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More Revenue from Two Samples via Factor Revealing SDPs

CONSTANTINOS DASKALAKIS,Massachusetts Institute of Technology

MANOLIS ZAMPETAKIS,Massachusetts Institute of Technology

We consider the classical problem of selling a single item to a single bidder whose value for the item is drawn

from a regular distribution F , in a “data-poor” regime where F is not known to the seller, and very few samples

from F are available. Prior work [9] has shown that one sample from F can be used to attain a 1/2-factor

approximation to the optimal revenue, but it has been challenging to improve this guarantee when more

samples from F are provided, even when two samples from F are provided. In this case, the best approximation

known to date is 0.509, achieved by the Empirical Revenue Maximizing (ERM) mechanism [2]. We improve this

guarantee to 0.558, and provide a lower bound of 0.65. Our results are based on a general framework, based

on factor-revealing Semidefinite Programming relaxations aiming to capture as tight as possible a superset of

product measures of regular distributions, the challenge being that neither regularity constraints nor product

measures are convex constraints. The framework is general and can be applied in more abstract settings to

evaluate the performance of a policy chosen using independent samples from a distribution and applied on a

fresh sample from that same distribution.

CCS Concepts: • Theory of computation → Algorithmic game theory and mechanism design; Algo-
rithmic mechanism design.

Additional Key Words and Phrases: revenue maximization, two samples, mechanism design, semidefinite

relaxation
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1 INTRODUCTION
Consider a seller who is selling an item to a single buyer, whose value for the item is drawn from

some distribution F . The seller knows F , but does not know the realized value v ∼ F of the buyer,

which is known to the buyer. What is the best sales protocol for the seller to use in this scenario? A

fundamental result in mechanism design states that among all sales protocols that the seller could

use, a rather simple one is optimal, namely posting a well-chosen price x∗ and letting the buyer

decide whether they are willing to pay x∗ to buy the item. Of course, the optimal price to use is

any x∗ ∈ arg max{x · (1 − F (x)}, interpreting F as a cumulative density function. This result was

obtain by Riley and Zeckhauser [21] and by Myerson [19], who also extended it to the multi-buyer

case, and it justifies mathematically centuries-old selling practices.

The question that arises, however, is how the seller learns F . The standard justification used in

the theory of Bayesian Mechanism Design is that the seller has sold the same type of item before

to buyers from the same population, and has estimated F from her interaction with these buyers

via econometric analysis of their purchasing behavior. Alternatively, the seller might have done
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market research to estimate F . Regardless, chances are that the seller does not know F exactly, and

one must be cautious about the potential loss in revenue resulting from the errors in estimating F .
In particular, one would like to avoid “over-fitting” their mechanism to the estimated distribution F̂ .

The afore-described discrepancy between the standard BayesianMechanismDesignmodel, which

assumes distributional knowledge, and practical reality has motivated lots of work in Econometrics

and, more recently, Algorithmic Game Theory, where most of the focus has been on learning good

mechanisms given sample access to the underlying distribution [1, 3, 4, 6–10, 10, 11, 14–18, 22].

This work has essentially settled how many samples are needed to learn approximately optimal

mechanisms in the single-item single-bidder setting discussed earlier, and has made lots of progress

in a variety of single-item multi-bidder settings as well as several more general settings.

In particular, prior work has focused on the data-rich regime, where the goal is to characterize the

number of samples that are necessary to identify a (1− ε)-optimal mechanism. It is typically shown

that, as ε → 0, the sample complexity scales polynomially in
1

ε and other parameters of the setting.

For example, in the single-item single-bidder setting discussed earlier, it has been shown [16] that

Θ̃( 1

ε3
)-samples are necessary and sufficient to identify a mechanism whose revenue is (1 − ε) ·OPT ,

when the distribution F is regular.
1

The focus of prior work notwithstanding, this paper studies instead the data-poor regime. We are

interested in whether reasonably good mechanisms can be identified when one has a small number

of samples from the underlying distribution. As it turns out, this data-poor regime is quite important

in applications. Interestingly, it is quite important in the design of online ad auctions, despite the

fact that ad exchanges run millions of auctions per day. The reason is that these auctions involve

different combinations of website, viewer, advertiser, etc., leading to an exponential explosion of

combinations of features that influence the value of the advertiser. Ultimately, it is quite common

that the ad exchange has very few observations from past auctions whose features are similar

enough to those of the auction that it is about to run, and it needs to use these past few observations

intelligently to turn the knobs of the auction that it will run in the next instance, e.g. compute

reserve prices for the advertisers, in order to increase the resulting revenue.

So, what is known about learning good mechanisms in the data-poor regime? Not much, even in

the single-bidder single-item setting described above. An elegant geometric argument by Dhang-

watnotai et al. [9] shows that, if one is given one sample x ∼ F from a regular distribution F , and
uses sample x as a take-it-or-leave-it price against a new buyer y ∼ F from the same distribution,

the resulting expected revenue is at least
1

2
· OPT. Specifically:

Ex∼F
[
Ey∼F [x · 1y≥x ]

]
≥

1

2

· max{p · (1 − F (p))}.

The LHS calculates the revenue from using price equal to sample x . Indeed, we receive revenue equal
to the first sample as long as the second sample is larger than the first. The RHS is precisely

1

2
·OPT,

given our discussion in the beginning of this section. More recently, Huang et al. [16] showed that

the
1

2
-approximation guarantee cannot be improved upon by any deterministic mechanism that is

chosen based on the value of a single sample, while Fu et al. [12] showed that the guarantee can be

slightly improved using randomization.

Given that a
1

2
-factor approximation is the best that is achievable by deterministic mechanisms

given one sample from a regular distribution F , can we do better given, say, two samples from

1
Regularity, defined formally in Section 2, is a tail condition on distributions that is standard in Bayesian Mechanism Design

literature. In the context of learning good mechanisms from samples, regularity allows multiplicative approximations to

the optimal revenue. Indeed, it is easy to see that without any tail restriction on the distribution it is impossible to attain

multiplicative approximations, by considering distributions that are 0 with overwhelming probability, and take some large

value with some small probability.
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the distribution? As it turns out, analyzing the revenue of mechanisms chosen using two samples

from a distribution has been challenging analytically, without any progress until a very recent

paper of Babaioff et al [2]. In this work, they consider the revenue of the natural Empirical Revenue
Maximizing (ERM) mechanism. ERM takes two samples x ,y ∼ F , and compares the maximumM to

the minimumm of the two samples. IfM ≥ 2m, the item is pricedM , otherwise the item is priced

m. Babaioff et al show that ERM with two samples achieves expected revenue at least 0.509 · OPT.

Specifically:

Ex,y∼F
[
Ez∼F [RevenueERM (x,y)(z)]

]
≥ 0.509 · max{p · (1 − F (p))}.

Analyzing the revenue of ERM from two samples was challenging and tedious in the work

of [2], and it appears difficult to improve thosee guarantees or show that they cannot be improved.

Motivated by this apparent difficulty, in this paper we target developing a general framework,

based on Semidefinite Programming, for analyzing the revenue attainable by mechanisms chosen

using independent samples from a distribution F and evaluated on a fresh independent sample

from that same distribution. Our framework is general and can be applied in more abstract settings

to evaluate the performance of a policy chosen using independent samples from a distribution and

applied on a fresh sample from that same distribution, however we present it in the context of

analyzing the revenue of ERM from two samples for simplicity. Applying our framework in this

context, we are able to show Theorem 5.1, which states that a rounded version of ERM from two

samples attains revenue ∼ 0.56 · OPT, namely

Ex,y∼F

[
Ez∼F [RevenueERM (x,y)(z)]

]
≥ 0.558 · max{p · (1 − F (p))}.

Moreover, our framework provides an associated lower bound, Theorem 6.1, which states that

there exists a regular distribution F under which ERM from two samples cannot do better than

∼ 0.642 · OPT.

The framework is based on constructing a factor-revealing Semidefinite Programming relaxation,

whose optimal value bounds the approximation factor of a rounded version of ERM. The starting

point for developing the framework is the realization that one way to bound the approximation

factor of ERM is to write a mathematical program that finds the worst-case distribution. The

variables in this program are the probabilities assigned by the distribution on its (discretized)

support, the objective function is a degree 3 polynomial in the distribution, and the regularity

constraints are expressible as inequalities that degree 2 polynomials of the distribution must

satisfy. As such, solving this mathematical program is computationally challenging. Our framework

proposes to relax this program and optimize instead over a three-dimensional tensor that expresses

the joint distribution of the three samples. By optimizing over joint distributions we, of course,

provide more power to the adversary so this is a valid relaxation. The benefit is that both the

objective function and the regularity constraints are now linear in the tensor! The only question

is how to restrict the power of the adversary enough so that the relaxation is not too loose. We

impose symmetry constraints on the tensor and require that its two-dimensional slices are positive

semidefinite. We also cut the tail of the distribution and discretize its support appropriately, and

argue that these operations we perform are not real restrictions to the adversary in coming up with

a worst-case distribution. More precisely, we characterize how to account for these operations in

our relaxation. Our relaxation steps are explained in Section 3. Ultimately we arrive at a number of

SDPs that we solve to calculate the worst-case approximation factor for ERM. The implementation

details are discussed in Section 4 and the results of solving the SDPs and how to combine them to

get our result are discussed in Section 5. Section 6 shows our lower bound.
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2 PRELIMINARIES
Notation. We use small bold letters x to refer to real vectors in finite dimension Rd and capital

bold letters A to refer to matrices in Rd×ℓ . Similarly, a function with image in Rd is represented by

a small and bold letter f . We use Id to refer to the identity matrix in d dimensions. We may skip

the subscript when the dimensions are clear. We use Ei, j to refer to the all zero matrix with one

1 at the (i, j) entry. Let A ∈ Rd×d , we define A♭ ∈ Rd
2

to be the standard vectorization of A. Let
also Sd be the set of all the symmetric d × d matrices and Qd the cone of the positive semidefinite

matrices. E[x] is the expected value of the random variable x and Var[x] is the variance of x .

2.1 Single Buyer - Single Item Pricing
We consider the setting where the seller has a single item to sell to a single buyer. The buyer has

a private valuation v ∈ R+ for this item which we assume is a random variable distributed with

respect to some distribution F , with support R+, cumulative distribution function F and probability

density function f . We assume that the seller has access to exactly two samples v̂1, v̂2 from the

distribution F and otherwise F is unknown to the seller. The goal of the seller based on v̂1 and

v̂2 is to compute a price p and set it as a reserve price for the item. We assume that the buyer has

quasi-linear utility that is equal to u(p) = v − p if she decides to buy the item and v = 0 otherwise.

Regular Distributions and Revenue Curve. In this work we make the standard assumption that

the distribution F is regular. The easiest way to explain this assumption is in terms of the revenue
curve of F . Let q ∈ [0, 1], that represents the quantile of the distribution F , we define rF(q), the
value of the revenue curve at p, that is equal to rF(q) = (1−q)F−1(q). The regularity assumption, is

equivalent to the condition that the revenue curve r (q) is a concave function of q. Let R be the set

of all regular distributions over R+.

Optimal Auction and Expected Revenue. For any fixed price p and given that the valuation of

the buyer is distributed according to F , the expected revenue of the seller if she sets the reserve

price p is equal to RF(p) = p(1 − F (p)). Based on the celebrated result of Myerson [19], over the

set of all the possible auctions the one that maximizes the revenue of the seller corresponds to

the optimal reserved price auction. For a regular distribution F this optimal price is equal to

p⋆
F
= argminp(1 − F (p)) and the optimal expected revenue is equal to OPTF = RF(p

⋆
F
).

Empirical Revenue Maximization.We follow the notation of [2] and we define the Empirical

Revenue Maximization mechanism (ERM) to be the mechanism that computes the optimal price

assuming that the unknown distribution F is equal to the empirical distribution
ˆF of the samples.

In particular when two samples are only observed the exact form of ERM is the following

ERM(v̂1, v̂2) =

{
min(v̂1, v̂2) if max(v̂1, v̂2) ≤ 2 · min(v̂1, v̂2)

max(v̂1, v̂2) otherwise
. (2.1)

The corresponding expected revenue is equal to

RevF (ERM) = E
x∼F

[
E

y∼F
[RF (ERM(x ,y))]

]
. (2.2)

Rounded Empirical RevenueMaximization. In this paper instead of analyzing the vanilla ERM

mechanism we analyze a rounded version of ERM for which we are able to theoretically bound

its performance using the semidefinite relaxation that we introduce in the next section. Let ρ > 1

be the rounding parameter and Gρ be a gridding of the positive real line R+ with the following

pointsGρ = {ρi | i ∈ Z}. For every positive real number x we define дρ (x) to be the largest number
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in Gρ that is smaller than x , that is дρ (x) = maxt ∈Gρ :t ≤x t . Then the rounded empirical revenue

maximization mechanism is the following

ERMρ (v̂1, v̂2) = ERM(дρ (v̂1),дρ (v̂2)). (2.3)

The corresponding expected revenue is equal to

RevF

(
ERMρ

)
= E

x∼F

[
E

y∼F

[
RF

(
ERMρ (x ,y)

)] ]
. (2.4)

Approximation Ratio. The approximation ratios that we are interested in are the following

α⋆ = min

F∈R

RevF (ERM)

OPTF

, α⋆
ρ = min

F∈R

RevF

(
ERMρ

)
OPTF

. (2.5)

3 SEMIDEFINITE PROGRAMMING RELAXATION
We start with a formulation of the problem that we are trying to solve as an optimization problem

in the space of all distributions. Then we explain how we can apply a discretization that leads

to an optimization problem in a finite dimensional space. Finally we relax this problem to get a

positive semidefinite problem that can be approximately solved and most importantly it admits a

certification of optimality due to the existence of a dual program. Our strategy is to construct a

program that abstractly has the following form

α⋆
ρ = min

F,OPT,p⋆

1

OPT

(revenue of ERMρ for distribution F )

s.t. (F satisfies the regularity constraints)

(the revenue for any price is at most OPT)

(the revenue for price p⋆ is exactly OPT)

where the variables are: the distribution F , the value of the optimal possible revenue OPT, and the

optimal price p⋆. Then we add the appropriate constraints make sure that F is regular and that the

optimum is realized at price p⋆ and has value OPT. We start with the definition of the objective

function and then we move to the definition of the regularity and the optimality constraints. Then

we describe how to relax this constraints to get ultimately a finite dimensional optimization problem

and then relax this more to get a positive semidefinite program.

3.1 Objective Function
Let f be the probability density function of F , from the definition of α⋆

ρ we have that the objective

b(F ) of our program is equal to

b(F ) = E
x∼F

[
E

y∼F

[
RF

(
ERMρ (x ,y)

)] ]
=

1

OPTF

∫
R+

∫
R+

RF

(
ERMρ (x ,y)

)
· f (x) · f (y) · dxdy.

Now we observe that for every x ∈ [ρi , ρi+1], the value of ERMρ (x ,y) does not change, and the

same is true for y. Hence we can define the following quantities

fi = F
(
ρi+1

)
− F

(
ρi

)
, ERM

(i, j)
ρ = ERMρ (ρ

i , ρ j ) (3.1)

Therefore we have the following

b(F ) =
1

OPT

∑
i ∈Z

∑
j ∈Z

RF

(
ERM

(i, j)
ρ

)
· fi · fj
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and from the definition of the function RF(·) we have that

b(F ) =
1

OPT

∑
i ∈Z

∑
j ∈Z

ERM
(i, j)
ρ

(
1 − F (ERM

(i, j)
ρ )

)
· fi · fj

=
1

OPTF

∑
i ∈Z

∑
j ∈Z

∑
k ∈Z

ERM
(i, j)
ρ 1

(
k ≥ ERM

(i, j)
ρ

)
· fi · fj · fk (3.2)

3.2 Regularity Constraints
We start with the regularity constraints, namely thatF ∈ R. The regularity constraints are concavity

constraints on the revenue curve rF . There are a lot of different ways to express concavity constraints
and we use the following that is also shown in the Figure 1, for any x ,y ∈ [0, 1] and any z ∈ [x ,y],
the point (z, rF(z)) is above the line that connects (x , rF(x)) and (y, rF(y)).

Fig. 1. Illustration of the regularity conditions.

More precisely,

rF(x) − rF(y)

x − y
(z − y) + rF(y) ≤ rF(z) ∀x ,y ∈ [0, 1], z ∈ [x ,y].

These constraints are expressed in the quantile space of the distributions F . But our final goal is to

formulate a problem in the space R+ of prices. By the definition of the revenue curve it is easy to

see that the regularity constraints are equivalent with the following

F (z)(1 − F (x))x − F (z)(1 − F (y))y − F (y)(1 − F (x))x + F (y)(1 − F (z))z

≥ F (x)(1 − F (z))z − F (x)(1 − F (y))y. ∀x ,y, z ∈ R+ (3.3)

3.3 Optimality Constraints
We now describe the constraints that ensure that the values of the parameters OPT and p⋆ are

correct. First we have that the revenue at any price should be at most OPT and which is equivalent

with the following

x(1 − F (x)) ≤ OPT ∀x ∈ R+. (3.4)

Also we need to ensure that the value OPT is achievable at the point p⋆ or

p⋆(1 − F (p⋆)) ≥ OPT. (3.5)
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So using (3.2), (3.3), (3.4), (3.5) we have the following equation.

α⋆
ρ = min

F,p⋆,OPT

1

OPT

∑
i ∈Z

∑
j ∈Z

∑
k ∈Z

ERM
(i, j)
ρ 1

(
k ≥ ERM

(i, j)
ρ

)
· fi · fj · fk

s.t. F (z)(1 − F (x))x − F (z)(1 − F (y))y − F (y)(1 − F (x))x + F (y)(1 − F (z))z

≥ F (x)(1 − F (z))z − F (x)(1 − F (y))y. ∀x ,y, z ∈ R+

x(1 − F (x)) ≤ OPT ∀x ∈ R+

p⋆(1 − F (p⋆)) ≥ OPT. (3.6)

3.4 Relaxing Regularity and Optimality Constraints
The first step towards constructing a finite dimensional relaxation of (3.6) is to relax the infinitely

many regularity constraints. The idea is to keep only constraints that involve numbers in R+ that
are of the form ρi with i ∈ Z. So for regularity we keep only the constraints that have x = ρi ,
y = ρ j and z = ρk and doing simple calculations we get the following

k∑
k ′=−∞

∞∑
i′=i+1

fk ′ fi′ρ
i −

k∑
k ′=−∞

∞∑
j′=j+1

fk ′ fj′ρ
j −

j∑
j′=−∞

∞∑
i′=i+1

fj′ fi′ρ
i +

j∑
j′=−∞

∞∑
k ′=k+1

fj′ fk ′ρ
k

≥

i∑
i′=−∞

∞∑
k ′=k+1

fi′ fk ′ρ
k −

i∑
i′=−∞

∞∑
j′=j+1

fi′ fj′ρ
j ∀i, j,k . ∈ Z (3.7)

Using the same simplification for optimality constraints we get the following

ρi
∞∑

i′=i+1

fi′ ≤ OPT ∀i ∈ Z. (3.8)

ρi
⋆

∞∑
i′=i⋆+1

fi′ ≥
OPT

ρ
. (3.9)

Observe that in the last optimality constraint we forced p⋆ = ρi
⋆
which is not necessarily true but

we also relaxed the right hand side from OPT to
OPT

ρ . If p⋆ ∈ [ρi
⋆
, ρi

⋆+1

] then we know that for

any x ∈ [ρi
⋆
, ρi

⋆+1

], (1 − F (x)) ≤ (1 − F (ρi
⋆
)) and also x ≤ ρi

⋆
· ρ. From this observation we get

that RF(x) ≤ ρ · RF(ρ
i⋆) and this holds for any distribution F . Hence RF(p

⋆) ≤ ρ · RF(ρ
i⋆) and

therefore (3.9) is indeed a relaxation of the condition (3.5). Also because of the slack that we have

now introduced between (3.8) and (3.9) we assume without loss of generality that OPT = ρiOPT
,

with iOPT ∈ Z.
We conclude therefore that we can replace the optimization over continuous distributions F in

(3.6), with optimization over sequences (fi )i ∈Z such that fi ≥ 0 and

∑
i ∈Z fi = 1. Also observe in

(3.6) the optimization with respect to p⋆ and OPT does not lead to a convex objective and for this

reason we keep the corresponding parameters i⋆ and iOPT in the relaxed version of the optimization
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program, as hyperparameters. Hence we get the following relaxation

αρ (i
⋆, iOPT) = min

(fi )i∈Z

1

ρiOPT

∑
i ∈Z

∑
j ∈Z

∑
k ∈Z

ERM
(i, j)
ρ 1

(
k ≥ ERM

(i, j)
ρ

)
· fi · fj · fk

s.t.

k∑
k ′=−∞

∞∑
i′=i+1

fk ′ fi′ρ
i −

k∑
k ′=−∞

∞∑
j′=j+1

fk ′ fj′ρ
j −

j∑
j′=−∞

∞∑
i′=i+1

fj′ fi′ρ
i +

j∑
j′=−∞

∞∑
k ′=k+1

fj′ fk ′ρ
k

≥

i∑
i′=−∞

∞∑
k ′=k+1

fi′ fk ′ρ
k −

i∑
i′=−∞

∞∑
j′=j+1

fi′ fj′ρ
j ∀i, j,k ∈ Z

ρi
∞∑

i′=i+1

fi′ ≤ ρiOPT ∀i ∈ Z

ρi
⋆

∞∑
i′=i⋆+1

fi′ ≥ ρiOPT−1
(3.10)∑

i ∈Z

fi = 1

fi ≥ 0 ∀i ∈ Z.

Where because of what we have discussed already, we know that α⋆
ρ ≥ mini⋆,iOPT

αρ (i
⋆, iOPT).

3.5 Relaxing to a Finite Dimensional Program
In the previous section we show how to move from the space of all continuous distributions to a

relaxation in the space of sequences (fi )i ∈Z. Now we relax our program more to get a relaxation in

a finite dimensional space. To do this we have to cut the upper and the lower tails of the sequence

(fi )i ∈Z. For this we will use another hyperparameter N that together with ρ measures the quality

of the discretization.

For the lower tail we define the variable F =
∑iOPT−N

i=−∞ fi and we drop all the regularity conditions

for i, j,k ≤ iOPT−N . We also drop all the optimality conditions for i ≤ iOPT−N but observe that this

is not actually a relaxation since for j ≤ iOPT the revenue RF(ρ
j ) is always less than OPT = ρiOPT

.

To make sure that the program remains a relaxation, we replace in our objective every term that

contains an index that is less that iOPT − N with 0.

For the upper tail we assume that fj = 0 for j > iOPT + N . With this assumption we only loose

an additive term of

(
1

ρ

)N
from the approximation ratio, as we will see in Lemma 3.1. Therefore we

get the following finite dimensional relaxation of 3.10, where when we write

∑j
i=−∞ fi we mean

the sum

∑j
i=iOPT−N

fi + F . The variables of this program now are (fi )i ∈[iOPT−N ,iOPT+N ], F . Let also for
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simplicitlym− = iOPT − N andm+ = iOPT + N .

αρ,N (i
⋆, iOPT) = min

(fi ),F

1

ρiOPT

m+∑
i=m−

m+∑
j=m−

m+∑
k=m−

ERM
(i, j)
ρ 1

(
k ≥ ERM

(i, j)
ρ

)
· fi · fj · fk

s.t.

k∑
k ′=−∞

m+∑
i′=i+1

fk ′ fi′ρ
i −

k∑
k ′=−∞

m+∑
j′=j+1

fk ′ fj′ρ
j −

j∑
j′=−∞

m+∑
i′=i+1

fj′ fi′ρ
i +

j∑
j′=−∞

m+∑
k ′=k+1

fj′ fk ′ρ
k

≥

i∑
i′=−∞

m+∑
k ′=k+1

fi′ fk ′ρ
k −

i∑
i′=−∞

m+∑
j′=j+1

fi′ fj′ρ
j ∀i, j,k ∈ Z

ρi
m+∑

i′=i+1

fi′ ≤ ρiOPT ∀i ∈ [m−,m+]

ρi
⋆

m+∑
i′=i⋆+1

fi′ ≥ ρiOPT−1
(3.11)

m+∑
i=m−

fi + F = 1

fi ≥ 0 ∀i ∈ [m−,m+]

F ≥ 0.

Fig. 2. Illustration of the cut of the tails of the distribution.

Based on the definitions of αρ (i
⋆, iOPT) and αρ,N (i

⋆, iOPT) in (3.10) and (3.11) respectively we can

prove the following lemma.

Lemma 3.1. It holds that αρ,N (i⋆, iOPT) ≥

(
1 − 1

ρN

)
αρ (i

⋆, iOPT).

Proof. The proof follows immediately from Lemma 47 of [5]. □

3.6 SDP Relaxation
The main issue with the program (3.11) is that it involves an optimization over product measures

which is in general intractable. To make (3.11) tractable we consider the SDP relation by considering

as variables the general tensor fi, j,k
2
. We define also the matrix Fi = (fi, j,k )(j,k ) and for simplicity

we set n = 2N , and we translate the indices from the interval [iOPT − N , iOPT + N ] to the interval

[1,n]. Observe that with this indexing of the variables the iOPT will always be equal to n/2 and

hence we shouldn’t treat it as a hyperparameter of the problem anymore. Since we have a general

three dimensional tensor now we include also some symmetry constraints that trivially hold when

2
For simplicity we assume that this tensor contains the variable F too.
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the tensor is a product measure. We also add the positive semidefinite constraints Fi ⪰ 0 which

again are trivially satisfied by any product measure. Then our final relaxation is the following.

ᾱρ,n(i
⋆) = min

(fi ),F

1

ρiOPT

n∑
i=1

n∑
j=1

n∑
k=1

ERM
(i, j)
ρ 1

(
k ≥ ERM

(i, j)
ρ

)
· fi, j,k

s.t.

k∑
k ′=−∞

m+∑
i′=i+1

fk ′,i′, ℓρ
i −

k∑
k ′=−∞

m+∑
j′=j+1

fk ′, j′, ℓρ
j −

j∑
j′=−∞

m+∑
i′=i+1

fj′,i′, ℓρ
i +

j∑
j′=−∞

m+∑
k ′=k+1

fj′,k ′, ℓρ
k

≥

i∑
i′=−∞

m+∑
k ′=k+1

fi′,k ′, ℓρ
k −

i∑
i′=−∞

m+∑
j′=j+1

fi′, j′, ℓρ
j ∀i, j,k, ℓ ∈ [1,n]

ρi
m+∑

i′=i+1

fi′, j,k ≤ ρiOPT ∀i, j,k ∈ [1,n]

ρi
⋆

m+∑
i′=i⋆+1

fi′, j,k ≥ ρn/2−1 ∀j,k ∈ [1,n]

n∑
i=1

n∑
j=1

n∑
k=1

fi, j,k = 1 (3.12)

Fi ⪰ 0 ∀i ∈ [1,n]

fi, j,k ≥ 0 ∀i, j,k ∈ [1,n]

fi, j,k = fj,i,k ∀i, j,k ∈ [1,n]

fi, j,k = fi,k, j ∀i, j,k ∈ [1,n]

Based on the arguments that we have explained in this section and using the Lemma 3.1 the

following Theorem follows.

Theorem 3.2. It holds that α⋆
ρ ≥

(
1 − 1

ρn/2

)
min

i⋆∈[n/2,n]

{
ᾱρ,n(i

⋆)
}
.
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4 TECHNICAL DETAILS
As we have already explained our goal is to find a primal-dual pair for the program (3.12) and then

use Theorem 3.2 to prove our main result. For this purpose, we will use the solver SCS from [20],

in the interface of cvxpy. Before diving into some optimization on (3.12) that were necessary, we

explain how we can get an accurate result from the guarantees of the SCS solver. Without loss of

generality we restrict the program (3.12) such that ρiOPT+n/2 = 1.

4.1 Approximation Error from Approximate Solutions of (3.12)
In order to simplify the notation and be more close with the notation used in [20] we assume that

the program (3.12) can be written in the following form.

min

x
cTx

s .t . Ax + s = b

(x , s) ∈ K

The dual of the above program is

max

y
− bTy

s .t . −ATy + r = c

(y,r ) ∈ K∗

From the termination criteria in Section 3.5 of [20], we have that the SCS solver will return a

primal-dual pair (x̂ , ŝ, r̂ , ŷ) such that

∥Ax̂ + ŝ − b∥
2
≤ εp (1 + ∥b∥

2
), (4.1)

−AT ŷ + r̂ − c




2
≤ εd (1 + ∥c∥

2
), (4.2)

cT x̂ + bT ŷ



2
≤ εд(1 +

��cT x̂ �� + ��bT ŷ��) (4.3)

where the εp , εd and εд are the primal residual, the dual residual and the duality gap tolerances

respectively. We have also the guarantee that x̂ ∈ K and ŷ ∈ K∗
. For all the experiment that we ran

the most important parameter is εd , the other two are at least 10
−4

smaller, so we set ε = εd . Also
for all the experiments that we ran we had ∥b∥ = 1, ∥c∥ ≤ 0.02 and obviously by the construction

of our program we have that

��cTx �� ≤ 1 and

��bTy�� ≤ 1. Hence we have that

∥Ax̂ + ŝ − b∥
2
≤ 2 · 10

−4ε, (4.4)

−AT ŷ + r̂ − c




2
≤ 1.02 · ε, (4.5)

cT x̂ + bT ŷ



2
≤ 3 · 10

−4ε . (4.6)

Now we can take the weighted average of the primal constraints with respect to the values of the

dual and we conclude that for any feasible point x it holds that

−bT ŷ ≤ cT x̂ + (−AT ŷ + r̂ − c)T x̂ .

But from the constraints of our primal problem (3.12) we have that x is a distribution, so ∥x ∥
1
= 1

which implies ∥x ∥
2
≤ 1, hence from the guarantees of the SCS solver we have that

−bT ŷ ≤ cT x̂ + 1.02 · ε

from which we get the following lemma
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Lemma 4.1. We assume that ∥b∥
2
≤ 1, ∥c∥

2
≤ 0.02, εp ≤ 10

−4ε and εд ≤ 10
−4ε . If (x̂ , ŝ, r̂ , ŷ) is a

primal-dual solution returned by the SCS solver on the program (3.12) and under the aforementioned
assumptions we have that

bT ŷ − 1.02ε ≤ ᾱρ,n(i
⋆).

4.2 Reducing the Number of Variables
One of the biggest challenges towards running the program (3.12) is that the number of variables

increases very fast as n3
. Even a constant reduction of this number is very important in the ability

to run bigger programs. For this reason we observe that because of the symmetry constraints that

we have in the end of (3.12) we don’t need exactly n3
free variables. Instead for any variable fi, j,k

we need only one representative up to permutations of the indices (i, j,k). This reduces the number

of variables from n3
to

(n+3

3

)
which significantly improves the performance of the SCS solver.

5 RESULTS FROM THE SCS SOLVER
For our final result we choose the parameters ρ = 1.08, n = 100 and we solve all the programs

ᾱ1.08,100(i) for all i ∈ [49, 99] and ε = 0.01. The minimum value that we get is larger than 0.581 for

i = 87. Hence by Lemma 4.1 and by the fact that this was the minimum result we have that

min

i ∈[49,99]
ᾱ1.08,100(i) ≥ 0.581 − 1.01 · 0.01 = 0.5709.

Finally from Theorem 3.2 and using the above inequality we get that

α⋆
1.08

≥

(
1 −

(
1

1.08

)
50

)
min

i ∈[49,99]
ᾱ1.08,100(i) ≥ 0.978 · 0.5709 ≥ 0.558

from which our main theorem follows.

Theorem 5.1. There exists a mechanism that has access to two samples from a regular distribution
F , and achieves revenue at least 0.558 · OPT.

The whole proof of Theorem 5.1 consists of the code together with the dual certificates for all

the SDP’s ᾱ1.08,100(i), where i ∈ [49, 99]3.

We next present the primal values that we get for the case ρ = 1.08 and i⋆ = 87. Since this primal

solution is huge, we present the marginal distribution that we observe with respect to the first

index. More precisely, we consider the distribution

fi =
∑
j,k

xi, j,k . (5.1)

As we can see in the next two plots the solution that we get is almost regular and achieves the

maximum exactly at the value that we were expecting. From the optimality constraints in the

program (3.12) it is clear that the value of the optimal revenue of F should be ρiOPT−1
which is

exactly what we observe in the experiments.

6 LOWER BOUND OF APPROXIMATION RATION OF ERM

In this section we prove a non-trivial lower bound on the value α⋆
. To build the counter-example

that is used in our lower bound we used our SDP relaxation program (3.12), but we also verified

the validity of the lower bound as we show in this section. The result that we want to prove is the

following.

3
All this information can be found in the following anonymous github repository:

https://github.com/anonymousAuthorPrime/Two-Samples-SDP.
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Fig. 3. Properties of the marginal F defined in (5.1) of the approximate solution of ᾱ1.08,100(87) solved using
SCS.

Theorem 6.1. It holds that α⋆ ≤ 0.642.

Proof of Theorem 6.1. In order to prove this theorem we will describe a regular distribution

that achieves this approximation ratio. To define the distribution and make sure that it is a regular

distribution we start with n = 16 of the form (q, rF(q)) on the revenue curve of the distribution.

Then we define a complete revenue curve by taking the linear interpolation of these points and

we can easily check that the result is a concave curve. One thing that we also get directly from

this description is the maximum revenue and the optimal reserve price since both of them will

correspond to one of the initial points on the revenue curve. The points (qi , ri ) that we start with

are presented in the following table together with the value of the variables c(1)i and c(2)i that are

computed according to the following equations and will be used to define the probability density

function of the distribution for our counter-example.

c(1)i =
ri+1 − ri
qi+1 − qi

, c(2)i = ri − c(1)i · si (6.1)

Then our distribution can be define as the following piecewise function

f (x) =
15∑
i=1

1

{
x ∈

[
i − 1

n − 1

,
i

n − 1

]}
·
c(1)i + c

(2)

i(
c(1)i + x

)
2
. (6.2)

Using the definition of the density function we can run numeric integration to get an upper and

a lower bound estimate for the following integral, that measures the revenue achieved by the

ERM with two samples mechanism when under the distribution with density f . To simplify the

expression we will use the notationmx,y = min(x ,y) andMx,y = max(x ,y).

¯ℓ =

∫
1

0

∫
1

0

RF (ERM (x ,y)) · f (x) · f (y) · dxdy =

=

∫
1

0

∫
1

0

∫
1

0

1{z ≥ mx,y } · 1{2mx,y ≥ Mx,y } · f (x) · f (y) · f (z) · dx · dy · dz+

+

∫
1

0

∫
1

0

∫
1

0

1{z ≥ Mx,y } · 1{Mx,y > 2mx,y } · f (x) · f (y) · f (z) · dx · dy · dz

To numerically compute an accurate value for the above integral we use the Global Adaptive
strategy of mathematica, where at every step the algorithm chooses to split the subinterval that
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i qi ri c(1)i c(2)i
1 0 0 0.0554 0

2 0.5462 0.0303 0.0554 0

3 0.7066 0.0391 0.0553 0

4 0.7832 0.0434 0.0552 0.0001

5 0.8281 0.0458 0.0551 0.0002

6 0.8576 0.0475 0.0550 0.0003

7 0.8785 0.0486 0.0546 0.0006

8 0.8940 0.0495 0.0546 0.0006

9 0.9060 0.0501 -0.3910 0.4044

10 0.9360 0.0384 -0.4510 0.4605

11 0.9558 0.0295 -0.5200 0.5265

12 0.9696 0.0295 -0.5951 0.5993

13 0.9795 0.0164 -0.6951 0.6973

14 0.9874 0.0109 -0.8033 0.8041

15 0.9939 0.0057 -0.9332 0.9332

16 1 0 - -

Table 1. The initial points on the revenue curve that are used to define the counter example distribution.

0.2 0.4 0.6 0.8 1.0

5

10

15

(a) Probability density function.

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

0.05

(b) Revenue curve.

Fig. 4. Properties of the distribution F defined in (6.2).

had the largest error in the previous step. The value in every subinterval is computed via a simple

Trapezoidal method and a theoretically proven upper bound on the error is produced. The final

result is an estimate
ˆℓ with the following guarantees

ˆℓ = 0.03185,
��� ˆℓ − ¯ℓ

��� ≤ 0.00031 =⇒ ¯ℓ ≤ 0.03216.

Finally from Table 1 we conclude that for the particular distribution F that we designed it holds

that OPTF = 0.0501 and hence we have that

α⋆ ≤
0.03216

0.0501

≤ 0.642

□

In the next plots we see the density and the revenue curve of the distribution that we used to

prove Theorem 6.1.
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7 CONCLUSIONS AND FUTUREWORK
We introduce a method for bounding the approximation ratio of algorithms that apply on a small

set of independent samples from the same distribution. In such settings a very challenging part

of the approximation ratio analysis is the identification of the worst distribution for which the

performance of the algorithm is minimized. Our method is to design a convex relaxation that

optimizes over the space of all possible distributions. The solution to the resulting convex program

provides an upper bound on the approximation ratio and the solution to the dual convex program

provides a proof for this upper bound.

In this paper we instantiate our method in the problem of estimating the approximation ratio that

is achieved by the Empirical Revenue Maximization with two samples, compared to the optimal

revenue achieved by Myerson’s reserved price auction. Our method significantly improves the best

known result and also gives us a lower bound on the approximation ratio.

Our method suggests the following future work:

▶ Potentially our method can be used to get a tight approximation or there is a relaxation gap.

As far as we know if we run our suggested program with better discretization in machines

with more computational power we could get even closer to the optimal approximation

factor.

▶ Our SDP relaxation can be easily extended to the case wherein we are given k samples for any

constant k . Of course the size of the program will be O(nk+1), where n is the discretization

parameter. Hence for larger values of k more computational power is needed. It is a very

interesting and promising direction if we can get significantly better approximation ratio for

k ≥ 3 using our relaxation.

▶ There are many more problems in the AGT literature where the goal is to bound the approxi-

mation ratio of a mechanism that has access to a very small number of i.i.d. samples, e.g. [12],

[13]. In these settings, using similar ideas we can provide SDP relaxations and it would be

interesting to see if we can get better upper and lower bounds compared to the best known.
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