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ABSTRACT

Cache-adaptive analysis was introduced to analyze the performance

of an algorithm when the cache (or internal memory) available

to the algorithm dynamically changes size. These memory-size

fluctuations are, in fact, the common case in multi-core machines,

where threads share cache and RAM. An algorithm is said to be

efficiently cache-adaptive if it achieves optimal utilization of the

dynamically changing cache.

Cache-adaptive analysis was inspired by cache-oblivious analy-

sis. Many (or even most) optimal cache-oblivious algorithms have

an (a,b, c)-regular recursive structure. Such (a,b, c)-regular algo-
rithms include Longest Common Subsequence, All Pairs Shortest

Paths, Matrix Multiplication, Edit Distance, Gaussian Elimination

Paradigm, etc. Bender et al. (2016) showed that some of these opti-

mal cache-oblivious algorithms remain optimal even when cache

changes size dynamically, but that in general they can be as much

as logarithmic factor away from optimal. However, their analysis

depends on constructing a highly structured, worst-case memory

profile, or sequences of fluctuations in cache size. These worst-case

profiles seem fragile, suggesting that the logarithmic gap may be

an artifact of an unrealistically powerful adversary.

We close the gap between cache-oblivious and cache-adaptive

analysis by showing how to make a smoothed analysis of cache-

adaptive algorithms via random reshuffling of memory fluctuations.

Remarkably, we also show the limits of several natural forms of

smoothing, including random perturbations of the cache size and

randomizing the algorithm’s starting time. Nonetheless, we show

that if one takes an arbitrary profile and performs a random shuffle

on when “significant events” occur within the profile, then the

shuffled profile becomes optimally cache-adaptive in expectation,

even when the initial profile is adversarially constructed.
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These results suggest that cache-obliviousness is a solid foun-

dation for achieving cache-adaptivity when the memory profile is

not overly tailored to the algorithm structure.

CCS CONCEPTS

• Theory of computation→Caching and paging algorithms;

Parallel algorithms.

KEYWORDS

Cache-adaptive algorithms; smoothed analysis; cache-oblivious

algorithms

ACM Reference Format:

Michael A. Bender, Rezaul A. Chowdhury, RathishDas, Rob Johnson,William

Kuszmaul, Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and Helen Xu.

2020. Closing the Gap Between Cache-oblivious and Cache-adaptive Analy-

sis. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA ’20), July 15–17, 2020, Virtual Event, USA. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3350755.3400274

Session: Full Paper  SPAA ’20, July 15–17, 2020, Virtual Event, USA

63

https://doi.org/10.1145/3350755.3400274
https://doi.org/10.1145/3350755.3400274


1 INTRODUCTION

On multi-threaded and multi-core systems, the amount of cache

available to any single process constantly varies over time as other

processes start, stop, and change their demands for cache. On most

multi-core systems, each core has a private cache and the entire

system has a cache shared between cores. A program’s fraction of

the private cache of a core can change because of time-sharing, and

its fraction of the shared cache can change because multiple cores

use it simultaneously [14, 23, 24].

Cache-size changes can be substantial. For example, there is fre-

quently a winner-take-all phenomenon, in which one process grows

to monopolize the available cache [25]; researchers have suggested

periodically flushing the cache to counteract this effect [57]. With

this policy, individual processes would experience cache allocations

that slowly grow to the maximum possible size, then abruptly crash

down to 0.

Furthermore, even small cache-size changes can have catastrophic

effects on the performance of algorithms that are not designed to

handle them. When the size of cache shrinks unexpectedly, an

algorithm tuned for a fixed-size cache can thrash, causing its per-

formance to drop by orders of magnitude. (And if the cache grows,

an algorithm that assumes a fixed cache size can leave performance

on the table.)

This is such an important problem that many systems provide

mechanisms to manually control the allocation of cache to different

processes. For example, Intel’s Cache Allocation Technology [46]

allows the OS to limit each process’s share of the shared proces-

sor cache. Linux’s cgroups mechanism [43] provides control over

each application’s use of RAM (which serves as a cache for disk).

Although these mechanisms can help avoid thrashing, they require

manual tuning and can leave cache underutilized. Furthermore,

systems may be forced to always leave some cache unused in order

to be able to schedule new jobs as they arrive.

A more flexible approach is to solve this problem in the algo-

rithms themselves. If algorithms could gracefully handle changes

in their cache allocation, then the system could always fully utilize

the cache. Whenever a new task arrives, the system could reclaim

some cache from the running tasks and give it to the new task,

without causing catastrophic slowdowns of the older tasks. When

a task ends, its memory could be distributed among the other tasks

on the system. The OS could also freely redistribute cache among

tasks to prioritize important tasks.

Practitioners have proposed many algorithms that heuristically

adapt to cache fluctuations [13, 31, 44, 45, 47, 48, 63–65]. However,

designing algorithms with guarantees under cache fluctuations is

challenging and most of these algorithms have poor worst-case

performance.

Theoretical approaches to adaptivity. Barve and Vitter [2, 3]

initiated the theoretical analysis of algorithms under cache fluctua-

tions over twenty years ago by generalizing the external-memory/disk-

access machine (DAM) model [1] to allow the cache size to change.

They gave optimal algorithms under memory fluctuations for sort-

ing, FFT, matrix multiplication, LU decomposition, permutation,

and buffer trees. In their model, the cache can change size only

periodically and algorithms know the future size of the cache and

adapt explicitly to these forecasts.

Writing programs and analyzing algorithms that explicitly adapt

to changing memory is complicated because the algorithm needs to

pay attention to the changing parameter of cache sizes. Moreover,

it’s hard to have performance guarantees that apply to all possible

ways that memory can change size. Thus, most prior work by

practitioners is empirical without guarantees, and even the Barve

and Vitter work only has guarantees for a restricted class of memory

profiles, which limits its generality.

More recently, Bender et al. [5, 6] proposed using techniques

from cache-oblivious algorithms to solve the adaptivity problem.

Since cache-oblivious algorithms are oblivious to the size of the

cache, it is compelling that the algorithms should work well when

the cache size changes dynamically. They defined the cache-adaptive

model, which is akin to the ideal-cache model [28, 29] from cache-

oblivious analysis, except that the size of memory can change ar-

bitrarily over time. They showed that many cache-oblivious algo-

rithms remain optimal even when the size of cache changes dy-

namically. However, they also showed that some important cache-

oblivious algorithms are not optimal in the cache-adaptive model.

Concretely, they define optimality in terms of howmuch progress

an algorithm makes under a givenmemory profile and they also

show that only a restricted class of memory profiles need to be con-

sidered. A memory profilem(t) is a function specifying the size of

memory at each time t . Prior results show that, for cache-oblivious

algorithms, and up to a constant factor of resource augmentation,

we need only consider square profiles, i.e., memory profiles which

can be decomposed into a sequence of boxes (□1,□2, . . .), where a
box of size x means that memory remains at size x blocks for x time

steps. In its strongest form, cache adaptivity requires that for an

algorithmA, the total amount of progress thatA makes on a series

of boxes (□1.□2, . . .) should be within a constant factor of the total

potential

∑
i ρ(|□i |) of those boxes, where the potential ρ(|□i |) of

a box □i is defined to be the maximum number of operations that

A could possibly perform in □i , where the max is taken over all

possible places that □i could occur in the execution of A.
1

Thus, Bender et al.’s results show that cache-obliviousness is a

powerful technique for achieving adaptivity without the burden

of having to explicitly react to cache-size changes. They define

optimality in terms of worst-case, adversarial memory profiles,

which makes their optimality criteria very strong, but also tough

to meet. It’s natural to ask how algorithms perform under less

adversarial profiles. This is important because for a large class

of cache-oblivious algorithms, there exists highly structured and

pernicious worst-case profiles on which the algorithms do not run
optimally.

Cache-oblivious algorithms and (a,b, c)-regularity.One of the
fundamental insights in the design of cache-oblivious algorithms is

that, by using certain basic recursive structures in the design of an al-

gorithm, one can get optimal cache-obliviousness for free. The algo-

rithms with this recursive structure are known as (a,b, c)-regular
algorithms. If an algorithm is (a,b, c)-regular, its I/O-complexity

satisfies a recurrence of the form T (N ) = aT (N /b) + Θ(1 + N c/B),

1
Several variations on this definition have also been used [5, 6] when considering par-

ticular problems (e.g., matrix multiplication). For (a, b, c)-regular algorithms, which

are the focus of this paper, the used definitions are equivalent (and thus, as a convention,

we use the most general definition).
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where B is the block size of the cache and Θ(1 + N c/B) represents
the cost of scanning an array of size N c

.

For the purposes of cache-adaptivity, the only interesting cases

are when a > b and c ≤ 1.
2
When a > b, an algorithm’s per-

formance is sensitive to the size of the cache, and so adaptivity

becomes important.

If cache-oblivious algorithms were always cache-adaptive, then

we could view adaptivity as a solved problem. Unfortunately, this

is not the case. Bender et al. showed that, for a > b, (a,b, c)-regular
algorithms are adaptive if and only if c < 1.

The worst-case gap between obliviousness and adaptivity.

When c = 1, there can be a logarithmic gap between an algorithm’s

performance in the ideal cache and cache-adaptive models.
3

Although many classical cache-oblivious algorithms are (a,b, c)-
regular [17, 18, 28, 30, 49, 51, 56], many notable algorithms, in-

cluding cache-oblivious dynamic programming algorithms [17],

naive matrix multiplication [28], sub-cubic matrix multiplications

(e.g., Strassen’s algorithm [55]), and Gaussian elimination [17], have

a > b an c = 1 and hence fall into this gap. These algorithms are

kernels of many other algorithms, including algorithms for solv-

ing linear equations in undirected and directed Laplacian matrices

(see e.g., [26, 37, 52]), APSP [53, 54, 66], triangle counting [9], min-

weight cycle [59], negative triangle detection and counting [59],

and the replacement paths problem [59]. Lincoln, et al. [40] show

that some algorithms can be rewritten to reduce c , making them

adaptive, but the transformation is complex, introduces overhead,

and doesn’t work for all algorithms.

The goal of this paper is to show that this gap closes under less

stringent notions of optimality.

Beyond the worst-case gap. Previous analysis shows that in the

worst case there is a gap between the cache-adaptive and ideal-

cache/cache-oblivious models. However, the logarithmic gap may

just be an artifact of an unrealistically powerful adversary. The

proof depends on exhibiting worst-case memory profiles that force

the algorithm to perform poorly. The worst-case profiles mimic the

recursive structure of the algorithm and maintain a tight synchro-

nization between the algorithm’s execution and the fluctuations

in memory size. A concrete example of the worst-case profile for

matrix multiplication can be found in Section 3.

The natural question to ask is: what happens to these bad exam-

ples when they get tweaked in some way, so that they no longer

track the program execution so precisely? Is this gap robust to the

inherent randomness that occurs in real systems?

Results

Our main result shows that, given any probability distribution Σ
over box-sizes, if each box has size chosen i.i.d. from the distribution

Σ, (a,b, c)-regular algorithms achieve optimal performance in the

2
When a < b and c = 1, the algorithm runs in linear time independent of the cache

size, and hence is trivially cache-adaptive. We are not aware of any (a, b, c)-regular
cache-oblivious algorithms with c > 1.

3(a, b, c)-regular algorithms are cache-adaptive when a < b or c < 1. When a = b
and c = 1, no algorithm can be optimally cache-adaptive because such algorithms are

already a Θ(log M
B ) factor away from optimal in the DAM model [22]. This is why

two-way merge sort, classic (i.e., not cache-oblivious) FFT, etc. cannot be optimal DAM

algorithms.

cache-adaptive model, matching their performance in the ideal

cache model.

Theorem 1. Consider an (a,b, c)-regular algorithmA, where a > b
are constants in N and c = 1. Let Σ be a probability distribution over
box sizes, and consider a sequence of boxes (□1,□2,□3, . . .) drawn
independently from the distribution Σ. If all boxes in Σ are sufficiently
large in Ω(1), thenA is cache-adaptive in expectation on the random
sequences (□1,□2, . . .).

Proving this requires a number of new combinatorial ideas, an

overview of which appear in Section 4. The full version of the paper

formally proves this positive result.

The proof begins by reinterpreting cache-adaptivity in expec-

tation in terms of the expected stopping time of a certain natural

martingale. We then show a relationship between the expected

stopping time for a problem and the expected stopping times for

the child subproblems. A key obstacle, however, is that the linear

scans performed by the algorithm can cause the natural recurrence

on stopping times to break. In particular, the recurrence is able to

relate the time to complete subproblems (including scans) and the

time to complete their parent problems (excluding scans); but is

unable to consider the parent problems in their entirety (including

scans). We fill in this gap by showing that the total effect of the

scans at all levels of the recursion on the expected stopping time is

at most a constant factor. By analyzing the aggregate effect of scans

across all levels of the recursion, we get around the fact that certain

scans at specific levels can have far more impact on the expected

stopping time than others.

Robustness to weaker smoothings.We further show that draw-

ing box-sizes indepenently from one-another is necessary in the

sense that several weaker forms of smoothing fail to close the log-

arithmic gap between the ideal-cache and cache-adaptive models.

We show that worst-case profiles are robust to all of the following

perturbations: randomly tweaking the size of each box by a con-

stant factor, randomly shifting the start time of the algorithm, and

randomly (or even adversarialy) altering the recursive structure of

the profile.

These smoothings substantially alter the overall structure of the

profile, and eliminate any initial alignment between the program

and the structure of the memory profile. Nonetheless, the smoothed

profiles remain worst-case in expectation. That is, as long as some

recursive structure is maintained within the profile, the algorithm

is very likely to gradually synchronize its execution to the profile

in deleterious ways. In this sense, even a small amount of global

structure between the sizes of consecutive boxes is enough to cause

the logarithmic gap.

Map. This paper is organized as follows. Section 2 gives the defini-

tions and conventions used in the rest of the paper. Section 3 pro-

vides intuition for the fragility of worst-case memory profiles. Sec-

tion 4 explains the intuition for the proofs of the main theorems and

sketch the combinatorial ideas behind the proofs. The full proofs

can be found in the full version of this paper. Section 5 gives an in-

depth examination of previous work, and Section 6 gives concluding

remarks.
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2 PRELIMINARIES

The cache-adaptive model. The cache-adaptive (CA) model [5,

6] extends the classical disk access model (DAM) [1] to allow for

the cache to change in size in each time step. In the DAM, the

machine has a two-level memory hierarchy consisting of a fast

cache (sometimes also referred to as memory or RAM) of sizeM
words and a slow disk. Data is transferred between cache and disk

in blocks of size B. An algorithm’s running time is precisely the

number of block transfers that it makes. Similarly, each I/O is a unit

of time in the CA model.

In the cache-adaptive model, the size of fast memory is a (non-

constant) functionm(t) giving the size of memory (in blocks) after

the t th I/O. We useM(t) = B ·m(t) to represent the size, in words,

of memory at time t . We callm(t) and M(t) memory profiles in
blocks and words, respectively. Although the cache-adaptive model

allows the size of cache to change arbitrarily from one time-step

to the next, prior work showed that we need only consider square
profiles [5, 6]. Throughout this paper, we use the terms box and

square interchangeably.

Definition 1 (Square Profile [5]). A memory profile M orm is a
square profile if there exist boundaries 0 = t0 < t1 < . . . such that
for all t ∈ [ti , ti+1),m(t) = ti+1−ti . In other words, a square memory
profile is a step function where each step is exactly as long as it is tall.
We will use the notation (□1,□2, . . .) to refer to a profile in which the
i-th square is size |□i |.

For convenience, we assume that cache is cleared at the start of

each square. The paging results underlying cache-adaptivity [6]

explain that this assumption is w.l.o.g. With this assumption, an

algorithm gets to reference exactly X distinct blocks in a square

of size X . Since any memory profile can be approximated with

a square profile up to constant factors [5], any random distribu-

tion of generically produced profiles has a corresponding random

distribution over square profiles that approximates it.

Recursive algorithms with (a,b, c)-regular structure. This pa-
per focuses on algorithms with a common recursive structure.

Definition 2. Let a,b ∈ N be constants, b > 1 and c ∈ [0, 1]. An
(a,b, c)-regular algorithm is a recursive algorithm that, when run
on a problem of size n blocks (equivalently N = nB words), satisfies
the following:

• On a problem of size n blocks, the algorithm accesses Θ(n)
distinct blocks.

• Until the base case (when n ∈ Θ(1)), each problem of size b
blocks recurses on exactly a subproblems of size n/b.

• Within any non-base-case subproblem, the only computation
besides the recursion is a linear scan of size N c /B. This
linear scan is any sequence of N c contiguous memory accesses
satisfying the property that a cache of a sufficiently large
constant size can complete the sequence of accesses in time
O(N c/B). Parts of the scan may be performed before, between,
and after recursive calls.

Remark 1. When referring to the size of a subproblem, box, scan,
etc., we use blocks, rather than machine words, as the default unit.
We define (a,b, c)-regular algorithms to have a base case of size O(1)

blocks. This differs slightly from previous definitions [5, 6] which
recurse down to O(1) words.

Remark 2. The definition of linear scans ensures the following useful
property. Consider a linear scan of size N c/B. Consider any sequence
of squares (□1,□2, . . . ,□j ), where each |□i | is a sufficiently large
constant, and where

∑j
i=1 |□i | = Ω(N c/B), for a sufficiently large

constant in theΩ. Then the sequence of squares can be used to complete
the scan in its entirety.

The following theorem gives a particularly simple rule for when

an (a,b, c)-regular algorithm is optimal.

Theorem 2 ((a,b, c)-regular optimality [5], informal). Suppose A
is an (a,b, c)-regular algorithm that is optimal in the DAM model.
ThenA is optimal in the cache-adaptive model if c < 1 or ifb > a and
a ≥ 1. If c = 1 and a ≥ b, thenA isO(logb N ) away from optimal on
an input of size N in the cache-adaptive model. Optimality is defined
as in [6], or equivalently as given by the notion of efficiently cache

adaptive, defined below.

Paper goal: closing the logarithmic gap. The above theorem

uses a very structured memory profile in the case of c = 1 and

a ≥ b to tease out the worst possible performance of (a,b, 1)-regular
algorithms. We explore the smoothing of these profiles when a > b
in this paper. We leave the case of a = b for future work because

we prioritize the broader class of algorithms described by a > b.

Progress bounds in the cache-adaptivemodel.When an (a,b, c)-
regular algorithm is run on a square profile, the progress of a box
is the number of base-case subproblems performed (at least partly)

within the box. Define the potential ρ(|□|) of a box of size |□| to
be the maximum possible progress that a size |□| box could ever

make starting at any memory access of any execution of A on a

problem of arbitrary size.

Lemma 1. The potential of a box □ for an (a,b, c)-regular algorithm
A with a > b and c = 1 is ρ(|□|) = Θ(|□|logb a ).

Proof. A square □ can complete any subproblem A whose size

in blocks is sufficiently small in Θ(|□|). This allows □ to complete

Ω(alogb |□ |) = Ω(|□|logb a ) base-case subproblems, which proves

ρ(|□|) ≥ Ω(|□|logb a ).
On the other hand, a square □ is unable to complete in full any

subproblem A whose size in blocks is sufficiently large in Θ(|□|).
It follows that □ can complete base cases from at most two such

subproblemsA (the one thatA begins □ in and the one thatA ends

□ in). This limits the number of base cases completed to ρ(|□|) ≤
O(|□|logb a ). □

Intuitively, the potential of a box □ is essentially the same as the

number of base-case recursive leaves in a problem of size |□|.

Optimality in the cache-adaptive model. The progress of each

square is upper bounded by its potential. An execution of the al-

gorithm A on a problem of size n blocks and on a square pro-

file M is efficiently cache-adaptive if the sequence of squares

(□1,□2, . . . ,□j ) given to the algorithm (with the final square rounded

down in size to be only the portion of the square actually used)
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satisfies

j∑
i=1

ρ(|□i |) ≤ O(nlogb a ). (1)

The right-hand side of the expression represents the total amount

of progress that must be made by any (a,b, c)-regular algorithm
on a problem of size n in order to complete. In summary, an execu-

tion is efficiently cache-adaptive on the profile if every square in

the profile makes progress asymptotically equal to its maximum

possible potential.

An algorithm A (rather than just a single execution) is effi-
ciently cache-adaptive (or cache-adaptive for short) if every ex-

ecution of A is efficiently cache-adaptive on every infinite square-

profile consisting of squares that are all of sizes sufficiently large

in O(1).
By Lemma 1, Inequality 1 can be written as

∑j
i=1 |□i |

logb a ≤
O(nlogb a ). Since all squares □i completed by the algorithm are of

size O(n), an equivalent requirement is

j∑
i=1

min(n, |□i |)logb a ≤ O(nlogb a ). (2)

This requirement has the advantage that the size of the final square

□j cannot affect the veracity of the condition. Consequently, when

using this version of the condition, we may feel free to not round
down the size of the final square □j in the profileM .

The definition of efficiently cache-adaptive is easily adapted to

use an arbitrary progress function and an arbitrary algorithm A
that need not be (a,b, c)-regular.4

Cache-adaptivity over distributions of profiles. We now de-

fine what it means for an algorithm to be cache-adaptive in expec-

tation over a distribution of memory profiles. This allows us to

perform smoothed and average-case analyses in subsequent sec-

tions.

Definition 3 (Efficiently cache-adaptive in expectation). Let M
be a distribution over (infinite) square memory profiles. Let M be
a square-profile (□1,□2, . . .) drawn from the distribution M, and
define Sn to be the number of squares in the profile required by an
(a,b, c)-regular A to complete on any problem of size n. We say that
A is (efficiently) cache-adaptive in expectation on M if for all
problem sizes n,

E


Sn∑
i=1

min(n, |□i |)logb a
 = O(nlogb a ).

The bulk of this paper is devoted to investigating which memory-

profile distributions cause (a,b, 1)-regular algorithms to be cache-

adaptive in expectation.

4
There is an alternative progress function based on operations. Consider the progress

function in which each square makes progress equal to the number of memory ac-

cesses it completes. This generalizes our definition to non(a, b, c)-regular algorithms

and, for many natural (a, b, c)-regular algorithms, this yields the same definition of

cache-adaptivity as the above progress definition. However, the memory-access-based

definition of progress can differ from our definition if some large scans are very non-

homogeneous, i.e. if they contain portions in which a single small box can complete a

large number of memory accesses. We use the sub-problem-based definition so that

our results can apply to all (a, b, c)-regular algorithms.

A useful lemma. We conclude the section by presenting a use-

ful lemma, known as the No-Catch-up Lemma, that is implicitly

present in [6]. The lemma will be used as a primitive throughout

the paper, and for completeness, a full proof is given in the full

version of the paper. Intuitively, the No-Catch-up Lemma states

that delaying the start time of an algorithm can never help it finish

earlier than it would have without the start time delay.

Lemma 2. Let σ = (r1, r2, r3, . . .) be a sequence of memory refer-
ences, and let S = (□1,□2, . . .□k ) be a sequence of squares. Suppose
that if □1 starts at ri , then □k finishes at r j . Then, for all i ′ < i , if □1
starts at ri′ , then for some j ′ ≤ j, □k finishes at r j′ .

3 WHAT BAD MEMORY PROFILES LOOK

LIKE

We begin by explaining how an (a,b, c)-regular algorithm can fail

to be adaptive in the worst case, and why there is reason to hope

that the worst cases are brittle.

*MM-Scan: a canonical non-adaptive algorithm. Consider a divide-

and-conquer matrix-multiplication algorithm MM-Scan that com-

putes eight subresults and then merges them together using a linear

scan.MM-Scan is an (8, 4, 1)-regular cache-oblivious algorithm and

its recurrence relation is T (N ) = 8T (N /4) + Θ(N /B). Its I/O com-

plexity is O(N 3/2/
√
MB), which is optimal for an algorithm that

performs all the elementary multiplications of a naïve nested-loop

matrix multiply [28, 29].

However, since MM-Scan has c = 1 in its recurrence, it is not

adaptive: there are bad memory profiles that cause it to run slowly

despite giving MM-Scan ample aggregate resources
5
. This section

gives intuition for what these bad profiles look like.

A worst-case profile for MM-Scan. Here’s how to make a bad

profile for MM-Scan [5]. The intuition is to give the algorithm lots

of memory when it cannot benefit from it, i.e., when it is doing

scans, and give it a paucity of memory when it could most use it,

i.e., during subproblems.

Concretely, during a scan of size N , which takes N /B I/Os, set

the memory to the fixed size N /B. Repeat recursively. Thus, a bad
profile for MM-Scan on a problem of size N consists of eight recur-

sive bad profiles for N /4 followed by a “square” of size N /B I/Os by

N /B blocks of cache; see Figure 1.
6
This recursion continues down

to squares of sizeΘ(B) blocks7. MM-Scan’s I/O cost with this worst-

case profile is exactly the same as if the memory stayed constant

at its smallest possible value. MM-Scan can perform exactly one

multiply of Θ(
√
N ×

√
N ) matrices on this profile. MM-InPlace, on

the other hand, can perform Ω(log N
B ) multiplies on this profile [5].

This proves that MM-Scan is not optimal in the cache-adaptive

model.

5
There is an alternate form of the algorithm, MM-InPlace, that immediately adds the

results of elementarymultiplications into the output matrix as they are computed. Since

it needs no linear scan to merge results from sub-problems, it is an (8, 4, 0)-regular
algorithm. Consequently, its I/O complexity in the DAMmodel is alsoO (N 3/2/

√
MB),

but it is optimally cache-adaptive.

6
In the cache-adaptive model, it’s enough to analyze cache-oblivious algorithms only

on square profiles, defined as follows [5]. Whenever the RAM size changes to have

the capacity for x blocks, it stays constant x I/Os before it can change again. This

paper focuses exclusively on cache-oblivious algorithms, so we use square profiles

throughout.

7
We stop at Θ(B) blocks due to the tall-cache requirement of MM-Scan [28]
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Figure 1: A bad profile for MM-SCAN as defined recursively.

This worst-case profile exactly tracks the execution of MM-Scan.

From the perspective of the algorithm, the memory profile does
the wrong thing at every time step; whenever MM-Scan cannot use

more memory, it gets the maximum amount possible, and whenever

it can use more memory, that memory gets taken away. This bad

example formatrixmultiplication generalizes to any (a,b, 1)-regular
algorithm. When c < 1, this construction is ineffective—the scans

are simply too small to waste a significant amount of resources.

The MM-Scan example reveals a fascinating combinatorial as-

pect of divide-and-conquer algorithms. At some points of the ex-

ecution, the I/O performance is sensitive to the size of memory

and sometimes it is almost entirely insensitive. These changes in

memory sensitivity make cache-adaptive analysis nontrivial.

4 TECHNICAL OVERVIEW

Cache-Adaptivity on Randomly Shuffled

Profiles

The main technical result of the paper is that random shuffling of

adversarially constructed box-profiles makes (a,b, c)-regular algo-
rithms where a > b and c = 1 cache-adaptive in expectation. In the

full version of the paper we prove the following:

Theorem 3 (Informal). Consider an (a,b, c)-regular algorithm A,
where a > b (b > 1) are constants in N and c = 1. Let Σ be a prob-
ability distribution over box sizes, and consider a sequence of boxes
(□1,□2,□3, . . .)with sizes drawn independently from the distribution.
Then A is cache-adaptive (in expectation) on the random sequence of
boxes (□1,□2,□3, . . .).

For simplicity, we discuss here the case where the block size

B = 1, and A has the same values of a,b, c as the not-in-place

naïve matrix-multiplication algorithm,with a = 8 and b = 4 and

c = 1. Moreover, we assume that all box sizes and problem sizes are

powers of 4. Doing so ensures |a − b | ≥ Ω(1), allows us to simplify

many of the expressions in intermediate calculations, and frees us

from tracking factors of B and its added complexity
8
. Additionally,

we consider a simplified model of caching: any box of size s that

8
At a high level, the cache-line analysis works exactly as one would expect for a nice,

recursive algorithm. However, actually getting the probabilistic analysis correct adds

some complication and is resolved through several of the simplification steps in the

full version of the paper. As intuition (a, b, c)-regular algorithms will recurse down

to sizes small enough to fit inside cache lines getting the requisite cache locality.

begins in a subproblem of size s or smaller completes to the end of

the problem of size s containing it (and goes no further); and any

box of size s that begins in the scan of a problem of size greater

than s continues either for the rest of the scan or for s accesses in
the scan, whichever is shorter. As a final simplification, we assume

that each scan in each problem of some size s consists of exactly s
memory accesses. In fact, we show in the full version of the paper

that these simplifications may be made without loss of generality

for arbitrary (a,b, c)-regular algorithms.

Let □ denote a single box drawn from the distribution Σ. The
proof of Theorem 3 begins by applying the Martingale Optional

Stopping Theorem to combinatorially reinterpret what it means

for A to be cache-adaptive in expectation on the random sequence

(□1,□2, . . .). In particular, if f (n) is the expected number of boxes

needed forA to complete a problem of sizen, then cache-adaptivity-
in-expectation reduces to:

f (n) ≤ O(8log4 n )
mn

=
O(nlog4 8)

mn
=

O(n3/2)
mn

, (3)

wheremn = E
[
min(n, |□|)3/2

]
is the average n-bounded poten-

tial of a box.
At the heart of the proof of Theorem 3 is a somewhat unintuitive

combinatorial argument for expressing f (n), the expected number

of boxes needed to complete a problem of size n, in terms of f (n/4).

Lemma 3 (Stated for the simplified assumptions). Define p =
Pr[|□| ≥ n]· f (n/4). Then, the expected number of squares to complete
the subproblems in a problem of sizen is exactly

∑
8

i=1(1−p)i−1 f (n/4),
and the expected number of additional squares needed to complete
the final scan is (1 − Θ(p)) · Θ(n)

E[min( |□ |,n)] .

Proof Sketch. When executing a problem of size n, the first
subproblem requires f (n/4) boxes to complete, on average. Define

q to be the probability the boxes used to complete the first subprob-

lem include a box of size n or larger. Then with probability q, no
additional boxes are required

9
to complete the rest of the problem

of size n. We will show that q = p later in this proof. Otherwise,

an average of f (n/4) additional boxes are needed to complete the

next subproblem of size n/4. Again, with probability q, one of these
boxes completes the rest of the problem in its entirety. Similarly,

9
This is due to the aforementioned simplified caching model.
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the probability that the i-th subproblem is completed by a large

box from a previous subproblem is (1 − q)i−1. Thus the expected
number of boxes needed to complete all 8 subproblems is

8∑
i=1

(1 − q)i−1 f (n/4). (4)

Remarkably, the probability q can also be expressed in terms

of f (n/4). Define S to be the random variable for the number of

boxes used to complete the first subproblem of size n/4; define
ℓ ≤ O(n3/2) to be an upper bound for S ; and define X to be the

random variable for the number of the boxes in the subsequence

□1, . . . ,□S that are of size n or greater. The expectation of X can

be expressed as

E [X ] =
ℓ∑
i=1

Pr[S ≥ i] · Pr[|□i | ≥ n | S ≥ i].

Since |□i | is independent of |□1 |, . . . , |□i−1 |, we have that Pr[|□i | ≥
n | S ≥ i] = Pr[|□i | ≥ n]. Thus

E [X ] = Pr[|□| ≥ n] ·
ℓ∑
i=1

Pr[S ≥ i]

= Pr[|□| ≥ n] · E[S] = Pr[|□| ≥ n] · f (n/4).

Notice, however, that at most one of the boxes □1, . . . ,□S can

have size n or larger (since such a box will immediately complete

the subproblem). Thus X is an indicator variable, meaning that

q = Pr[X ≥ 1] = E[X ] = Pr[|□| ≥ n] · f (n/4) = p. So q = p, as
promised. Expanding Equation 4, we get that the expected number

of boxes needed to complete the 8 subproblems is, as desired, at

most

8∑
i=1

(
1 − Pr[|□| ≥ n] · f (n/4)

)i−1
f (n/4) (5)

Next we consider the boxes needed to complete the final scan.

Suppose the scan were to be run on its own. Let K denote the

number of boxes needed to complete it, and let □′
1
, . . . ,□′K denote

those squares.

Rather than consider E[K] directly, we instead consider E[K] ·
E[min(|□|,n)]. Through a combinatorial reinterpretation, we have

E[K] · E[min(|□|,n)] = E[min(|□|,n)] ·
ℓ∑
i=1

Pr[K ≥ i]

=

ℓ∑
i=1

Pr[K ≥ i] · E[min(|□′i |,n) | K ≥ i]

= E

[ K∑
i=1

min(|□′i |,n)
]
.

The quantity in the final expectation has the remarkable property

that it is deterministically betweenn and 2n−1. Thus the same can be

said for its expectation, implying that E[K] · E[min(|□|,n)] = Θ(n).
Recall that K is the expected number of boxes to complete the

scan on its own. In our problem, the scan is at the end of a problem,

and thus with probability 1− (1−p)8 = Θ(p), the scan is completed

by a large box from one of the preceding subproblems. Hence

the expected number of additional boxes to complete the scan is

(1 − Θ(p)) · Θ(n)
E[min( |□ |,n)] .

□

Lemma 3 suggests a natural inductive approach to proving The-

orem 3. Rather than explicitly showing that f (n) ≤ O (n3/2)
mn

, one

could instead prove the result by induction, arguing for each n that

f (n)
f (n/4) ≤ n3/2/mn

(n/4)3/2/mn/4
= 8 ·

mn/4
mn
. (6)

One can construct example box-size distributions Σ showing that

the Equation 6 does not always hold, however. In particular, the

scan at the end of a subproblem of size n can make f (n) sufficiently

larger than f (n/4) that Equation 6 is violated. To get around this

problem, one could attempt to instead prove that

f ′(n)
f (n/4) ≤ 8 ·

mn/4
mn
, (7)

where f ′(n) is the expected number of boxes needed to complete

a problem of size n, without performing the final scan at the end.

Unlike Equation 6, Equation 7 does not inductively imply a bound

of the form f (n) ≤ O (n3/2)
mn

, which is necessary for cache-adaptivity

in expectation. If one additionally proves that∏
4
k ≤n

f (4k )
f ′(4k )

≤ O(1), (8)

then Equation 8 could be used to “fill in the holes in the induction”

in order to complete a proof of cache-adaptivity. Equation 8 is some-

what unintuitive in the sense that individual terms in the product

can actually be a positive constant greater than 1. The inequality

states that, even though the scans in an individual subproblem size

could have a significant impact on f (n), the aggregate effect over
all sizes is no more than constant.

To make this semi-inductive proof structure feasible, one addi-

tional insight is necessary. Rather than proving Equation 7 for all

values n, one can instead restrict oneself only to values n such that

f (n) ≥ C · n
3/2

mn
, (9)

where C is an arbitrarily large constant of our choice. In particular,

if n0 is the largest power of 4 less than our problem-size such that

f (n0) < C · n3/2
mn

, then we can use cache-adaptivity within problems

of sizen0 as a base case, and then prove Equation 7 only for problem-

sizes between n0 and n. Similarly, we can restrict the product in

Equation 8 to ignore problem sizes of size smaller than n0.
When Equation 9 holds, Equation 7 can be interpreted as a

negative feedback loop, saying that as we look at problem sizes

n = 1, 4, 16, . . ., whenever f (n) becomes large enough to be on the

cusp of violating cache-adaptivity, there exists downward pressure

(in the form of Equation 7) that prevents it from continuing to grow

in an unmitigated fashion.

The full proof of Theorem 3 takes the structure outlined above.

At its core are the combinatorial arguments used in Lemma 3, which

allow us to recast f (n) and f ′(n) in terms of f (n/4) and f ′(n/4).
When applied in the correct manner, these arguments can be used
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to show Equation 7 (assuming Equation 9) with only a few addi-

tional ideas. The proof of Equation 8 ends up being somewhat more

sophisticated, using combinatorial ideas from Lemma 3 in order

to expand each of the terms f (4k )/f ′(4k ), and then relying on a

series of subtle cancellation arguments in order to bound the end

product by a constant.

Robustness of Worst-Case Profiles

We consider three natural forms of smoothing on worst-case pro-

files. Remarkably, the worst-case nature of the profiles persists in all

three cases. The canonical worst-case profile is highly structured,

giving the algorithm a larger cache precisely when the algorithm

does not need it. It is tempting to conclude that bad profiles must

remain closely synchronized with the progression of the algorithm.

By exploiting self-symmetry within worst-case profiles as well as

the power of the No-Catchup Lemma, our results establish that this

is not the case. The No-Catchup Lemma, in particular, allows us

to capture the idea of an algorithm resynchronizing with a profile,

even after the profile has been perturbed.

We begin by defining a canonical (a,b, c)-regular algorithm An
on problems of size n, and a corresponding worst-case profileMa,b .

The profileMa,b completes each scan of sizek inA in a single box of

size k , thereby ensuring that every box makes its minimum possible

progress. The profileMa,b is the limit profile of the sequence of
profiles Ma,b (n) for n = 1,b,b2, . . ., constructed recursively by

definingMa,b (n) by concatenating together a copies ofMa,b (n/b)
and then placing a box of size n at the end. The algorithm An
requires the entirety of the profile Ma,b (n) to complete. One can

check inductively that Ma,b (n) has total potential nlogb a · logn,
thereby makingMa,b a worst-case profile.

Box-size perturbations. Consider any probability distribution P
over [0, t] for t ≤

√
n such that for X drawn at random from P,

E[X ] = Θ(t). Let X1,X2, . . . be drawn iid from P and defineM to

be the distribution over square profiles obtained by replacing each

box □i inM with a box of size |□i | · Xi . In the full version of the

paper we show that the highly perturbed square profiles in M still

remain worst-case in expectation.

The proof takes two parts. We begin by defining T to be the

smallest power of b greater than t , and considering the profile

T ·Ma,b obtained by multiplying each box’s size by T . Exploiting
self-symmetry in the definition ofMa,b , we are able to reinterpret

T ·Ma,b as the profileMa,b in which all boxes of size smaller thanT
have been removed. Recall thatMa,b (n) denotes the prefix ofMa,b
on which An completes. Using the fact that T ≤

√
n, we prove

that the boxes of size smaller than T contain at most a constant

fraction of the potential in the prefixMa,b (n). On the other hand, by
iterative applications of the No-Catchup Lemma, the removal of the

boxes cannot facilitate A to finish earlier in the profile. Combining

these facts, we establish that T ·Ma,b remains worst-case.

To obtain an element ofM fromT ·Ma,b , one simply multiplies

the size of each box □i inT ·Ma,b by Xi/T , whereT is drawn from

the distribution P. Using that E[Xi/T ] = Θ(1) and that nlogb a is

a convex function, Jensen’s inequality tells us that the expected

potential of the new box of size
|□i | ·Xi

T is at least a constant frac-

tion of the original potential. Since the perturbations preserve the

expected potentials of the boxes in T ·Ma,b up to a constant factor,

we can prove that the resulting profile is worst-case in expectation

by demonstrating that the perturbations do not result in An fin-

ishing earlier in T ·Ma,b then it would have otherwise. Since each

perturbation can only reduce the size of a box in T ·Ma,b , this can

be shown by iterative applications of the No-Catchup Lemma.

Start time perturbations.We consider what happens if the mem-

ory profile Ma,b (n) is cyclic-shifted by a random amount. This

corresponds to executing Aa,b (n) starting at a random start-time

in the cyclic version ofMa,b (n). Again, the resulting distribution
of profiles remains worst-case in expectation.

The key insight in the proof is that Ma,b (n) can be expressed

as the concatenation of two profiles A = (□1, . . . ,□x ) and B =
(□′

1
, . . . ,□′y ) such that

x∑
i=1

|□i | ≥ Ω

( y∑
i=1

|□′i |
)
, (10)

x∑
i=1

|□i |logb a ≤ O

( y∑
i=1

|□′i |
logb a

)
. (11)

Equation 10 establishes that with at least constant probability, a

random selected start-time in the profileMa,b (n) falls in the prefix

A. By a slight variant on the No-Catchup Lemma, if A is executed

starting at that random start-time, it is guaranteed to use all of the

boxes in the suffix B. By Equation 11, however, these boxes contain

a constant fraction of the potential from the original worst-case

profileMa,b (n). Thus, with constant probability the algorithm A
runs at a random start-time that results in a profile that is still

worst-case. This ensures that the randomly shifted profile will be

worst-case in expectation.

Box-order perturbations. The bad profile, Ma,b , is constructed

recursively by making a copies ofMa,b (n/b) followed by a box of

size n. The box comes at the end, intuitively, because all (a,b, 1)-
regular algorithms with upfront scans in each subproblem can

converted to an equivalent (a,b, 1)-regular algorithm, where the

scans in all subproblems are at the end, preceded by a single linear

scan.

We consider a relaxation of the construction of Ma,b . When

constructing Ma,b (n) recursively, rather than always placing a box

of size n after the final instance of Ma,b (n/b), we instead allow

ourselves to place the box of size n after any of the a recursive

instances ofMa,b (n/b) (each of which may no longer be identical

to the others due to the non-determinedness of the new recursive

construction).

Although at first glance moving the largest box in the profile

seems to closely resemble the random shuffling considered in the

full version of the paper, we prove that the resulting distribution

over square profiles again remains worst-case in expectation. In

fact, we can prove a stronger statement: for memory profile M
drawn from the resulting distribution M of square profiles,M is a

worst-case profile with probability one.

5 RELATEDWORK

Modeling the performance of algorithms in the real-world is an

active area of study and has broad implications both theoretically
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and for performance engineering. In order to apply our algorithms

to real-world systems, it is important to find the right model in

which the theoretical efficiency of our algorithms closely matches

their practical efficiency.

The disk access model (DAM) was formulated [1, 33] to ac-

count for multi-level memory hierarchies (present in real systems)

where the size of memory available for computation and the speed

of computation differs in each level. The DAM [1] models a 2-level

memory hierarchy with a large (infinite sized) but slow disk, and a

small (bounded byM) but fast cache. The drawback of DAM is that

efficient algorithms developed in this model require knowledge of

cache size. The ideal-cache model [28, 51] was proposed to coun-

teract this drawback by building an automatic paging algorithm

into the model and providing no knowledge of the cache size to

algorithms. Thus, cache-oblivious algorithms [21, 36] are inde-
pendent of the memory parameter and can be applied to complex

multi-level architectures where the size of each memory-level is

unknown. There exists a plethora of previous work on the perfor-

mance analysis and implementations of cache-oblivious algorithms

(on single-core and multi-core machines) [7, 8, 10, 12, 15, 16, 19, 27,

28, 38, 60, 61]. Among other limits [4, 11], one critical limit of the

cache-oblivious model is that it does not account for changing cache-
size. In fact, preliminary experimental studies have shown that two

cache-oblivious algorithms (with the same I/O-complexity) might

in fact perform vastly differently under a changing cache [40].

Changing cache size can stem from a variety of reasons. For

example, shared caches in multi-core environment may allocate

different portions of the cache to different processes at any time

(and this allocation could be independent of the memory needed by

each process). There has been substantial work on paging in shared-

cache environments. For example, Peserico formulated alternative

models for page replacement [50] provided a fluctuating cache.

However, Peserico’s page-replacement model differs from the cache-

adaptive model because in his model, the cache-size changes at

specific locations in the page-request sequence as opposed to being

temporally related to each individual I/O. Other page replacement

policies have applied to multicore shared-cache environments [35]

where several processes share the same cache [2, 32, 34, 41, 42, 62]

leading to situations where page sizes can vary [42] and where an

application can adjust the cache size itself [34, 62].

Theoretical [2, 3] and empirical studies [47, 64, 65] have been

done in the past to study partial aspects of adaptivity to memory

fluctuations [13, 31, 44, 45, 48, 63, 65]. Barve and Vitter [2, 3] were

the first to generalize the DAMmodel to account for changing cache

size. In their model, they provide optimal algorithms for sorting,

matrix multiplication, LU decomposition, FFT, and permutation but

stops just short of a generalized technique for finding algorithms

that are optimal under memory fluctuations [2, 3]. In their model,

the cache is guaranteed to stay at sizeM forM/B I/Os. In this way,

their model is very similar to our notion of square profiles.

The cache-adaptive model [6] introduced the notion of amem-
ory profile. Thememory profile provides the cache size at each time

step (defined as an I/O-operation), and at each time step the cache

can increase by 1 block or decrease by an arbitrary amount. Bender

et al. [5] went on to show that any optimal (in the DAM) (a,b, c)-
regular algorithm where a > b and c < 1 is cache-adaptive or

optimal under this model. However, disappointingly, they showed

that (a,b, c)-regular algorithmswhere c = 1 can be up to a log-factor

away from optimal [5]. This leads to the the question of whether

non-adaptive (a,b, c)-regular algorithms can be turned into cache-

adaptive algorithms via some procedure. Lincoln et al. [40] took the

first step in this direction by introducing a scan-hiding procedure

for turning certain non-adaptive (a,b, c)-regular algorithms into

cache-adaptive ones. Although scan-hiding takes polynomial time,

it introduces too much overhead and also does not apply to all

(a,b, c)-regular algorithms where a > b and c = 1.

This paper takes another important step in this direction by

showing that (a,b, c)-regular algorithms where a > b and c = 1 are
cache-adaptive in expectation. Whereas previous papers analyzed

all algorithms in the worst-case, we believe that this is, in fact,

unnecessary and does not accurately depict real-world architectures.

We introduce the notion of average case cache-adaptivity in what

we hope to be a more accurate picture of shared-cache multi-core

systems.
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6 CONCLUSION

This paper presents the first beyond-worst-case analysis of (a,b, c)-
regular cache-adaptive algorithms. The main positive result in this

paper gives hope for cache-adaptivity: even though the worst-case

profile from previous work [5, 6] is robust under random pertur-

bations and shuffling, many (a,b, c)-regular algorithms become

cache-adaptive in expectation on profiles generated from any dis-

tribution. Notably, to our knowledge, all currently known sub-

cubic matrix multiplication algorithms (such as Strassen’s [55],

Vassilevska Williams’ [58], Coppersmith-Winograd’s [20], and Le

Gall’s [39]) were a logarithmic factor away from adaptive under

worst-case analysis, but are adaptive in expectation on random

profiles via smoothed analysis. Our results provide guidance for

analyzing cache-adaptive algorithms on profiles beyond the adver-

sarially constructed worst-case profile.

Cache fluctuations are a fact of life on modern hardware, but

many open questions remain. In this paper, we randomized mem-

ory profiles for deterministic (a,b, c)-regular algorithms. Could

randomized algorithms also overcome worst-case profiles and re-

sult in cache-adaptivity? On the empirical side, which patterns of

memory fluctuations occur in the real world? Further exploration

of beyond-worst-case analysis may help model practical memory

patterns more accurately.
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