54s 132ms

xalan 32 1.86s 13.2s 9ms 1μs 704ms 591ms 6μs 1μs 331ms 18ms

The results for the analysis w.r.t simple uninitialized variables and possibly uninitialized vari-
ables are shown in Table 10 and Table 11, respectively. Although the running times differ from the
previous analyses, the qualitative conclusions are the same.

Example 6.4. Figure 10 shows an example program (left) and the modeling of simple uninitial-
ized variables analysis (center) and possibly uninitialized variables analysis (right) of this program
in IFDS. Note that the only difference is in the weight of the edge (3, 4). In line 3, the variable a is
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Fig. 10. An example program (left) and its uninitialized variables analyses in IFDS, including its simple unini-

tialized variables analysis (center) and its possibly uninitialized variables analysis (right).

uninitialized when it is being assigned to b. In simple uninitialized variables analysis, b would be
considered as initialized after line 3, whereas possibly uninitialized variables analysis considers b
as uninitialized.

6.6 Experimental Conclusions

Our experiments with six IFDS-based dataflow analyses show that our new treewidth-based al-
gorithms succeed in answering both single-source and pair queries efficiently, only after a light-
weight preprocessing. In particular, in all cases that our preprocessing required more than a couple
of minutes (ranging from about 6 minutes to 43 minutes), the complete preprocessing times out
after 1 hour. In some cases, the complete preprocessing is at least 50 times slower than our pre-
processing (e.g., in the unused variables analysis, the benchmark lusearch requires only 1 minute
to be preprocessed by our algorithm, whereas the complete preprocessing requires 52 minutes).
Since preprocessing times are typically large, this difference is noticeable. In the query phase, our
algorithm requires more time than the complete preprocessing, as the latter only performs table
lookups. However, the query times of our algorithm remain very small, and often the difference is
negligible. In particular, our pair-queries are in the orders of microseconds, and thus appear to be
within the time budget of a real-time analysis scenario (e.g., for just-in-time compilation).

The advantage of the offline and on-demand algorithms is that they perform no preprocessing.
However, this comes at a significant cost in the query phase. The offline algorithm often requires
several minutes per query, and although the on-demand algorithm is faster than the offline algo-
rithm, it remains noticeably slower than our algorithm. We also note that the times we report are
averages over 500 queries. Since the on-demand algorithm benefits only at the presence of multi-
ple queries, we expect that its running time is significantly larger in the first queries. In fact, the
average time for the first query of the on-demand algorithm coincides with the average time over
all queries of the offline algorithm, as reported in our tables above, and is thus very slow.

As a final remark, we note that for benchmarks with more methods, we expect to have a larger
preprocessing time, but not larger query time. This is because after the preprocessing phase, our
algorithm treats the control-flow graph of each method independently. Hence, we expect that
the running times reported here are robust with regards to variations in the number of methods.
However, this is not the case for the offline and on-demand algorithms, and hence benchmarks
with more methods will lead to larger query times.

7 CONCLUSIONS

On-demand interprocedural static analysis has several advantages over offline analyses in various
application domains, such as when performed as a user-level operation (e.g., during debugging)
and when run by a just-in-time compiler performing speculative executions. The tasks of an on-
demand static analyzer are naturally split between (i) a preprocessing phase, where the program
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is analyzed without knowledge of the precise analysis queries, and (ii) a query phase, where the
analysis queries arrive in an online fashion (i.e., the analyzer is oblivious to future queries). Com-
putationally, this yields a wide spectrum of the resources spent in each phase. The key technical
challenge faced by the static analyzer is to achieve the best possible tradeoff in this spectrum:
spend as few resources as possible in the preprocessing phase (in terms of running time and space
usage) so, afterwards, on-demand queries are answered fast.

In this work, we have taken an algorithmic approach to the challenge of on-demand interproce-
dural static analysis. A central part of our approach is the exploitation of a key structural property
of control-flow graphs of typical programs; namely, the fact that they form the most representa-
tive family of constant-treewidth graphs. Given this property, we have developed algorithms for
preprocessing and performing same-context queries, which offer strong complexity guarantees
and combine the best of the two endpoints in the preprocessing/querying spectrum: The prepro-
cessing uses as much resources (time, space) as performing an offline analysis, and the querying
uses as many resources as if we have had the complete preprocessing at our disposal. Besides the
theoretical improvements, we have implemented our new, treewidth-based algorithms on a static
analyzer and have evaluated their performance experimentally on a standard benchmark set for
various types of static analyses. Our results show that after a quick preprocessing, analysis queries
are answered extremely fast, and hence the theoretical improvements are realized in practice.

Our formulation of the static analysis as an algebraic path problem implies that our results
are not restricted to any particular static analysis, but are applicable to all analyses that admit
an algebraic formulation (namely, distributive analyses). Our work leaves open one key challenge:
namely, move from same-context queries to arbitrary queries where the endpoints belong to differ-
ent functions of the program. For this problem, the techniques developed here might prove useful,
e.g., by breaking such a distant query to multiple same-context queries. However, this treatment
has no benefit with regards to the worst-case complexity, and the problem merits closer attention.
It is also possible that treewidth alone is not sufficient to lead to algorithmic improvements, and
further natural restrictions must be considered; for example, regarding the structure of the call
graph.
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