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In the ε-Consensus-Halving problem, a fundamental problem in fair division, there are n agents with valuations

over the interval [0, 1], and the goal is to divide the interval into pieces and assign a label “+” or “−” to each

piece, such that every agent values the total amount of “+” and the total amount of “−” almost equally. The

problem was recently proven by Filos-Ratsikas and Goldberg [18, 19] to be the first “natural” complete problem

for the computational class PPA, answering a decade-old open question.

In this paper, we examine the extent to which the problem becomes easy to solve, if one restricts the class of

valuation functions. To this end, we provide the following contributions. First, we obtain a strengthening of the

PPA-hardness result of [19], to the case when agents have piecewise uniform valuations with only two blocks.

We obtain this result via a new reduction, which is in fact conceptually much simpler than the corresponding

one in [19]. Then, we consider the case of single-block (uniform) valuations and provide a parameterized

polynomial time algorithm for solving ε-Consensus-Halving for any ε , as well as a polynomial-time algorithm

for ε = 1/2; these are the first algorithmic results for the problem. Finally, an important application of our new

techniques is the first hardness result for a generalization of Consensus-Halving, the Consensus-1/k-Division
problem [33]. In particular, we prove that ε-Consensus-1/3-Division is PPAD-hard.

CCS Concepts: • Theory of computation→ Complexity classes; Problems, reductions and complete-
ness; Approximation algorithms analysis.
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1 INTRODUCTION

The topic of fair division has been in the focus of research in economics and mathematics, since

the late 1940s and the pioneering works of Banach, Knaster and Steinhaus [34], who developed

the associated theory. The related literature contains many interesting problems, with the most

celebrated perhaps being the problems of envy-free cake-cutting and equitable cake-cutting, for

which a plethora of results have been obtained. More recently, the computer science literature has

made a significant contribution in studying the computational complexity of these problems, and

attempting to design efficient algorithms for several of their variants [4–6, 15].
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Another classical problem in fair division, whose study originates back to as early as the 1940s

and the work of Neyman [30], is the Consensus-Halving problem
1
[33]. In this problem, there is a set

of n agents with valuation functions over the I = [0, 1] interval. The goal is to divide the interval

into pieces using at most n cuts, and assign a label from {+,−} to each piece, such that every agent

values the total amount of I labeled “+” and the total amount of I labeled “−” equally. Similarly to

other well-known problems in fair division, the existence of a solution to the Consensus-Halving

problem is always guaranteed, and can be proven via the application of a fixed-point theorem;

here the Borsuk-Ulam theorem [8]. As a matter of fact, the problem is a continuous analogue of the

well-known Necklace Splitting problem [2, 22], whose existence of a solution is typically established

via an existence proof for the continuous version.

The Consensus-Halving problem attracted attention in the literature of computer science recently,

due to the breakthrough results of Filos-Ratsikas and Goldberg [18, 19] who studied the computa-

tional complexity of the approximate version, in which there is a small allowable discrepancy ε
between the values of the two portions. First, in [18], the authors proved that ε-Consensus-Halving
for inverse-exponential ε is complete for the computational class PPA, defined by Papadimitriou

[32]. This was the first PPA-completeness result for a “natural” problem, i.e., a computational

problem that does not have a polynomial-sized circuit explicitly in its definition, answering an

open question from Papadimitriou [32], reiterated multiple times over the years [1, 25]. Then in

[19], the authors strengthened their hardness result to the case of inverse-polynomial ε , which also

established the PPA-completeness of the Necklace Splitting problem for 2 thieves.

Despite the aforementioned results, the complexity of the problem is not yet well understood.

Does the problem remain hard if one restricts attention to classes of simple valuation functions?

Note that the reduction of [18, 19] uses instances with piecewise constant valuation functions with

polynomially many pieces. On the opposite side, are there efficient algorithms for solving special

cases of the problem? What if we allow a larger number of cuts?

1.1 Our Results

Towards understanding the complexity of Consensus-Halving, we present the following results.

I We prove that ε-Consensus-Halving is PPA-complete, even when the agents have two-block

uniform valuations, i.e., valuation functions which are piecewise uniform over the interval

and assign non-zero value on at most two pieces. This result holds even when ε is inverse-
polynomial, and extends to the case where the number of allowable cuts is n +n1−δ

, for some

constant δ > 0.

This is an important strengthening of the results in [18, 19] which require the agents to have

piecewise constant valuations with polynomially many non-uniform blocks. En route to

this result, we obtain a significant simplification to the proof of [18, 19], which uses new

gadgets for the encoding of the circuit of high-dimensional Tucker (see Definition 2.4), which

we reduce from. Our new reduction also gives a simplified proof of PPA-completeness for

Necklace Splitting with 2 thieves [18, 19].

I We study the case of single-block valuations and provide the first algorithmic results for the

problem.
2
Specifically, we present:

1
The name “Consensus-Halving” is attributed to Simmons and Su [33], although the problem has been studied under

different names in the past. For example, it is also known as The Hobby-Rice theorem [26], or continuous necklace splitting [2].

2
To be precise, we provide the first such results for the version of the problem with n agents and n cuts. For a large number

of cuts, Brams and Taylor [9] present algorithms for ε -approximate solutions. Crucially, these algorithms require a number

of cuts which grows as ε decreases, while our results for more than n cuts are not dependent on ε .
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◃ an algorithm for any ε , whose running time is polynomial in 1/ε and a parameter d related

to the maximum number of overlapping blocks.

◃ a polynomial-time algorithm for 1/2-Consensus-Halving.

We complement our main results with a simple algorithm based on linear programming,

which solves the problem for single-block valuations in polynomial-time, if one is allowed to

use 2n − ℓ cuts, for any constant ℓ.

I As an application of the new ideas developed in our reduction, we obtain the first hardness

result for a generalization of ε-Consensus-Halving, known as ε-Consensus-1/k-Division, for
k ≥ 3. Specifically, we prove that ε-Consensus-1/3-Division is PPAD-hard, when ε is inverse-
exponential.

Several of our proof are omitted due to lack of space, but can be found in the full version of the

paper.

1.2 Discussion and Related Work

The study of the Consensus-Halving problem originates back to the early 1940s and the work of

Neyman [30]. The first proof of existence for n cuts can be traced back to the 1965 theorem of

Hobby and Rice [26]. The problem was famously studied in the context of Necklace Splitting, being

a continuous analogue of the latter problem; in fact, most known proofs for Necklace Splitting go

via the continuous version
3
[3, 22]. The name Consensus-Halving is attributed to Simmons and Su

[33], who studied the continuous problem independently, and came up with a constructive proof of

existence. Their construction, although yielding an exponential-time algorithm, was later adapted

by Filos-Ratsikas et al. [17] to prove that the problem lies in the computational class PPA.

The class PPA was defined by Papadimitriou [32] in his seminal paper in 1994, in which he also

defined several other important subclasses of TFNP [28], the class of Total Search Problems in NP,

i.e., problems that always have solutions which are efficiently verifiable. Among those classes, the

class PPAD has been very successful in capturing the complexity of many interesting computational

problems [11, 21, 23, 29], highlighted by the celebrated result of Daskalakis et al. [12] and Chen

et al. [10] about the PPAD-completeness of computing a Nash equilibrium. On the contrary, since

the definition of the class, PPA was not known to contain any natural complete problems, but rather

mostly versions of PPAD-complete problems of a topological nature, defined on non-orientable

spaces [14, 25]. In 2015, Aisenberg et al. [1] showed that the computational version of Tucker’s

Lemma [35], already shown to be in PPA by Papadimitriou [32], is actually complete for the class.

Using the latter result as a starting point, Filos-Ratsikas and Goldberg [18] proved that ε-
Consensus-Halving is PPA-complete when ε is inverse exponential. This was a breakthrough

result in the following sense: it was the first PPA-completeness result for a “natural” computational

problem, where the term “natural” takes the specific meaning of a problem that does not have

a polynomial-sized circuit in its definition. The quest for such problems that would be complete

for PPA was initiated by Papadimitriou himself [32] and was later brought up again by several

authors, including Grigni [25] and Aisenberg et al. [1]. In the same paper, the authors also pro-

vided a computational equivalence between the ε-Consensus-Halving problem and the well-known

Necklace Splitting problem of Alon [2] for 2 thieves [3, 22], when ε is inverse-polynomial. In

[19], the authors strengthened their result to ε being inverse-polynomial, which, together with

the aforementioned result from [18], also provided a proof for the PPA-completeness of Necklace

Splitting. As we mentioned earlier, besides being a strengthening, our PPA-hardness proof for

ε-Consensus-Halving is a notable simplification over that of [19], and importantly, it holds for ε

3
This is true for the case of 2 thieves. For k thieves, the proofs go via the Consensus-1/k-Division problem instead.
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which is inverse-polynomial. Therefore, we also obtain a new, simplified proof of PPA-hardness for

Necklace Splitting with 2 thieves.

For constant ε , the only hardness result that we know is the PPAD-hardness of Filos-Ratsikas et al.

[17], who also show that when n− 1 cuts are allowed, deciding whether a solution exists is NP-hard.

Recently, Deligkas et al. [13] studied the complexity of exact Consensus-Halving and showed that

the problem is FIXP-hard. Interestingly, the authors also introduced a new computational class,

called BU (for Borsuk-Ulam) and showed that the problem lies in that class, leaving open the

question of whether it is BU-complete.

If we generalize the number of labels to {1, 2, . . . ,k} rather that {+,−}, and we allow (k−1)n cuts

rather than only n, then we obtain a generalization of the Consensus-Halving problem which was

referred to as Consensus-1/k-Division in [33]. The existence of a solution for this problem can be

proved via fixed-point theorems that generalize the Borsuk-Ulam theorem [2, 7], however very little

is known about its complexity. One might feel inclined to believe that Consensus-1/k-Division is a

harder problem that Consensus-Halving; however, note that in the former problem, we have more

cuts at our disposal. In fact, Filos-Ratsikas and Goldberg [19] conjectured that the complexities

of the problems for different values of k are incomparable, and are characterized by different

complexity classes. The complexity classes that are believed to be the most related are called PPA-k ,
defined also by Papadimitriou [32] in his original paper; we refer the reader to the recent papers of

[24, 27] for a more detailed discussion of these classes.

Before our paper, virtually nothing was known about the hardness of the problem when k ≥ 3.

While the techniques in [19] were highly reliant on the presence of only two labels, our ideas do

carry over to the case when k = 3, which enables us to prove our PPAD-hardness result. While we

do not expect the problem for k ≥ 3 to be PPAD-complete, our proof offers important intuition

about the intricacies of the problem and could be useful for proving stronger hardness results in

the future.

2 PRELIMINARIES

We start with the definition of the ε-approximate version of the Consensus-Halving problem.

Definition 2.1 (ε-Consensus-Halving). Let k ≥ 2. We are given ε > 0 and a set C of continuous

probability measures µ1, . . . , µn on I = [0, 1]. The probability measures are given by their density

functions on I . The goal is to partition the unit interval into 2 (not necessarily connected) pieces I+

and I− using at most n cuts, such that |µ j (I
+) − µ j (I

−)| ≤ ε for all agents j ∈ {1, . . . ,n}.

We will refer to the probability measures µ1, . . . , µn as valuation functions or simply valuations.

While the existence and PPA-membership results hold more generally, in this paper, we will

restrict our attention to the case when the valuation functions are piecewise constant. These can be

represented explicitly in the input as endpoints and heights of value blocks.

Definition 2.2 (Piecewise constant valuation functions). A valuation function µi is piecewise
constant over an interval I , if the domain can be partitioned into a finite set of intervals such that

the density of µi is constant over each interval.

Piecewise constant functions are often referred to as step functions.

Definition 2.3 (Uniform valuation functions). We will consider the following subclasses of

piecewise constant valuation functions.

- Piecewise Uniform:, The domain can be partitioned into a finite set of intervals such that

the density of µi is either vi or 0 over each interval, for some constant vi .
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- d-block Uniform: The domain can be partitioned into a finite set of intervals, such that in

at most d of those the density of µi is vi and everywhere else it is 0, for some constant vi .

- 2-block Uniform: d-block uniform valuations for d = 2.

- Single-block: d-block uniform valuations for d = 1. Here we omit the term “uniform”, as

there is only a single value block.

Obviously, piecewise constant ⊇ piecewise uniform ⊇ 2-block uniform ⊇ single-block.

2.1 The Computational Classes PPA and PPAD

As we mentioned in the introduction, Consensus-Halving is a Total Search Problem in NP, i.e.,

a problem with a guaranteed solution which is verifiable in polynomial time. The corresponding

class is the class TFNP [28]. Formally, a binary relation P(x,y) is in the class TFNP if for every x ,
there exists a y of size bounded by a polynomial in |x | such that P(x,y) holds and P(x,y) can be

verified in polynomial time. The problem is given x , to find such a y in polynomial time.

The subclasses of TFNP that will be relevant for this paper are PPAD and PPA. Intuitively, PPAD

is defined with respect to a directed graph of exponential size, which is given implicitly as input,

via the use of predecessor and successor circuits. PPAD is a subclass of PPA, which is defined

similarly, but with respect to an undirected graph and a circuit that outputs the neighbours of a

vertex. Formally, these classes are defined via their canonical problems, End-of-Line and Leaf

[32], and membership and hardness are established via polynomial-time reductions to and from

these problems respectively.

2.2 High-dimensional Tucker

Our reduction in Section 3 will start from the following problem, which is an N -dimensional variant

of the 2D-Tucker problem [1, 32].

Definition 2.4 (high-D-Tucker). An instance of high-D-Tucker consists of a labeling λ : [8]N →

{±1, . . . ,±N } computed by a Boolean circuit. We further assume that the labeling is antipodally

anti-symmetric (i.e. for all x on the boundary of [8]N it holds that λ(x) = −λ(x) where x i = 9 − xi
for all i), which can be enforced syntactically. A solution consists of two points x,y ∈ [8]N with

λ(x) = −λ(y) and ∥x − y∥∞ ≤ 1.

Filos-Ratsikas and Goldberg [19] showed that the problem is PPA-hard, when the domain is [7]N

instead of [8]N . We adapt the hardness to the case of Definition 2.4 in the theorem below.

Theorem 2.5. high-D-Tucker is PPA-complete.

3 CONSENSUS-HALVINGWITH TWO-BLOCK UNIFORM VALUATIONS IS PPA-HARD

In this section, we present our first result, regarding the PPA-hardness of Consensus-Halving.

Theorem 3.1. ε-Consensus-Halving is PPA-hard, when ε is inverse-polynomial and the agents

have two-block uniform valuations.

As we mentioned in the Introduction, Theorem 3.1 is a strengthening of the result of [19], which

requires the valuation functions to have a polynomial number of value blocks, and which is

seemingly very difficult to extend to two-block uniform valuations. To achieve this stronger result,

we have to develop new gadgetry, based on a new interpretation of the cut positions with respect

to the positions of points in the domain of high-D-Tucker. As it turns out, this new interpretation

allows us to obtain a new proof of the main theorem of [19], one which is conceptually much

simpler, even though it actually applies to more restricted valuations.
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Before we proceed, we first remark the following. In [17] (where the PPAD-hardness of ε-
Consensus-Halving was proven for constant ε) the authors presented a simple argument that

allowed them to extend their hardness result to n + c cuts, where c is some constant. The idea is to

make c + 1 completely disjoint copies of the instance of ε-Consensus-Halving, and solve it using

n + c cuts. One of the copies would have to be solved using at most n cuts, which is a PPAD-hard

problem. We observe that the same principle applies generically (beyond PPAD-hardness and also

to the results of [18, 19]), and in fact extends to n + n1−δ
cuts, where δ > 0 is some constant. From

Theorem 3.1, we obtain the following corollary.

Corollary 3.2. ε-Consensus-Halving is PPA-hard, when ε is inverse-polynomial and the agents

have two-block uniform valuations, even when one is allowed to use n + n1−δ
cuts, for constant δ > 0.

We are now ready to prove Theorem 3.1. We first provide an overview of the reduction and we

highlight the main simplifications over the proof of [19]. Then we proceed to formally present the

proof of Theorem 3.1.

3.1 Overview of the reduction

We are given an instance of high-D-Tucker, namely a labeling λ : [8]N → {±1, . . . ,±N } computed

by a Boolean circuit. We will show how to construct an instance of Consensus-Halving in

polynomial time such that any ε-approximate solution yields a solution to the high-D-Tucker

instance (for some inversely-polynomial ε). The complexity will be measured with respect to the

representation size of the high-D-Tucker instance, i.e., the size of the circuit λ (which is also at

least N ).

For clarity and convenience, the instance of Consensus-Halving we will construct will not

be defined on the domain [0, 1], but instead on some interval [0,M], where M is bounded by a

polynomial in the size of the high-D-Tucker circuit λ. It is easy to transform this into an instance

on [0, 1] by just re-scaling the valuation functions, namely scaling down the positions of the blocks

byM and scaling up the heights of the blocks byM .

Overview. Let us first provide a very high-level description of the instance we construct. Similarly

to [19], the left-most end of the instance will be the Coordinate-Encoding region. In any solution S to

the instance, the way inwhich this region is divided amongst the labels+ and−will represent a point

x ∈ [−1, 1]N . A circuit-simulator C will read-in the coordinates of x , perform some computations

(including a simulation of λ) and output N values [C(x)]1, . . . , [C(x)]N ∈ [−1, 1]. The circuit-

simulator will consist of a set of agents and each agent will implement one gate/operation of the

circuit. Unfortunately, the circuit-simulator can sometimes fail to perform the desired computation,

so instead of one circuit-simulator C we will actually have a polynomial number p(N ) of circuit-

simulators C1, . . . ,Cp(N ). Each of these circuit-simulators will be performing (almost) the same

computation. Finally, we will introduce a Feedback region where N feedback agents f1, . . . , fN will

implement the feedback mechanism. For each i ∈ {1, . . . ,N }, feedback agent fi will ensure that
1

p(N )

∑p(N )

j=1
[Cj (x)]i ≈ 0. Namely, it will ensure that the average of the outputs in dimension i is

close to zero. We will show that from any solution S to the Consensus-Halving instance, we

obtain a solution to the original high-D-Tucker instance.

Encoding of a value in [−1, 1]. Given any solution S of our instance, every interval I of length
1 of the domain encodes a value in [−1, 1] as follows. Let I+ and I− denote the subsets of I labeled
respectively + and − in the solution S . Then the value encoded by I , vS (I ), is given by µ(I+) − µ(I−),
where µ is the Lebesgue measure on R. Since there are at most n cuts (where n is the number of

agents in the instance), I+ is the union of at most n+ 1 disjoint sub-intervals of I and µ(I+) is simply

the sum of the lengths of these intervals (and the same holds for I−). It is easy to see that vS (I ) = 0
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corresponds to I being perfectly shared between + and − in S , whereas vS (I ) = +1 corresponds to

the whole interval I being labeled +. We will drop the subscript S and just use v(I ) in the remainder

of this exposition.

Coordinate-Encoding region. The sub-interval [0,N ] of the domain is called the Coordinate-

Encoding region. Indeed, the way in which this region is subdivided amongst the + and − labels in

a solution S will encode the coordinates of a point in x ∈ [−1, 1]N . In more detail, x1 ∈ [−1, 1] will
be given by v([0, 1]), i.e., the value encoded by interval [0, 1]. Similarly, x2 ∈ [−1, 1] will be given
by v([1, 2]), x3 ∈ [−1, 1] by v([2, 3]), etc.

Constant-Creation region. The sub-interval [N ,N +p(N )] of the domain is called the Constant-

Creation region. This region will be used to create the constants that the circuit-simulators need.

The circuit-simulator C1 will read-in the value v([N ,N + 1]) =: const1 and will assume that it

corresponds to the value +1. Note that given the constant +1, the circuit-simulator can create

any constant ζ ∈ [−1, 1] by using a ×ζ -gate (multiplication by the constant ζ ). Similarly, the

circuit-simulatorC2 will read-in the value v([N + 1,N + 2]) =: const2 and use it as the constant +1,

and so on for C3,C4, . . . ,Cp(N ).

If S is a solution such that the Constant-Creation region does not contain any cut, then the whole

region will have the same label, and without loss of generality we can assume that this label is +.

Thus, in such a solution S , all the circuit-simulators will indeed read-in the constant +1 from the

Constant-Creation region, i.e., we will indeed have constj = +1 for all j = 1, . . . ,p(N ).

Circuit-Simulation regions. For each j ∈ {1, 2, . . . ,p(N )}, the sub-interval [N + p(N ) + (j −
1)q,N + p(N ) + jq] of the domain will be used by the circuit-simulator Cj . The length q used by

every circuit-simulator will be upper-bounded by some polynomial in N and the size of the circuit

λ. Every circuit-simulator Cj will read-in the coordinates x1, . . . , xN ∈ [−1, 1] of the point x from

the Coordinate-Encoding region, as well as the value constj ∈ [−1, 1] from the Constant-Creation

region (and assume that it corresponds to the constant +1). Using these values, Cj will perform

some computations, including a simulation of the Boolean circuit λ, and finally output N values

[Cj (x, constj )]1, . . . , [Cj (x, constj )]N ∈ [−1, 1] into the Feedback region.

Feedback region. The Feedback region is located at the right end of the domain and is subdivided

into N intervals F1, . . . , FN of length p(N ) each. For every j ∈ [p(N )], let Fi (j) denote the jth sub-

interval of length 1 of Fi . The ith output of circuit-simulator Cj will be located in sub-interval Fi (j).
In other words, v(Fi (j)) = [Cj (x, constj )]i .

Every interval Fi will have a corresponding feedback agent fi , who will ensure that the average of
all the outputs in interval Fi is close to zero. In more detail, agent fi will have a single block of value

that covers interval Fi . As a result, this agent will be satisfied only if
1

p(N )

∑p(N )

j=1
v(Fi (j)) ∈ [−ε, ε].

Stray Cuts. Any agent belonging to a circuit-simulator performs a gate-operation. In Section 3.3,

we introduce the different types of gates and how they are implemented by agents. One important

feature of the agents implementing the gates is that every such agent ensures that at least one cut

must lie in a specific interval J of the domain (in any solution S). By construction, we will make

sure that these intervals are pairwise disjoint for different agents. Thus, every agent introduced as

part of a circuit-simulator will force one cut to lie in a specific interval.

The only agents that are not part of a circuit-simulator are the feedback agents f1, . . . , fN . Since
the number of cuts in any solution is at most the number of agents, there are at most N cuts

that are not constrained to lie in some specific interval. We call these the free cuts. The free cuts

can theoretically “go” anywhere in the domain and interfere with the correct functioning of the

circuit-simulators or the Constant-Creation region. The expected behavior of these N free cuts
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is that they should lie in the Coordinate-Encoding region. As such, any of the free cuts that lies

outside the Coordinate-Encoding region will be called a stray cut (following [19]).

Observation 1. If there is at least one stray cut, then the point x ∈ [−1, 1]N encoded by the

Coordinate-Encoding region lies on the boundary of [−1, 1]N (i.e., there exists i such that |xi | = 1).

Stray Cut interference. There are two ways for a stray cut to cause trouble:

(1) it can corrupt a circuit, i.e., interfere with the correct functioning of the gates of a circuit-

simulator. If the cut lies in the region of circuit-simulator Cj , then it can make a gate output

the wrong result (i.e., not perform the desired operation). If the cut lies in the Constant-

Creation region and intersects the interval that is used by circuit-simulator Ci to read-in

the constant constj , then it can have an effect such that |constj | , 1. However, in any case,

a single stray cut can only interfere with one circuit-simulator in this way. Thus, at most

N circuit-simulators can suffer from this kind of interference. We will choose p(N ) large

enough so that these corrupted circuit-simulators have a very limited influence.

(2) it can interfere with the sign of constj for many circuit-simulators Cj . Indeed, even a single

stray cut can ensure that half of our circuit-simulators read-in the constant +1 and the other

half read-in the constant −1. We will show that this is actually not a problem, and that it does

not produce bogus solutions. Since stray cuts can only occur when x lies on the boundary of

[−1, 1]N (Observation 1), the Tucker boundary conditions will be important for this.

Stray cuts that end up in the Feedback region do not have any effect. Indeed, the feedback agents

f1, . . . , fN are immune to stray cuts. They always ensure that the average of the outputs is close to

zero. Thus, a stray cut can only influence the outputs that a feedback agent sees (as detailed above),

but not its functionality.

Circuit-Simulator failure. There are two ways in which a circuit-simulator can fail to have

the desired output:

(1) it is corrupted by a stray cut. This can happen to at most N circuit-simulators.

(2) it can fail in extracting the binary bits from (a point close to) x . We will ensure that this can

happen to at most N circuit-simulators.

Thus, at most 2N circuit-simulators fail, i.e., at least p(N ) − 2N circuit-simulators have the desired

output.

3.2 Major simplifications compared to [19]

A much cleaner domain. The PPA-hardness of high-D-Tucker was already established in

[19] and our version can be obtained from that one using minor modifications, see Theorem 2.5.

The corresponding result of [19] is a standard application of the “snake-embedding” technique

developed in [10]. However, the reduction in [19] requires (a) a further constraint on how the

domain is colored and more importantly (b) the embedding of the high-D-Tucker instance into a

Möbius-type simplex domain, in which two facets have been “identified” with each other - one

can envision a high-dimensional Möbius strip with an instance of high-D-Tucker in its center,

embedding in a high-dimensional simplex. A key step in the reduction is the extension of the

labeling of high-D-Tucker to the remainder of the domain, in a way that does not introduce any

artificial solutions, and such that solutions to high-D-Tucker can be traced back from solutions

on other points on the domain. For this purpose, the authors of [19] develop a rather complicated

coordinate transformation, applied to the inputs read from the positions of the cuts. They establish

how to compute the transformation and its inverse in polynomial time and how distances in the

two coordinate systems (before and after the transformation) are polynomially related. In contrast,
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fN
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...

Cp(N )
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Fig. 1. An overview of the different regions defined in the reduction. The regions corresponding to different
Circuit-Simulators are color-coded. An arrow indicates that the region where it is pointing receives inputs
from the region from where it is originating. On the left, the different types of agents are shown, namely the
feedback agents, as well as the agents corresponding to the different Circuit-Simulators. The Coordinate-
Encoding region and the Feedback Region are divided into sub-intervals, indicated by vertical gray lines, as
detailed in Section 3.1.

our reduction works with the rather clean domain of high-D-Tucker, avoiding all the unnecessary

technical clutter of the domain used in [19].

Simpler gadgetry. Another complication of the proof in [19] is the use of blanket-sensor agents,

which constrain the positions of the cuts in the coordinate-encoding region, to ensure that solutions

to ε-Consensus-Halving do not encode points that lie too far from a specific region in the “middle”

of the domain, called the “significant region”; this is achieved via appropriate feedback provided by

these agents to the coordinate-encoding agents. To make sure that the blanket-sensor agents do

not “cancel” each other, extra care must be taken on how the feedback of these agents is designed,

giving rise to a series of technical lemmas. Our reduction does not need to use any such agents and

is therefore significantly simpler in that regard as well.

Label sequence robustness. The reduction in [19] requires knowledge of the label sequence,

i.e., whether the first cut that occurs in the c-e region has the label + or − on its left side. This

is fundamental for the design of the gates, as they read the inputs as the distances from the left

endpoints of the corresponding designated intervals, unlike our interpretation, which measures the

difference between the value of the two labels. Thus, for the disorientation of the domain and to deal

with sign flips that happen due to the stray cuts, the authors of [19] employ a pre-processing circuit

that uses the first coordinate-detecting agent as a reference agent, when performing computations.
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This is again not needed in our case; our equivariant gates ensure that even when the corresponding

point lies on the boundary of the high-D-Tucker domain, the output is computed correctly in a

much simpler way.

3.3 Arithmetic Gates

In this section we show how to construct gates which perform various operations on numbers

in [−1, 1] with error at most д(ε) = 16ε , where ε is the error we allow in a Consensus-Halving

solution. Some of these gates will be immune to “corruption” by a stray cut, while others might get

corrupted and not work properly.

Recall that in any solution S , any unit length interval I of the domain represents value v(I ) ∈
[−1, 1]. We will now show how to perform computations with these values. We let T : R→ [−1, 1],
z 7→ max(−1,min(1, z)), i.e., T [z] is the truncation of z ∈ R in [−1, 1]. We will also abuse notation

and use T [x] = (T [x1], . . . ,T [xN ]) for x ∈ [−1, 1]N . At this stage, we assume that ε is sufficiently

small for the gates to work (namely ε ≤ 2
−10

is enough).

We will design basic gates, namely Multiplication by −1 [G×(−1)], Constant ζ ∈ [−1, 1] ∩ Q
[Gζ ] and Addition [G+], and additional gates, namely Copy [Gcopy], Multiplication by k ∈ N
[G×k ] and Boolean Gates, Negation [G¬], AND [G∧] and OR [G∨]. We refer the reader to the full

version for the detailed design of the gates.

Remark 1 (Equivariant Gates). Note that the operation performed by any gate is equivariant.

Namely, if we flip the sign of all inputs, the same output is still valid, but with a flipped sign. For

G×−1 and G+ gates this is obvious. For Gζ , we have to recall that constj is the input to the gate.

With this interpretation, the equivariance is once again obvious. For the G∧-gate the equivariance

is a bit more subtle. Note that it uses aG−1/2-gate, which uses constj . Thus, in this case again, if we

flip the sign of the inputs b1, b2 and constj , the sign of the output is flipped too.

This property of the gates is not a coincidence. It follows from the way we are encoding values.

Note that in any solution S , if we swap the labels + and −, the solution remains valid. The only

thing that has changed is that for any gate, the sign of all inputs and outputs has been flipped.

It follows that any circuit that we construct out of these gates will be equivariant. Namely, the

computation will still be valid if we flip the sign of all inputs (including constj ) and all outputs.

3.4 Circuit-Simulators

In this section we describe the functionality of the circuit-simulators and what it achieves. Recall

that every circuit-simulator Cj reads-in inputs x1, . . . , xN ∈ [−1, 1] from the Coordinate-Encoding

region and constj ∈ [−1, 1] from the Constant-Creation region. The circuit-simulator then performs

some computations and outputs [Cj (x, constj )]1, . . . , [Cj (x, constj )]N ∈ [−1, 1] into the Feedback
region. If the circuit-simulator Cj is corrupted (i.e., one of the stray cuts interferes with it), then we

will not claim anything about the outputs of Cj . In that case, we will only use the fact that all the

outputs must lie in [−1, 1] (which is guaranteed by the way values are represented).

If the circuit-simulator Cj is not corrupted, then we know that all gates will perform correct

computations, and we also know that constj ∈ {−1,+1}. In our construction of Cj , we will be

assuming that constj = +1. However, we will show later that even if constj = −1, Cj will output

something useful.

Phase 1: equi-angle displacement. In the first phase, Cj applies a small displacement to its

input x . Namely, for every i ∈ [N ],Cj computes x̂i ≈ T [xi + jα], where α =
1

16p(N )
. This is achieved

by using aG jα -gate to create the constant jα (by using constj ), followed by aG+-gate to perform

the addition xi + jα . However, since ε > 0, the gates might make some error in the computations.

Nevertheless, by construction of the gates, we immediately obtain:
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Claim 1. Assume that the circuit-simulatorCj is not corrupted and constj = +1. Then the equi-angle

displacement phase outputs x̂i = T [xi + jα ± 2д(ε)] for all i .

Phase 2: bit extraction. In the second phase, Cj extracts the three most significant bits from

each x̂i ∈ [−1, 1]. These three bits tell us where x̂i lies in [−1, 1], namely in which of the eight

possible standard intervals of length 1/4: [−1,−3/4], [−3/4,−1/2], [−1/2,−1/4], [−1/4, 0], [0, 1/4],

[1/4, 1/2], [1/2, 3/4], [3/4, 1]. Instead of the usual {0, 1}, our bits will take values in {−1,+1}. The

first bit b1 ∈ {−1,+1} indicates whether x̂i is positive or negative. If b1 = +1, then x̂i ∈ [0, 1].
If b1 = −1, then x̂i ∈ [−1, 0]. The second bit b2 ∈ {−1,+1}, then indicates in which half of that

interval x̂i lies. Thus, if b1 = +1 and b2 = −1, then x̂i ∈ [0, 1/2]. Note that some of the bits are not

well-defined if x̂i ∈ B where B = {−3/4,−1/2,−1/4, 0, 1/4, 1/2, 3/4}. Thus, we cannot expect the

bit extraction to succeed in this case. In fact, the bit extraction will fail if x̂i is sufficiently close to

any point in B.
The bit extraction for x̂i is performed as follows.

(1) b1 ≈ T [x̂i × ⌈1/д(ε)⌉] (use G×⌈1/д(ε )⌉-gate)

(2) x̂ ′
i ≈ T [x̂i − b1/2] (use G−1/2-gate and G+-gate)

(3) b2 ≈ T [x̂ ′
i × ⌈1/д(ε)⌉]

(4) x̂ ′′
i ≈ T [x̂ ′

i − b2/4]

(5) b3 ≈ T [x̂ ′′
i × ⌈1/д(ε)⌉]

Note that to compute −b1/2 and −b2/4 we just use the corresponding constant gate, namelyG−1/2

and G−1/4 (with input b1 or b2 respectively, instead of constj ). The computation may be incorrect if

b1 or b2 are not in {−1, 1}, but in that case the bit-extraction has already failed anyway.

We can show that the bit-extraction succeeds if x̂i is sufficiently far away from any point in B.
Letting dist(t,B) = minp∈B |t − p |, we obtain:

Claim 2. Assume that the circuit-simulator Cj is not corrupted and constj = +1. If dist(T [xi +
jα],B) ≥ 8д(ε), then the bit-extraction phase for x̂i outputs the correct bits for T [xi + jα].

Phase 3: simulation of λ. Recall that λ : [8]N → {±1, . . . ,±N } is the Boolean circuit computing

the high-D-Tucker labeling. We interpret [8] as a subdivision of [−1, 1] into standard intervals

of length 1/4. Namely, 1 corresponds to [−1,−3/4], 2 to [−3/4,−1/2], etc. Thus, [8]N can be

interpreted as a subdivision of [−1, 1]N into hypercubes of side-length 1/4. With this in mind, we

define λ : ([−1, 1] \ B)N → {±1, . . . ,±N }, so that for any x ∈ ([−1, 1] \ B)N , λ(x) is the label that λ
assigns to the hypercube containing x .

We can assume that the inputs of λ consist of three bits each, such that the number represented

by these three bits yields an element in [8] (by using [8] ≡ {0, 1, . . . , 7}). The three bits b1,b2,b3 ∈

{−1,+1} extracted from T [xi + jα] tell us exactly in which interval T [xi + jα] lies. Note that if we
were to map those bits to {0, 1} (where −1 7→ 0 and +1 7→ 1), then the bit-string b1b2b3 would

correspond to the number associated with the interval and would thus be the correct corresponding

input to the circuit.

We re-interpret the circuit λ as working on bits {−1,+1}, where −1 corresponds to 0. Clearly,

we can implement this circuit in Cj with our Boolean gates. As long as the inputs to every gate are

perfect bits (i.e., in {−1,+1}), the output of the gate will also be a perfect bit, and will correspond

to the result of the operation computed by the gate. The inputs to the circuit will be exactly the

bits obtained in the bit extraction phase for each x̂i . Thus, it follows that if the bit extraction phase

succeeds, then the simulation of λ will always have a correct output. In other words, using Claim 2,

we obtain:

Claim 3. Assume that the circuit-simulator Cj is not corrupted and constj = +1. If dist(T [xi +

jα],B) ≥ 8д(ε) for all i ∈ [N ], then the simulation phase outputs λ(T [x + jα]).
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Phase 4: output into the Feedback region. For convenience, we will assume that the output

of the Boolean circuit λ is encoded in a particular way. It is easy to see that this is without loss

of generality, since we can always modify λ so that it follows this encoding. The output of λ is

an element in {±1, . . . ,±N }. The encoding we choose uses 2N bits ya
1
,yb

1
,ya

2
,yb

2
, . . . ,yaN ,y

b
N to

encode such an element. The element +i is represented by yai = y
b
i = 1 and ya

ℓ
= 1, yb

ℓ
= 0 for all

ℓ , i . The element −i is represented by yai = y
b
i = 0 and ya

ℓ
= 0, yb

ℓ
= 1 for all ℓ , i .

Recall that in the simulation of λ inside Cj , we actually use the bits {−1,+1} instead of {0, 1}.

Thus, output +i is represented by yai = y
b
i = +1 and ya

ℓ
= +1, yb

ℓ
= −1 for all ℓ , i . Whereas the

element −i is represented by yai = y
b
i = −1 and ya

ℓ
= −1, yb

ℓ
= +1 for all ℓ , i . For any i ∈ [N ] and

any z ∈ ([−1, 1] \ B)N define λi (z) to be:

• λi (z) = +1 if λ(z) = +i

• λi (z) = −1 if λ(z) = −i

• λi (z) = 0 otherwise.

Then, by Claim 3 we obtain that T [yai + y
b
i ] = λi (T [x + jα]).

In this last phase, for each i ∈ [N ] we compute T [yai + y
b
i ] and copy this value into the Feedback

region, namely into interval Fi (j) (recall that Cj is the current circuit-simulator). For this we first

use a G+-gate and then a Gcopy-gate. Thus, we immediately obtain:

Claim 4. Assume that the circuit-simulator Cj is not corrupted and constj = +1. If dist(T [xi +

jα],B) ≥ 8д(ε) for all i ∈ [N ], then [Cj (x, constj )]i := v(Fi (j)) = T [λi (T [x + jα]) ± 2д(ε)] for all
i ∈ [N ].

3.5 Proof of Correctness

In this section we prove that the reduction works, i.e., from any solution to the Consensus-Halving

instance, we can obtain a solution to the original high-D-Tucker instance in polynomial time. In

order to do this, we consider two cases and show that we can retrieve a solution in both cases. The

first case corresponds to a “well-behaved” solution where there are no stray cuts. The second case

corresponds to a solution with stray cuts.

We set p(n) = 4n2
and pick ε such that 16д(ε) ≤ 1

16p(n) , i.e., ε ≤ 1

2
14n2

.

Lemma 3.3. Let S be any ε-approximate solution for the Consensus-Halving instance. If S does

not have any stray cuts, then it yields a solution to the high-D-Tucker instance in polynomial time.

Lemma 3.4. Let S be any ε-approximate solution for the Consensus-Halving instance. If S has at

least one stray cut, then it yields a solution to the high-D-Tucker instance in polynomial time.

4 ALGORITHMS FOR SINGLE-BLOCK VALUATIONS

In the previous section, we proved that even when we have 2-block Uniform valuations, the problem

remains PPA-hard (even when we are allowed to use n +n1−δ
cuts, for some constant δ > 0). In this

section, we will consider the natural case that is not covered by our hardness, that of single-block

valuations. Our main results of the section are (a) an algorithm for solving the problem to any

precision ε (where ε appears polynomially in the running time), which is parameterized by the

maximum number of intersection between the blocks of different agents and (b) a polynomial-time

algorithm for 1/2-Consensus-Halving. The latter algorithm generalizes to the case of d-block
uniform valuations (in fact, even to the case of piecewise constant valuations with d blocks) if one

is allowed to use d · n cuts instead of n. Towards the end of the section, we also present a simple
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idea based on linear programming, which allows us to solve the Consensus-Halving problem in

polynomial time, when we are allowed to use 2n − ℓ cuts, for any ℓ which is constant.

4.1 A Parameterized Algorithm for ε-Consensus-Halving

We start with the algorithm for solving ε-Consensus-Halving that is parameterized by the maxi-

mum intersection between the probability measures. In particular, if d is the maximum number of

measures with positive density at any point x ∈ [0, 1] and the maximum value of the densities is

at mostM then we provide a dynamic programming algorithm that computes an ε-approximate

solution in timeO
( (M

ε

)d
· poly(M/ε,n,d)

)
. We start with the formal definition of the maximum in-

tersection quantity. In this section we denote by fi the probability density function of the probability
measure µi .

Definition 4.1 (Maximum Intersection & Maximum Value). We say that a single-block instance

of ε-Consensus-Halving has maximum intersection d if for every x ∈ [0, 1] it holds that the set
R(x) = {i ∈ [n] | fi (x) > 0}, has cardinality |R(x)| ≤ d . We also say that the instance hasmaximum

value M if for every i ∈ [n] and every x ∈ [0, 1] it holds that fi (x) ≤ M . This is equivalent to

bi − ai ≥ 1/M .

For the rest of the section, we often refer to the following quantity.

Definition 4.2 (Value of Balance). For any ε-Consensus-Halving instance C = {µ1, . . . , µn},
any vector of cuts ®s and any z ∈ [0, 1] let bi (®s; z) be the mass with respect to µi of the part of the
interval [z, 1] labeled “+” minus the part of the interval labeled “−”, when split with the cuts ®s .
Formally, bi (®s; z) = µi ([z, 1]

+) − µi ([z, 1]
−), given the set of cuts ®s .

The first step of the algorithm is to discretize the interval [0, 1] into to intervals of length ε/(2M).

Hence, we split the interval [0, 1] inm = 2M/ε equal subintervals of the form pℓ = [(ℓ − 1)/m, ℓ/m],

where ℓ ∈ [m]. The following claim shows the sufficiency of our discretization and follows very

easily from the above definitions.

Claim 5. Let Qm =
{
ℓ−1

m | ℓ ∈ [m]
}
, wherem = M/ε ′ and let C = {µ1, . . . , µn} be a single-block

ε-Consensus-Halving instance with maximum valueM . Then we define the rounded single-block

instance C′ = {µ ′
1
, . . . , µ ′n} where a

′
i and b

′
i are equal to the number of Qm that is closer to ai and

bi respectively. Then every ε-Consensus-Halving solution of C′
is an (ε + ε ′)-Consensus-Halving

solution of C. Additionally, there exists a solution to the ε ′-Consensus-Halving problem where the

positions of the cuts lie in the set Qm .

Because of Claim 5 we will assume for the rest of this section that we are working with C′

and we will focus on finding (ε ′ = ε/2)-Consensus-Halving solution with cuts in Qm , where

m = 2M/ε . This will give us an ε-approximate solution for the single-block instance C. We also

need the following definitions:

◃ for any z ∈ [0, 1] and any instance C = {µ1, . . . , µn} we define the set of measures that have

positive mass in [z, 1] as follows: U(z; C) = {i ∈ [n] | µi ∈ C ∧ µi ([z, 1]) > 0} where we

might drop C when it is clear from the context, see also Figure 2,

◃ for any z ∈ [0, 1] and any instance C = {µ1, . . . , µn} we define the set of measures that have

positive density at z as follows: R(z; C) = {i ∈ [n] | µi ∈ C ∧ fi (z) > 0} where we might

drop C when it is clear from the context, see also Figure 2.

We also define Q̄m = {z | z ∈ Qm ∨ −z ∈ Qm}. Now we are ready to define our main recursive

relation for solving the instance C′
. For this we define the function α(q1, . . . ,qd , z, t)whereqj ∈ Q̄m ,

z ∈ Qm , and t ∈ [n] and α : Q̄d
m ×Qm × [n] → {0, 1}. The intuitive explanation of the value of α is

the following:
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Fig. 2. The definition of the sets U(z) and R(z).

α(q1, . . . ,qd , z, t) denotes whether it is possible to find t cuts ®s to split the interval [z, 1]
such that: (1) if i is the jth element of R(z) it holds that |bi (®s; z) − qj | ≤ ε , (2) for every
i ∈ U(z) \ R(z) it holds that |bi (®s; 0)| = |bi (®s; z)| ≤ ε .

The value of α(q1, . . . ,qd , z, t) can be recursively computed via the following procedure.

I for every r ∈ Qm , with r > z do
◃ if there exists i ∈ R(z) and i is the jth element of R(z) but i < R(r ) and by adding the cut r
to the set of cuts then the condition |bi (r ; z) − qj | > ε holds then continue,
◃ if there exists i ∈ U(z) \ R(z) but i < U(r ) \ R(r ) then continue
◃ else for every i ∈ R(r ), where i is the jth element of R(r )

· if i < R(z) then we set q′j = (−1)t µi ([z, r ])

· if i is the ℓth element of R(z) then we set q′j = (−1)t µi ([z, r ]) + qℓ
· call the function α(q′

1
, . . . ,q′d , r , t − 1)

I return true if at least one of the recursive calls is successful, and false otherwise.
This procedure evaluates the binary function α , but our goal is to solve the search problem

that finds a set of cuts that form a solution to ε ′-Consensus-Halving. This can be easily done by

storing one possible solution whenever α = true. We call this possible solution β(q1, . . . ,qd , z, t).
A detailed description of the algorithm is included in the full version.

From the above recursive algorithm we see that the evaluation order for the dynamic program-

ming algorithm that computes α(q1, . . . ,qd , z, t) starts from t = 0 to t = n, z = 1 to z = 0 and

|qj | = 1 to |qj | = 0.

Theorem 4.3. There exists a dynamic programming algorithm that for any single-block instance C

of ε-Consensus-Halving with maximum valueM and maximum intersection d , computes a set of

cuts that define a solution. The running time of the algorithm is O
( (

2M
ε

)d+2

n(n + d)
)
.

4.2 A polynomial-time algorithm for 1/2-Consensus-Halving

In this subsection, we present a polynomial-time approximation algorithm for 1/2-Consensus-

Halving, for the case of single-block valuations. Due to lack of space we present only the high-level

description of the algorithm here, and the main theorem. The details are included in the full version.

Theorem 4.4. There is a polynomial-time algorithm for 1/2-Consensus-Halving, when agents

have single-block valuations.

High-level description: The high-level idea of the algorithm is the following greedy strategy.

We will consider the agents in order of non-decreasing height of their valuation blocks. Since each

agent has a single block of value, this means that for two agents i and j with i < j that have their
value block in intervals Ii and Ij , agent i will be considered before agent j. For each agent, we will

attempt to “reserve” a large enough sub-interval of her value block (of total value at least 1/2 for the
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agent) and split it in half (to two parts of equal value at least 1/4 to the agent) using a cut, assigning

each half to + and − respectively. At that point, this split will ensure that |µi (I
+
i ) − µi (I

−
i )| ≤ 1/2,

regardless of the labeling of the remaining part of the agent’s value block Ii . A reserved sub-interval,

or reserved region (RR) will never be intersected by any subsequent cut. This ensures that the

guarantee |µi (I
+
i ) − µi (I

−
i )| ≤ 1/2 for every agent i previously considered will continue to hold.

Reserving a large enough region for the first considered agent is straightforward. For any subse-

quent agent i , part of her value block interval Ii might already be “covered” by regions that were

reserved in previous steps. Before inserting any new cut, we will expand some of the RRs which

are contained in Ii (those that exhibit a different label on each of their endpoints), until we either

ensure that the agent is approximately satisfied with the imbalance of labels that she sees, or these

RRs cannot be expanded any longer. In the latter case, we will place the cut corresponding to agent

i in Ii , on the midpoint of the “virtual” interval Ui ⊆ Ii , consisting of all the intervals of Ii not
covered by RRs, “glued” together. Then, we will create a new RR, which will potentially also contain

some of the RRs already present in Ii , which will be such that (a) the total value covered by RRs for

agent i is 1/2 and (b) the agent is approximately satisfied (up to a 1/2) with the value she has for

RRs in Ii .

Before we conclude the subsection, we mention that the algorithm can actually be applied to

instances with piecewise constant valuations with d blocks, as long as we have d · n cuts at our

disposal. The idea is quite simple: Any agent that has (at most) d value blocks will be replaced by

(at most) d agents, with single-block valuations. This requires the appropriate scaling of the heights

of the blocks, to make sure that the functions are still probability measures. Then, we will run the

algorithm, now on n′ ≤ d · n agents, and we will obtain a solution using n′ cuts. This set of cuts
will also be a solution to the original instance, since the parameter ε is constant (1/2) in both cases.

We obtain the following corollary.

Corollary 4.5. There exists a polynomial-time algorithm for 1/2-Consensus-Halving, when the

agents have piecewise constant valuations with d blocks and we are allowed to use d · n cuts.

4.3 A Polynomial time Algorithm using 2n − ℓ cuts

We conclude the section with the following theorem, stating that there is a polynomial-time

algorithm for the ε-Consensus-Halving problem with Single-block valuations, if we are allowed

to use 2n − ℓ cuts, for any constant ℓ.

Theorem 4.6. Let ℓ be an integer constant. There exists a polynomial time algorithm that for any

single block instance C of ε-Consensus-Halving computes a set of 2n − ℓ cuts that define a solution.
The running time of the algorithm is O((2n)ℓpoly(n, log(1/ε))).

5 CONSENSUS-1/3-DIVISION IS PPAD-HARD

As we mentioned in the Introduction, our newly developed tools that allowed us to obtain a

strengthening of the PPA-completeness result for Consensus-Halving, turn out to be very useful

for proving a hardness result for a more general version of the problem, the Consensus-1/k-
Division problem, for k = 3. We provide the definition below.

Definition 5.1 (ε-Consensus-1/k-Division). Let k ≥ 2. We are given ε > 0 and continuous

probability measures µ1, . . . , µn on [0, 1]. The probability measures are given by their density

functions on [0, 1]. The goal is to partition the unit interval into k (not necessarily connected)

pieces A1, . . . ,Ak using at most (k − 1)n cuts, such that |µ j (Ai ) − µ j (Aℓ)| ≤ ε for all i, j, ℓ.
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For ε-Consensus-1/3-Division, for ease of notation, we will use the labels A/B/C instead of 1/2/3.

We state the main theorem of the section.

Theorem 5.2. ε-Consensus-1/3-Division is PPAD-hard, for inverse-exponential ε .

As we discussed in the Introduction, the problem for k ≥ 3 is not necessarily harder than the

case of k = 2, because we have more cuts at our disposal. Before we present the proof, we highlight

some fundamental challenges that arise when one moves from k = 2 to larger k .
First, when moving to k ≥ 3, we move from a simple +/− parity to a more general setting with at

least 3 labels. This is already severely problematic when it comes to the reduction of [19], which is

highly dependent on the solution having two labels. Indeed, the interpretation of the inputs in [19]

and the corresponding design of the gates needs to know which label will appear on the left side

of the cut, and special “parity-flip“ gadgets are used throughout the reduction to ensure this. On

the contrary, with our new value interpretation, we design gadgets which take the label sequence

“internally” into account, by adjusting the position of the cut accordingly.

The sequence of the labels however gives rise to a second and more challenging issue: While in

the case of k = 2 we can assume without loss of generality that the labels between cuts alternate

between “+” and “−”, we cannot make any such assumptions even when k = 3. In fact, it is known

that if one restricts the solution to exhibit a cyclic sequence of labelsA/B/C , then the problem is no

longer a total search problem [31]. This seems to be a fundamental obstacle to the design of gates

for the case of k ≥ 3. For k = 3, we manage to side-step this obstacle by using a clever “trick”: we

make sure that the intervals of the Consensus-1/3-Division instance where we read the two inputs

(of the 2-dimensional PPAD-complete problem that we reduce from, see Definition 5.6) are placed

next to each other, therefore fixing the position of one of the three labels. We prove PPAD-hardness

for the exact version of the problem (in which we are looking for a perfect balance of the labels,

with no allowable discrepancy ε), which will guarantee that in a solution, the value of this label

will be fixed to 1/3 throughout the instance. Since our instance is constructed to have piecewise

constant valuation functions, the result can be extended to the case of inverse-exponential ε using
the following lemma, which is based on an argument of Etessami and Yannakakis [16].

Lemma 5.3. Let k ≥ 2. For piece-wise constant valuation functions, exact Consensus-1/k-Division
reduces in polynomial time to ε-Consensus-1/k-Division with inverse-exponential ε .

5.1 A Problem to Reduce From: 2D-Truncated-Linear-FIXP

We start with the following problem, proven to be PPAD-complete by Mehta [29].

Definition 5.4 (2D-Linear-FIXP [29]). The problem 2D-Linear-FIXP is defined as follows. We

are given a circuit C using gates {+,×ζ ,max} and rational constants, that computes a function

FC : [0, 1]2 → [0, 1]2. The goal is to find x ∈ [0, 1]2 such that FC (x) = x .

Theorem 5.5 ([29]). 2D-Linear-FIXP is PPAD-complete.

In order to prove PPAD-hardness of Consensus-1/3-Division, we will use a slightly modified

version of 2D-Linear-FIXP, that we call 2D-Truncated-Linear-FIXP. The first difference is that

the domain is [−1, 1]2 instead of [0, 1]2. Furthermore, instead of the gates {+,×ζ ,max} and rational

constants in Q, the circuit will only be allowed to use the gates {+T ,×T ζ } and rational constants

in [−1, 1] ∩ Q. The gate +T corresponds to truncated addition and the gate ×T ζ corresponds to

truncated multiplication by ζ . For any x,y ∈ [−1, 1] and any ζ ∈ Q, we have x +T y = T [x + y] and
x ×T ζ = T [x × ζ ], where T is the truncation operator in [−1, 1] as defined in Section 3.

Definition 5.6 (2D-Truncated-Linear-FIXP). The problem 2D-Truncated-Linear-FIXP is de-

fined as follows. We are given a circuit C using gates {+T ,×T ζ } and rational constants in [−1, 1],
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that computes a function FC : [−1, 1]2 → [−1, 1]2. The goal is to find x ∈ [−1, 1]2 such that

FC (x) = x .

By applying some simple modifications to any 2D-Linear-FIXP circuit, we are able to show the

following theorem.

Theorem 5.7. 2D-Truncated-Linear-FIXP is PPAD-complete.

5.2 Description of the Reduction

In order to show that Consensus-1/3-Division is PPAD-hard, we reduce from 2D-Truncated-

Linear-FIXP. Namely, given a 2D-Truncated-Linear-FIXP circuitC , we will construct an instance

IC of Consensus-1/3-Division, such that any solution of IC yields a solution to C (i.e., a fixed-point

of FC : [−1, 1]2 → [−1, 1]2). As before, we will construct a Consensus-1/3-Division instance on

some domain [0,M] for some polynomialM , which is easy to transform into an equivalent instance

on domain [0, 1].
First, let us give a high-level description of the ideal reduction that we would like to construct.

First, we would show how any interval of the Consensus-1/3-Division domain encodes a value

in [−1, 1]. Namely, in any solution S to instance IC , for every interval I , vS (I ) ∈ [−1, 1] would be

the value encoded by interval I . Then, we would construct agents that implement the arithmetic

gates needed by 2D-Truncated-Linear-FIXP, namely {+T ,×T ζ } and rational constants in [−1, 1].
These agents read some value(s) in [−1, 1] from one or two intervals and output the result of the

gate-operation into some other interval of the domain.

With these gates we could implement the circuit C inside our Consensus-1/3-Division instance.

In particular, we would have two intervals In1 and In2 each representing the two inputs, and

two intervals Out1 and Out2 each representing the two outputs. These intervals are pairwise

disjoint. In the final step we would then “connect” the outputs to the inputs. Namely, we would

introduce an agent implementing a ×T 1-gate with input Out1 and output In1, and a second agent

implementing a ×T 1-gate with input Out2 and output In2. This ensures that from any solution of

the Consensus-1/3-Division instance we can extract a fixed-point of FC .
If we could do all this, then this reduction would be very similar to the reduction of Filos-Ratsikas

et al. [17] showing that ε-Consensus-Halving is PPAD-hard for constant ε . Unfortunately, there is a
significant obstacle. Namely, we don’t know how to find an encoding of values in intervals such

that we can implement arithmetic gates that always work. Because we don’t know in what order

the labels A, B and C will appear in any given interval, implementing arithmetic gates is actually

much harder than in the case of Consensus-Halving. Thus, the gates we are able to implement

only work if the input interval encodes a value in a very specific way. In this case, we say that

the interval is a valid encoding of a value. Not all intervals will be a valid encoding of a value. In

general, it is very hard to enforce valid encodings. This is the reason why our reduction does not

seem to generalize to yield hardness for inversely polynomial ε , or to Consensus-1/k-Division with

k > 3.

Nevertheless, for exact Consensus-1/3-Division we are able to find a work-around to force all

intervals to be valid encodings of a value. If an interval is a valid encoding of a value (in solution S),
then letvS (I ) ∈ [−1, 1] denote the value encoded by I . We will drop the subscript S in the remainder

of the exposition. The following two lemmas are crucial. They are proved in ??, where the proof of
Theorem 5.2 is detailed.

Lemma 5.8. In the instance IC we construct, it holds that:

• the two intervals In1 and In2 are valid encodings, and

• if Out1 and Out2 are valid encodings, then v(Out1) = v(In1) and v(Out2) = v(In2).
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Lemma 5.9. In instance IC , we can implement arithmetic gates {G+T ,G×T ζ ,Gζ } for operations

{+T ,×T ζ } and constant-gate respectively, such that:

• Gζ outputs a valid encoding of ζ ∈ [−1, 1] ∩ Q
• if the input to G×T ζ is a valid encoding of value x ∈ [−1, 1], then the gate outputs a valid

encoding of x ×T ζ
• if the two inputs to G+T are valid encodings of x,y ∈ [−1, 1], then the gate outputs a valid

encoding of x +T y.

If these two lemmas indeed hold, then the reduction is correct. First of all, by Lemma 5.8, the two

inputs to the circuit are valid encodings. Thus, using Lemma 5.9, it follows by induction that all the

gates in the circuit perform their operation correctly and output a valid encoding. In particular,

the two outputs of the circuit are valid encodings. Thus, by Lemma 5.8, we get that each of the

two outputs is equal to the corresponding input. As a result, we have identified a fixed-point of

FC : [−1, 1]2 → [−1, 1]2. The detailed construction is included in the full version.

6 FUTURE DIRECTIONS

The main technical question is whether ε-Consensus-Halving for single-block valuations is PPA-

hard or polynomially solvable, or perhaps even complete for some other class. Another interesting

direction is to extend the PPA-hardness result of Theorem 3.1 (or even for a larger number of

blocks) to constant ε ; such a result however would seemingly require some radically new ideas,

namely an averaging argument over a constant set of outputs that is robust to stray cuts.

Finally, it would be interesting to study the complexity of the Consensus-1/k-Division problem

when k ≥ 3 and possibly strengthen or extend our hardness result to other values of k . To this end,

we have recently shown [20] that the problem is in PPA-k , for any k which is a prime power. This

begs the question whether Consensus-1/k-Division (and consecutively Necklace Splitting with k
thieves [18]) is actually complete for PPA-k .
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