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DeepMag: Source-Specific Change Magnification Using
Gradient Ascent

WEIXUAN CHEN, Massachusetts Institute of Technology

DANIEL MCDUFF, Microsoft Research

Fig. 1. We present a novel end-to-end deep neural framework for video magnification (DeepMag). Our method allows measurement, magnification and

synthesis of subtle color and motion changes from a specific source even in the presence of large motions. We demonstrate this via pulse and respiration

manipulation in 2D videos. Our approach produces magnified videos with substantially fewer artifacts when compared to previous methods, such as

Eulerian Video Magnification [Wu et al. 2012] shown here. Our method magnifies the red color changes more clearly; otherwise, the video frames show

few artifacts.

Many important physical phenomena involve subtle signals that are diffi-

cult to observe with the unaided eye, yet visualizing them can be very in-

formative. Current motion magnification techniques can reveal these small

temporal variations in video, but require precise prior knowledge about the

target signal, and cannot deal with interference motions at a similar fre-

quency. We present DeepMag, an end-to-end deep neural video-processing

framework based on gradient ascent that enables automated magnifica-

tion of subtle color and motion signals from a specific source, even in the

presence of large motions of various velocities. The advantages of Deep-

Mag are highlighted via the task of video-based physiological visualiza-

tion. Through systematic quantitative and qualitative evaluation of the ap-

proach on videos with different levels of head motion, we compare the mag-

nification of pulse and respiration to existing state-of-the-art methods. Our

method produces magnified videos with substantially fewer artifacts and

blurring whilst magnifying the physiological changes by a similar degree.
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1 INTRODUCTION

Revealing subtle signals in our everyday world is important for

helping us understand the processes that cause them. Magnifying

small temporal variations in video has applications in both basic

science (e.g., visualizing physical processes in the world), engi-

neering (e.g., identifying the motion of large structures), and edu-

cation (e.g., teaching scientific principals). To provide an illustra-

tion, physiological phenomena are often invisible to the unaided

eye, yet understanding these processes can help us detect and treat

negative health conditions. Pulse and respiration magnification,

specifically, are good exemplar tasks for video magnification as

physiological phenomena cause both subtle color and motion vari-

ations. Furthermore, larger rigid and non-rigid motions of the body

often mask the subtle variations, which makes the magnification

of physiological signals non-trivial.
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Several methods have been proposed to reveal subtle temporal

variations in video. Lagrangian methods for video magnification

[Liu et al. 2005] rely on accurate tracking of the motion of particles

(e.g., via optical flow) over time. These approaches are computa-

tionally expensive and will not work effectively for color changes.

Eulerian video magnification methods do not rely on motion esti-

mation, but rather magnify the variation of pixel values over time

[Wu et al. 2012]. This simple and clever approach allows for subtle

signals to be magnified that might otherwise be missed by optical

flow. Subsequent iterations of such approaches have improved the

method with phase-based representations [Pintea and van Gemert

2016; Wadhwa et al. 2013], matting [Elgharib et al. 2015], second-

order manipulation [Zhang et al. 2017], and learning-based rep-

resentations [Oh et al. 2018]. However, all these approaches use

frequency properties to separate the target signal from noise, so

they require precise prior knowledge about the signal frequency.

Furthermore, if the signal of interest is at a similar frequency to

another signal (for example, if head motions are at a similar fre-

quency as the pulse signal), an Eulerian approach will magnify

both and cause numerous artifacts (see Figure 1).

To address these problems, we present an approach for magni-

fying pulse and motion variations in videos that feature other pe-

riodic or random motions. Our method leverages a convolutional

neural network (CNN) as a video motion discriminator to sepa-

rate a specific source signal even if it overlaps with other motion

sources in the frequency domain. Then, the separated signal can

be magnified in video by performing gradient ascent [Erhan et al.

2009] in the input space of the CNN, with the other motion sources

untouched. To adapt the gradient ascent method to the video mag-

nification task, several methodological innovations are introduced

including adding L1 normalization and sign correction. The whole

algorithm proves to work effectively, even in the presence of in-

terference motions with large magnitudes and velocities. Figure 1

shows a comparison between the proposed method and previous

approaches.

Magnifying physiological changes on the human body without

impacting other aspects of the visual appearance is an especially

interesting use case with numerous applications in and of itself. In

medicine and affective computing the photoplethysmogram (PPG)

and respiration signals are used as unobtrusive measures of car-

diopulmonary performance. Visualizing these signals could help

in understanding vascular disease, heart conditions (e.g., arterial

fibrillation) [Chan et al. 2016], and stress responses. For exam-

ple, jugular venous pressure (JVP) is analyzed by studying subtle

motions of the neck. This is challenging for clinicians, and video-

magnification could offer a practical aid. Another application is in

the design of avatars [Suwajanakorn et al. 2017]. Synthetic em-

bodied agents may fall into the “uncanny valley” [Mori 1970] or

be easily detected as “spoofs” if they do not exhibit accurate phys-

iological responses, including respiration, pulse rates, and blood

flow that can be recovered using video analysis [Poh et al. 2010].

Our method presents the opportunity to not only magnify signals

but also synthesize them at different frequencies within a video.

The main contributions of this article are to: (1) present our

novel end-to-end framework for video magnification based

on a deep convolutional neural network and gradient ascent;

(2) demonstrate recovery of the pulse and respiration waves

and magnification of these signals in the presence of large rigid

head motions; (3) systematically quantitatively and qualitatively

compare our approach with state-of-the-art motion magnification

approaches under different rigid motion conditions.

2 RELATED WORK

2.1 Video Motion Magnification

Lagrangian video magnification approaches involve estimation of

motion trajectories that are then amplified [Liu et al. 2005; Wang

et al. 2006]. However, these approaches require a number of com-

plex steps including performing a robust registration, frame inten-

sity normalization, tracking and clustering of feature point trajec-

tories, segmentation, and magnification. Another approach, using

temporal sampling kernels can aid visualization of time-varying

effects within videos [Fuchs et al. 2010]. However, this method

involves video downsampling and relies on high framerate input

videos.

The neat Eulerian video magnification (EVM) approach pro-

posed by Wu et al. [2012] combines spatial decomposition with

temporal filtering to reveal time varying signals without esti-

mating motion trajectories. However, it uses linear magnification

that only allows for relatively small magnifications at high spa-

tial frequencies and cannot handle spatially variant magnifica-

tion. To counter the limitation, Wadhwa et al. [2013] proposed

a non-linear phase-based approach, magnifying phase variations

of a complex steerable pyramid over time. Replacing the com-

plex steerable pyramid [Wadhwa et al. 2013] with a Riesz pyramid

[Wadhwa et al. 2014] produces faster results. In general, the linear

EVM technique is better at magnifying small color changes, while

the phase-based pipeline is better at magnifying subtle motions

[Wu et al. 2012]. Both the EVM and the phase-EVM techniques rely

on hand-crafted motion representations. To optimize the repre-

sentation construction process, a learning-based method [Oh et al.

2018] was proposed, which uses convolutional neural networks as

both frame encoders and decoders. With the learned motion rep-

resentation, fewer ringing artifacts and better noise characteristics

have been achieved. In preliminary work, Pintea and van Gemert

propose the use of phase-based motion representations in a learn-

ing framework that can be applied to the transference (or magni-

fication) of motion Pintea and van Gemert [2016].

One common problem with all the methods above is that they

are limited to stationary objects or situations in which the motion

of interest is significantly faster than other motions, whereas many

realistic applications would involve small motions of interest in

the presence of large ones that might be at similar frequencies.

After motion magnification, these large motions would result in

large artifacts such as halos or ripples, and overwhelm any small

temporal variation. A couple of improvements have been proposed

including a clever layer-based approach called Dynamic Video

Magnification (DVMAG) [Elgharib et al. 2015]. By using matting,

it can amplify only a specific region of interest (ROI) while main-

taining the quality of nearby regions of the image. However, the

approach relies on 2D warping (either affine or translation-only)

to discount large motions, so it is only good at diminishing the

impact of motions parallel to the camera plane and cannot deal

with more complex 3D motions such as the human head rotation.
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The other method addressing large motion interferences is video

acceleration magnification (VAM) [Zhang et al. 2017]. It assumes

large motions to be linear on the temporal scale so that magnifying

the motion acceleration via a second-order derivative filter will

only affect small non-linear motions. However, the method will

fail if the large motions have any non-linear components, and ideal

linear motions are rare in real life, especially on living organisms.

Another problem with all the previous motion magnification

methods is that they use frequency properties to separate target

signals from noise, so they typically require the frequency of in-

terest to be known a priori for the best results and, as such, have

at least three parameters (the frequency bounds and a magnifica-

tion factor) that need to be tuned. If there are motion signals from

different sources that are at similar frequencies (e.g., someone is

breathing and turning their head), it is previously not possible to

isolate the different signals.

While in this work, we focus on the use of change magnifica-

tion in RGB videos, the use of depth information can be used to

improve motion magnification results. This is a clear application

of an additional modality that naturally helps with segmentation

of motions [Kooij and van Gemert 2016]. It is reasonable to think

that depth information would similarly help improve our results.

2.2 Gradient Ascent for Feature Visualization

Opposite to gradient descent, gradient ascent is a first-order iter-

ative optimization algorithm that takes steps proportional to the

positive of the gradient (or approximate gradient) of a function.

Since neural networks are generally differentiable with respect to

their inputs, it is possible to perform gradient ascent in the input

space by freezing the network weights and iteratively tweaking the

inputs toward the maximization of an internal neuron firing or the

final output behavior. Early works found that this technique can

be used to visualize network features (showing what a network is

looking for by generating examples) [Erhan et al. 2009; Simonyan

et al. 2013] and to produce saliency maps (showing what part of

an example is responsible for the network activating a particular

way) [Simonyan et al. 2013].

A recent famous application of gradient ascent in feature visu-

alization is Google DeepDream [Mordvintsev et al. 2015]. It maxi-

mizes the L2 norm of activations of a particular layer in a CNN to

enhance patterns in images and create a dream-like hallucinogenic

appearance. It should be noted that applying gradient ascent inde-

pendently to each pixel of the inputs commonly produces images

with nonsensical high-frequency noise, which can be improved by

including a regularizer that prefers inputs that have natural image

statistics. Also, following the same idea of DeepDream, not only

a network layer but also a single neuron, a channel, or an output

class can be set as the objective of gradient ascent. For a compre-

hensive discussion of various regularizers and different optimiza-

tion objectives used in feature visualization tasks, see Olah et al.

[2017].

None of the previous works have applied gradient ascent to mo-

tion magnification or any task related to motions in video. In con-

trast to DeepDream and similar visualization tools, our method

maximizes the output activation of a CNN in motion representa-

tions computed from frames instead of in raw images.

2.3 Video-Based Physiological Measurement

Over the past decade video-based physiological measurement us-

ing Red-Green-Blue (RGB) cameras has developed significantly

[McDuff et al. 2015]. For instance, physiological parameters such

as heart rate (HR) and breathing rate (BR) have been accurately

extracted from videos of the human body in which subtle changes

in light reflected from the skin caused by peripheral blood flow

are measured [Chen and McDuff 2018; de Haan and Jeanne 2013;

Poh et al. 2010, 2011; Tarassenko et al. 2014; Verkruysse et al. 2008;

Wang et al. 2016]. Heart rate has also been measured via subtle

body motions associated with blood ejection into the vessels [Bal-

akrishnan et al. 2013], and breathing rate has been measured via

more prominent chest volume changes [Janssen et al. 2016; Tan

et al. 2010].

Early work on imaging plethysmography identified that spa-

tial averaging of skin pixel values from an imager could be used

to recover the blood volume pulse [Takano and Ohta 2007].

The strongest pulse signal was observed in the green channel

[Verkruysse et al. 2008], but a combination of color channels pro-

vides improved results [McDuff et al. 2014; Poh et al. 2010]. Com-

bining these insights with face tracking and signal decomposition

enables a fully automated recovery of the pulse wave and heart

rate [Poh et al. 2010].

In the presence of dynamic lighting and motion, advancements

were needed to successfully recover the pulse signal. Leveraging

models grounded in the optical properties of the skin has improved

performance. Using a linear weighting of the chrominance signals

(CHROM) [de Haan and Jeanne 2013] makes assumptions about

the skin color profile to white-balance the video frames [McDuff

2018]. Another method, named the Pulse Blood Vector (PBV) ap-

proach, [de Haan and van Leest 2014] makes use of variations in

light absorption by blood across the frequency spectrum to weight

the color channels. As peripheral blood flow is not uniform across

the body, adapting the ROI can also improve the performance of

iPPG measurements [Tulyakov et al. 2016]. Both these methods as-

sume the weighting of color channel information is uniform across

the skin region.

Most of the methods described above use unsupervised learn-

ing and assumptions based on the physical properties of skin and

blood. Formulating the problem in the form of a supervised learn-

ing task is non-trivial and performance in early explorations was

modest [Monkaresi et al. 2014; Osman et al. 2015]. Recent advances

in deep neural video analysis offer opportunities for recovering

accurate physiological measurements. Recently, Chen and McDuff

[2018] presented a supervised method using a convolutional at-

tention network that provided state-of-the-art measurement per-

formance and generalized across people. Our video magnification

algorithm is based on a novel framework that allows recovery of

pulse and respiratory waves using such a convolutional architec-

ture.

3 METHODS

3.1 Video Magnification Using Gradient Ascent

Figure 2 shows the workflow of the proposed video magni-

fication algorithm using gradient ascent. Similar to previous

video magnification algorithms, it reads a series of video frames

ACM Transactions on Graphics, Vol. 40, No. 1, Article 2. Publication date: September 2020.
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Fig. 2. The architecture of DeepMag. The CNN model predicts the motion signal of interest based on a motion representation computed from consecutive

video frames. Magnification of the motion signal in video can be achieved by amplifying the L2 norm of its first-order derivative and then propagating the

changes back to the motion representation using gradient ascent.

C (t ), t = 1, 2, . . . ,T , magnifies a specific subtle motion in them,

and outputs frames of the same dimension ˜C (t ), t = 1, 2, . . . ,T .

The first step of our algorithm is computing the input mo-

tion representation X1 (t ) from the original video frames C (t ), t =
1, 2, . . . ,T . X1 (t ) represents any change happening between two

consecutive frames C (t ) and C (t + 1). Common motion represen-

tations include frame difference and optical flow. Different motion

representations can emphasize different aspects of motions. For

example, the physio-logy-based motion representation called nor-

malized frame difference [Chen and McDuff 2018] was proposed

to capture skin absorption changes robustly under varying rigid

motions. On the other hand, optical flow based on the brightness

constancy constraint is good at representing object displacements,

but largely ignores the light absorption changes of objects.

In realistic videos the motion representations are comprised

of multiple motions from different sources. For example, uncon-

strained facial video recordings commonly contain not only respi-

ration movements and pulse-induced skin color changes but also

head rotations and facial expressions. As we are only interested in

magnifying one of these motions at a time, a video magnification

algorithm should have the ability to separate the target motion

from the others in the motion representation. Previous methods

have typically used frequency-domain characteristics of the tar-

get motion in separation, so they rely on precise prior knowledge

about the motion frequency (e.g., the exact heart rate). Further-

more, if any other motion overlaps with the target motion in fre-

quency, it will still be magnified and cause artifacts. To improve the

specificity of magnification and reduce the dependence on prior

knowledge, we propose to use a deep convolutional neural net-

work (CNN) to model the relationship between the motion rep-

resentation and the motion of interest. As shown in Figure 2, the

CNN has the input motion representation X1 (t ) as its input, and

the first-order derivativey (t ) of the target motion signal p (t ) as its

output. For many motion types, there are available datasets with

paired videos and ground truth motion signals (e.g., facial videos

with pulse and respiration signals measured from medical devices).

Therefore, the weights θ of the CNN can be determined by train-

ing it on one of these datasets. It has been shown in Chen and

McDuff [2018] that CNNs trained in this way have good gen-

eralization ability over different human subjects, different back-

grounds, and different lighting conditions. We use the motion rep-

resentation and CNN architecture presented in Chen and McDuff

[2018] as our starting point. However, it is non-trivial to extend

this for the purposes of magnification—as described below.

As the CNN has established the relationship between the in-

put motion representation X1 (t ) and the target motion signal p (t ),
magnification of p (t ) in X1 (t ) can be achieved by amplifying the

L2 norm of its first-order derivative y (t ) and then propagating the

changes back toX1 (t ) using gradient ascent. A hyperparameter, γ ,

reflects the step size applied to the gradient ascent. The process is

performed iteratively and N reflects the total number iterations;

this can then be expressed as

Xn+1 = Xn + γ∇‖y (Xn |θ )‖2, n = 1, 2, . . . ,N − 1 (1)

in which N is the total number of iterations and γ is the step size.

θ is the weights of the CNN, which are frozen during gradient as-

cent. ∇‖y (Xn |θ )‖2 is the gradient of ‖y (t )‖2 with respect to Xn (t ),
which is the direction to which Xn (t ) can be modified to specif-

ically magnify the target motion rather than the other motions.

Note that bothXn andy correspond to time point t in Equation (1),

but t is omitted for conciseness.

The vanilla gradient ascent in Equation (1) is appropriate for

magnifying a single motion representation X1 (t ) at time t . How-

ever, for video magnification, a series of motion representations

X1 (t ), t = 1, 2, . . . ,T need to be processed and magnified to the

same level. Since the magnitude of the gradient is sensitive to the

surface shape of the objective function (i.e., a point on a steep

surface will have high magnitude whereas a point on the fairly

flat surface will have low magnitude), it is not guaranteed that the

accumulated gradient will be proportional to the original motion
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amplitude. Therefore, we apply L1 normalization to the gradient

Xn+1 = Xn + γ
∇‖y (Xn |θ )‖2
‖∇‖y (Xn |θ )‖2‖1

(2)

so that only the gradient direction is kept and the gradient

magnitude is controlled by the step size γ .

Another problem with Equation (1) is that motions in opposite

directions contribute equivalently to the L2 norm of y (t ). As a re-

sult, the target motion might be amplified in terms of the absolute

amplitude but 180-degrees out of phase. To address the problem,

we correct the signs of the gradient to always match the signs of

the input motion representation

Xn+1 = Xn + γ
∇‖y (Xn |θ )‖2 � sдn(Xn � ∇‖y (Xn |θ )‖2)

‖∇‖y (Xn |θ )‖2‖1
, (3)

in which sдn(·) is the sign function and � is element-wise multi-

plication.

Summing up the changes of Xn (t ) in all the iterations, we get

the final expression of the magnified motion representation:

XN = X1 +

N−1∑
n=1

γ
∇‖y (Xn |θ )‖2 � sдn(Xn � ∇‖y (Xn |θ )‖2)

‖∇‖y (Xn |θ )‖2‖1
(4)

There are only two hyper-parametersγ and N , which can be tuned

to change the magnification factor. Finally, the magnified motion

representation can be combined with previous frames to iteratively

generate the output video. The complete algorithm is summarized

in Algorithm 1.

ALGORITHM 1: DeepMag video magnification

Require: C (t ), t = 1, 2, . . . ,T is a series of video frames, M is

a motion representation estimator, θ is the pre-trained CNN

weights for predicting a target motion signal y, γ is the step

size, and N is the number of iterations

1: for t = 1 to T − 1 do

2: Compute motion representation: X1 (t ) ←M (C (t ),
C (t + 1))

3: for n = 1 to N − 1 do

4: Compute gradient: Gn (t ) ← ∇‖y (Xn (t ) |θ , t )‖2
5: L1 normalization: Gn (t ) ← Gn (t )/‖Gn (t )‖1
6: Sign correction: Gn (t ) ← Gn (t ) � sдn(Gn (t ) � Xn (t ))
7: Gradient ascent: Xn+1 (t ) ← Xn (t ) + γGn (t )
8: end for

9: end for

10: ˜C (1) = C (1)
11: for t = 1 to T − 1 do

12: Reconstruct magnified frame ˜C (t + 1) ←M−1 (˜C (t ),
XN (t ))

13: end for

14: return ˜C (t ), t = 1, 2, . . . ,T

3.2 Example I: Pulse Magnification

One example of applying our proposed algorithm is in the mag-

nification of subtle skin color changes associated with the cardiac

cycle. As blood flows through the skin, it changes the light reflected

from it. A good motion representation for these color changes is

normalized frame difference [Chen and McDuff 2018], which is

summarized below.

Fig. 3. We used two exemplar tasks to illustrate the benefits of Deep-

Mag. (a) Color change (Blood flow) magnification. (b) Motion (respira-

tion) magnification. These two tasks require different input motion rep-

resentations (frame differences) and CNN architectures due to the nature

of the motion signals. The color change magnification input is a normal-

ized frame difference computed from the downsampled RGB frames. The

motion magnification input is the phase variations in a complex steerable

pyramid; we computed a pyramid with octave bandwidth and four orien-

tations (θ = 0◦, 45◦, 90◦, 135◦).

For modeling lighting, imagers, and physiology, previous works

used the Lambert-Beer law (LBL) [Lam and Kuno 2015; Xu et al.

2014] or Shafer’s dichromatic reflection model (DRM) [Wang et al.

2016]. We build our motion representation on top of the DRM as it

provides a better framework for separating specular reflection and

diffuse reflection. Based on the approach introduced by Chen and

McDuff [2018], if we assume that the illumination has an invariant

spectral composition but varying intensity, the RGB values of the

k-th skin pixel in an image sequence can then be represented by a

time-varying function:

Ck (t ) = I (t ) · (vs (t ) +vd (t )) +vn (t ), (5)

where Ck (t ) is a matrix of the color values; I (t ) is the luminance

intensity level; I (t ) is modulated by two components: specular re-

flection vs (t ), mirror-like light reflection from the skin surface,

and diffuse reflectionvd (t ), the absorption and scattering of light

in skin-tissue; vn (t ) denotes the noise in the camera sensor (i.e.,

quantization noise). We assume I (t ),vs (t ), andvd (t ) can all be de-

composed into a time-invariant and a time-dependent part through

a linear transformation [Wang et al. 2016]. The unit color vector of

the skin-tissue ud multiplied by the stationary reflection strength

d0 and the relative pulsatile strengths caused by hemoglobin and

melanin absorptionup multiplied by the blood volume pulse (BVP)

signal p (t ).
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vd (t ) = ud · d0 +up · p (t ) (6)

vs (t ) is a product of the unit color vector of the light source

spectrum us multiplied by the sum of the stationary and varying

parts of specular reflections, s0 and s (t ), respectively.

vs (t ) = us · (s0 + s (t )) (7)

I (t ) is a function of the stationary part of the luminance inten-

sity I0 and the intensity variation observed by the camera I0 · i (t ).

I (t ) = I0 · (1 + i (t )) (8)

The stationary components from the specular and diffuse reflec-

tions can be combined into a representation of the stationary skin

reflection:

Ck (t ) = I0 · (1 + i (t )) · (uc · c0 +us · s (t ) +up · p (t )) +vn (t ),
(9)

where uc denotes the unit color vector of the skin reflection and

c0 denotes the reflection strength.

The time-varying components are much smaller than the sta-

tionary components in Equation (9); therefore, we can neglect any

product between the time varying terms and approximate ck (t ) as:

Ck (t ) ≈ uc · I0 · c0 · (1 + i (t ))+
us · I0 · s (t ) +up · I0 · p (t ) +vn (t ) (10)

We downsample every frame toL pixels byL pixels using bicubic

interpolation. Based on the finds of Wang et al. [2015], we select

L = 36, which was emperically found to work well for face videos.

The resulting values still obey the DRM model only without the

camera quantization error:

Cl (t ) ≈ uc · I0 · c0 +uc · I0 · c0 · i (t )+
us · I0 · s (t ) +up · I0 · p (t ), (11)

where l = 1, . . . ,L2 is the new pixel index in every frame.

Then, we need to reduce the dependency of Cl (t ) on the sta-

tionary skin reflection color uc · I0 · c0, resulting from the light

source and subject’s skin tone. In Equation (11),uc · I0 · c0 appears

twice. It is difficult to eliminate the second term as it interacts with

the unknown i (t ). However, the first time-invariant term, which is

usually dominant, can be removed by taking the first-order deriv-

ative of both sides of Equation (11) with respect to time:

C ′
l
(t ) ≈ uc · I0 · c0 · i ′(t ) +us · I0 · s ′(t ) +up · I0 · p′(t ) (12)

As identified by Chen and McDuff [2018], a problem with the

frame difference representation is the spatially heterogeneous na-

ture of the intensity level. We follow the same normalization strat-

egy by dividingC ′
l
(t ) by the temporal mean ofCl (t ) to remove I0:

C ′
l
(t )

Cl (t )
≈ [1 1 1]T · i ′(t ) + diaд−1 (uc )us ·

s ′(t )
c0
+

diaд−1 (uc )up ·
p′(t )
c0

(13)

We compute Cl (t ) over two consecutive frames to minimize oc-

clusion problems and prevent the propagation of errors. The nor-

malized frame difference we used as the motion representation is

expressed as:

X 1 (l , t ) =
C ′

l
(t )

Cl (t )
∼ Cl (t + 1) −Cl (t )

Cl (t + 1) +Cl (t )
(14)

The CNN we used for extracting pulse signals from the mo-

tion representation is shown in Figure 3(a). The pooling layers are

2x2 average pooling, and the convolution layers have a stride of

one. All the layers use ReLU as the activation function. Note that

bounded activation function such as tanh and sigmoid are not suit-

able for this task, as they will limit the extent to which the motion

representation can be magnified in the gradient ascent.

After the gradient ascent, the input motion representation

X 1 (l , t ) was magnified as XN (l , t ), from which we could recon-

struct the magnified video. The first step of reconstruction is to

denoise the output motion representation by filtering the accumu-

lated gradient:

X̃N (l , t ) = X 1 (l , t ) + F (XN (l , t ) −X 1 (l , t )), (15)

in which F is a zero-phase band-pass filter. Note that unlike pre-

vious motion magnification methods the function of the filter here

is not to select the target motion but to remove low- and high-

frequency noise so the filter bands do not need to precisely match

the motion frequency in the video and can be chosen conserva-

tively. Specifically, a sixth-order Butterworth filter with cut-off fre-

quencies of 0.7 and 2.5 Hz was used to generally cover the normal

heart rate range (42 to 150 beats per minute). Then, we applied the

inverse operation of Equation (14) to reconstruct the downsampled

version of the frames �Cl (t ):

C̃l (t + 1) =
1 + X̃N (l , t )

1 − X̃N (l , t )
· C̃l (t ), C̃l (1) = Cl (1) (16)

Finally,Cl (t ) was upsampled back to the original video resolution:

C̃k (t ) = Ck (t ) −U (Cl (t )) +U (C̃l (t )), (17)

in whichU is an image upsampling operator.

3.3 Example II: Motion Magnification

Our second example is amplifying subtle motions on the human

body induced by respiration. We used phase variations in a com-

plex steerable pyramid [Portilla and Simoncelli 2000; Simoncelli

et al. 1992] to represent the local motions in a video. The basis func-

tions of the pyramid are scaled and oriented Gabor-like wavelets

with both cosine- and sine-phase components. Each pair of filters

can be used to separate the amplitude and phase of local wavelets.

Specifically, each scale r and orientation θ is a complex image that

can be expressed as:

A(r ,θ , t )eiϕ (r,θ,t ) , (18)

where A and ϕ are amplitude and phase, respectively. We use the

first-order derivative of the local phasesϕ as our input motion rep-

resentation:

X1 (r ,θ , t ) = ϕ (r ,θ , t + 1) − ϕ (r ,θ , t ) (19)

Based on prior work [Gautama and Van Hulle 2002], we find that

these phase variations are approximately proportional to displace-

ments of image structures along the corresponding orientation and

scale. To lower computational cost, we computed a pyramid with
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octave bandwidth and four orientations (θ = 0◦, 45◦, 90◦, 135◦).
Using half-octave or quarter-octave bandwidth and more orienta-

tions would enable our algorithm to amplify more motion details,

but would require significantly greater computational resources. In

theory,X1 (r ,θ , t ) contains r = 1, 2, . . . ,R scales of representations

in different spatial resolutions, and extracting the target respira-

tion motion from them would need R different CNNs to fit differ-

ent input dimensions. However, we found that X1 (r ,θ , t ) and the

amplified XN (r ,θ , t ) on different scales were approximately pro-

portional to 0.5r , so it is possible to only process one scale r = r0

and interpolate the other scales with it.

The CNN we used for extracting respiration signals from the

motion representation is shown in Figure 3(b). The neural network

is deeper than the one used for pulse magnification because the in-

put motion representation for respiration has a higher dimension.

The pooling layers and convolution layers are of the same type as

in Figure 3(a). As we met the dying ReLU problem (ReLU neurons

were stuck in the negative side and always output 0) in our experi-

ments, the activation functions of all the layers were replaced with

scaled exponential linear units (SELU) [Klambauer et al. 2017].

After gradient ascent, the input motion representation X1 (r0,θ ,
t ) was magnified as XN (r0,θ , t ), from which we could reconstruct

the magnified video. Unlike in Equation (1), the phase variations

were reconstructed by reversing Equation (19) before denoising:

˜ϕ (r0,θ , t + 1) = XN (r0,θ , t ) + ˜ϕ (r0,θ , t ),

˜ϕ (r0,θ , 1) = ϕ (r0,θ , 1) (20)

Then, the reconstructed phase was denoised by band-pass filtering

and 2π phase clipping:

˜ϕ (r0,θ , t ) = ϕ (r0,θ , t )

+ F (˜ϕ (r0,θ , t )) ·
sдn(2π − |ϕ (r0,θ , t ) |) + 1

2
(21)

The filter F is a sixth-order zero-phase Butterworth filter with

cut-off frequencies of 0.16 and 0.5 Hz for generally covering the

normal breathing rate range (10 to 30 beats per minute). The mag-

nified phase of the other scales can be interpolated by exponen-

tially scaling the filtered term:

˜ϕ (r0,θ , t ) = ϕ (r0,θ , t )

+ F (˜ϕ (r0,θ , t )) ·
sдn(2π − |ϕ (r0,θ , t ) |) + 1

2
·
(

1

2

)r−r0

(22)

Finally, the magnified video frame ˜C (t ) can be reconstructed from

all the scales of the complex steerable pyramid with their phase

updated as Equation (22).

4 DATA

We used the dataset collected by Estepp et al. [2014] for testing

our approach. Videos were recorded with a Basler Scout scA640-

120gc GigE-standard, color camera, capturing 8-bit, 658x492 pixel

images, 120 fps. The camera was equipped with 16 mm fixed focal

length lens. Twenty-five participants (17 males) were recruited to

participate for the study. Nine individuals were wearing glasses,

eight had facial hair, and four were wearing makeup on their face

and/or neck. The participants exhibited the following estimated

Fitzpatrick Sun-Reactivity Skin Types [Fitzpatrick 1988]: I-1,

Fig. 4. Exemplary frames from the four tasks of our video dataset. Note

the different backgrounds and head rotation speeds.

II-13, III-10, IV-2, V-0. Gold-standard physiological signals were

measured using a BioSemi ActiveTwo research-grade biopotential

acquisition unit.

We used videos of participants during a set of four, five-minute

tasks for our analysis. Two of the tasks (A and D) were performed

in front of a patterned background and two (B and C) were per-

formed in front of a black background. The four tasks were de-

signed to capture different levels of head rotation about the verti-

cal axis (yaw). Examples of frames from the tasks can be seen in

Figure 4.

Task A: Participants stayed still, allowing for small natural mo-

tions.

Task B: Participants performed a 120-degree sweep centered

about the camera at a speed of 10 degrees/sec.

Task C: Similar to Task B but with a speed of 30 degrees/sec.

Task D: Participants were asked to reorient their head posi-

tion once per second to a randomly chosen target positioned in

20-degree increments over a 120-degree arc, thus, simulating ran-

dom head motion.

5 EVALUATION

We compare the color change magnification results to Eulerian

video magnification [Wu et al. 2012] and video acceleration mag-

nification [Zhang et al. 2017], and compare the motion magnifica-

tion results to phase-based Eulerian video magnification [Wadhwa

et al. 2013], video acceleration magnification, and learning-based

video motion magnification [Oh et al. 2018] (EVM and phase-based

EVM perform poorly for motion magnification and color change

magnification, respectively). In each case, we perform qualitative

evaluations similar to that presented in prior work. In addition, we

perform a quantitative evaluation by assessing the image quality

of the resulting videos. Prior work has generally not considered

quantitative evaluations.

For obtaining our own results, the CNN model was either

trained and tested on different time periods of the same videos

(participant-dependent) or trained and tested on videos of differ-

ent human participants (participant-independent), both using a

20% holdout rate for testing. Note, the auxiliary pulse and respi-

ration signals are used at training time for learning but are not

used at test time. The qualitative and quantitative results we show

in the following sections are always from video excerpts in the

test set. To achieve a fair comparison, all the compared methods

used the same filter bands: [0.7 Hz, 2.5 Hz] for pulse color change
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Fig. 5. Scan line comparisons of color change magnification methods for a

Task D video: (a) original video, (b) Eulerian video magnification [Wu et al.

2012], (c) video acceleration magnification [Zhang et al. 2017], and (d) our

method. The yellow line shows the source of the scan line in the frames.

The section of video shown was 15 seconds in duration. Our method pro-

duces clearer magnification of the color change due to blood flow and

significantly fewer artifacts.

magnification, and [0.16 Hz, 0.5 Hz] for respiration motion mag-

nification. Since VAM uses difference of Gaussian (DoG) filters

defined by a single pass-band frequency, we adopted the center fre-

quencies of the physiology frequency bands (
√

0.7 × 2.5 = 1.3 Hz

for pulse, and
√

0.16 × 0.5 = 0.28 Hz for respiration) as its filtering

parameters. In the color change magnification baselines, video

frames were decomposed into multiple scales using a Gaussian

pyramid with the intensity changes in the fourth level amplified

(following the source code released by Wu et al. [2012]). All the

motion magnification baselines used complex steerable pyramids

with octave bandwidth and four orientations. The magnification

factors of all the methods were tuned to be visually the same on

Task A without head motion interferences.

5.1 Color Change Magnification

We apply our method to the task of magnifying the photoplethys-

mogram. In this task, the target variable for training the CNN was

Fig. 6. Scan line comparisons of motion magnification methods for a Task

B video: (a) original video, (b) phase-based Eulerian video magnification

[Wadhwa et al. 2013], (c) video acceleration magnification [Zhang et al.

2017], (d) learning-based motion magnification [Oh et al. 2018], and (e) our

method. The yellow line shows the source of the scan line in the frames.

The section of video shown was 15 seconds in duration. Our method pro-

duces comparable magnification of the respiration motion and signifi-

cantly fewer artifacts and blurring.

the gold standard contact PPG signal. The input motion represen-

tation was 36 pixels × 36 pixels × 3 color channels. In terms of

the hyper-parameters of gradient ascent, the number of iterations

N was chosen to be 20, and the step size γ was chosen to be 6 ×
10−5. We found these choices provided a moderate magnification

level, equivalent to the magnification using EVM. Different choices

of these hyper-parameters will be discussed in the following

sections.
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Fig. 7. Original and magnified traces of a pixel (the yellow dot) in three

color channels of a Task B video (a) red channel, (b) green channel, and (c)

blue channel. Magnified traces using different step sizes γ are shown in dif-

ferent colors. The notches (large variations in image intensity) in the traces

correspond to when the participant rotated her head to the far left/right,

and the pixel was no longer on the skin. Our method amplified the sub-

tle color changes of the pixel only when it was on the skin, and kept the

relative magnitudes of the pulse in three color channels with the green

channel one being the strongest.

Figure 5 shows a qualitative comparison between our method

and the baseline methods. The human participant in the video re-

oriented his head once per second to a random direction. In the

horizontal scan line of the input video, only the head rotation is

visible and the subtle color changes of the skin corresponding to

pulse cannot be seen with the unaided eye. In the results of the

baseline methods, strong motion artifacts are introduced. This is

because the complex head motion is not distinguishable from the

pulse signal in the frequency domain, so it is amplified along with

the pulse. Since the pulse-induced color changes are several orders

of magnitude weaker than the head motion, they are completely

buried by the motion artifacts in the amplified video. The VAM

scan line (Figure 5(c)) shows slightly fewer artifacts than the EVM

scan line (Figure 5(b)) as the head rotation was occasionally semi-

linear. On the other hand, our algorithm uses a deep neural net-

work to separate the pulse signal from the head motion, and uses

gradient ascent to specifically amplify it. Consequently, its scan

line (Figure 5(d)) preserves the morphology of the head rotation

while revealing the periodic color changes clearly on the skin.

To show the magnification effects on different colors and differ-

ent object surfaces, we drew the original and magnified traces of

a pixel in three color channels of a video in Figure 7. The human

Fig. 8. Original and magnified traces of a pixel (the red dot) in the

phase representation ϕ (r0, θ, t ) of a Task C video along four orientations

(a) θ = 0◦, (b) θ = 45◦, (c) θ = 90◦, and (d) θ = 135◦. Magnified traces us-

ing different step sizes γ are shown in different colors. The pixel exhibits

a respiration movement mainly in the vertical direction, so its magnified

phase traces have the highest amplitude along the θ = 90◦ orientation.

participant in the video rotated her head left and right, so the se-

lected pixel was on her forehead half of the time and was on the

black background in the other half (corresponding to the notches

in the traces). First, the pulse-induced color changes were only

magnified when the pixel was on the skin surface, which proved

the good spatial specificity of our algorithm. Second, the magnified

pulse signal has much higher amplitude in the green channel than

in the other channels. This is consistent with previous findings that

the amplitude of the human pulse is approximately 0.33:0.77:0.53

in RGB channels under a halogen lamp [de Haan and Jeanne 2013],

and verifies that our algorithm faithfully kept the original physi-

ological property in magnification. Third, we changed the chosen

step size γ to its multiples (0.5γ , 2γ , and 4γ ) with the number of it-

erations N unaltered, and visualized the resulting pixel traces also

in Figure 7. There is a clear trend that longer step sizes lead to

higher amplitudes of the magnified pulse.

To perform a quantitative evaluation of video quality, we used

two metrics: peak signal-to-noise ratio (PSNR) and structural sim-

ilarity (SSIM). In both cases, we calculated the metrics on every

frame of the tested videos, and took their averages across all partic-

ipants within each task. The reference frame in each case was the

corresponding frame from the original, unmagnified video. Table 1

shows a comparison of the video quality metrics for the baselines

and our method. Although the magnified blood flow or respiration
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Table 1. Video Quality Measured via Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) for the Magnified Videos

The baselines for color change magnification were EVM [Wu et al. 2012] and VAM [Zhang et al. 2017], and for motion magnification were phase-EVM [Wadhwa et al. 2013],
VAM, and learning-based motion magnification [Oh et al. 2018]. The table shows the average metrics among all videos within each task, while the bar charts also show the
standard deviations as error bars. Our models (both participant-dependent and participant-independent) produce videos with higher PSNR and SSIM compared to the baselines
for all tasks. The benefit of our model is particularly strong for videos with greater levels of head rotation. We observed that while the magnification causes changes to the video
that artifacts dominated, PSNR and SSIM still provide a reasonable quantitative measure of overall magnified video quality.

will naturally cause the metrics to be lower, and this makes the

quantitative metric imperfect, we found that artifacts in the gen-

erated videos had a much more significant impact on their values

than the magnified physiology. Thus, overall, the PSNR and SSIM

scores do capture the performance of the magnification methods

from one perspective with lower PSNR, and SSIM values indicate

more artifacts and lower quality. According to the table, our meth-

ods achieve both higher PSNR and SSIM than the baseline meth-

ods, which verifies the ability of our methods to magnify subtle

color changes with motion artifact suppressed. On Task A con-

taining limited head motions, the metrics of the baseline meth-

ods are very close to those of our method. However, as the head

rotation becomes faster and random on more difficult tasks, the

video quality of the baseline outputs dramatically decreases. This

is because their algorithms amplify any motion lying in the filter

band and does so indiscriminately. The magnification thus leads

to significant artifacts when large head motions are present. On

the other hand, using our method, the video quality is maintained

at almost the same level on different tasks. Both PSNR and SSIM

are only slightly lower on Task A and Task D because the pat-

terned background is more vulnerable to artifacts than the black

one. The difference between the participant-dependent results and

the participant-independent results is also very small, suggesting

that our algorithm has good generalization ability and can be suc-

cessfully applied to new videos containing different human partic-

ipants without additional tuning.

5.2 Respiration Magnification

We apply our method to the task of magnifying respiration mo-

tions. In this task, the target variable for training the CNN was

the gold standard respiration signal measured via the chest strap.

Given the subtle nature of the motions, we found that a higher

dimension input motion representation was needed than for the

PPG magnification. As shown in Figure 3, the motion represen-

tation was in 123 pixels × 123 pixels × 4 orientations. The gradi-

ent ascent hyper-parameters N and γ were chosen to be 20 and

3.6 × 10−3 to produce moderate magnification effects.

Figure 6 shows a qualitative comparison between our method

and the baseline methods. The human participant in the video ro-

tated his head at a speed of 10 degrees/sec. A vertical scanline

on his shoulder was drawn along with time to show the respi-

ration movement. In the input video, the respiration movement

is very subtle. Both our method and the baseline methods greatly

increased its magnitude (Figure 6(b)–(d)). However, the baseline

methods cannot clearly distinguish the phase variations caused by

respiration and by head rotation, so it also amplified the head ro-

tation and blurred the participant’s face. Our method is based on a

better motion discriminator learned via the CNN so that the head

motions are not amplified.

To show the intermediate phase variations and different mag-

nification effects along different orientations, we drew the orig-

inal and magnified traces of a pixel in the phase representation

ϕ (r0,θ , t ) (Figure 8). Since the selected pixel is on the shoulder of

the human participant, the respiration movement is mainly in the

vertical direction. As a result, the amplified phase variations cor-

responding to breathing have the highest amplitude along θ = 90◦

(Figure 8(c)) and the lowest amplitude along θ = 0◦ (Figure 8(a)).

We also changed the chosen step size γ to its multiples (0.5γ , 2γ ,

and 4γ ) with the number of iterations N unaltered, and visualized

the resulting phase traces in Figure 8. The figure suggests that the

magnification level always increases along with the step size.

The same quantitative metrics as those for color change mag-

nification were computed and shown in Table 1. They also gener-

ally follow the same pattern as in the color change magnification
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Table 2. Video Quality Measured via Peak Signal-to-Noise Ratio

(PSNR) and Structural Similarity (SSIM) for Task C Videos

Magnified to Different Levels

PSNR (dB) SSIM

Step size 0.5γ γ 2γ 4γ 0.5γ γ 2γ 4γ

Pulse 43.2 42.6 41.6 39.9 0.987 0.987 0.986 0.986

Respiration 42.0 41.4 40.6 39.6 0.982 0.979 0.974 0.965

analysis: The video quality of the baseline methods is impacted by

the level of head motions, while our method is considerably more

robust. There is no significant difference between our participant-

dependent results and participant-independent results.

5.3 Magnification Factors

The magnification factor of our algorithm is controlled by two

hyper-parameters, the number of iterations N and the step size γ .

In Figures 7 and 8, we chose the same N and tunedγ to be different

multiples. The resulting magnification levels were always higher

when γ was longer. However, there is a tradeoff in the selection of

γ , as a higher magnification factor also introduces more artifacts.

Table 2 shows the average video quality metrics PSNR and SSIM

for our output videos on an exemplary task (Task C) with differ-

ent choices of γ . For both the pulse and respiration magnification

tasks, the video quality decreases to different extents with the in-

crease of γ . Given that artifacts considerably reduce the PSNR and

SSIM metrics (as shown in Table 1), the fact that the values do not

change dramatically withγ shows that few artifacts are introduced

with increasing magnification.

To quantitatively analyze the effects of N and γ on the mag-

nification factor, we drew exemplary learning curves for one of

our videos in Figure 9(a) with different choices of parameters. The

curves show the changes of our CNN loss, the L2 norm of the dif-

ferential motion signal, which is a good estimate of the target mo-

tion magnitude. According to the learning curves, both N and γ
positively correlate with the motion magnitude, and the relation-

ship between N and the motion magnitude is semi-linear. How-

ever, a longer step size with fewer iterations is not equivalent to

a shorter step with more iterations. In Figure 9(b), we show how

the loss changes along with the product ofN andγ , which suggests

that relatively small step sizes and more iterations can increase the

magnification factor more efficiently.

5.4 Gradient Ascent Mechanisms

Compared with traditional gradient ascent, we added two new

mechanisms to adapt the approach to the task of video magnifi-

cation: L1 normalization and sign correction. Here, we show ex-

perimental results to support the necessity of these mechanisms.

The goal of applying L1 normalization is to make sure every

frame in a video is magnified to the same level. To achieve the

best results, we found the gradient ∇‖y (Xn |θ )‖2 in Equation (1)

should be approximately proportional to the motion representa-

tion Xn . However, it was not the case without L1 normalization.

Figure 10 shows the time series and histograms of the L1 norms of

X1 and ∇‖y (X1 |θ )‖2 for a 30-second video. It is obvious that the

distribution of the motion representation is Gaussian, while the

Fig. 9. Learning curves: (a) The change of the CNN loss with different

numbers of iterations N and different step sizes γ . (b) The change of the

CNN loss with different products of N and γ .

Fig. 10. (a) Time series and histograms of the L1 norms of the input motion

representation X1 for a 30-second video. (b) Time series and histograms of

the L1 norms of the motion gradient ∇‖y (X1 |θ ) ‖2 for the same video.

distribution of the gradient is highly skewed. To correct the distri-

bution of the gradient to match the motion representation, it needs

to be L1 normalized.

In Figure 11, we show the pixel-wise correlation coefficients be-

tween the input and the magnified motion representations (after

bandpass filtering) in the respiration magnification task, with and

without the sign correction mechanism. When there is no sign cor-

rection, the correlation coefficients have both positive and nega-

tive values (Figure 11(b)). As introduced in Section 3.1, the negative

values appear because the target motion could be amplified with

its direction reversed. In the example in Figure 11(b), most of the

negative values happen on the background, which are negligible

as the background has nearly no motion to amplify, but some of

them are on the human body, which will cause the output video to

be blurry on magnification. After sign correction is applied, all the

correlation coefficients become positive (Figure 11(c)). Many of the

pixels in the background have a correlation close to one as there

was little texture or motion in the background. We have masked

these pixels in Figure 11(d).

5.5 Generalizability to Other Videos and Datasets

We applied our method to videos used in Wu et al. [2012]. For

these examples, we used the network trained on the previously

described dataset and did not retrain it or use an auxiliary signal

from the test videos. The impact of motion magnification on the

“face” video is shown in Figure 12(a) and (b). The impact of color
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Fig. 11. Pixel-wise correlation coefficients between the input and magni-

fied motion representations in the respiration magnification task, without

the sign correction mechanism (b) and with the sign correction mechanism

(c). A masked version of (c) is shown with black pixels in the background

of the original input video colored black. Note: Due to the rotation of the

head in the video, the region is larger than the face in the example frame,

some of the pixels were black from only some of the frames.

change magnification on the “baby2” video is shown in Figure 12(c)

and (d). Our method generalized well to these new videos, despite

the “baby2” video being quite different in composition (although

the task is the same). We did have to change the step-size γ in or-

der to increase the amplification factor to get the results on these

videos. In these cases, the step sizeγ was set to 1 × 10−2 for motion

and 1 × 10−3 for color change magnification. See the supplemen-

tary video for examples of the motion and color change magnified

videos.

5.6 Limitations

Our method does not result in entirely artifact-free magnified

videos. For example, in the respiration magnification case (see

Figure 12 and supplementary video), the edges of the shoulders

become blurred and some definition is lost. In pulse magnifica-

tion, the artifacts are a little more subtle and typically manifest

as blotchy changes in color. DeepMag is a supervised method and,

therefore, for optimal results, representative training data is re-

quired. We have demonstrated a level of generalizability; taking

the example of the baby in Figure 12, it is possible to magnify

the pulse color changes effectively using a model trained only on

adults. This is presumably because the skin of the baby resembles

that of adults and the effect of the pulse on the color changes are

similar (albeit at a different frequency). In our participant indepen-

dent training, we used a corpus of videos of 20 subjects and found

that this generalized fairly well for many videos similar to those

in Figure 12. However, it would not be effective to train a model

Fig. 12. Scan lines for motion (respiration) magnification method applied

to the “head” video and color change (pulse) magnification applied to the

“baby2” video from Wu et al. [2012]. In these cases, the step size γ was

set to 1 × 10−2 for motion and 1 × 10−3 for color change magnification.

The yellow line shows the source of the scan line in the frames. (a) Origi-

nal input video of head. (b) Motion magnified video. (c) Input video video

of baby. (d) Color change video magnified video. See the supplementary

video for examples. Note: Our method does not eliminate all artifacts in

the magnified videos. For example, in (b), the edges of the shoulders be-

come blurred and some definition is lost.

on pulse data and then expect it to be able to accurately magnify

respiration motions.

6 CONCLUSIONS

Revealing subtle signals in our everyday world is important for

helping us understand the processes that cause them. We present a

novel single deep neural framework for video magnification that is

robust to large rigid motions. Our method leverages a CNN archi-

tecture that enables magnification of a specific source signal even

if it overlaps with other motion sources in the frequency domain.

We present several methodological innovations in order to achieve

our results, including adding L1 normalization and sign correction

to the gradient ascent method.

Pulse and respiration magnification are good exemplar tasks for

video magnification as these physiological phenomena cause both

subtle color and motion variations that are invisible to the un-

aided eye. Our qualitative evaluation illustrates how the PPG color

changes and respiration motions can be clearly magnified. Com-

parisons with baseline methods show that our proposed architec-

ture dramatically reduces artifacts when there are other rotational

head motions present in the videos.

In a systematic quantitative evaluation our method improves

the PSNR and SSIM metrics across tasks with different levels of

ACM Transactions on Graphics, Vol. 40, No. 1, Article 2. Publication date: September 2020.



DeepMag: Source-Specific Change Magnification Using Gradient Ascent • 2:13

rigid motion. By magnifying a specific source signal, we are able

to maintain the quality of the magnified videos to a greater extent.

We focused our attention on pulse and respiration magnification

in this article. We have tested our approach qualitatively on video

examples from other datasets. We cannot guarantee that the per-

formance improvements will be universal across other domains.

We feel that physiological signal magnification is a particularly

useful application of video magnification and, hence, we chose

pulse and respiration as exemplar tasks that have different prop-

erties (color changes and motions); however, we see no reason to

believe that our approach could not be applied successfully in other

domains.
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