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ABSTRACT
Non-signaling proofs, motivated by quantum computation, have

found applications in cryptography and hardness of approximation.

An important open problem is characterizing the power of non-

signaling proofs. It is known that non-signaling proofs with two

provers are characterized by PSPACE and that non-signaling proofs

with poly(𝑛)-provers are characterized by EXP. However, the power
of 𝑘-prover non-signaling proofs, for 2 < 𝑘 < poly(𝑛) remained an

open problem.

We show that 𝑘-prover non-signaling proofs (with negligible

soundness) for 𝑘 = 𝑂 (
√
log𝑛) are contained in PSPACE. We prove

this via two different routes that are of independent interest. In

both routes we consider a relaxation of non-signaling called sub-

non-signaling. Our main technical contribution (which is used in

both our proofs) is a reduction showing how to convert any sub-

non-signaling strategy with value at least 1 − 2−Ω (𝑘2)
into a non-

signaling one with value at least 2
−𝑂 (𝑘2)

.

In the first route, we show that the classical prover reduction

method for converting 𝑘-prover games into 2-prover games car-

ries over to the non-signaling setting with the following loss in

soundness: if a 𝑘-prover game has value less than 2
−𝑐𝑘2

(for some

constant 𝑐 > 0), then the corresponding 2-prover game has value

less than 1− 2𝑑𝑘2

(for some constant 𝑑 > 0). In the second route we

show that the value of a sub-non-signaling game can be approxi-

mated in space that is polynomial in the communication complexity

and exponential in the number of provers.
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1 INTRODUCTION
Proofs lie at the heart of the theory of computation. In the mid-

eighties, the seminal work of Goldwasser, Micali and Rackoff [12]

introduced the idea of using randomness and interaction in proofs.

Interactive proofs (IP) were introduced for the purpose of con-

structing zero-knowledge proofs, though were realized to be quite

powerful in Shamir’s celebrated IP = PSPACE Theorem [25, 30].

Shortly after interactive proofs were introduced, multi-prover

interactive proofs were introduced by Ben-Or, Goldwasser, Kilian

and Wigderson [3]. In a multi-prover interactive proof (MIP) a

verifier is interacting with several non-communicating provers.

This class was proven to be extremely powerful, by Babai, Fortnow

and Lund, who showed that MIP = NEXP [1]. The power of this

class stems from the assumption that the provers behave locally,

namely that they see only the messages sent to them and do not

have any information about messages sent to the other provers.

In reality, however, it is not clear how to ensure that the provers

behave locally. Even if the provers are placed in different rooms

with no communication channels between them, they may share

quantum entanglement, which can cause their strategies to be cor-

related and non-local. These attacks can be powerful even though

at first they may seem to be benign [8].

These quantum strategies motivated the notion of non-signaling

strategies, which is the subject of this work. The notion of non-

signaling strategies was first studied in physics in the context of

Bell inequalities by Khalfin and Tsirelson [23] and Rastall [27], and

it has gained much attention after it was reintroduced by Popescu

and Rohrlich [26]. Non-signaling attacks are more general than

quantum attacks; in a non-signaling attack the cheating provers can

collude, and thus each answer can be a function of all the queries.
The only restriction is that for any subset of provers, the answers

provided by these provers should not convey any information about

the queries given to the other provers. Namely, the only restriction

that is placed on the (possibly colluding) cheating provers is that

their answers cannot be seen as “evidence" that information has

travelled between them.

If we think of the provers as being placed very far away from each

other (say on different planets), then the non-signaling restriction

allows the provers to behave arbitrarily as long as they adhere to the

physical principle that information cannot travel faster than light, a

consequence of Einstein’s special relativity theory. In particular, all

the strategies that can be realized by provers that share entangled

quantum states are non-signaling strategies. Moreover, the principle

that information cannot travel faster than light is a central principle
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in physics and is likely to remain valid in any future ultimate theory

of nature, since its violation means that information could be sent

from future to past. Therefore, soundness against non-signaling

strategies is likely to ensure soundness against provers that obey a

future ultimate theory of physics, and not only our current physical

theories, that are known to be incomplete.

Importantly, although non-signaling strategies are motivated by

quantum entanglement, they found compelling applications outside

the realm of quantum physics. In particular, they have been proved

to be instrumental for constructing succinct delegation schemes

(under standard cryptographic assumptions) and in the realm of

hardness of approximation.

The applicability of non-signaling to computation delegation. Kalai,
Raz, and Rothblum [21] demonstrated the significance of non-

signaling by showing that any MIP that is secure against non-

signaling attacks
1
can be converted into a single-prover one-round

proof system (with computational soundness). More specifically,

they show that the PIR (or FHE) heuristic, proposed by Biehl, Meyer,

and Wetzel [4], for converting any MIP to a single-prover one-round
proof system is sound if the underlying MIP has non-signaling

soundness.

In [22], the same authors constructed an MIP that is secure

against non-signaling attacks for every language in EXP, thus yield-

ing the first one-round delegation scheme for all deterministic

computations, under standard cryptographic assumptions. This

application of non-signaling to computation delegation has proved

to be very fruitful, and yielded numerous followup works (e.g.,

[2, 5, 18, 19]). Moreover, all one-round delegation schemes in the

literature that are based on standard cryptographic assumptions

use the concept of non-signaling.

The applicability of non-signaling to hardness of approximation.
Kalai, Raz and Regev [20] showed the significance of non-signaling

to hardness of approximation. In particular, they showed that it is

hard to approximate the value of a linear program in space 2
log𝑛𝑜 (1)

,

even if the polytope is fixed (i.e., even if the algorithm has un-

bounded time to preprocess the polytope), and even if all the coef-

ficients are non-negative (which is the regime where hardness of

approximation is most meaningful). More specifically, they showed

that there exists a fixed polytope (corresponding to the set of all pos-

sible non-signaling strategies) such that approximating the value of

a linear program (where the coefficients of the objective function

and the variables are restricted to be positive) is P-complete with a

polylog-space reduction. Prior work [9, 11, 29] demonstrated such

hardness of approximation for the case where the polytope was not

fixed (and preprocessing is not allowed).

The importance of the notion of non-signaling gives rise to the

following fundamental question:

What is the power of multi-prover interactive proofs that are sound
against non-signaling strategies?

This is precisely the question we study in this work. In what follows,

we denote the class of one-round multi-prover interactive proofs

with non-signaling soundness by NS MIP. We denote by 𝑘-prover

1
To be precise, [21] considered a slightly more relaxed notion, which they called

statistical non-signaling. We neglect this difference here.

NS MIP the class of one-round 𝑘-prover interactive proofs with

non-signaling soundness.

1.1 Prior Work
Ito, Kobayashi and Matsumoto [17] proved that 2-prover NS MIP

contains PSPACE (by proving that the 2-prover scheme of Cai,

Condon, and Lipton [6] is in fact secure against non-signaling

strategies). Shortly after, Ito [16] proved that 2-prover NS MIP is

contained in PSPACE, thus characterizing the power of 2-prover

NS MIP. The power of 𝑘-prover NS MIP, for 𝑘 > 2, remained open.

It is known that NS MIP is contained in EXP ([17], implicit in

[10]) since one can find the best non-signaling strategy by solving

an exponential-size linear program. Therefore, the power of a 𝑘-

proverNSMIP lies between PSPACE and EXP. More recently, Kalai,

Raz and Rothblum [22] showed that there exists a poly(𝑛)-prover
NS MIP for EXP, thus characterizing the power of 𝑘-prover NS MIP

for 𝑘 = poly(𝑛).2
These works left open the following question: What is the power

of 𝑘-proverNSMIP for 2 < 𝑘 < poly(𝑛)? This question was studied
by Chiesa, Manohar and Shinkar in [7], who constructed a 𝑘-prover

NS MIP for EXP with 𝑘 = 𝑂 (1), albeit where the verifier’s queries
are of exponential length.

3

1.2 Our Results
Throughout this manuscript, we assume that an MIP has complete-

ness at least 1 − negl(𝑛), and has soundness negl(𝑛), for some

negligible function negl(𝑛).4 This assumption is standard in cryp-

tography. We mention that often in the definition of interactive

proofs, completeness is required to be greater than 2/3 and sound-

ness at most 1/3; this is because it is well known that this gap can

be amplified to 1 − negl(𝑛) and negl(𝑛) via parallel repetition, at
least for the case of single prover interactive proofs. A parallel rep-

etition theorem is also known for 2-proverMIPs; this was proven

in the classical setting by Raz [28], and in the non-signaling setting

by Holenstein [14]. In the multi-prover regime, where the number

of provers is greater than 2, we do not have a parallel repetition

theorem. Moreover, in the non-signaling setting, Holmgren and

Yang [15] provided a negative result, demonstrating that (in general)

soundness cannot be amplified via parallel repetition.

We prove that 𝑘-prover NSMIPwith 𝑘 = 𝑂 (
√
log𝑛) is contained

in PSPACE. More generally, we prove the following theorem.

Theorem 1.1 (Informal). There exist constants 𝑐, 𝑑 > 0 such that
any 𝑘-prover MIP with non-signaling soundness at most 2−𝑐𝑘

2

and

completeness at least 1−2−𝑑𝑘2

, is contained in SPACE
(
poly(𝑛, 2𝑘2 )

)
.

We emphasize that this theorem holds only forMIPs that have

negligible soundness and almost perfect completeness. In particular,

we don’t rule out the existence of a 3-proverMIPwith NS soundness

1/3 and completeness 2/3 for EXP. However, the soundness and
completeness gap of such MIPs could not be amplified (to 1 −
negl(𝑛)) without adding provers.

2
More specifically, it was shown in [22] that there exists a constant 𝑐 ∈ N such that

there exists a (log𝑇 )𝑐 -prover NS MIP for DTIME(𝑇 ) .
3
Using the terminology of [7], they construct an exponential size no-signaling PCP

for EXP with constant number of queries.

4
A function 𝜇 : N → N is said to be negligible if approaches zero faster than the

inverse of any polynomial.
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We present two alternative routes for proving Theorem 1.1, each

is of independent interest. Both routes consider the more relaxed

notion of sub-non-signaling, as defined in [24] (for the goal of ob-

taining a parallel repetition theorem for non-signaling strategies).

Both rely on the following theorem that asserts that one can con-

vert any sub-non-signaling strategy into a non-signaling one, albeit

with a substantial loss in the success probability.

In the following theorem we think of the input 𝑥 as being fixed.

Usually, when the input is fixed, theMIP is referred to as a game.

Theorem 1.2 (Informal). There exist constants 𝑐, 𝑑 > 0 such that
for any 𝑘-prover game, if there exists a sub-non-signaling strategy
that convinces the verifier to accept with probability at least 1−2−𝑐𝑘2

,
then there exists a non-signaling strategy that convinces the verifier
to accept with probability at least 2−𝑑𝑘

2

.

The proof of this theorem contains the bulk of technical diffi-

culty of this work, and is used as a building block in both proofs

of Theorem 1.1. We defer the proof overview of Theorem 1.2 to

Section 5.1, and the formal proof to Section 5.2.

We note that a related theorem was proven by Lancien and Win-

ter [24], who showed that for every game with full support, if there

exists a sub-non-signaling strategy that succeeds with probability

at least 1 − 𝜖 then there exists a non-signaling strategy that suc-

ceeds with probability at least 1 − Γ𝜖 , where Γ may be as large as

exponential in the communication complexity. This bound does

not seem to be tight enough in order to obtain Theorem 1.1.

We next present our two alternative routes for proving Theo-

rem 1.1 (using Theorem 1.2). The first is via a prover reduction

method, and the second is via approximating the sub-non-signaling

value efficiently.

Reducing the number of provers. We show that (a slight variant

of) the classical prover reduction method for converting a 𝑘-prover

MIP into a 2-proverMIP carries over to the non-signaling setting,

albeit with a substantial loss in soundness (which depends on 𝑘).

More specifically, in the seminal work of Ben-Or, Goldwasser,

Kilian and Wigderson [3], they presented a general method for

converting a 𝑘-prover MIP into a 2-prover MIP, where in the re-

sulting 2-prover MIP the verifier sends one prover the queries

(𝑞1, . . . , 𝑞𝑘 ) corresponding to all the 𝑘 provers in the underlying

𝑘-prover scheme, and expects to get back 𝑘 answers (𝑎1, . . . , 𝑎𝑘 ); he
sends the other prover a single query 𝑞𝑖 corresponding to a random

index 𝑖 ∈ [𝑘], and gets back an answer 𝑎′
𝑖
. The verifier accepts if

and only if 𝑎′
𝑖
= 𝑎𝑖 and if the verifier in the 𝑘-prover MIP accepts

the answers (𝑎1, . . . , 𝑎𝑘 ).
In the non-signaling setting, we slightly modify this transfor-

mation by having the verifier of the 2-prover MIP send the second

prover a subset of queries {𝑞𝑖 }𝑖∈𝑆 for a randomly chosen subset

𝑆 ⊂ [𝑘] (as opposed to a single query 𝑞𝑖 corresponding to a single

index 𝑖 ∈ [𝑘]), and accept if and only if the answers (𝑎1, . . . , 𝑎𝑘 )
of the first prover are accepted by the verifier of the 𝑘-prover MIP

and if the answers of the second prover, denoted by (𝑎′
𝑖
)𝑖∈𝑆 , satisfy

𝑎′
𝑖
= 𝑎𝑖 for every 𝑖 ∈ 𝑆 .
Theorem 1.3 (Informal). There exist constants 𝑐, 𝑑 > 0 such

that for every 𝑘-proverMIP Π = (𝑃1, . . . , 𝑃𝑘 ,𝑉 ) with non-signaling
soundness at most 2−𝑐𝑘

2

, the 2-prover MIP obtained by performing

the prover reduction transformation (described above) on Π has non-
signaling soundness at most 1 − 2−𝑑𝑘2

.

We prove Theorem 1.3 by using Theorem 1.2. We refer the reader

to Section 2.1 for the proof idea, and Section 4.1 for the precise

theorem statement and proof.

We next argue that Theorem 1.3 implies Theorem 1.1. Let 𝑐, 𝑑

be the constants from Theorem 1.3. We prove Theorem 1.1 with

constants 𝑐 ′ = 𝑐 and 𝑑 ′ = 2𝑑 . To this end, fix any 𝑘-prover MIP for

a language 𝐿 with no signaling soundness 2
−𝑐𝑘2

and completeness

1 − 2
−2𝑑𝑘2

. Use Theorem 1.3 to convert this MIP into a 2-prover

MIP with non-signaling soundness 1− 2−𝑑𝑘2

(and completeness 1−
2
−2𝑑𝑘2

). By [16], the non-signaling value of any 2-player game can

be approximated up to an additive factor of 𝜖 in space poly(𝑛, 1/𝜖).
Setting 𝜖 = 2

−2𝑑𝑘2

, there exists an algorithm A that runs in space

poly(𝑛, 2𝑘2 ), such that on input an element 𝑥 ∈ {0, 1}𝑛∩𝐿 it outputs

a value 𝑣 ≥ 1− 2 · 2−2𝑑𝑘2

, and on input an element 𝑥 ∈ {0, 1}𝑛 \𝐿 it

outputs a value 𝑣 ≤ 1 − 2−𝑑𝑘2 + 2−2𝑑𝑘2

. This algorithm can be used

to decide whether 𝑥 ∈ 𝐿 (assuming without loss of generality that

𝑑 > 2

𝑘2
), implying that 𝐿 ∈ SPACE(poly(𝑛, 2𝑘2 )).

Approximating the sub-non-signaling value. We next present an

alternative route for proving Theorem 1.1, without going through

the prover reduction method presented above. Instead we prove

the following theorem, which is of independent interest.

Theorem 1.4 (Informal). The sub-non-signaling value of any
𝑘-prover MIP with input length 𝑛, can be approximated up to an
additive factor 𝜖 by a poly(𝑛, 2𝑘 , 1/𝜖, cc)-space algorithm, where cc
is the communication complexity of theMIP on inputs of length 𝑛.

In particular this theorem implies the following corollary.

Corollary 1.5 (Informal). 𝑘-prover subNS MIP is contained in

SPACE

(
poly(𝑛, 2𝑘 )

)
.

See Section 2.2 for the proof idea. We omit the formal proof from

this extended abstract, and refer the reader to the full version [13].

We mention that a related (yet weaker) theorem was proven

in [15], where it was shown that given anMIP, one can distinguish

between the case that its classical value is 1 (i.e., there exists a local

strategy that is accepted with probability 1) and the case that its

sub-non-signaling value is at most 1 − 𝛿 , in space poly(𝑛, 2𝑘 , 1/𝛿).
This does not seem to be strong enough for us to use in order to

obtain Theorem 1.1.

We next argue that Theorem 1.4 and Theorem 1.2 imply The-

orem 1.1. To this end, let 𝑐, 𝑑 > 0 be the constants from Theo-

rem 1.2. We prove Theorem 1.1 with any constants 𝑐 ′, 𝑑 ′ such that

𝑐 ′ > 𝑐 and 𝑑 ′ = 2𝑑 . Fix any 𝑘-proverMIP with soundness at most

2
−𝑐′𝑘2

< 2
−𝑐𝑘2

and completeness at least 1− 22𝑑𝑘2

. By Theorem 1.2

for every 𝑥 ∈ {0, 1}𝑛 \ 𝐿 the sub-non-signaling value of theMIP on

input 𝑥 must be less than 1 − 2−𝑑𝑘2

. By Theorem 1.4, applied with

𝜖 = 2
−2𝑑𝑘2

, there exists an algorithm A that given any 𝑥 ∈ {0, 1}𝑛 ,
runs in space poly(𝑛, 2𝑘2 ) and approximates the sub-non-signaling

value of this MIP on input 𝑥 up to an additive factor 2
−2𝑑𝑘2

. There-

fore for every 𝑥 ∈ {0, 1}𝑛 \ 𝐿, the algorithm A outputs a value

𝑣 ≤ 1 − 2−𝑑𝑘2 + 2−2𝑑𝑘2

, and for every 𝑥 ∈ {0, 1}𝑛 ∩ 𝐿 the algorithm

1026



STOC ’20, June 22–26, 2020, Chicago, IL, USA Dhiraj Holden and Yael Tauman Kalai

A(𝑥) outputs an element 𝑣 ≥ 1 − 2 · 2−2𝑑𝑘2

. This algorithm can be

used to decide whether 𝑥 ∈ 𝐿 (assuming without loss of generality

that 𝑑 > 2

𝑘2
), implying that 𝐿 ∈ SPACE(poly(𝑛, 2𝑘2 )).

2 OUR TECHNIQUES
In this section, we outline the high level overview of the proofs of

Theorem 1.3 and Theorem 1.4 (the former uses Theorem 1.2 as a

building block). We defer the high level overview of the proof of

Theorem 1.2, which contains the bulk of technical difficulty of this

work, to Section 5.1.
5

2.1 Overview of Theorem 1.3
The main ingredient in the proof of Theorem 1.3 is a claim showing

that any non-signaling strategy for the 2-prover MIP that succeeds

in convincing the verifier to accept with probability 1 − 𝜖 can be

converted into a sub-non-signaling strategy for the 𝑘-prover MIP

that succeeds with probability 1 − 2𝑘𝜖 . This claim, together with

Theorem 1.2, implies Theorem 1.3 in a relatively straightforward

manner.

We next provide the high-level overview of the proof of this claim.

Given a non-signaling strategy for the 2-prover MIP we construct

a sub-non-signaling strategy for the 𝑘-party MIP as follows: Given

𝑞 = (𝑞1, . . . , 𝑞𝑘 ), run the non-signaling strategy for the 2-prover

MIP 2
𝑘
times. Namely, for every subset 𝑆 ⊆ [𝑘], run the non-

signaling prover for the 2-prover MIP, while giving the first prover

all the queries 𝑞 = (𝑞1, . . . , 𝑞𝑘 ) and giving the second prover the

subset (𝑞𝑖 )𝑖∈𝑆 . If the verifier accepts the resulting answers in all
the 2

𝑘
executions then output the answers given by the first prover

in a random execution among these 2
𝑘
executions. Otherwise, if

even one of these proofs is rejected then output ⊥.
One can easily argue that this strategy is accepted with probabil-

ity 1 − 2𝑘𝜖 (by a straightforward application of the union bound).

Moreover, we argue that this strategy is sub-non-signaling. Intu-

itively, this follows from the fact that if all of the 2
𝑘
executions

(of the 2-proverMIP) were accepting, then for every subset 𝑆 , the

distribution of the answers (𝑎𝑖 )𝑖∈𝑆 is the same as the distribution

provided by the second prover in the 2-proverMIP on input (𝑞𝑖 )𝑖∈𝑆 ,
which is non-signaling. We refer the reader to Section 4.1 for the

formal proof.

2.2 Overview of the Proof of Theorem 1.4
The proof of this theorem follows the approach of [16], which

proves that the non-signaling value of any 2-prover MIP can be

approximated in PSPACE. Specifically, we define a linear program

corresponding to the 𝑘-proverMIP such that the value of the linear

program is equal to the sub-non-signaling value of the MIP. We

then show that this linear program is of a specific form that allows

it to be approximated in PSPACE. Specifically, we show that this

linear program can be converted into a mixed packing and covering

problem, and use the result of Young [31] which shows that such

problems can be approximated via a space-efficient algorithm. We

defer the formal proof to the full version of this work [13].

5
We defer this high-level overview since it is convenient to present it after the prelim-

inaries section. The reader can read Section 3 and jump straight to Section 5.1 for the

overview.

3 PRELIMINARIES
Definition 3.1. A 𝑘-prover interactive proof for a language 𝐿 is

said to have completeness 𝑐 if for every 𝑥 ∈ 𝐿 the honest provers

convince the verifier to accept 𝑥 ∈ 𝐿 with probability at least 𝑐 . It

is said to have soundness 𝑠 is for every possibly malicious (non-

interacting and local) provers, and for every 𝑥 ∉ 𝐿, the probability

that these provers convince the verifier to accept 𝑥 ∈ 𝐿 is at most 𝑠 .

This work considers non-signaling cheating provers, as opposed

to only local ones. We also often think of the input 𝑥 as fixed, and

thus think of the proof system as a game, as opposed to a proof of

membership in a language 𝐿.

3.1 Non-signaling Games
Definition 3.2. A 𝑘-prover, one-round game is a tuple

G = (𝑄1, ..., 𝑄𝑘 , 𝐴1, ..., 𝐴𝑘 ,𝑉 , 𝜋), where 𝑄1, ..., 𝑄𝑘 are sets of

queries, 𝐴1, ..., 𝐴𝑘 are sets of answers,

𝑉 : 𝑄1 ×𝑄2 × ... ×𝑄𝑘 ×𝐴1 ×𝐴2 × ... ×𝐴𝑘 → {0, 1}
is a polynomial-time computable function, and 𝜋 is a polynomial-

time sampleable probability distribution over (𝑄1, ..., 𝑄𝑘 ).

In the literature, the provers in a game are often referred to as

players, and we use both interchangeably.

Notation. We denote by Q , 𝑄1 ×𝑄2 × ...𝑄𝑘 andA , 𝐴1 ×𝐴2 ×
... ×𝐴𝑘 . We also denote by Q𝑆 , 𝑄𝑠1 ×𝑄𝑠2 × ... ×𝑄𝑠 |𝑆 | , where 𝑆 =

{𝑠1, 𝑠2, ..., 𝑠 |𝑆 |}, and similarly forA𝑆 . We denote by [𝑘] = {1, . . . , 𝑘}.
For every 𝑞 = (𝑞1, . . . , 𝑞𝑘 ) ∈ Q, every 𝑎 = (𝑎1 . . . , 𝑎𝑘 ) ∈ A, and

every 𝑆 ⊆ [𝑘], we denote by 𝑞𝑆 = (𝑞𝑖 )𝑖∈𝑆 and 𝑎𝑆 = (𝑎𝑖 )𝑖∈𝑆 .

Definition 3.3. A strategy for a game G = (Q,A,𝑉 , 𝜋) is a family

of probability distributions {𝑝𝑞}𝑞∈Q over A ∪ {⊥}.

For any 𝑞 ∈ Q and 𝑎 ∈ A we denote by

𝑝𝑞 (𝑎) , Pr[𝑝𝑞 = 𝑎],
and for any subset 𝑆 ⊆ [𝑘] we denote by

𝑝𝑞 (𝑎𝑆 ) ,
∑

𝑎∗∈A:𝑎∗
𝑆
=𝑎𝑆

𝑝𝑞 (𝑎∗).

We use a similar notation for 𝑝𝑞 (⊥).

Definition 3.4. A strategy {𝑝𝑞}𝑞∈Q for a 𝑘-player game G =

(Q,A,𝑉 , 𝜋) is said to be non-signaling if there exists a family of

probability distributions {Sim𝑆,𝑞𝑆 }𝑆⊆[𝑘 ],𝑞𝑆 ∈Q𝑆 , where each
Sim𝑆,𝑞𝑆 is a distribution over A𝑆 , such that for every 𝑞 ∈ Q, every
𝑆 ⊆ [𝑘], and every 𝑎𝑆 ∈ A𝑆 ,

𝑝𝑞 (𝑎𝑆 ) = Sim𝑆,𝑞𝑆 (𝑎𝑆 ).

Namely, a strategy is non-signaling if the marginal distributions

of the answers are the same regardless of the other queries. Note

that if {𝑝𝑞}𝑞∈Q is a non-signaling strategy then for every 𝑞 ∈ Q,∑
𝑎𝑆

Pr[𝑝𝑞 = 𝑎𝑆 ] =
∑
𝑎𝑆

Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆 ] = 1,

which implies that Pr[𝑝𝑞 = ⊥] = 0.

Two relaxations of the notion of non-signaling were considered

in the literature: the first is the notion of sub-non-signaling, by
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Lancien and Winter [24], and the second is the notion of honest-
referee non-signaling by Holmgren and Yang [15]. In both cases

these relaxed notions were motivated by the goal of proving a

parallel repetition theorem for non-signaling strategies. We begin

by defining the latter notion.

Loosely speaking, a strategy {𝑝𝑞}𝑞∈Q for a 𝑘-player game G =

(Q,A,𝑉 , 𝜋) is said to be honest-referee non-signaling if the non-

signaling condition holds for every 𝑞 ∈ Q such that Pr[𝜋 = 𝑞] > 0

(and is not required to hold for queries that are not in the support

of 𝜋 ).

Definition 3.5. {𝑝𝑞}𝑞∈Q is a honest-referee non-signaling strat-

egy for G if there exists a family of probability distributions

{Sim𝑆,𝑞𝑆 }𝑆⊆[𝑘 ],𝑞𝑆 ∈Q𝑆 , where each Sim𝑆,𝑞𝑆 is a distribution over

A𝑆 , such that for every 𝑞 ∈ Q in the support of 𝜋 , every 𝑆 ⊆ [𝑘],
and every 𝑎𝑆 ∈ A𝑆 ,

𝑝𝑞 (𝑎𝑆 ) = Sim𝑆,𝑞𝑆 (𝑎𝑆 ).

Definition 3.6. A strategy {𝑝𝑞}𝑞∈Q for a 𝑘-player game G =

(Q,A,𝑉 , 𝜋) is said to be sub-non-signaling if there exists a fam-

ily of probability distributions {Sim𝑆,𝑞𝑆 }𝑆⊆[𝑘 ],𝑞𝑆 ∈Q𝑆 , where each
Sim𝑆,𝑞𝑆 is a distribution over A𝑆 , such that for every 𝑞 ∈ Q, every
𝑆 ⊆ [𝑘], and every 𝑎𝑆 ∈ A𝑆 ,

𝑝𝑞 (𝑎𝑆 ) ≤ Sim𝑆,𝑞𝑆 (𝑎𝑆 ) .

If {𝑝𝑞}𝑞∈Q is a sub-non-signaling strategy then for every 𝑞 ∈ Q,
if ∑

𝑎𝑆

𝑝𝑞 (𝑎𝑆 ) <
∑
𝑎𝑆

Sim𝑆,𝑞𝑆 (𝑎𝑆 ) = 1,

then in the remaining probability 𝑝𝑞 outputs ⊥.

Definition 3.7. Let NS(G) be the set of non-signaling strategies
of a 𝑘-prover game G = (Q,A,𝑉 , 𝜋). The non-signaling value of G
is

VNS (G) = max

{𝑝𝑞 }𝑞∈Q ∈NS(G)

∑
𝑞∈Q

𝜋 (𝑞)
∑
𝑎∈A

𝑝𝑞 (𝑎)𝑉 (𝑞, 𝑎).

Similarly, let hrNS(G) be the set of honest-referee non-signaling
strategies of G. The honest-referee non-signaling value of G is

V
hrNS
(G) = max

{𝑝𝑞 }𝑞∈Q ∈hrNS(G)

∑
𝑞∈Q

𝜋 (𝑞)
∑
𝑎∈A

𝑝𝑞 (𝑎)𝑉 (𝑞, 𝑎) .

Let subNS(G) be the set of sub-non-signaling strategies of G. The
sub-non-signaling value of G is

V
subNS

(G) = max

{𝑝𝑞 }𝑞∈Q ∈subNS(G)

∑
𝑞∈Q

𝜋 (𝑞)
∑
𝑎∈A

𝑝𝑞 (𝑎)𝑉 (𝑞, 𝑎) .

Definition 3.8. For any 𝛿 > 0 and any 𝑘-player game G =

(Q,A,𝑉 , 𝜋), let subNS𝛿 (G) be the set of all sub-non-signaling

strategies {𝑝𝑞}𝑞∈Q of the game G such that for every 𝑞 ∈ Q,

Pr[𝑝𝑞 = ⊥] ≤ 𝛿.

4 NON-SIGNALING GAMES WITH 𝑘 PLAYERS
AND 2

−Ω (𝑘2) SOUNDNESS ARE IN
SPACE

(
poly(𝑛, 2𝑘2)

)
In what follows we state our main theorem.

Theorem 4.1. There exists constants 𝑐, 𝑑 > 0 for which the fol-
lowing holds: Fix any language 𝐿 ∉ SPACE(poly(𝑛, 2𝑘 )) and any
𝑘-prover one-round proof system (𝑃1, . . . , 𝑃𝑘 ,𝑉 ) for 𝐿 with complete-
ness ≥ 1 − 2−𝑐𝑘2

. For every 𝑥 consider the game G𝑥 = (Q,A,𝑉 , 𝜋𝑥 ),
where Q = Q1 × . . . × Q𝑘 and where Q𝑖 is the set of possible queries
sent by 𝑉 to prover 𝑃𝑖 , A = A1×, . . . ,A𝑘 and where A𝑖 is the set of
possible answers sent by 𝑃𝑖 , and 𝜋𝑥 is the distribution of queries sent
by 𝑉 (𝑥).

Then, there exists an infinite set 𝑁 ⊆ N, such that for every 𝑛 ∈ 𝑁
there exists 𝑥 ∈ {0, 1}𝑛 \ 𝐿 such thatVNS (G𝑥 ) ≥ 2

−𝑑 ·𝑘2

.

Our proof of Theorem 4.1 makes use of the following theorem

which is the main technical contribution of this work.

Theorem 4.2. There exist constants 𝑐, 𝑑 > 0, such that for any
𝑘 ∈ N and any 𝑘-player game G the following holds: IfV

subNS
(G) ≥

1 − 2
−𝑐𝑘2

then VNS (G) ≥ 2
−𝑑 ·𝑘2

. Moreover, for every 𝛿 ≤ 1

𝑘3𝑘 , if
V
subNS𝛿

(G) ≥ 1 − 𝛿2 thenVNS (G) ≥ 1

𝑘3𝑘 .

We defer the proof of Theorem 4.2 to Section 5. In what follows

we prove Theorem 4.1 using Theorem 4.2 as a building block. The

proof of Theorem 4.1 only relies on the first part of Theorem 4.2. The

second part of Theorem 4.2, which converts a strategy in subNS𝛿

into a non-signaling strategy, is not needed for our main result. We

add it as a contribution of independent interest, as it provides a

tighter guarantee.

Our proof relies on a prover reduction theorem which shows

that one can convert any 𝑘-player game with non-signaling value

at most 2
−𝑂 (𝑘2)

into a 2-player game with non-signaling value at

most 1 − 2−Ω (𝑘2)
. As mentioned in Section 1.2, an alternative proof

of Theorem 4.1, which uses (the first part of) Theorem 4.2 and

Theorem 1.4, can be found in the full version of this work [13].

4.1 From Multi-prover Non-signaling Proofs to
Two-prover Non-signaling Proofs

In the classical setting there is a well known reduction that converts

any 𝑘-player game into a 2-player game. Below we present a slight

variant of it that will be useful in the non-signaling setting.

Let G = (Q,A,𝑉 , 𝜋) be a 𝑘-player game. Consider the following

2-player game, denoted by T (G) = (Q∗,A∗,𝑉 ∗, 𝜋∗):
• Q∗ = (Q∗

1
,Q∗

2
), where Q∗

1
= Q, Q∗

2
= {𝑆, 𝑞𝑆 }𝑆⊆[𝑘 ],𝑞𝑆 ∈Q𝑆 .

• A∗ = (A∗
1
,A∗

2
), where A∗

1
= A, A∗

2
=
⋃

𝑆⊆[𝑘 ] A𝑆 .

• 𝜋∗ generates 𝑞 ← 𝜋 and generates a random subset 𝑆 ⊆ [𝑘].
It outputs (𝑞, (𝑆, 𝑞𝑆 )).
• 𝑉 ∗ ((𝑞, (𝑆, 𝑞𝑆 )), (𝑎, 𝑎′𝑆 )) accepts if and only if𝑉 (𝑞, 𝑎) accepts
and 𝑎𝑖 = 𝑎′

𝑖
for every 𝑖 ∈ 𝑆 .

Theorem 4.3. Let 𝑐, 𝑑 > 0 be the constants from Theorem 4.2.
Let G be a 𝑘-player game with non-signaling value less than 2

−𝑑𝑘2

.
Then the 2-player game T (G) has non-signaling value at most 1 −
2
−(𝑐+1)𝑘2

.

Before we prove Theorem 4.3, we argue that it implies Theo-

rem 4.1. To see this, fix any 𝐿 and (𝑃1, . . . , 𝑃𝑘 ) as in the theorem

statement. Let 𝑐, 𝑑 be the constant from Theorem 4.3. We prove that

Theorem 4.1 holds with the constants 2𝑐, 𝑑 . Suppose for contradic-

tion that for every large enough 𝑛 ∈ N and every 𝑥 ∈ {0, 1}𝑛 \ 𝐿 it

holds thatVNS (G𝑥 ) < 2
−𝑑𝑘2

, then by Theorem 4.3,VNS (T (G𝑥 )) ≤
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1 − 2−(𝑐+1)𝑘2

, whereas for 𝑥 ∈ 𝐿, VNS (T ((G𝑥 )) ≥ 1 − 2−2𝑐𝑘2

. By

the work of Ito [16], this implies that 𝐿 ∈ SPACE(poly(𝑛, 2𝑘 )),
contradicting our assumption.

Proof of Theorem 4.3. Let G be a 𝑘-player game such that its

non-signaling value is less than 2
−𝑑𝑘2

. Suppose for the sake of

contradiction that the non-signaling value of the 2-player game

T (G) is 1 − 𝜖 , for 𝜖 < 2
−(𝑐+1)𝑘2

. Let {𝑝𝑞,(𝑆,𝑞𝑆 ) } be a non-signaling
strategy that convinces the verifier 𝑉 ∗ in the game T (G) to accept

with probability 1 − 𝜖 .
Consider the sub-non-signaling strategy {𝑝𝑞} for the 𝑘-player

game G, where 𝑃𝑞 samples answers as follows:

(1) For every 𝑆 ⊆ [𝑘], sample (𝑎, 𝑎′
𝑆
) ← 𝑝𝑞,(𝑆,𝑞𝑆 ) .

(2) If there exists 𝑆 ⊆ [𝑘] such that the above answers are

rejecting (i.e., 𝑉 ∗ ((𝑞, (𝑆, 𝑞𝑆 )), (𝑎, 𝑎′𝑆 )) = 0) then output ⊥.
(3) Otherwise, choose a random 𝑆 ⊆ [𝑘] and output 𝑎 corre-

sponding to this 𝑆 .

Claim 1. {𝑝𝑞} is a sub-non-signaling strategy for the 𝑘-player
game G.

Proof. By definition, the fact that {𝑝𝑞,(𝑆,𝑞𝑆 ) } is a non-signaling
distribution for the 2-player game T (G), implies that there is a

family of distributions {Sim𝑞} ∪ {Sim𝑆,𝑞𝑆 } ∪ {Sim𝑞,(𝑆,𝑞𝑆 ) } such
that for every 𝑞 ∈ Q, for every 𝑆 ⊆ [𝑘] and every 𝑎𝑆 ∈ A𝑆 ,

Pr[𝑝𝑞,(𝑆,𝑞𝑆 ) | (𝑆,𝑞𝑆 ) = 𝑎𝑆 ] = Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆 ] .
We prove that {𝑝𝑞} is sub-non-signaling with respect to {Sim𝑆,𝑞𝑆 }.
Namely, we prove that for every 𝑞 ∈ Q, every 𝑆 ⊆ [𝑘], and every

𝑎𝑆 ∈ A𝑆 ,

Pr[𝑝𝑞 |𝑆 = 𝑎𝑆 ] ≤ Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆 ] . (1)

We note that Equation (1) would clearly hold if we chose 𝑎 corre-

sponding to the specific set 𝑆 in the equation. However, recall that

𝑝𝑞 chooses 𝑎 corresponding to a random subset 𝑆 ′ ⊆ [𝑘].
Thus, we define for every (fixed) 𝑆 ⊆ [𝑘] a strategy {𝑝𝑆𝑞 } which

is identical to {𝑝𝑞}, except that if it doesn’t abort then it always

outputs𝑎 corresponding to the fixed subset 𝑆 . Therefore, to conclude

the proof that {𝑝𝑞} is sub-non-signaling it suffices to prove that for

every 𝑞 ∈ Q, every 𝑎 ∈ A, and every subsets 𝑆, 𝑆 ′ ⊆ [𝑘], it holds
that

Pr[𝑝𝑆𝑞 = 𝑎] = Pr[𝑝𝑆
′

𝑞 = 𝑎],
which follows directly from the the fact that {𝑝𝑞,(𝑆,𝑞𝑆 ) } is non-
signaling (together with the definition of {𝑝𝑆𝑞 }). �

Note that the sub-non-signaling strategy {𝑝𝑞} is rejected with

probability at most 2
𝑘 · 𝜖 (by the union bound).

This in particular implies that the sub-non-signaling value of G
is at least

1 − 2𝑘 · 𝜖 ≥ 1 − 2𝑘 · 2−(𝑐+1)𝑘
2

≥ 1 − 2−𝑐𝑘
2

,

which by Theorem 4.2 implies that the non-signaling value of G is

at least 2
−𝑑𝑘2

, contradicting our assumption.

�

5 THE PROOF OF THEOREM 4.2
In this section we prove Theorem 4.2, which is our main technical

theorem. We start with the high-level overview of the proof.

5.1 Overview of the Proof of Theorem 4.2
In this overview we focus on proving the first part of Theorem 4.2,

which is the part that contains the bulk of technical difficulty.

Namely, we need to show how to convert any sub-non-signaling

strategy for a 𝑘-player game G = (Q,A,𝑉 , 𝜋) that convinces the
verifier to accept with probability 1 − 2−𝑐𝑘2

into a non-signaling

strategy that convinces the verifier to accept with probability 2
−𝑑𝑘2

(for some constants 𝑐, 𝑑 > 0).

To this end, we use the notion of honest-referee non-signaling
strategies, defined by Holmgren and Yang [15] (see Definition 3.5).

Loosely speaking, given any sub-non-signaling strategy {𝑝𝑞}𝑞∈Q
that succeeds in convincing 𝑉 to accept with probability 1 − 𝜖 , we
slightly modify the query distribution 𝜋 into a new distribution 𝜋∗

that is obtained by restricting 𝜋 to a subset of its domain Q, such
that 𝜋 and 𝜋∗ are 𝛿-close, for an arbitrary parameter 𝛿 > 0 of

our choice. We construct an honest-referee non-signaling strategy

with respect to 𝜋∗ that convinces 𝑉 to accept with probability at

least
1

𝑘3𝑘 (1 − 𝑘2𝑘𝜖/𝛿). We then rely on a theorem from [15] that

shows how to convert an honest-referee non-signaling strategy that

succeeds in convincing 𝑉 with probability 𝜂, into a non-signaling

one that succeeds in convincing𝑉 with probability ≥ 2
−𝑂 (𝑘2)𝜂 (see

Theorem 5.1).

We note that if the sub-non-signaling strategy {𝑝𝑞}𝑞∈Q is in

subNS𝛿 (for an appropriately small value of 𝛿 > 0) then our result-

ing honest-referee non-signaling strategy is in fact a non-signaling

strategy, and hence we avoid the loss that is incurred by converting

an honest-referee non-signaling strategy into a non-signaling one.

This is the reason we obtain a tighter bound in the second part

of Theorem 4.2.

Fix any sub-non-signaling strategy {𝑝𝑞}𝑞∈Q . By Definition 3.6,

there exists a set of distributions {Sim𝑆,𝑞𝑆 }𝑆⊆[𝑘 ],𝑞𝑆 ∈Q𝑆 such that

for every 𝑞 ∈ Q, every 𝑆 ⊆ [𝑘], and every 𝑎𝑆 ∈ A𝑆 ,

𝑝𝑞 (𝑎𝑆 ) ≤ Sim𝑆,𝑞𝑆 (𝑎𝑆 ) .

We show how to convert the strategy {𝑝𝑞}𝑞∈Q into an honest-referee
non-signaling strategy via the following steps.

(1) Step 1. In this step we convert {Sim𝑆,𝑞𝑆 } into a family of

distributions {Sim(1)
𝑆,𝑞𝑆
}, where each distribution Sim

(1)
𝑆,𝑞𝑆

is

over elements in A𝑆 ∪ {⊥}, such that for every 𝑆,𝑇 ⊆ [𝑘]
for which 𝑆 ⊆ 𝑇 , and for every 𝑞 ∈ Q and 𝑎𝑆 ∈ A𝑆 ,

Pr[Sim(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] ≤ Pr[Sim(1)

𝑆,𝑞𝑆
= 𝑎𝑆 ] (2)

and

Pr

𝑞←𝜋,𝑎←Sim
(1)
[𝑘 ],𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 1 − 𝜖1, (3)

where 𝜖1 , 𝑘𝑘 · 𝜖 . This is done via two sub-steps.

(a) We first reduce the probability of the “outliers" of 𝑝𝑞 .

Namely, if there exists a vector 𝑞 ∈ Q, a subset 𝑆 ⊂ [𝑘],
and answers 𝑎𝑆 ∈ A𝑆 such that Pr[𝑝𝑞 |𝑆 = 𝑎𝑆 ] is higher
than the average probability over all𝑞∗’s such that𝑞∗

𝑆
= 𝑞𝑆 ,

then we lower Pr[𝑝𝑞 |𝑆 = 𝑎𝑆 ] towards the average, and
in the remaining probability output ⊥. Namely, we con-

struct a family of distributions {𝑝𝑞}𝑞∈Q such that for every
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𝑞 ∈ Q, every 𝑆 ⊆ [𝑘], and every 𝑎𝑆 ∈ A𝑆 ,

Pr[𝑝𝑞 |𝑆 = 𝑎𝑆 ] ≤ E𝑞∗←𝑉 :𝑞∗ |𝑆=𝑞𝑆 Pr[𝑝𝑞 |𝑆 = 𝑎𝑆 ] .
We note that ideally we would like to construct {𝑝𝑞}𝑞∈Q
that satisfies the above equation where the inequality is

replaced with equality, since then {𝑝𝑞}𝑞∈Q would be non-

signaling, and we would be done. However, this is possible

only if {𝑝𝑞} was non-signaling to begin with. Therefore,

we start with the more humble goal of omitting the “out-

liers".

We construct {𝑝𝑞} in a greedy manner, by starting with

{𝑝𝑞} and then lowering the probabilities (in a greedy man-

ner) so that the inequality above is satisfied. Note that in

the process we lower the total probability of 𝑝𝑞 (it out-

puts ⊥ in the remaining probability). However, we argue

that the fact that {𝑝𝑞} is sub-non-signaling implies that

the total probability is not reduced by too much. More

specifically, we show that if

Pr

𝑞←𝜋,𝑎←𝑝𝑞
[𝑉 (𝑞, 𝑎)] = 1 − 𝜖

then

Pr

𝑞←𝜋,𝑎←�̃�𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 1 − 2𝑘𝜖. (4)

(b) Define a family of distributions {Sim′
𝑆,𝑞𝑆
} by

Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆 ] , max

𝑞∗:𝑞∗
𝑆
=𝑞𝑆

Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ],

and in the remaining probability Sim
′
𝑆,𝑞𝑆

outputs ⊥. At
first it may seem that {Sim′

𝑆,𝑞𝑆
} satisfies Equation (2),

since for a subset 𝑇 that contains 𝑆 , we maximize over

a smaller set of queries, and hence it may appear that the

probability is smaller. However, this is not quite true since

Pr[Sim′
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] is defined by summing over all 𝑎𝑇

that are consistent with 𝑎𝑆 , the maximum

max

𝑞∗:𝑞∗
𝑇
=𝑞𝑇

Pr[𝑝𝑞∗ |𝑇 = 𝑎𝑇 ],

which is larger than first maximizing and then summing.

Therefore, we “correct" {Sim′
𝑆,𝑞𝑆
} so that Equation (2)

holds. Specifically, we define {Sim(1)
𝑆,𝑞𝑆
} in a greedy man-

ner, by induction, as follows. For sets 𝑆 of size 1 and for

every 𝑞𝑆 ∈ Q𝑆 , define Sim
(1)
𝑆,𝑞𝑆

= Sim
′
𝑆,𝑞𝑆

. Suppose we

defined Sim
(1)
𝑆,𝑞𝑆

for all sets 𝑆 of size less than 𝑖 , then for

any set 𝑇 of size 𝑖 and any 𝑞𝑇 ∈ Q𝑇 , define Sim(1)𝑇,𝑞𝑇
in an

iterative manner, as follows: Start by defining Sim
(1)
𝑇,𝑞𝑇

=

Sim
′
𝑇,𝑞𝑇

. If there exists 𝑆 ( 𝑇 with |𝑆 | = |𝑇 | − 1 and a set

𝑎𝑆 ∈ A𝑆 , such that

Pr[Sim(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] > Pr[Sim(1)

𝑆,𝑞𝑆
= 𝑎𝑆 ],

then reduce the probability of Sim
(1)
𝑇,𝑞𝑇

so that

Pr[Sim(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] = Pr[Sim(1)

𝑆,𝑞𝑆
= 𝑎𝑆 ],

and in the remaining probability output ⊥. This process
ensures that indeed Equation (2) is satisfied. However, it

reduces the total probability of Sim
(1)
[𝑘 ],𝑞 , yet we argue that

it does not reduce the probability by too much, and that

indeed Equation (3) holds.

(2) Step 2.We convert the family of distributions {Sim(1)
𝑆,𝑞𝑆
} into

a family of honest-referee non-signaling distributions. This

is done via the following two sub-steps.

(a) Step 2(a). We modify {Sim(1)
𝑆,𝑞𝑆
} to a new family of distri-

butions {Sim(2)
𝑆,𝑞𝑆
} that still satisfies Equation (2), yet in

addition for every 𝑆 and 𝑞𝑆 the probability that Sim
(2)
𝑆,𝑞𝑆

outputs ⊥ depends only on |𝑆 |, and is otherwise inde-

pendent of 𝑆 and 𝑞𝑆 . We define Sim
(2)
𝑆,𝑞𝑆

by lowering the

probability mass of Sim
(1)
𝑆,𝑞𝑆

. However, to ensure that we

do not lower the probability mass by too much, we need

to focus only on queries 𝑞 such that the probability that

Sim
(1)
[𝑘 ],𝑞 outputs ⊥ is low. Specifically, in what follows,

we focus only on queries 𝑞 ∈ Q such that

Pr[Sim(1)[𝑘 ],𝑞 = ⊥] ≤ 𝜖1/𝛿,

and we denote the set of all such queries by GOOD. By

Markov’s inequality, together with Equation (3),

Pr[𝑞 ∈ GOOD] ≥ 1 − 𝛿.
From now on we focus only on 𝑞 ∈ GOOD. Namely,

we consider the modified game where the queries are

restricted to being in GOOD. Formally, we modify the

game G = (Q,A,𝑉 , 𝜋) by modifying the distribution 𝜋

to the new distribution 𝜋∗ = 𝜋 |GOOD; i.e., 𝜋∗ samples 𝑞

according to 𝜋 subject to the restriction that 𝑞 ∈ GOOD.
From now on we focus on the game G∗ where the distribu-
tion 𝜋 is replaced with 𝜋∗. We construct an honest-referee

non-signaling strategy for this game. We mention that

if the sub-non-signaling strategy {𝑝𝑞} is in subNS𝛿 for

𝛿 <
√
𝜖 then GOOD = Q, and thus in this case the honest-

referee non-signaling strategy is a non-signaling one, and

thus we avoid the use of Theorem 5.2 and the loss associ-

ated with it.

We first convert {Sim(1)
𝑆,𝑞𝑆
} into a new family of distribu-

tions {Sim(2)
𝑆,𝑞𝑆
} that still satisfies Equation (2), but in addi-

tion it satisfies that for every ℓ ∈ [𝑘], for 𝛼ℓ , (1− 𝜖1/𝛿)ℓ ,
for every 𝑞 ∈ GOOD and every subset 𝑆 ⊆ [𝑘] of size ℓ ,∑

𝑎𝑆 ∈A𝑆

Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ] = 𝛼ℓ , (5)

and

Pr

𝑞←𝜋∗,𝑎←Sim
(2)
[𝑘 ],𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 1 − (𝑘 + 1)𝜖1/𝛿 , 1 − 𝜖2 .

This is done by simply normalizing each Sim
(1)
𝑆,𝑞𝑆

accord-

ingly. We note that this normalization slightly reduces the

success probability. Nevertheless, Equation (5) is crucial,

since it will allow us to use {Sim(2)
𝑆,𝑞𝑆
} to construct a non-

signaling strategy.
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(b) Step 2(b).We next define an honest-referee non-signaling

strategy for G∗. More specifically, we define a strategy for

which the non-signaling condition holds for every query

𝑞 ∈ GOOD.
For the sake of motivation, let’s first try to define our

honest-referee non-signaling strategy {𝑝∗𝑞}𝑞∈Q . The idea
is to define it in a greedy manner, as follows. We start by

defining

Pr[𝑝∗𝑞 = 𝑎] = Pr[Sim(2)[𝑘 ],𝑞 = 𝑎]

We would like to argue that

Pr[𝑝∗𝑞 |𝑆 = 𝑎𝑆 ] = Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ];

however, all we can guarantee is that

Pr[𝑝∗𝑞 |𝑆 = 𝑎𝑆 ] ≤ Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ] . (6)

To remedy this, we modify the distribution 𝑝∗𝑞 , as follows:
For every 𝑖 ∈ [𝑘], let A∗

𝑖
= A𝑖 ∪ {∗}, and let A∗ = A∗

1
×

. . .×A∗
𝑘
. For each 𝑞 ∈ Q, we modify the distribution 𝑝∗𝑞 as

follows: We do not change its distribution over elements

in A, but we allow it to also output elements in A∗ that
are not in A. More specifically, we modify 𝑝∗𝑞 as follows:

For any set 𝑆 ⊆ [𝑘] and any 𝑎𝑆 ∈ A𝑆 , we define

Pr[𝑝∗𝑞 = (𝑎𝑆 , ∗)] = Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ] − Pr[𝑝∗𝑞 |𝑆 = 𝑎𝑆 ] . (7)

Equation (6) ensures that this probability is non-negative.

Moreover, Equation (7) ensures that indeed

Pr[𝑝∗𝑞 |𝑆 = 𝑎𝑆 ] = Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ],

and hence only depends on 𝑞𝑆 as desired.

Unfortunately, this remedy does not work. The reason is

that only initially it is true that

Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ] − Pr[𝑝∗𝑞 |𝑆 = 𝑎𝑆 ] ≥ 0. (8)

However, as we modify the definition of 𝑝∗𝑞 , it’s probability
mass (i.e.,

∑
𝑎∈A∗ 𝑝

∗
𝑞 (𝑎)) grows, and can cause the left

hand side in Equation (8) to be negative!

Instead, we first modify {Sim(2)
𝑆,𝑞𝑆
} into another family

of distributions {Sim(3)
𝑆,𝑞𝑆
}, which has the same desired

properties as {Sim(2)
𝑆,𝑞𝑆
}, but in addition satisfies

𝑘−|𝑆 |∑
𝑖=0

(−1)𝑖
∑

𝑇)𝑆, |𝑇 |= |𝑆 |+𝑖
Pr[Sim(3)

𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] ≥ 0. (9)

order to ensure that Equation (8) remains non-negative.

To ensure that the above equation is satisfies, we define

for every 𝑆 ⊆ [𝑘], every 𝑞𝑆 ∈ Q𝑆 , and every 𝑎𝑆 ∈ A𝑆 ,

𝑃𝑟 [Sim(3)
𝑆,𝑞𝑆

= 𝑎𝑆 ] ,
1

𝑘2 |𝑆 |
Pr[Sim(2)

𝑆,𝑞𝑆
= 𝑎𝑆 ],

and in the remaining probability it outputs ⊥. We argue

that indeed {Sim(3)
𝑆,𝑞𝑆
} satisfies Equation (9). Unfortunately,

this step significantly reduces the acceptance probability,

from one that approaches 1 as 𝑘 grows (with the right

setting of parameters), to one that approaches 0 as 𝑘 grows.

Avoiding this loss is a great open problem.

Equation (9) allows us to convert Equation (8) to an equal-

ity, by setting for every non-empty subset 𝑆 ⊆ [𝑘], every
𝑞 ∈ Q, and every 𝑎𝑆 ∈ A𝑆 ,

Pr[𝑝∗𝑞 = (𝑎𝑆 , (∗)𝑘−|𝑆 |] ,
𝑘−|𝑆 |∑
𝑖=0

(−1)𝑖
∑

𝑇 ⊇𝑆, |𝑇 |= |𝑆 |+𝑖
Pr[Sim(3)

𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] .

This is exactly the extension needed in order to convert the

inequality in Equation (8) to an equality, and by definition

of Sim
(3)

(and in particular, by Equation (9)), it is always

the case that

Pr[𝑝∗𝑞 = (𝑎𝑆 , (∗)𝑘−|𝑆 |] ≥ 0.

Finally, we note that by defining {𝑝∗𝑞}𝑞∈Q as above, the

total probability of 𝑝∗𝑞 may not be exactly 1. It may be

smaller than 1 or greater than 1. However, its total prob-

ability is fixed and does not depend on 𝑞. Therefore, we

can safely normalize it to be exactly 1 without damaging

the honest-referee non-signaling guarantee.

Our Parameters. Recall that we convert a sub-non-signaling strat-
egy with value at least 1− 2−𝑑𝑘2

into a non-signaling strategy with

value at least 2
−𝑐𝑘2

(for some constants 𝑐, 𝑑 > 0). We don’t have

any reason to believe that this loss is inherent. In particular, we

would like to convert any sub-non-signaling strategy with value

at least 1 − 2−𝑑𝑘 into a non-signaling strategy with value at least

2
−𝑐𝑘

. This would imply that 𝑂 (log𝑛)-prover non-signaling MIP is

in PSPACE. Our loss stems mainly from the step where we go from

honest-referee non-signaling to non-signaling, via a transformation

from [15]. There is another 𝑘𝑘 loss in Step 2b, however this loss is

small compared to the other one. We do not know if these losses

are inherent, and leave it as an open problem to explore.

5.2 Formal Proof of Theorem 4.2
We prove Theorem 4.2 by proving the following theorem.

Theorem 5.1. For any 𝑘 ∈ N, any 𝑘-player game = (Q,A,𝑉 , 𝜋),
any 𝜖 > 0 and any 𝛿 > 0: IfV

subNS
(G) ≥ 1 − 𝜖 then there exists a

game G∗ = (Q,A∗,𝑉 ∗, 𝜋∗) such that the following holds:

(1) For every 𝑖 ∈ [𝑘],A∗
𝑖
= A𝑖 ∪ {∗}, whereA = A1 × . . . ,×A𝑘

and A∗ = A∗
1
× . . . ,×A∗

𝑘
.

(2) 𝑉 ∗ |Q×A ≡ 𝑉 and 𝑉 ∗ |Q×(A∗\A) ≡ 0

(3) 𝜋 and 𝜋∗ are 𝛿-close.
(4) V

hrNS
(G∗) ≥ 1

𝑘3𝑘

(
1 − 𝑘2𝑘𝜖/𝛿

)
.

Moreover, if V
subNS𝛿

(G) ≥ 1 − 𝜖 and 𝛿 ≤
√
𝜖 then 𝜋∗ = 𝜋 and

VNS (G∗) ≥ 1

𝑘3𝑘

(
1 − 𝑘2𝑘𝜖/𝛿

)
.

We use this theorem together with the theorem from [15] listed

below to prove Theorem 4.2.

Theorem 5.2. [15] For every 𝑘 ∈ N there exists a fixed value
𝛼𝑘 ≥ 2

−𝑂 (𝑘2) such that for any 𝑘-player game G, VNS (G) ≥ 𝛼𝑘 ·
V
hrNS
(G).
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Proof of Theorem 4.2. Let 𝑐 > 0 be a constant such that 2
−𝑐𝑘2

=
𝛼𝑘
𝑘8𝑘 , and let 𝑑 > 0 be a constant such that 2

−𝑑𝑘2

=
𝛼𝑘
𝑘5𝑘 , where 𝛼𝑘 is

the fixed value given in Theorem 5.2. Let G = (Q,A,𝑉 , 𝜋) be any
𝑘-player game such that V

subNS
(G) ≥ 1 − 𝜖 . Let 𝛿 = 𝜖 · 𝑘3𝑘 . By

Theorem 5.1 there exists a game G∗ = (Q,A∗,𝑉 ∗, 𝜋∗) that satisfies
the conditions of Theorem 5.1, and in particular

V
hrNS
(G∗) ≥ 1

𝑘3𝑘

(
1 − 𝑘2𝑘𝜖/𝛿

)
=

1

𝑘3𝑘

(
1 − 𝑘−𝑘

)
≥ 1

𝑘4𝑘
.

This, together with Theorem 5.2, implies that

VNS (G∗) ≥
𝛼𝑘

𝑘4𝑘

Set 𝜖 = 2
−𝑐𝑘2

=
𝛼𝑘
𝑘8𝑘 , which implies that 𝛿 =

𝛼𝑘
𝑘5𝑘 . We next argue

that with this setting of parameters,

VNS (G) ≥
𝛼𝑘

𝑘5𝑘
= 2
−𝑑𝑘2

,

as desired. This follows from the following two steps: First convert

the non-signaling strategy for G∗ into a non-signaling strategy

where all the answers are in A (as opposed to A∗). This is done
as follows: Arbitrarily choose a fixed tuple (𝑎1, . . . , 𝑎𝑘 ) ∈ A1 ×
. . . ,×A𝑘 . If the answer in the 𝑖’th coordinate is ∗ ∈ A∗

𝑖
\ A𝑖 then

replace it with the fixed answer 𝑎𝑖 ∈ A𝑖 . Note that this new strategy

remains non-signaling. Moreover, the fact that 𝑉 ∗ always rejects
the answers that are not in A, implies that the value of this non-

signaling strategy in G∗ does not decrease. Finally, the fact that 𝜋∗
and 𝜋 are 𝛿-close implies that indeed

VNS (G) ≥ VNS (G∗) − 𝛿 ≥
𝛼

𝑘4𝑘
− 𝛼𝑘

𝑘5𝑘
≥ 𝛼𝑘

𝑘5𝑘
.

We next prove the second part of Theorem 4.2. To this end, fix any

𝛿 ≤ 1

𝑘3𝑘 , and set 𝜖 = 1

𝑘6𝑘 ≥ 𝛿2. Theorem 5.1 implies that for this

setting of parameters

VNS (G∗) ≥
1

𝑘3𝑘

(
1 − 𝑘2𝑘𝜖/𝛿

)
=

1

𝑘3𝑘

(
1 − 𝑘−𝑘

)
≥ 1

𝑘4𝑘
.

where as above this implies that

VNS (G) ≥ VNS (G∗) − 𝛿 ≥
1

𝑘4𝑘
− 1

𝑘3𝑘
≥ 1

𝑘3𝑘
,

as desired. �

Proof of Theorem 5.1. Let G = (Q,A,𝑉 , 𝜋) be a 𝑘-player game

such thatV
subNS

(G) ≥ 1 − 𝜖 . Let {𝑝𝑞}𝑞∈Q be a sub-non-signaling

strategy, such that G has sub-non-signaling value 1−𝜖 with respect

to {𝑝𝑞}𝑞∈Q . In what follows, we denote by

𝑝𝑞𝑆 (⊥) , E𝑞∗←𝜋 | (𝑞∗
𝑆
=𝑞𝑆 ) [𝑝𝑞∗ (⊥)],

and we denote by

𝜈 (𝑞) ,
∑

𝑆⊆[𝑘 ]
𝑝𝑞𝑆 (⊥). (10)

Note that

E𝑞←𝜋 [𝜈 (𝑞)] ≤
∑

𝑆⊆[𝑘 ]
E𝑞←𝜋 [𝑝𝑞𝑆 (⊥)] ≤ 2

𝑘 · 𝜖. (11)

Our proof proceeds in two steps, each which consists of two sub-

steps.

Step 1. Construct a family of distributions {Sim(1)
𝑆,𝑞𝑆
} over A𝑆 ∪

{⊥}, such that for every 𝑆 ⊆ 𝑇 ⊆ [𝑘], and every 𝑞𝑇 ∈ Q𝑇 and

𝑎𝑆 ∈ A𝑆 , it holds that

Pr[Sim(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] ≤ Pr[Sim(1)

𝑆,𝑞𝑆
= 𝑎𝑆 ], (12)

and for every 𝑞 ∈ Q and 𝑆 ⊆ [𝑘]

Pr[Sim(1)
𝑆,𝑞𝑆

= ⊥] ≤ (|𝑆 | + 2)! · 𝜈 (𝑞), (13)

and

Pr

𝑞←𝜋,𝑎←Sim
(1)
[𝑘 ],𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 1 − 𝑘 log𝑘 · 𝜖. (14)

We do this in two steps.

Step 1(a). We define a sub-non-signaling strategy {𝑝𝑞} for the
game G, such that for every 𝑞 ∈ Q,

𝑝𝑞 (𝑎) ≤ 𝑝𝑞 (𝑎) ∀𝑎 ∈ A (15)

and

𝑝𝑞 (⊥) ≤ 𝜈 (𝑞), (16)

and in addition for every 𝑆 ⊆ [𝑘] and every 𝑎𝑆 ∈ A𝑆

Pr[𝑝𝑞 |𝑆 = 𝑎𝑆 ] ≤ E𝑞∗←𝜋 | (𝑞∗
𝑆
=𝑞𝑆 ) Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ] (17)

Note that Equations (15) and (16) imply that for every 𝑞 ∈ Q
Pr

𝑎←�̃�𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ Pr

𝑎←𝑝𝑞
[𝑉 (𝑞, 𝑎) = 1] − 𝜈 (𝑞) . (18)

We define 𝑝𝑞 in a greedy manner, so that Equation (17) holds, while

keeping the invariant that Equation (15) holds. This is done as

follows: Fix any 𝑞 ∈ Q. Start with 𝑝𝑞 = 𝑝𝑞 . For every 𝑆 ⊆ [𝑘] and
every 𝑎𝑆 , if

Pr[𝑝𝑞 |𝑆 = 𝑎𝑆 ] > E𝑞∗←𝜋 | (𝑞∗
𝑆
=𝑞𝑆 ) Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ]

then (arbitrarily) reduce 𝑝𝑞 (𝑎∗) for every 𝑎∗ ∈ A such that 𝑎∗
𝑆
= 𝑎𝑆

so that

Pr[𝑝𝑞 |𝑆 = 𝑎𝑆 ] = E𝑞∗←𝜋 | (𝑞∗
𝑆
=𝑞𝑆 ) Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ],

and in the remaining probability output ⊥. For each 𝑆 and 𝑎𝑆 , this

step reduces the probability that 𝑉 accepts by at most

𝛿𝑆,𝑎𝑆 (𝑞) , max 0, Pr[𝑝𝑞 |𝑆 = 𝑎𝑆 ] −E𝑞∗←𝜋∗ | (𝑞∗
𝑆
=𝑞𝑆 ) Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ] .

This follows from the invariant that for every 𝑎 it holds that 𝑝𝑞 (𝑎) ≤
𝑝𝑞 (𝑎). Since we do this for every 𝑆 ⊆ [𝑘] and every 𝑎𝑆 , in total the

probability of ⊥ is increased by at most

𝛿 (𝑞) =
∑
𝑆,𝑎𝑆

𝛿𝑆,𝑎𝑆 (𝑞) .

Note that Equations (15) and (17) hold by definition of {𝑝𝑞}. To
prove Equation (16), it suffices to prove the following claim.

Claim 2. For every 𝑞 ∈ Q, it holds that 𝛿 (𝑞) + 𝑝𝑞 (⊥) ≤ 𝜈 (𝑞).

Proof. Since {𝑝𝑞} is a sub-non-signaling strategy, there exists
a family of distributions {Sim𝑆,𝑞𝑆 } such that for every 𝑆 ⊆ [𝑘] and
every 𝑞𝑆 ∈ Q𝑆 and 𝑎𝑆 ∈ A𝑆 ,

max

𝑞∗ 𝑠.𝑡 . 𝑞∗
𝑆
=𝑞𝑆

Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ] ≤ Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆 ] .

Therefore,

Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆 ] ≥ E𝑞∗←𝜋 | (𝑞∗
𝑆
=𝑞𝑆 ) Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ] + 𝛿𝑆,𝑎𝑆 (𝑞),
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which implies that

1 =
∑
𝑎𝑆

Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆 ] ≥
∑
𝑎𝑆

E𝑞∗←𝜋 | (𝑞∗
𝑆
=𝑞𝑆 ) Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ]+∑

𝑎𝑆

𝛿𝑆,𝑎𝑆 (𝑞) ≥ 1 − E𝑞∗←𝜋 | (𝑞∗
𝑆
=𝑞𝑆 ) [𝑝𝑞∗ (⊥)] +

∑
𝑎𝑆

𝛿𝑆,𝑎𝑆 (𝑞).

We thus conclude that for every 𝑞 ∈ Q and for every 𝑆 ( [𝑘],∑
𝑎𝑆 𝛿𝑆,𝑎𝑆 (𝑞) ≤ 𝑝𝑞𝑆 (⊥), and

∑
𝑎 𝛿 [𝑘 ],𝑎 (𝑞) = 0. This in turn implies

that 𝛿 (𝑞) + 𝑝𝑞 (⊥) =
∑
𝑆( [𝑘 ],𝑎𝑆 𝛿𝑆,𝑎𝑆 (𝑞) + 𝑝𝑞 (⊥) ≤ 𝜈 (𝑞), as desired.

�

Thus, the strategy {𝑝𝑞} satisfies Equations (15), (16) and (17)

(and as a result it also satisfies Equation (18)).

Step 1(b). We next define the family of distributions {Sim(1)
𝑆,𝑞𝑆
}

over A𝑆 ∪ {⊥} that satisfies Equations (12), (13) and (14).

We start by defining {Sim′
𝑆,𝑞𝑆
} by

Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆 ] , max

𝑞∗∈Q | (𝑞∗
𝑆
=𝑞𝑆 )

Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ] .

Note that

∑
𝑎𝑆 Pr[Sim

′
𝑆,𝑞𝑆

= 𝑎𝑆 ] ≤ 1 since by Equation (17),

Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆 ] = max

𝑞∗∈Q | (𝑞∗
𝑆
=𝑞𝑆 )

Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ] ≤

E𝑞∗←𝜋 | (𝑞∗
𝑆
=𝑞𝑆 ) Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ],

which together with the linearity of expectation, implies that indeed∑
𝑎𝑆 ∈A𝑆

Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆 ] ≤
∑

𝑎𝑆 ∈A𝑆

E𝑞∗←𝜋 | (𝑞∗
𝑆
=𝑞𝑆 ) Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ]

= E𝑞∗←𝜋 | (𝑞∗
𝑆
=𝑞𝑆 )

∑
𝑎𝑆 ∈A𝑆

Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ] ≤ 1.

Moreover, Equation (16), together with the definition of {Sim′
𝑆,𝑞𝑆
},

implies that for every 𝑞 ∈ Q and every 𝑆 ⊆ [𝑘],
Pr[Sim′𝑆,𝑞𝑆 = ⊥] ≤ 𝜈 (𝑞), (19)

and Equation (18) implies that

Pr

𝑎←Sim
′
[𝑘 ],𝑞
[𝑉 (𝑞, 𝑎) = 1] ≥ Pr

𝑎←𝑝𝑞
[𝑉 (𝑞, 𝑎) = 1] − 𝜈 (𝑞). (20)

We next define {Sim(1)
𝑆,𝑞𝑆
} by modifying {Sim′

𝑆,𝑞𝑆
} in a greedy man-

ner, to ensure that Equation (12) is satisfied. This is done by induc-

tion starting with sets of size 1. For every set 𝑇 of size 1, and for

every 𝑞𝑇 , define

Sim
(1)
𝑇,𝑞𝑇

, Sim
′
𝑇,𝑞𝑇

.

Suppose we defined Sim
(1)
𝑆,𝑞𝑆

for all sets 𝑆 of size less than 𝑖 . We next

define Sim
(1)
𝑇,𝑞𝑇

for sets 𝑇 of size 𝑖 . To this end, fix any 𝑇 of size 𝑖

and fix any 𝑞𝑇 . Start by setting

Sim
(1)
𝑇,𝑞𝑇

= Sim
′
𝑇,𝑞𝑇

.

For every 𝑆 ⊂ 𝑇 of size 𝑖 − 1 and for every 𝑎𝑆 , if

Pr[Sim(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] > Pr[Sim(1)

𝑆,𝑞𝑆
= 𝑎𝑆 ]

then (arbitrarily) reduce the probability that Pr[Sim(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ]

by exactly

𝜉𝑇,𝑞𝑇 (𝑆, 𝑎𝑆 ) , Pr[Sim(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] − Pr[Sim(1)𝑆,𝑞𝑆

= 𝑎𝑆 ],

so that

Pr[Sim(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] = Pr[Sim(1)

𝑆,𝑞𝑆
= 𝑎𝑆 ] . (21)

In the remaining probability output ⊥. We next argue that this

ensures that Equation (12) holds. We prove this by induction on the

size of 𝑇 . Clearly Equation (12) holds for sets 𝑇 of size 2. Suppose

Equation (12) holds for sets𝑇 of size 𝑖 −1 and we prove that it holds
for sets𝑇 of size 𝑖 . To this end, fix any set𝑇 of size 𝑖 and any 𝑆 ⊂ 𝑇 .
Let 𝑆 ′ be an arbitrary set of size 𝑖 − 1 such that 𝑆 ⊆ 𝑆 ′ ⊂ 𝑇 . By

Equation (21), for every 𝑎 ∈ A

Pr[Sim(1)
𝑇,𝑞𝑇
|𝑆′ = 𝑎𝑆′] ≤ Pr[Sim(1)

𝑆′,𝑞𝑆′
= 𝑎𝑆′]

and by our induction hypothesis,

Pr[Sim(1)
𝑆′,𝑞𝑆′

|𝑆 = 𝑎𝑆 ] ≤ Pr[Sim(1)
𝑆,𝑞𝑆

= 𝑎𝑆 ] .

These two equations imply that

Pr[Sim(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] =∑

𝑎𝑆′ :𝑎𝑆′ |𝑆=𝑎𝑆
Pr[Sim(1)

𝑇,𝑞𝑇
|𝑆′ = 𝑎𝑆′] ≤∑

𝑎𝑆′ :𝑎𝑆′ |𝑆=𝑎𝑆
Pr[Sim(1)

𝑆′,𝑞𝑆′
= 𝑎𝑆′] =

Pr[Sim(1)
𝑆′,𝑞𝑆′

|𝑆 = 𝑎𝑆 ] ≤

Pr[Sim(1)
𝑆,𝑞𝑆

= 𝑎𝑆 ],

as desired.

We next argue that despite this reduction in probability, Equa-

tions (13) and (14) hold. To this end, note that for every 𝑆,𝑇 ⊆ [𝑘]
such that 𝑆 ⊂ 𝑇 and |𝑆 | = |𝑇 | − 1, and every 𝑞 ∈ Q and 𝑎 ∈ A,

𝜉𝑇,𝑞𝑇 (𝑆, 𝑎𝑆 ) ≤ max

{
0, Pr[Sim′𝑇,𝑞𝑇 |𝑆 = 𝑎𝑆 ] − Pr[Sim(1)𝑆,𝑞𝑆

= 𝑎𝑆 ]
}
.

Define

𝜉𝑇,𝑞𝑇 (𝑆) ,
∑
𝑎𝑆

𝜉𝑇,𝑞𝑇 (𝑆, 𝑎𝑆 ) and 𝜉𝑇,𝑞𝑇 ,
∑

𝑆(𝑇 : |𝑆 |= |𝑇 |−1
𝜉𝑇,𝑞𝑇 (𝑆) .

Claim 3. For every 𝑞 ∈ Q and every 𝑇 ⊆ [𝑘]

𝜉𝑇,𝑞𝑇 ≤ (|𝑇 | + 1)! · 𝜈 (𝑞).

Note that Claim 3, together with the definition of {Sim(1)[𝑘 ],𝑞}
and with Equation (19), implies that Equation (13) holds. Similarly,

Claim 3, together with Equation (20), implies that Equation (14)

holds, since

Pr

𝑞←𝜋,𝑎←Sim
(1)
[𝑘 ],𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥

Pr

𝑞←𝜋,𝑎←𝑝𝑞
[𝑉 (𝑞, 𝑎) = 1] − E𝑞←𝜋 [𝜈 (𝑞) + (𝑘 + 1)! · 𝜈 (𝑞)] ≥

1 − 𝜖 − ((𝑘 + 1)! + 1) · E𝑞←𝜋 [𝜈 (𝑞)] ≥ 1 − 2𝑘 log𝑘 · 𝜖,

where the latter inequality follows from Equation (11).
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Proof of Claim 3. Fix any 𝑞 ∈ Q and any 𝑇 ⊆ [𝑘]. Note that by
definition for every 𝑆 ⊂ 𝑇 of size |𝑇 | − 1 and for every 𝑎𝑆 ∈ A𝑆 ,

Pr[Sim′𝑇,𝑞𝑇 |𝑆 = 𝑎𝑆 ]

=
∑

𝑎𝑇 :𝑎𝑇 |𝑆=𝑎𝑆
Pr[Sim′𝑇,𝑞𝑇 = 𝑎𝑇 ]

=
∑

𝑎𝑇 :𝑎𝑇 |𝑆=𝑎𝑆
max

𝑞∗∈Q |𝑞∗
𝑇
=𝑞𝑇

Pr[𝑝𝑞∗ |𝑇 = 𝑎𝑇 ]

≤
∑

𝑎𝑇 :𝑎𝑇 |𝑆=𝑎𝑆
E𝑞∗←𝜋 |𝑞∗ |𝑇 =𝑞𝑇 Pr[𝑝𝑞∗ |𝑇 = 𝑎𝑇 ]

= E𝑞∗←𝜋 |𝑞∗
𝑇
=𝑞𝑇 Pr[𝑝𝑞∗ |𝑆 = 𝑎𝑆 ]

≤ Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆 ] .

By the definition of Sim
′
𝑆,𝑞𝑆

, Sim
(1)
𝑆,𝑞𝑆

, and 𝑝𝑞 , it holds that

Pr[Sim𝑆,𝑞𝑆 = 𝑎𝑆 ] ≥ Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆 ] ≥ Pr[Sim(1)
𝑆,𝑞𝑆

= 𝑎𝑆 ] .

This, together with the definition of 𝜉𝑇,𝑞𝑇 implies that

𝜉𝑇,𝑞𝑇 (𝑆, 𝑎𝑆 ) ≤ Pr[Sim𝑠,𝑞𝑆 = 𝑎𝑆 ] − Pr[Sim(1)𝑆,𝑞𝑆
= 𝑎𝑆 ] . (22)

Moreover, by definition for every 𝑞 ∈ Q and 𝑆 ⊆ [𝑘]∑
𝑎𝑆

Pr[Sim(1)
𝑆,𝑞𝑆

= 𝑎𝑆 ] =
∑
𝑎𝑆

Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆 ] − 𝜉𝑆,𝑞𝑆 . (23)

Therefore

𝜉𝑇,𝑞𝑇 (𝑆) ≤ 1 −
∑
𝑎𝑆

Pr[Sim′𝑆,𝑞𝑆 = 𝑎𝑆 ] + 𝜉𝑆,𝑞𝑆 ≤ 𝜈 (𝑞) + 𝜉𝑆,𝑞𝑆 ,

where the second inequality follows from Equation (19). This im-

plies that

𝜉𝑇,𝑞𝑇 ≤ |𝑇 | · 𝜈 (𝑞) +
∑

𝑆(𝑇 : |𝑆 |= |𝑇 |−1
𝜉𝑆,𝑞𝑆 . (24)

We use Equation (24), to prove that for every𝑇 ⊆ [𝑘] and for every
𝑞𝑇 ,

𝜉𝑇,𝑞𝑇 ≤ (|𝑇 | + 1)! · 𝜈 (𝑞) (25)

We prove Equation (25) by induction on the size of 𝑇 , starting

from |𝑇 | = 1. For every 𝑇 of size 1 and for every 𝑞𝑇 , by definition

𝜉 (𝑇, 𝑞𝑇 ) = 0.

Suppose Equation (25) holds for every 𝑇 of size less than 𝑖 , we

prove that it holds for 𝑇 of size 𝑖 as follows:

𝜉𝑇,𝑞𝑇 ≤ 𝑖 · 𝜈 (𝑞) +
∑

𝑆(𝑇 : |𝑆 |=𝑖−1
𝜉𝑆,𝑞𝑆

≤ 𝑖 · 𝜈 (𝑞) + 𝑖 · 𝑖! · 𝜈 (𝑞)
≤ (𝑖 + 1)! · 𝜈 (𝑞)

as desired, where the first inequality follows from Equation (24),

the second inequality follows from the induction hypothesis, and

the other inequalities follow from basic arithmetic.

�

Step 2. Convert {Sim(1)
𝑆,𝑞𝑆
} into a family of non-signaling distri-

butions. Similarly to Step 1, we carry out this step via two sub-steps.

Step 2(a). We first ensure that the probability that Sim
(1)
𝑆,𝑞𝑆

out-

puts ⊥ is independent of 𝑞𝑆 . To this end, note that by Equation (14)

E𝑞←𝜋 [Sim(1)[𝑘 ],𝑞 = ⊥] ≤ 2
𝑘 log𝑘𝜖 , 𝜖1 . (26)

Consider the set

GOOD =

{
𝑞 ∈ Q| Pr[Sim(1)[𝑘 ],𝑞 = ⊥] ≤ 𝜖1/𝛿

}
,

where 𝛿 is from the theorem statement. By Markov’s inequality

Pr

𝑞←𝜋
[𝑞 ∈ GOOD] ≥ 1 − 𝛿. (27)

Note that if {𝑝𝑞} is a strategy in subNS𝛿 (G) and if 𝛿 ≤
√
𝜖 then

by Equation (13), for every 𝑞 ∈ Q

Pr[Sim(1)[𝑘 ],𝑞 = ⊥] ≤ (𝑘 + 2)! · 𝜈 (𝑞) ≤ (𝑘 + 2)! · 2𝑘 · 𝛿 ≤ 2
𝑘 log𝑘 · 𝛿

which implies that GOOD = Q.
Consider the distribution 𝜋∗ = 𝜋 | (𝑞 ∈ GOOD), and let G∗ =

(Q,A,𝑉 , 𝜋∗). Note that {Sim(1)
𝑆,𝑞𝑆
} is a sub-non-signaling strategy

for the game G∗ whose value is at least 1−𝜖1. This follows from the

fact that this is true for the game G (see Equation (14)) and from

the fact that queries 𝑞 ∉ GOOD only lower the expected probability

of acceptance since they are rejected with probability at least 𝜖1/𝛿 .
In what follows, we define Sim

(2)
𝑆,𝑞𝑆

, which is a modification of

Sim
(1)
𝑆,𝑞𝑆

, such that for every ℓ ∈ [𝑘] there exists 𝛼ℓ ∈ [0, 1] such
that for every 𝑆 ⊆ [𝑘] of size ℓ and for every 𝑞 ∈ GOOD, it holds
that ∑

𝑎𝑆

Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ] = 𝛼ℓ (28)

In addition, we still ensure that for every 𝑆,𝑇 ⊆ [𝑘] such that

𝑆 ⊆ 𝑇 , and for every 𝑞 ∈ Q and 𝑎 ∈ A,

Pr[Sim(2)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] ≤ Pr[Sim(2)

𝑆,𝑞𝑆
= 𝑎𝑆 ] (29)

and

Pr

𝑞←𝜋∗,𝑎←Sim
(2)
[𝑘 ],𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 1 − (𝑘 + 1)𝜖1/𝛿 , 1 − 𝜖2 . (30)

To this end, for every 𝑆 ⊆ [𝑘] and every 𝑞 ∈ GOOD let

𝛽𝑞𝑆 ,
∑
𝑎𝑆

Pr[Sim(1)
𝑆,𝑞𝑆

= 𝑎𝑆 ] ≥
∑
𝑎𝑆

Pr[Sim(1)[𝑘 ],𝑞 |𝑆 = 𝑎𝑆 ] =∑
𝑎

Pr[Sim(1)[𝑘 ],𝑞 = 𝑎] ≥ 1 − 𝜖1/𝛿,
(31)

where the first inequality follows from Equation (12) and the last

inequality follows from the definition of GOOD.

For every ℓ ∈ [𝑘], let
𝛼 , (1 − 𝜖1/𝛿) (32)

For every 𝑆 ⊆ [𝑘] of size ℓ , and for every 𝑞𝑆 ∈ Q𝑆 and 𝑎𝑆 ∈ A𝑆 ,

define

Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ] , Pr[Sim(1)
𝑆,𝑞𝑆

= 𝑎𝑆 ] ·
𝛼ℓ

𝛽𝑞𝑆
.

Note that by definition, for every 𝑆 ⊆ [𝑘] of size ℓ and for every

𝑞𝑆 ∈ Q𝑆 ∑
𝑎𝑆 ∈A𝑆

Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ] = 𝛼ℓ , (33)
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as desired. Moreover, note that

Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ] = Pr[Sim(1)
𝑆,𝑞𝑆

= 𝑎𝑆 ] ·
𝛼ℓ

𝛽𝑞𝑆
≤ Pr[Sim(1)

𝑆,𝑞𝑆
= 𝑎𝑆 ],

where the first equality follows from the definition of Sim
(2)
𝑆,𝑞𝑆

and

the last inequality follows from Equations (31) and (32). This implies

that ∑
𝑎𝑆 ∈A𝑆

Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ] ≤ 1.

In the remaining probability Sim
(2)
𝑆,𝑞𝑆

outputs ⊥.

We next argue that Sim
(2)
𝑆,𝑞𝑆

satisfies Equation (29). To this end,

fix any 𝑆 ⊂ 𝑇 ⊆ [𝑘] and fix any 𝑞 ∈ Q and 𝑎 ∈ A. Note that

Pr[Sim(2)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] =

Pr[Sim(1)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] ·

𝛼 |𝑇 |

𝛽𝑞𝑇
≤

Pr[Sim(1)
𝑆,𝑞𝑆

= 𝑎𝑆 ] ·
𝛼 |𝑇 |

𝛽𝑞𝑇
≤

Pr[Sim(1)
𝑆,𝑞𝑆

= 𝑎𝑆 ] ·
𝛼 |𝑆 |

𝛽𝑞𝑆
=

Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ],

as desired, where the first equation follows from the definition of

Sim
(2)
𝑇,𝑞𝑇

, the second equation follows from Equation (12), the third

equation follows from Equations (31) and (32), and the last equation

follows again from the definition of Sim
(2)
𝑆,𝑞𝑆

.

Finally, note that:

Pr

𝑞←𝜋∗,𝑎←Sim
(2)
[𝑘 ],𝑞

[𝑉 (𝑞, 𝑎) = 1] =

Pr

𝑞←𝜋∗,𝑎←Sim
(1)
[𝑘 ],𝑞

[𝑉 (𝑞, 𝑎) = 1] · 𝛼
𝑘

𝛽𝑞
≥

Pr

𝑞←𝜋∗,𝑎←Sim
(1)
[𝑘 ],𝑞

[𝑉 (𝑞, 𝑎) = 1] · 𝛼𝑘 ≥

(1 − 𝜖1/𝛿)𝑘+1 ≥ 1 − (𝑘 + 1)𝜖1/𝛿 = 1 − 𝜖2
as desired, where the first equation follows from the definition of

Sim
(2)
[𝑘 ],𝑞 , the second equation follows from the fact that 𝛽𝑞 ≤ 1, the

third equation follows from Equation (14) and from the definition

of 𝛼𝑘 (Equation (32)), the forth equation follows from basic arith-

metics, and the last follows by definition of 𝜖2.

Step 2(b). We next define an honest-referee non-signaling strat-

egy for the game G∗ that convinces 𝑉 to accept with probability at

least 1 − 𝜖2. More specifically, we define a strategy for which the

non-signaling condition holds for every query 𝑞 ∈ GOOD. We note

that if GOOD = Q (which is the case if {𝑝𝑞} ∈ subNS𝛿 (G)) then
the strategy we define is non-signaling.

Our honest-referee non-signaling strategy for the game G∗ is
not defined over A but over A∗ = A∗

1
× . . . × A∗

𝑘
, where for each

𝑖 ∈ [𝑘], A∗
𝑖
, A𝑖 ∪ {∗}.

We define this strategy in stages. First we define a family of

distributions {Sim(3)
𝑆,𝑞𝑆
} that continues to satisfy the constraints

that for every 𝑆,𝑇 ⊆ [𝑘] such that 𝑆 ⊆ 𝑇 , and every 𝑞 ∈ Q and

𝑎𝑆 ∈ A𝑆 ,

Pr[Sim(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] ≤ Sim

(3)
𝑆,𝑞𝑆

= 𝑎𝑆 ], (34)

and that there exists constants {𝛼𝑖 }𝑖∈[𝑘 ] such that∑
𝑎𝑆 ∈A𝑆

Pr[Sim(3)
𝑆,𝑞𝑆

= 𝑎𝑆 ] = 𝛼 |𝑆 | . (35)

At the same time, it also satisfies that for every 𝑞 ∈ Q and every

𝑆 ⊆ [𝑘],
𝑘−|𝑆 |∑
𝑖=0

(−1)𝑖
∑

𝑇 ⊇𝑆, |𝑇 |= |𝑆 |+𝑖
Pr[Sim(3)

𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] ≥ 0. (36)

To this end, we define

Pr[Sim(3)
𝑆,𝑞𝑆

= 𝑎𝑆 ] ,
1

𝑘2 |𝑆 |
Pr[Sim(2)

𝑆,𝑞𝑆
= 𝑎𝑆 ] .

Note that

𝑘−|𝑆 |∑
𝑖=1

(−1)𝑖−1
∑

𝑇 ⊇𝑆, |𝑇 |= |𝑆 |+𝑖
Pr[Sim(3)

𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] ≤

𝑘−|𝑆 |∑
𝑖=1

∑
𝑇 ⊇𝑆, |𝑇 |= |𝑆 |+𝑖

Pr[Sim(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] =

𝑘−|𝑆 |∑
𝑖=1

∑
𝑇 ⊇𝑆, |𝑇 |= |𝑆 |+𝑖

1

𝑘2( |𝑆 |+𝑖)
Pr[Sim(2)

𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] ≤

𝑘−|𝑆 |∑
𝑖=1

∑
𝑇 ⊇𝑆, |𝑇 |= |𝑆 |+𝑖

1

𝑘2( |𝑆 |+𝑖)
Pr[Sim(2)

𝑆,𝑞𝑆
= 𝑎𝑆 ] ≤

𝑘−|𝑆 |∑
𝑖=1

(
𝑘 − |𝑆 |

𝑖

)
1

𝑘2( |𝑆 |+𝑖)
Pr[Sim(2)

𝑆,𝑞𝑆
= 𝑎𝑆 ] ≤

1

𝑘2 |𝑆 |
Pr[Sim(2)

𝑆,𝑞𝑆
= 𝑎𝑆 ] ·

𝑘−|𝑆 |∑
𝑖=0

1

𝑘2𝑖

(
𝑘 − |𝑆 |

𝑖

)
≤

Pr[Sim(3)
𝑆,𝑞𝑆

= 𝑎𝑆 ] ·
𝑘−|𝑆 |∑
𝑖=0

1

𝑘2𝑖

(
𝑘 − |𝑆 |

𝑖

)
≤

Pr[Sim(3)
𝑆,𝑞𝑆

= 𝑎𝑆 ],

where the last inequality follows from the fact that

𝑘−|𝑆 |∑
𝑖=0

1

𝑘2𝑖

(
𝑘 − |𝑆 |

𝑖

)
≤

𝑘−|𝑆 |∑
𝑖=0

1

𝑘2𝑖
· 𝑘𝑖 =

𝑘−|𝑆 |∑
𝑖=0

1

𝑘𝑖
≤

𝑘−|𝑆 |∑
𝑖=0

2
−𝑖 ≤ 1.

We note that the fact that

𝑘−|𝑆 |∑
𝑖=1

(−1)𝑖−1
∑

𝑇 ⊇𝑆, |𝑇 |= |𝑆 |+𝑖
Pr[Sim(3)

𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] ≤

Pr[Sim(3)
𝑆,𝑞𝑆

= 𝑎𝑆 ]
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immediately implies Equation (36).

Moreover, by definition of Sim
(3)
𝑆,𝑞𝑆

and by Equation (30),

Pr

𝑞←𝜋∗,𝑎←Sim
(3)
𝑘,𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥ 1

𝑘2𝑘
· (1 − 𝜖2). (37)

We note that Equation (35) follows immediately from the definition

of {Sim(3)
𝑆,𝑞𝑆
} together with Equation (28).

To argue that Equation (34) holds note that for every 𝑆,𝑇 ⊆ [𝑘]
such that 𝑆 ⊆ 𝑇 , and every 𝑞 ∈ Q and 𝑎𝑆 ∈ A𝑆 ,

Pr[Sim(3)
𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ] =

1

𝑘2 |𝑇 |
Pr[Sim(2)

𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ]

≤ 1

𝑘2 |𝑇 |
Pr[Sim(2)

𝑆,𝑞𝑆
= 𝑎𝑆 ]

≤ 1

𝑘2 |𝑆 |
Pr[Sim(2)

𝑆,𝑞𝑆
= 𝑎𝑆 ]

= Pr[Sim(3)
𝑆,𝑞𝑆

= 𝑎𝑆 ] .

Next we define the honest-referee non-signaling strategy {𝑝∗∗𝑞 }
over A∗. To this end we first define {𝑝∗𝑞}, where for every non-

empty set 𝑆 ⊆ [𝑘] and every 𝑎𝑆 ∈ A𝑆 ,

Pr[𝑝∗𝑞 = (𝑎𝑆 , (∗)𝑘−|𝑆 |)] ,
𝑘−|𝑆 |∑
𝑖=0

(−1)𝑖
∑

𝑇 ⊇𝑆, |𝑇 |= |𝑆 |+𝑖
Pr[Sim(3)

𝑇,𝑞𝑇
|𝑆 = 𝑎𝑆 ],

Equation (36) implies that this value is non-negative. Moreover,

note that for every 𝑎 ∈ A,

Pr[𝑝∗𝑞 = 𝑎] = Pr[Sim(3)[𝑘 ],𝑞 = 𝑎] .

Wenext convert {𝑝∗𝑞} into the honest-referee non-signaling strategy
{𝑝∗∗𝑞 }. To this end, we first define

𝛼 ,
∑

𝑎∈A∗
Pr[𝑝∗𝑞 = 𝑎] .

Note that Equation (35), together with the definition of 𝑝∗𝑞 , implies

that 𝛼 does not depend on 𝑞. In addition, note that

𝛼 =
∑

𝑎∈A∗
Pr[𝑝∗𝑞 = 𝑎] =∑

𝑆⊆[𝑘 ]

∑
𝑎𝑆 ∈A𝑆

Pr[𝑝∗𝑞 = (𝑎𝑆 , (∗)𝑘−|𝑆 |] ≤

∑
𝑆⊆[𝑘 ]

∑
𝑎𝑆 ∈A𝑆

𝑘−|𝑆 |∑
𝑖=0

∑
𝑇 ⊇𝑆, |𝑇 |= |𝑆 |+𝑖

Pr[Sim(3)
𝑆,𝑞𝑆

= 𝑎𝑆 ] =

∑
𝑆⊆[𝑘 ]

1

𝑘2 |𝑆 |

∑
𝑎𝑆 ∈A𝑆

𝑘−|𝑆 |∑
𝑖=0

∑
𝑇 ⊇𝑆, |𝑇 |= |𝑆 |+𝑖

Pr[Sim(2)
𝑆,𝑞𝑆

= 𝑎𝑆 ] ≤

∑
𝑆⊆[𝑘 ]

1

𝑘2 |𝑆 |

𝑘−|𝑆 |∑
𝑖=0

∑
𝑇 ⊇𝑆, |𝑇 |= |𝑆 |+𝑖

1 ≤
∑

𝑆⊆[𝑘 ]

1

𝑘2 |𝑆 |
· 2𝑘−|𝑆 | ≤ 2

𝑘 .

We convert 𝑝∗𝑞 to a distribution 𝑝∗∗𝑞 defined as follows: If 𝛼 ≥ 1 then

we convert 𝑝∗𝑞 to a distribution 𝑝∗∗𝑞 defined as follows: For every

𝑎 ∈ A∗,
Pr[𝑝∗∗𝑞 = 𝑎] , 1

𝛼
Pr[𝑝∗𝑞 = 𝑎] .

If 𝛼 < 1 then we convert 𝑝∗𝑞 to a distribution 𝑝∗∗𝑞 defined as follows:

Pr[𝑝∗∗𝑞 = (∗)𝑘 ] , 1 − 𝛼,

and for every 𝑎 ∈ A∗ \ {(∗)𝑘 } let
Pr[𝑝∗∗𝑞 = 𝑎] , Pr[𝑝∗𝑞 = 𝑎] .

It is easy to see that 𝑝∗∗𝑞 is a distribution. Moreover,

Pr

𝑞←𝜋∗,𝑎←𝑝∗∗𝑞
[𝑉 (𝑞, 𝑎) = 1] ≥ 1

2
𝑘

Pr

𝑞←𝜋∗,𝑎←Sim
(3)
𝑘,𝑞

[𝑉 (𝑞, 𝑎) = 1] ≥

1

𝑘3𝑘
(1 − 𝜖2) ≥

1

𝑘3𝑘
(1 − 𝑘2𝑘𝜖/𝛿),

as desired, where the first inequality follows from the fact that

𝛼 ≤ 2
𝑘
together with the definition of 𝑝∗∗𝑞 , the second inequality

follows from Equation (37), and the third inequality follows from

Equations (30) and (26).

Claim 4. {𝑝∗∗𝑞 } satisfies the honest referee no-signaling condition.

Proof. In what follows, we use the following notation: If 𝑝∗𝑞
satisfies 𝛼 =

∑
𝑎∗∈A∗ Pr[𝑝∗𝑞 = 𝑎] > 1 then let 𝛾 = 1

𝛼 , and otherwise

let 𝛾 = 1.

Fix any subset 𝑆 ⊆ [𝑘]. We argue that for every 𝑞, 𝑞∗ ∈ GOOD
such that 𝑞𝑆 = 𝑞∗

𝑆
, and for every 𝑎𝑆 ∈ A∗𝑆 ,

Pr[𝑝∗∗𝑞 |𝑆 = 𝑎𝑆 ] = Pr[𝑝∗∗𝑞∗ |𝑆 = 𝑎𝑆 ] .

Define 𝑆 ′ ⊆ 𝑆 to be the subset for which for every 𝑖 ∈ 𝑆 ′ it holds
that 𝑎𝑖 ∈ A, and for every 𝑖 ∈ 𝑆 \ 𝑆 ′ it holds that 𝑎𝑖 = ∗.

Pr[𝑝∗∗𝑞 |𝑆 = 𝑎𝑆 ] =∑
𝑉 ⊆[𝑘 ]\𝑆

∑
𝑎𝑉 ∈A𝑉

Pr[𝑝∗∗𝑞 = (𝑎𝑆′, 𝑎𝑉 , (∗)𝑘−|𝑆
′∪𝑉 |) =

∑
𝑉 ⊆[𝑘 ]\𝑆

∑
𝑎𝑉 ∈A𝑉

𝑘−|𝑆′∪𝑉 |∑
𝑖=0

(−1)𝑖
∑

𝑇 ⊇𝑆′∪𝑉 , |𝑇 |= |𝑆′∪𝑉 |+𝑖

𝛾 · Pr[Sim(3)
𝑇,𝑞𝑇
|𝑆′∪𝑉 = 𝑎𝑆′∪𝑉 ] =∑

𝑉 ⊆[𝑘 ]\𝑆

𝑘−|𝑆′∪𝑉 |∑
𝑖=0

(−1)𝑖
∑

𝑇 ⊇𝑆′∪𝑉 , |𝑇 |= |𝑆′∪𝑉 |+𝑖

𝛾 ·
∑

𝑎𝑣 ∈A𝑉

Pr[Sim(3)
𝑇,𝑞𝑇
|𝑆′∪𝑉 = 𝑎𝑆′∪𝑉 ] =

∑
𝑉 ⊆[𝑘 ]\𝑆

𝑘−|𝑆′∪𝑉 |∑
𝑖=0

(−1)𝑖
∑

𝑇 ⊇𝑆′∪𝑉 , |𝑇 |= |𝑆′∪𝑉 |+𝑖

𝛾 · Pr[Sim(3)
𝑇,𝑞𝑇
|𝑆′ = 𝑎𝑆′] =∑

𝑇 ⊇𝑆′
𝛾 · Pr[Sim(3)

𝑇,𝑞𝑇
|𝑆′ = 𝑎𝑆′] ·

©«
∑

𝑉 ⊆𝑇 \𝑆
(−1) |𝑇 |− |𝑆

′∪𝑉 |ª®¬
Therefore, to argue that indeed

Pr[𝑝∗∗𝑞 |𝑆 = 𝑎𝑆 ] = Pr[𝑝∗∗𝑞∗ |𝑆 = 𝑎𝑆 ]
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it suffices to prove that for every 𝑇 ⊇ 𝑆 ′ such that ℓ , |𝑇 \ 𝑆 | ≥ 1,

it holds that ∑
𝑉 ⊆𝑇 \𝑆

(−1) |𝑇 |− |𝑆
′∪𝑉 | = 0,

or equivalently that for every such 𝑇 ,∑
𝑉 ⊆𝑇 \𝑆

(−1) |𝑆
′∪𝑉 | = 0.

This follows from the following calculation:∑
𝑉 ⊆𝑇 \𝑆

(−1) |𝑆
′∪𝑉 | = (−1) |𝑆

′ | ·
∑

𝑉 ⊆𝑇 \𝑆
(−1) |𝑉 | =

ℓ∑
𝑗=0

(
ℓ

𝑗

)
(−1) 𝑗 = (1 − 1)ℓ = 0,

as desired. �
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