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ABSTRACT
We investigate the robustness of a network defense isolation tech-
nique called Software Defined Perimeter (SDP). SDP tries to limit
security risk by isolating users access based on user accounts, rules
and resources. We show how a competitive co-evolutionary frame-
work can be used to evaluate different SDP configurations. It em-
ploys a simulation to test the strength of different SDP configura-
tions against different attackers. It uses a co-evolutionary algorithm
to search through the action spaces of SDP configurations and possi-
ble attackers. These results enable the comparison of different SDP
configurations based on the objective of minimizing the number of
potentially compromised high-value resources .
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• Security and privacy→Access control; Vulnerability manage-
ment; • Theory of computation → Evolutionary algorithms;
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1 INTRODUCTION
It is estimated that in 2017 around 10 billion data records, e.g. pass-
words and credit card numbers, were lost or stolen since 2013 [1].
A common method of conducting network attacks that target re-
sources such as data records is to introduce a piece of malware into
the system, i.e. malware intrusion. The malware compromises the
device through which it enters the system and then stealthily moves
to other devices in the network. This malicious proliferation can
have significant deleterious consequences e.g. in 2012, a malware
attack on the national oil company of Saudi Arabia compromised
30,000 devices. [5]
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Figure 1: An example of a SDP. Circles represent user ac-
counts(UA), each colored by type, square represent rules and
triangles represent resources. Green arrows are for local ac-
counts, red arrows are formanager accounts and blue arrows
are for the administrator account.

In this paper we focus on improving security against malware
intrusion attacks. We assume the following scenario. An attacker
gains access to an enterprise network that has many devices. One
such enterprise network could be a ‘Bring Your Own Device Net-
work’, which is a special wireless network supporting employees
use of personal devices. [8]. The attacker compromises one device
and is then able to spread to other devices and resources. Our work
analyzes an existing defense known as a Software Defined Perimeter
or SDP [2] for this scenario.

SDP is a respected and often adopted network defense that fits
within the broad portfolio of defensive measures network admin-
istrators deploy. It creates dynamic configurations of one-to-one
relationships between ‘users and the data they need to access’ [6]
within a network. It consists of a set of rules that determine whether
a specific user account, according to its type, should have access to
a particular resource. For example, consider an organization that
has three types of user accounts: administrator, manager or local,
plus 3 database resources. Each database holds client information
from a different geographic region. The rules for this organization’s
SDP might be as follows: An administrator account is allowed to
access to all of the available resources. Local accounts are only
allowed access to the database in their region. Manager accounts
have access to the databases that the employees they supervise can
access. This SDP set up is diagrammed in Figure 1. While the ex-
ample organization above has a simple set of rules, if resources and
employee types expand and change, the relationships can become
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quite complicated. For example, consider the case where resource
distribution changes and some users accounts now require access
to more than one database depending on who their clients are at
the moment. Now there are several different combinations of rules
that could be used in the SDP. One possible set of rules allows local
accounts to access all databases. This introduces a security risk
because users without need are being given access. On the flip side,
another set of rules requires a local account to obtain permission
before it is granted access to a resource and that permission has to
be updated with each change of clients. This is costly in time and
user work efficiency.

Since eliminating shared resources is seldom practical, SDP puts
the onus on the network administrator, when determining which
set of rules to use, to make a tradeoff between access loss (or incon-
venience) to resources versus increased security risk. Determining
security risk entails considering likely attacks and their potential
impact. This determination is challenging because of network com-
plexity, the volume of existing attack types, and the possibility of
unforeseen attacks that arise when attackers adapt their attacks
toward defeating defensive counter-measures. In fact, the network
administrator must be concerned with the security “arms race” that
could escalate from a SDP rule set configuration.

Currently, despite these challenges, there is no systematicmethod
to guide the process of creating a high access and low risk SDP for
a particular network [16]. The number of different combinations
of rules is large and grows quickly when new user accounts and
resources are added to an SDP. Additionally, a network administra-
tor lacks a quantifiable way to determine if one version of an SDP
is better than another because testing options live is infeasible.

Our research goal is to determine the relative accessibility and se-
curity risk of different versions of SDPs which will provide decision
support for network operators. Our work provides a methodology
that evaluates the robustness and strength of different SDP versions
against adaptive attackers.

Our solution has two components: a SDP simulation and evo-
lutionary algorithms. The simulation evaluates how effective a
specific version of an SDP is at preventing resource compromise.
Given specific parameters for both a defender and attacker, and a set
of SDP rules, the simulation evaluates the probability of breaches in
the defender’s network. We run Monte Carlo simulations to aggre-
gate and estimate these probabilities. This provides a fitness score
to our evolutionary algorithms. We use evolutionary algorithms in
three ways. We first evolve attackers against a manually designed
SDP. This provides information about the security risk under attack
adaptation. We repeat this step for different domain expert designed
SDPs so that a network administrator can compare the choices they
design. Next, we manually configure an attack and evolve an op-
timal set of SDP rules that minimizes the network’s security risk
when facing it. We repeat this step for different manually config-
ured attacks. This provides a network administrator with support
when dealing with different attacks becoming more or less promi-
nent. Lastly, setting aside manual configurations, we competitively
co-evolve an attacker and an SDP together, enabling a two-sided
arms race. This introduces a unique aspect of our methodology,
concurrently considering the evolution of both the attacker and the de-
fender rather than just the attacker, something which is rarely done
when formulating computer security recommendations [14]. The

information provides the network administrator with anticipatory
information, allowing some foresight in choosing a configuration.

The contributions of this work are: (1) We model attacks on net-
works that use SDPs as their defense using a simulation. (2) We use
evolutionary algorithms to evaluate different SDPs against adap-
tive attackers. (3) We use a competitive co-evolutionary algorithm
to evaluate different SDPs under adaptive attackers and adaptive
defenders. (4) We analyze the performance of best evolved SDPs.

In Section 2, we discuss related work. In Section 3, is the method-
ology and in Section 4 experiments and results. Finally, we present
the conclusion and future work in Section 5.

2 RELATEDWORKS
We describe Software Defined Perimeters, the role of simulation in
security research and work related to evolutionary algorithms for
cyber security in the follow sections.

Software Defined Perimeters. SDPs are used for security purposes
in various environments including IoT systems [3] and the technol-
ogy industry [4]. The concept was developed by the Cloud Security
Alliance (CSA) [2] with the goal of defending against attacks on
‘application infrastructure.’ Generally, a SDP consists of hosts and
controllers. Controllers determine which hosts can communicate
with each other [2].

Organizations interested in using SDPs can either purchase one
through a vendor [6] or implement their own. Since we aim for
a general methodology, we use a simple abstraction of an SDP to
assess our methodology, which is described in Section 3.2. We base
our abstraction on Google’s Beyond Corp, which is an implemen-
tation of an SDP [4]. In their design, Google assigned users and
devices to trust tiers and then matched trust tiers to groups of re-
sources. Our SDP abstraction, refers to users and their devices as
user accounts and trust tiers as rules.

SDP Simulation. A major part of our methodology is the use of
simulation for determining the risk of various SDP configurations.
Simulations address the expense of more realistic candidate solu-
tion evaluation and support scenarios that otherwise cannot be
tested [10, 13, 18]. There is precedence for using simulations in
computer security research. A simulation was developed in [7] to
test SDSecurity, which is a security procedure that employs similar
concepts as SDP. Waverly Labs [12] also developed an open-source
SDP simulator that allows users to create an SDP with different
parameters. Instead of using existing simulations, which require
many low-level implementation, we developed a Monte-Carlo sim-
ulation with domain experts that determines the risk of a particular
SDP. Our simulation is lightweight and allows us to abstract many
implementation details compared to other simulations. We also are
able to sample many different types of scenarios between attackers
and defenders which would otherwise be difficult to do. The Monte-
Carlo simulation’s accuracy was verified by the domain experts
using an equation-based model the experts designed. We ended up
using the Monte-Carlo simulation since it provided more flexibility
and complex model formulations.

Evolutionary Algorithms for Network Security. Evolutionary al-
gorithms have been used in cyber security research for many
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Figure 2: An overview of the SDPmethodology. Note that tap
and compliance are defined in Section 4.2

.
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years [11, 17]. Using them to evolve attacks against a static de-
fense or to evolve defenses against a static attack has precedences,
e.g. [10] and using co-evolutionary algorithms has been used in
recent work, e.g. [9, 10, 15]. We employ grammatical evolution, us-
ing grammars to encode the different behavioral parameters of the
attacks and defenses, following [9, 10]. Our grammars allow fixed
budgets of attack strength and effort, plus defensive compliance
to be predefined, while their allocation across attacks or defensive
rules can be evolved, see Figure 3. The other central differences
between the work of [9, 10] and this contribution are that this con-
tribution a) focuses on SDPs– implying risk minimization as an
objective, and SDP-specific grammars, b) uses SDP Monte Carlo
simulation to obtain robust estimates of risk.

3 METHODS
In Section 3.1, we present the threat model. In Section 3.2, we
present the threat scenario. It is parameterized and one set of pa-
rameters are fixed when a simulation is set up, while the other set
allows attack and/or defense evolution. In Section 3.3, we describe
the simulation for the project that is used to emulate attacks on
networks. In Section 3.4, we discuss the competitive evolutionary
and co-evolutionary search used in the experiments. An overview
of the entire system and method can be seen in Figure 2.

3.1 Threat Model
The threat model can be defined as a minmax optimization problem.
The defender aims to minimize the access loss by configuring an
SDP as a defensive strategy to prevent the attack and reduce the
security risk. The adversary tries tomaximize the number and value
of compromised resources on a network.

Defense Model. For this we assume:
• The defender’s objective is to minimize the average of the

access loss and risk,
• The defender’s operational decision space is the configuration

of an SDP,
• There is a non-compliant user account for non-compliant

users,
• If a user in a user account is compromised, then the user is

removed from the user account and is placed in the non-compliant
user account

• The defender has a budget for network compliance monitoring
that limits the extent to which monitoring can occur.

Attack Model. For this we assume:
• The attacker’s objective is to maximize the average of the

access loss and risk,
• The attacker compromises users through their accounts
• An attack compromises a resource if it compromises even a

single user account that has access to that resource,
• The attacker has a limited budget for exploits.

3.2 Threat scenario
We assume that an enterprise uses an SDP for their network. The
enterprise wants to determine which of a set of candidate SDPs will
be the most robust against current and future attackers in terms of
risk and access loss using a weighted average. We defer how these
two values are quantified to Section 3.4. The enterprise has several
different types of user accounts and different resources. The value of
each resource is defined numerically and the administrator also sets
up a non-compliance account. This account has limited access to
resources (compared to other user account types in the SDP). Entire
user account types are downgraded to the non-compliance account
if a user account type is compromised.We frame this threat scenario
by first initializing an SDP with parameter values that will NOT
change and then optimizing, via an evolutionary algorithm, other
parameter values that adapt. Table 1 summarizes the parameters,
their notation and domains. The non-evolving parameters are:

• demographic: a subset that describes the network demograph-
ics, (ut ,nu ,nρ ,nr ,д1, . . . ,дn , 1, . . . , t)whereut is the total number
of users, nu is the number of different user account types, nρ is
the number of different rules, and nr is the number of different
resources, д1, . . . ,дn is the number of users in each user account
and дn , 1, . . . , t is the value of resources,

• user-rule-resource mappings: These coupled bi-mapping from
user accounts to rules to resources dictate if and how a user account
type is allowed access to a resource. We denote the user account
types mapping to rules as дr and rules mapping to resources as rr .

• type: each SDP is classified as strong or weak. Strong SDPs
have compliance budgets that represent expected 80 % compliance
in each user attack and weak SDPs have compliance budgets that
represent expected 50 % compliance in each user attack

• probability of access loss: the likelihood that a user account
will be compromised

• attack assumptions:
– attack strength: an integer, as that represents how damaging an
attacker can be to an SDP
– attack effort: an integer, ae denoting total attack strength
– type: each attacker is classified as either strong or weak. Strong
attackers have higher attack strengths compared to weak attackers.

• defender assumptions:
– compliance budget: The total compliance of the user account’s
compliance values must be less than or equal to the compliance
budget,
– type: each defender is classified as either strong or weak. Strong
defenders have higher compliance compared to weak defenders.

The following parameters can be selected for evolution:
An attacker’s evolved behavior:
• sub-strength: a tuple, αs that contains nu values which de-

scribes what percentage of the attack budget is spent on that user
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Table 1: Parameters. The top rows are assumed to be given
for a scenario, e.g. by the SDP network administrator. Pa-
rameters in upper case (middle rows) are integrated into the
grammar, see Figure 3. The bottom set are evolved by the
evolutionary algorithms.

Parameter Notation Domain
Total number of users ut 250
Number of types of user accounts nu [0, . . . , 5]
Number of rules nρ [0, . . . , 5]
Number of resources nr [0, . . . , 5]
Number of users in each user account д1, . . . ,дn [0, 1, . . . , 250]
Mapping of user accounts to rules дr {0 : (0, . . . , ρ), . . . ,дn : (0, 1, . . . , ρ)}
Mapping of rules to resources rr {0 : (0, . . . , r ), . . . , ρn : (0, 1, . . . , r )}
Value of resources 1, . . . , t v1, . . . ,vr {40, 50, 60, 70, 80}
Probability of Access Loss pl {0.0, . . . 1.0}
COMPLIANCE_BUDGET cb {2, 3, 4, 5}
ATTACK_EFFORT ae {0, . . . , 250}
ATTACK_STRENGTH as {2, 3, 4, 5}
Compliance values per account type 1, . . . ,n c1, . . . , cn [0, 1]
Attack Sub-Strength αs {0.0, . . . 1.0}
Attack Sub-Effort αe {0, . . . , 250}

account. E.g., if there are three user accounts, nu = 3, then a possi-
ble sub-strength could be αs = (0.5, 0.5, 0). These can be interpreted
as the probability of a malicious user existing in the account.

• sub-effort: a tuple, αe that contains nu values which describes
what percentage of the attack effort is spent on that user account.
For example, if there are three user accounts,nu = 3, then a possible
sub effort could be αe = (0.5, 0.5, 0).

A defender’s evolved behavior:
• compliance values: a tuple with nu values representing the

likelihood that a user in that account will become compromised.

3.3 SDP Simulation
We utilize Monte Carlo simulation, that we run 10 times, described
in Algorithm 1, to estimate the performance of different attackers
and defenders. There are two outputs from the simulation: the
expected overall risk to resources and the expected number of users
having their access downgraded because of non-compliance.

Step 1 Iterate through all of the user accounts and test if a user is
compliant based on compliance values. If a random number is larger
than a compliance value, then the user is compliant. Non-compliant
users nic in the account i are then moved to the non-compliant
user account n0 while the rest remain. The number of users in the
non-compliant account n0 becomes n0 =

∑nu−1
i=1 nic .

Step 2 Determine the security risk, Rs level in each resource.
For each resource r , each user, u, in each user account ua that
has access to the resource is selected and compromised users are
determined probabilistically, using the attacker sub_strength. A
user becomes compromised if the attack sub_strength is larger than
a random value. If a user account, ua has at least one compromised
user, all users of its account type are considered compromised. If at
least one user account ua is compromised, then the entire resource
r is compromised. If a resource r is compromised, then the risk of
that resource r being exploited maliciously is the resource value vr
divided by the sum of all resource values for the possible resources∑nr
i=0vi : Rs = vr /(

∑nr
i=0vi ). Otherwise, the risk is 0.

Step 3 Determine the access loss, La for each resource. This
is determined by the pre-specified probability of access loss, pl
(which is the same for all resources) multiplied by the resource

begin
for each user account type do

Move subset of users in user account to non-compliant
account using compliance value;

end
for each resource do

for each user account connected to resource in user_resource
_rule mapping do

Determine if user account is compromised based on
attack sub-strength and attack sub-effort;

end
if one user account is compromised then

Entire resource is compromised;
end

end
return security risk and access loss

end
Algorithm 1: Monte Carlo Simulation for SDP. The simula-
tion computes the resource risk of an SDP when an attacker
attacks the SDP. The input to the simulation is the attacker
sub_strength, sub_effort, the SDP user_resource_rule mapping
and compliance values.

valuevr divided by the sum of all resource values possible resources∑nr
i=0vi : La = pl ∗vr /(

∑nr
i=0vi )

3.4 Evolutionary and Co-Evolutionary
Computation

To explore the results of different parameters, we use an evolution-
ary search that is developed in [10]. This consists of grammars and
evolutionary and co-evolutionary algorithms.

Grammars are used to represent the different parameters in
the attack and defense settings. Using grammars allows for many
different variants of attacker and defenders to be explored. The
attack parameters are different attack sub-strengths and attack sub-
effort values, which are assigned to each user account. The sum of
the attack sub-strengths across all the user accounts has to be equal
to the attack strength. For example, if there are three user accounts,
and the attack strength is 3, then the three attack sub-strengths
assigned to user accounts 1,2,3 could be 2, .5, .5. Similarly, the sum
of the attack sub-effort values has to be equal to the total attack
effort. For each user account, the attack sub-strength and attack sub-
effort are multiplied to determine the total attack on that individual
user account. In addition to having different user-rule-resource and
topologies, the 5 SDPs that we evaluate have internal variables that
vary within a given SDP. We represent these variables in individual
defense grammars for each SDP. The variables are resource values,
compliance values for each user account and a compliance budget.
The sum of the compliance values have to sum to the compliance
budget. An example of the attack and defense grammars for two
user accounts can be seen in Figure 3.

The attacker’s objective is to maximize the weighted average of
access and risk while the defender’s objective is to minimize the
weighted average of access and risk. The fitness function for the
attacker is fa = Rs+La

2 , defender fitness is fd = −fa .
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Figure 3: Attacker and Defender grammars.
### ATTACKER GRAMMAR ###
<attack_sub_strength> ::= <strength_account_1>,<strength_account_2>
<attack_effort> ::= <effort_user_account_1>, <effort_user_account_2>
<strength_account_1> ::= <value>
<strength_account_2> ::= ATTACK_STRENGTH - <value>
<effort_user_account_1> ::= <value>
<effort_user_account_2> ::= ATTACK_EFFORT - <value>
<value> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

### DEFENDER GRAMMAR ###
<compliance_values> ::= <value_account_type_1>,<value_account_type_2>
<value_account_type_1> ::= <value>
<value_account_type_2> ::= COMPLIANCE_BUDGET - <value_account_type_1>
<value> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

Table 2: Spread (the number of user accounts divided by the
number of connections between the rules and the resources)
for each SDP and the rank from lowest to highest

SDP Spread Rank
Min-Isolated 2/6 1
Min-Total 2/7 2
Medium-Total 1/2 3
Medium-Isolated 3/7 4
Max 5/8 5

4 EXPERIMENTS AND RESULTS
The goals of our experiments are to investigate the performance of
using evolutionary and co-evolutionary algorithms on SDPs and to
explore the effects of having a weak attacker vs a strong attacker
and a weak defender vs a strong defender. More concretely, we are
interested in the effect of topology, user-rule-resource, compliance
and attacker and defender type (strong or weak) on the overall
performance of an SDP against an evolving attacker. Note, the
attacker’s objective is to maximize the measure of access and risk
while the defender’s objective is to minimize the measure of access
and risk.

4.1 SDP Descriptions
In our experiments, we investigated five different SDP topologies
and user-rule-resources that were determined to be the best by
domain experts. Differences in the topologies include different
amounts of user accounts and different user-rule-resource which
include howmany resources are being shared between accounts and
the non-compliant account. In general, the different layouts can be
described by two parameters ‘spread’, how the different resources
divided are between groups. Mathematically, we can define spread
of an SDP as the number of user accounts divided by the number
of connections between the rules and the resources. The spread for
each of the 5 SDPs can be seen in Table 2.

Two of the topologies we look at are Min-Isolated and Min-
Total. Diagrams of these SDPs can be seen in Figures 4a and Figure
4b. The blue groups in both of the diagrams represent the non-
compliant accounts. Both of these topologies have a minimum
amount of spread since all of the resources are split up between two
user accounts. We would expect these two topologies to be easily
exploited by attackers due to their low spread values. The difference

Table 3: Experiment parameters

Parameter Value
Population size 30
Generations 30
Crossover Probability 0.8
Mutation Probability 0.1
Max Length 100
Tournament Size 2
Elite size 1
Attack trials 30
Defender trials 30
Attacker objective maximize risk and access loss
Defender objective minimize risk and access loss

betweenMin-Isolated andMin-Total is that the non-compliant group
in Min-Isolated has access to one resource while in Min-Total, the
non-compliant account has access to 2 resources.

The remaining three topologies are Medium-Total, Medium-
Isolated and Max. They can be seen in Figure 4c, Figure 4d, and
Figure 4e. The non-compliant account is in blue. Overall, these
three topologies are stronger than the first two because resource ac-
cess is more divided across user accounts. Medium-Total divides its
resources amongst 4 user accounts while Medium-Isolated has only
3 user accounts. This is what contributes to Medium-Total having a
higher spread than Medium-Isolated. Max is the strongest topology
because it has the most number of user account so resource access
is spread out and it has an isolated user account and resource as
well. We expect that Max would have least number of resources
compromised from an attack.

4.2 Setup
We follow the same methodology as described in [10]. We perform
a defense evolution with a fixed attacker, an attack evolution with a
fixed defender and then we co-evolve the two together. During the
evolution we follow the same tournament selection and crossover
as in [10] as well. A summary of the experiment parameters we use
is described in Table 3. We are running the simulation for 30 trials.

The SDP determines the search space size. The smallest SDP has
a small attack search space: there are only two user accounts for an
attack budget of two so the approximate search space size is 104.
The largest SDP has 5 user accounts with an attack budget of 5 so
the search space size is approximately 1016. The smallest SDP has a
defense search space size of 1,200 and the largest SDP has a defense
search space size of 105.

We define a strong attacker as one where the minimum attack
sub-strength is 0.8 and a weak attacker as one where the minimum
attack sub-strength is 0.5. Similarly, a strong defender has mini-
mum compliance values of 0.8 and a weak defender has minimum
compliances values of 0.5. Note that we use strong and weak attack-
ers and defenders because the types of ‘real world’ attackers and
defenders vary greatly. An example of a strong attacker is a nation
state while a weak attacker is a teen hacker. A strong defender
could be a large organization that has multiple roles like Amazon
Web Services while a weak defender could be a small company that
only has a few resources. We consider four pairings of attackers
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(a) Min-Isolated (b) Min-Total (c)Medium-Total (d)Medium-Isolated (e) Max

Figure 4: SDP configurations

and defenders: (1) strong attacker vs strong SDP (2) strong attacker
vs weak SDP (3) weak SDP vs strong SDP (4) weak attacker vs weak
SDP.

For each strength pairing, we evolve the SDP against a fixed
attacker. Then we evolve an attacker against the strongest fixed
defender. Finally, we perform co-evolution with both the SDP and
an attacker. To evaluate the results overall, we compare the best
solutions from the evolutionary phase experiments and the co-
evolutionary experiments. We evaluate the performance of the
best solutions against an out-of-sample attacker, which will be an
attacker where each user account has a sub-strength value of 0.75.
We also evaluate the performance of the attack performance of the
out-of-sample attacker against the different SDPs.

We have three sets of SDP configurations:
No Taps baseline, we do not make any changes to the SDPs.
Taps we add taps, which are network monitoring devices. The

job of the tap is to perform extra monitoring of a particular user
account. We add taps in because SDPs alone are not enough to
stop strong attackers. When taps are incorporated, one of the user
accounts is designated as the tap user account. The tap user account
has ‘extra’ monitoring on it: After the simulation begins, all user
accounts have non-compliant users removed from the user accounts.
The probability of being non-compliant is a parameter that is part
of the search. After, the removal of non-compliant users from all
the user accounts, the tap user account has extra monitoring on
it. The tap user account has non-compliant users removed again,
except the parameter to determine if a user account is compliant or
not is only known by the tap user account. For example, consider
user account 0 which has a compliance value of 0.8 and the tap has
a compliance value of 0.5. If user account 0 is the tap account, then
during the initial non-compliance user removal, a user would be
considered non-compliant with probability 0.8. Then during the tap
user account removal, a user would be considered non-compliant
with probability 0.5.

Phases & Taps we incorporate phases into the simulation. Dur-
ing the fitness evaluation of an individual, instead of evaluating the
individual once using the simulation, we will run the simulation
multiple times, where each run of the simulation is considered a
phase. We expand the search space when phases are used by giving
both the attacker and defender a phase budget. The sum of all the
attack strengths from each phase must sum to the attacker phase
budget. Similarly, the defender’s compliance budgets have to sum
to the defender phase budget.

The next section describes the results from the experiments.

Table 4: Average best evolved attacker and evolved defender
fitness values

Attack Defense
Experiment Set SDP Name Strong Weak Strong Weak

Taps

Min-Isolated 16.5 ± 0.0 16.5 ± 0.0 −16.5 ± 0.0 −16.5 ± 0.0
Min-Total 16.5 ± 0.0 16.5 ± 0.0 −16.5 ± 0.0 −16.5 ± 0.0
Medium-Total 14.93 ± 0.0 13.9 ± 0.25 −15.6 ± 0.01 −15.55 ± 0.10
Medium-Isolated 16.5 ± 0.0 16.5 ± 0.0 −16.49 ± 0.001 −16.49 ± 0.01
Max 13.75 ± 0.11 13.41 ± 0.21 −14.38 ± 0.11 −13.84 ± 0.13

No Taps

Min-Isolated 16.5 ± 0.0 16.5 ± 0.0 −16.5 ± 0.0 −16.5 ± 0.0
Min-Total 16.5 ± 0.0 16.5 ± 0.0 −16.5 ± 0.0 −16.5 ± 0.0
Medium-Total 15.04 ± 0.15 13.42 ± 00.15 −15.3 ± 0.09 −15.5 ± 0.11
Medium-Isolated 16.5 ± 0.0 16.5 ± 0.0 −16.49 ± 0.01 −16.47 ± 0.01
Max 13.71 ± 0.36 13.41 ± 0.21 −14.37 ± 0.07 −14.29 ± 0.05

Phases & Taps

Min-Isolated 18.0 ± 0.0 18.0 ± 0.0 −18.0 ± 0.0 −18 ± 0.0
Min-Total 18.0 ± 0.0 18 ± 0.0 −18.0 ± 0.0 −18 ± 0.0
Medium-Total 16.81 ± 0.57 17.76 ± 0.19 −17.01 ± 0.17 −16.9 ± 0.17
Medium-Isolated 18.0 ± 0.0 18.0 ± 0.0 −17.95 ± 0.01 −17.92 ± 0.03
Max 14.08 ± 0.28 13.52 ± 0.15 −15.87 ± 0.08 −15.85 ± 0.07

Table 5: Average best co-evolutionfitness valueswhen attack
and defense has same strength setting.

Attack Strong, Defense Strong Attack Weak, Defense Weak
Experiment Set SDP Name Attack Defense Attack Defense

Taps

Min-Isolated 16.49 ± 0.00 −14.41 ± 0.08 16.44 ± 0.06 −15.11 ± 0.21
Min-Total 16.5 ± 0.0 −16.12 ± 0.03 16.49 ± 0.00 −16.26 ± 0.06
Medium-Total 11.62 ± 0.67 −7.64 ± 0.24 11.91 ± 0.47 −8.11 ± 0.06
Medium-Isolated 12.01 ± 2.05 −8.02 ± 0.26 12.2 ± 1.97 −8.01 ± 0.24
Max 10.80 ± 0.54 −7.18 ± 0.33 10.44 ± 0.67 −7.24 ± 0.32

No Taps

Min-Isolated 15.65 ± 0.94 −7.34 ± 0.42 16.46 ± 0.05 −15.70 ± 0.02
Min-Total 16.5 ± 0.0 −16.19 ± 0.04 16.5 ± 0.0 −16.44 ± 0.01
Medium-Total 11.36 ± 0.75 −7.53 ± 0.26 11.38 ± 0.60 −7.89 ± 0.17
Medium-Isolated 11.99 ± 2.05 −8.01 ± 0.25 12.52 ± 1.89 −8.01 ± 0.22
Max 10.37 ± 0.72 −6.59 ± 0.38 8.41 ± 0.16 −6.30 ± 0.02

Phases & Taps

Min-Isolated 14.55 ± 0.59 −7.85 ± 0.25 14.12 ± 0.59 −6.0 ± 0.0
Min-Total 12.49 ± 1.77 −8.42 ± 0.15 10.91 ± 2.31 −6.0 ± 0.0
Medium-Total 11.54 ± 1.38 −6.96 ± 0.22 10.35 ± 1.43 6.0 ± 0.0
Medium-Isolated 8.89 ± 1.03 −6.85 ± 0.04 11.54 ± 1.33 −6.0 ± 0.0
Max 9.53 ± 0.49 −6.48 ± 0.12 9.49 ± 0.46 −6.54 ± 0.14

4.3 Results and Discussion
The aim of the experiments is to investigate how evolutionary
search performs on the SDP threat scenario. A summary of the
evolutionary experiments can be seen Table 4. Summaries of the
co-evolution experiments can be seen in Table 5 and Table 6. The
following subsections will investigate the results in further detail.

4.3.1 Defense Experiments. The goal of the defense experiments
was to investigate the relative performance of the SDPs against a
fixed attacker as well as how the SDPs optimize the placement of
the compliance values. The defense experiments are visualized over
generations for the Phases & Taps Strong Defense Experiments in
Figure 5. The full defense results can be seen in Table 4.

The relative performance of the SDPs is consistent with spread
rankings. With only two user accounts, the SDPs with the lowest
spread were unable to isolate the attacker and all the resources
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Table 6: Average best co-evolutionfitness valueswhen attack
and defense has different strength (strong or weak) setting.
Bolded values indicate strongest SDP.

Attack Strong, Defense Weak Attack Weak, Defense Strong
Experiment Set SDP Name Attack Defense Attack Defense

Taps

Min-Isolated 16.47 ± 0.05 −14.00 ± 0.17 16.45 ± 0.05 −15.60 ± 0.06
Min-Total 16.49 ± 0.004 −15.86 ± 0.08 16.49 ± 0.00 −16.42 ± 0.01
Medium-Total 11.56 ± 0.69 −7.80 ± 0.10 11.93 ± 0.48 −8.19 ± 0.06
Medium-Isolated 12.71 ± 2.23 −8.00 ± 0.27 12.41 ± 2.08 −8.01 ± 0.24
Max 10.54 ± 0.67 −7.05 ± 0.34 9.70 ± 0.83 −7.78 ± 0.14

No Taps

Min-Isolated 16.48 ± 0.03 −14.55 ± 0.12 16.47 ± 0.06 −15.68 ± 0.02
Min-Total 16.5 ± 0.0 −15.47 ± 0.36 16.5 ± 0.0 −16.44 ± 0.004
Medium-Total 11.32 ± 0.77 −7.41 ± 0.28 11.48 ± 0.62 −7.84 ± 0.15
Medium-Isolated 12.18 ± 2.01 −7.91 ± 0.35 11.84 ± 2.01 −8.03 ± 0.22
Max 8.60 ± 0.12 −6.19 ± 0.08 9.81 ± 0.74 −7.36 ± 0.23

Phases & Taps

Min-Isolated 14.76 ± 0.62 −7.93 ± 0.31 13.98 ± 0.71 −6.0 ± 0.0
Min-Total 12.36 ± 1.91 −8.17 ± 0.12 10.84 ± 2.39 −6.0 ± 0.0
Medium-Total 11.75 ± 1.15 −6.83 ± 0.15 10.72 ± 1.56 −6.0 ± 0.0
Medium-Isolated 9.05 ± 0.89 −6.85 ± 0.04 11.85 ± 1.28 −6.0 ± 0.0
Max 9.45 ± 0.50 −6.48 ± 0.12 7.98 ± 0.41 −6.48 ± 0.18

Figure 5: Fitness values Phase & Taps Strong Defense Exper-
iments

became compromised. This indicates, that when an attacker is fixed,
spread is correlated with risk to the network.

We did not see many differences between the strong and weak
defender. The differences were relatively small and some fitness
values increased while others decreased. For example, the fitness
value for the weak Max was higher then the strong Max. This
result was puzzling, so we examined the actual compliance values
in the solution. We found that the general strategy of the defender
is to place a large percentage ≈ 85 − 95% of the compliance on
one user account. The rest of the user accounts split the remaining
compliance. Generally, the user account that had large compliance
values was one of the accounts with the most access. However, the
defense strategy was also to arrange the values of the resources
such that the user account with the highest compliance values does
not have access to the most highly valued resources. In general,
the defender prefers to give the user accounts compliance values
closer to 0. This is advantageous to the defender because if a user
account has a compliance value close to 0, then all of the users
will be moved to the non-compliant account and thus, resulting
in that user account having 0 users. If there are 0 users, then the

Figure 6: Fitness values for the Attack Strong Phase & Taps
Experiments

attacker cannot compromise that user account and therefore, has
fewer chances at compromising the resources connected to that
attacker. Given this strategy, having a lower compliance budget can
improve fitness for the defender in the simulation. This is likely why
the weak defender Max fitness is higher than the strong defender
Max fitness.

All of the SDPs had the worse performance during the phases
part of the experiments. This implies that the SDPs were unable to
find sets of compliance values in the larger search space that had a
higher fitnesses then in the smaller search spaces. The SDPs that
saw the largest decrease in performance were the ones with the
lowest spread. We did not see much of a difference in performance
when taps were removed, except for Max and Medium-Total. The
performance actually improved when the taps were removed from
Medium-Total and decreased with Max.

4.3.2 Attack Experiments. For the attack experiments, we evolved
an attacker against a fixed version of each SDP. The goal was to
see which SDPs were able to minimize the risk, represented by
an attack’s fitness. The attack experiments are visualized over the
generations for the Phases & Taps. Strong Attack experiments can
be seen in Figure 6 and full results are in Table 4.

The results were mostly consistent with the spread measurement.
The highest spread,Max had the weakest attack while the lower risk
SDPs, had the strongest attackers. However, the Medium-Isolated
SDP, which had the third highest spread, had the same risk level as
the two SDPs with the lowest spreads, which also occurred during
the defense experiments. This could indicate that spread does not
approximate relative risk when spread values are close together (the
spread difference betweenMedium-Isolated and the second smallest
is less than 0.1). In addition, the differences in strong and weak
attacks were consistent with our expectations. The changes were
fairly small but the attacker fitness did decrease for Medium-Total
and Max when a weak attacker was used.

The SDPs had similar performance with and without taps. The
attacker on strong Medium-Total was slightly weaker when taps
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Figure 7: Fitness values for co-evolution of attackers and de-
fenders. Attackers and defenders from the same topology
have the same shape but different colors.

were used then when taps were not used. However, the weak at-
tacker had a higher fitness when taps were not used. In both the
static attacker and defender experiments, the lack of fitness im-
provement when taps were used, indicates that either the values in
the larger search space have the same fitness as the smaller ones or
that the evolutionary search space was not able to find the max val-
ues. When phases are used, the risk level for all SDPs was increased.
This is consistent with the larger search space and is indicative of
what would happen in a real network if multiple attacks occur in
sequence. Ultimately, the attacker would be more damaging.

4.3.3 Co-Evolutionary Experiments. For each type of experi-
ments, we looked at 4 different co-evolutions. The full results of the
co-evolution for strong attacker and strong defender and weak at-
tacker and weak defender can be seen in Table 5 and the remaining
co-evolution results can be seen in Table 6.

Figure 7 show the coevolution of Phase & Taps strong coevolu-
tion experiments. The results of the co-evolution were somewhat
surprising. We expected that for each SDP, the performance for
both the attacker and the defender would decrease in co-evolution.
This did occur in several of the SDPs with the attacker fitness but
there were also some experiments that showed an increase in per-
formance of the attacker. The most surprising result was an increase
in defender performance in the co-evolution setting.

The end goal of the co-evolution is to anticipate how an SDP
would perform against an unknown attacker. In order to make an
objective comparison between the subjectively co-evolved SDPs,
we tested the co-evolved SDPs from the phases trials against an
unseen attacker. The results were generally consistent (see Table
7) with earlier results. The best performing SDPs, from both the
static and co-evolved SDPs, were the ones with the highest spread,
like Max and Medium-Total. Even after co-evolution, the lower
spread SDPs, were unable to improve the fitness from the starting
point from −16.5. In other experiments, Medium-Isolated, did have
better performance. However, in the test cases, Medium-Isolated,

Table 7: Out of Sample Results from Phase & Taps Experi-
ments

Experiment SDP Defender Fitness Attacker Fitness

Static

Min-Isolated −16.5 16.5
Min-Total −16.5 16.5
Medium-Total −15.35 15.92
Medium-Isolated −16.48 16.5
Max −15.59 16.06

Coevolution

Min-Isolated −16.5 16.5
Min-Total −16.5 16.5
Medium-Total −14.45 13.8
Medium-Isolated −16.5 16.5
Max −13.49 13.76

was unable to do better than Min-Isolated or Min-Total after co-
evolution. This indicates that spread as an approximation of risk is
likely continuous and more discrete. The spread of the SDP has to
reach a certain value before the risk is actually lowered.

For the stronger SDPs, we see a large contrast between the evo-
lutionary SDP performance and the co-evolved SDP performance.
The two strongest SDPs, Medium-Total and Max only performed
slightly better than the other SDPs. We also see that evolutionary
Medium-Total actually performs better than the evolutionary Max.
When using the co-evolutionary SDPs, we see that Max has better
performance than Medium-Total. The difference in performance
rankings shows the advantage of using co-evolution. The relative
performance ranking of the different SDPs after evolutionary search
could be different than the actual performance ranking of the SDPs.

The co-evolution results demonstrate how the search handled the
tradeoff of access loss and resource risk. Given the types of solutions,
it seems that the search favored heavily protecting a small group
of users and restricting access to many of the other users. Most
solutions usually gave extremely high compliance values to one
user account and the remaining user accounts had extremely small
compliance values, which resulted in many users losing access.
Given our parameters and the simulation used, it seems that the
search favored restricting risk over preventing access loss.

5 CONCLUSION & FUTUREWORK
A key aspect for our method was the capability of coevolution to
model adaptive adversaries, thus permitting an anticipatory ap-
proach for cyber defenses. For this approach evolutionary com-
putation seems to be an appropriate method since it allows the
specification of adversaries decisions and objectives and then a
search based on these objectives.

We showed that the network defense methodology, Software
Defined Perimeters (SDP) can be modeled using a Monte Carlo
simulation, evolutionary and co-evolutionary algorithms. Our ex-
periments demonstrate a technique that can enable network admin-
istrators to test the strength of their SDP without a large time or
computation investment. We also showed that generally, the more
spread out resources are, the stronger the SDP will be.

To verify the results, future work will include long term simula-
tion and testing. It will also include more extensive SDP configura-
tions that are larger and have more complex relations. Future work
would also include an attack and/or defense model that incorporates
new variables such as time.
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