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ABSTRACT
We present Wav2Lip-Emotion, a video-to-video translation archi-
tecture that modifies facial expressions of emotion in videos of
speakers. Previous work modifies emotion in images, uses a single
image to produce a video with animated emotion, or puppets fa-
cial expressions in videos with landmarks from a reference video.
However, many use cases such as modifying an actor’s perfor-
mance in post-production, coaching individuals to be more ani-
mated speakers, or touching up emotion in a teleconference require
a video-to-video translation approach. We explore a method to
maintain speakers’ identity and pose while translating their ex-
pressed emotion. Our approach extends an existing multi-modal
lip synchronization architecture to modify the speaker’s emotion
using L1 reconstruction and pre-trained emotion objectives. We
also propose a novel automated emotion evaluation approach and
corroborate it with a user study. These find that we succeed in
modifying emotion while maintaining lip synchronization. Visual
quality is somewhat diminished, with a trade off between greater
emotion modification and visual quality between model variants.
Nevertheless, we demonstrate (1) that facial expressions of emotion
can be modified with nothing other than L1 reconstruction and
pre-trained emotion objectives and (2) that our automated emotion
evaluation approach aligns with human judgements.

CCS CONCEPTS
• Computing methodologies → Supervised learning; Multi-
task learning; Neural networks; Image manipulation; Recon-
struction; Computer vision.
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1 INTRODUCTION

Figure 1: Wav2Lip-Emotion takes existing videos (real neu-
tral inputs on left) and modifies facial expressions of emo-
tion (generated happy outputs on right) while maintaining
speakers’ lip synchronization and pose. Examples here are
from all-around best model on unseen faces.

The face is the window to the mind: the human face conveys
information about our mental, physical, and of most of all, the emo-
tional state. We can sense if someone is in emotional distress or
happily animated. Using facial expression, voice, muscular tension,
and other cues, we are also able to pick up on subtler emotions.
Research has shown that our facial expressions can invoke an emo-
tion in both expresser [9, 14] and the recipient of the expression
[2]. Further, research on non-verbal behaviours has shown that
facial displays are integral to how we signal and maintain social
dominance [17] and other social cues. Even when we are tasked
with maintaining a neutral facial disposition (e.g., newscasters), we
often display subtle cues that convey our biases [21].

In several scenarios, the expression of facial emotion may be sup-
pressed. For example, in studies inhibited children have lower facial
expressiveness than uninhibited children [15]. Their baseline facial
dynamics operate over a smaller range [26]. Facial emotion sup-
pression is also inhibited by post-traumatic stress disorder (PTSD),
as measured by the movements of certain facial muscles during a
facial emotion recognition task [24]. Facial palsy interferes with
expressing facial emotions as well; computer vision models that
are trained to recognize emotions can often perceive less joy and
greater negative emotions in the faces of facial palsy patients [8].

Thus, the artificial suppression or augmentation of facial emotion
may be desirable at times. Individuals with or without inhibited
facial expressions may benefit from tuning their own expressions
to better fit their social circumstances. One may want to alter the
expressions in videos shown to them. Speakers might be yelling
at each other during a video conference, but nevertheless want
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to gather the content in their exchange without the unpleasant
expressions. Or a film director may want to augment or diminish
the expressions of an actor.

Inspired by this idea, our primary contribution is the creation of
a deep learning model that modifies the facial emotion of a speaker
in a given video, while preserving the visemes, pose, and identity
from the original video. Existing research in this area has produced
models that modify emotion in an image [16, 22, 28], synthesize
videos with a certain emotion from a single image [10, 31], or
puppet expressions using reference input [30, 32]. However, to our
knowledge no work exists that directly modifies the emotion in an
existing video.

We build Wav2Lip-Emotion,1 a multi-modal computer vision
model that modifies facial emotion via video-to-video translation.
This model adds emotion modification to Wav2Lip [27], a recent
model that synchronizes face videos with speech audio by means of
L1 reconstruction and pre-trained synchronization objectives. We
also propose an automated emotion evaluation using the NISL2020
model [7] to examine continuous valued changes in valence and
arousal in generated videos against baseline changes in pairs of
emotions performed by human actors in the MEAD dataset [31].
Through the automated evaluation backed up by a user study, we
demonstrate that facial emotion can be modified while maintaining
lip sync and moderate visual quality by L1 reconstruction and pre-
trained emotion objectives alone.

2 RELATEDWORK
Image-to-image translation. One approach utilizes the StyleGAN

architecture [16] to modify emotion in an image by first using
optimization to recover a latent StyleGAN vector that approximates
the input image and then shifting it along a learned subspace for
the desired emotion shift [22]. Other researchers have employed 3D
face synthesis techniques to generate various emotions on a neutral
face [3] or used cycle consistency loss to overcome the availability
of paired emotion data [28].

Image-to-video translation. Synthesizing a video from a single
image is another context in which emotion manipulation has been
explored. Fan et al. [10] utilize a dataset of short videos of faces
moving from a neutral expression to a specified emotion expres-
sion to train a controlled image-to-image translator. The translator
reconstructs the expression video frame by frame using the neutral
expression in the first frame and the frame index offset of the frame
to be generated. Most similarly to our work, the authors of the
MEAD dataset [31] also make a baseline model that generates a
"talking head" video. These videos are conditioned on input audio,
a single neutral expression reference image, a desired emotion, and
an emotion intensity. This baseline separates the task of lip sync
into a module that generates the lower face based on the audio,
while the task of emotion modification is addressed by a module
that generates the upper face based on a desired emotion. These
halves are composed together using a refinement network. While
an interesting task in its own right, such talking head generation
is more suitable for different use cases such as animating memes
where the full reference video of speaker is not available.

1Code available at https://github.com/jagnusson/Wav2Lip-Emotion.

Video-to-video translation. To our knowledge no work in video-
to-video translation directly tackles the problem of emotion manip-
ulation. Other video-to-video translation work maps the pose and
facial keypoints of an input driving video onto a different identity
provided by a single image or video [30]. This enables the pup-
peting of emotional expressions and lip movements on the basis
of a separate video. One clever work uses a large repository of
pre-annotated reference videos to quickly look up instances of rel-
evant phonemes with desired facial expressions which can then
be used with such a puppeting technique to edit an input video
[32]. While highly efficient, this approach is limited to repeating
already recorded expressions. Instead we adapt the approach of
Wav2Lip which utilizes an L1 reconstruction loss and a pre-trained
discriminator derived from SyncNet [5] to translate out of sync
lip videos to synchronized ones [27]. We extend their model to
emotion modification.

3 APPROACH
The Wav2Lip architecture [27] has been shown to synthesize high
quality lip synchronization given a set of video frames and unsyn-
chronized audio. We extend this architecture to modify emotion
via its L1 reconstruction loss and an additional pre-trained emotion
objective, and call our architecture Wav2Lip-Emotion. It penalizes
the generation of frames where the facial expression diverges from
a specified emotion. Meanwhile the lip synchronization and vi-
sual quality discriminators present in the original Wav2Lip help
preserve these traits while facial emotion is synthesized.

3.1 Datasets
The Wav2Lip architecture is trained on the LRS2 dataset [4] which
contains thousands of spoken sentences from BBC television. To
introduce emotion modification, we fine tune the Wav2Lip archi-
tecture on MEAD [31], a dataset of actors performing a set of ut-
terances with several emotional variations that span arousal and
valence.

The MEAD dataset (see Table 1) is a controlled emotion dataset
consisting of 40 hours of videos of 60 actors reading the same
sentence with different facial expressions. The dataset is extensive –
it includes a diverse set of actors from different continents spanning
15 different countries. The speakers therefore have several regional
characteristics in their faces and their manner of speaking.

As of May 2021, only the first part of the dataset containing
videos of 47 individuals has been released. Each individual performs
the following emotions at 3 levels of intensity: angry, disgust, fear,
contempt, happy, sad, and surprise. Neutral is used as an eighth
emotion but only has one intensity level. The recognizability of the
emotions is validated by a user study that finds that labellers can
accurately identify the intended emotion performed by the actor.
All videos are framed around the head, from identical angles for all
actors, with controlled lighting.

In this paper, we describe results achieved from training our
model with only the happy and sad level 3 and neutral level 1 emo-
tions. We limit our analysis to these 3 emotions with 1 intensity
level each and only frontal videos due to the large amount of com-
pute required to pre-process the data. Happy and sad emotions
have highest levels of recognizability, while neutral emotion on

Session 2: Deepfake Generation ADGD ’21, October 24, 2021, Virtual Event, China

26



Dataset Hours Individuals Emotion Intensity

Unreleased
MEAD full 40 60 8 3

Released
MEAD train ∼ 25 37 3 1
MEAD val ∼ 3 5 3 1
MEAD test ∼ 3 5 3 1

Table 1: The full MEAD data has not been completely re-
leased. On May 5th, 2021, a dataset of 47 actors was made
available. We divide these 47 actors presently available into
three splits, and only include happy, neutral, and sad emo-
tions at one intensity due to pre-processing compute con-
straints.

the other hand was much lower. We include these emotions to
capture a selection of easier and harder emotion modifications in
our analysis.

We randomly separate the actors in the dataset into 37, 5, and
5 actor splits for training, validation, and testing. We also ensure
that the validation and test splits contain at least 2 actors from
the smaller of the two reported genders, and ensure that there is a
spread in the representation of different ethnic backgrounds. In our
test and validation set, we have 2 female and 3 male actors, while
our training set has 27 male and 20 female actors.

Figure 2: Examples of half and full masking strategies.

3.1.1 Pre-processing. TheWav2Lip architecture trains on windows
of video frames and corresponding audio. Each frame in the win-
dow contains the face of the speaker alone. Videos of a speaker are
broken down into their constituent frames, the faces are detected,
cropped face frames are extracted, and stored along with the cor-
responding audio. As Wav2Lip is trained on 25 FPS LRS2 data we
resample the MEAD data to 25 FPS as well.

In the original Wav2lip, the bottom half of these face frames
are masked with zeroes. This enables the generator to focus on
synthesizing the lips alone without worrying about the facial fea-
tures on the top half. Since the expression of emotion involves
modifying other facial features besides the lips, one version of
Wav2Lip-Emotion also experiments with a masking approach that
replaces the entire face with zeroes. In order to do this, we use
the dlib library [18] along with an off-the-shelf facial landmark
detector [6] that identifies a set of 81 facial keypoints. We then
mask a convex hull along the boundary of the face using the list
of facial boundary keypoints. See Figure 2 for examples of both
masking strategies.

3.2 Method
Our Wav2Lip-Emotion approach extends Wav2Lip to modify emo-
tion via L1 reconstruction and pre-trained emotion objectives.

(1) For our pre-trained emotion objective, we employ aDenseNet
model [13] trained by [25]. This emotion classifier detects 6
emotions and neutral expressions and achieves accuracy of
73.16% on the FER2013 dataset [11]. Due to pre-processing
compute constraints, we utilize only happy, neutral, and sad.
We modify the Wav2Lip architecture to use this pre-trained
emotion classifier as another objective. We train to maximize
the class probability of the desired emotion, as predicted by
the emotion classifier on the generated outputs.

(2) We fine-tune Wav2Lip-Emotion using input videos from
MEAD having a specified source emotion and we sample the
target video frames from a different destination emotion to
allow the L1 reconstruction loss to also encourage emotion
modification. For the scope of this work we only produce
models that modify emotion between a pair of specific emo-
tions.

(3) The Wav2Lip architecture masks the lower half of target
image frames to create a pose prior input that does not reveal
lip information. InWav2Lip-Emotion, we experimentwith an
additional masking approach that replaces the entire facial
area with zeroes to conceal emotion changes to the eyes,
eyebrows, and other facial features besides the lips. Likewise
in all of our variants, we modify Wav2Lip’s adversarially
trained visual quality discriminator to scrutinize the whole
rather than bottom half of the frame. This change required
the addition of residual connections to this discriminator to
overcome vanishing gradients.

(4) At inference, unlike the original Wav2Lip architecture which
synchronizes the lip movements in a set of video frames to
an unsynchronized audio input, Wav2Lip-Emotion retains
the original audio and simply modifies the emotion while
ensuring the consistency of lip movements.

3.3 Model
We extend the Wav2Lip architecture with an additional emotion
objective and modify the visual quality discriminator. Thus the
model is composed of a generator and 3 discriminators: 1) lip syn-
chronization and 2) emotion pre-trained objectives, as well as 3) an
adversarially trained visual quality objective. The model operates
on inputs composed of short windows of audio and face-cropped
video frames, and outputs generated face frames.

3.3.1 Generator. The generator,𝐺 contains 3 blocks. An identity
encoder, speech encoder, and face decoder. The architectural details
for these blocks are outlined in the Wav2Lip paper. The identity
encoder concatenates a random frame with a pose prior consisting
of a masked version of the target face. The speech signal is also
encoded as a stack of 2D convolutions which are concatenated with
the frame. The decoder is also a set of convolutional layers that
have been modified for upsampling.

3.3.2 Original Training Objectives. Wav2Lip follows other image
translation work in using the L1 reconstruction loss between the
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real (LG𝑖 ) and generated frames (Lg𝑖 ):

𝐿𝑟𝑒𝑐𝑜𝑛 =
1
𝑁

𝑁∑
𝑖=1

Lg𝑖 − LG𝑖

1 (1)

The pre-trained lip synchronization discriminator used by the au-
thors of Wav2Lip is a modified version of SyncNet [5], a model that
detects lip synchronization errors in videos, which is pre-trained on
the LRS2 dataset. Note that this lip synchronization discriminator
is not trained further during the Wav2Lip or Wav2Lip-Emotion
training process. The modified SyncNet model uses RGB images in-
stead of grayscale images, contains a deeper network with residual
skip connections, and introduces a new loss function that uses the
cosine similarity between the speech audio (s𝑖 ) and the face video
(v𝑖 ) with binary cross-entropy loss:

𝑃𝑖𝑠𝑦𝑛𝑐 =
v𝑖 · s𝑖

𝑚𝑎𝑥 (
v𝑖2 · s𝑖2 , 𝜖) (2)

𝐸𝑠𝑦𝑛𝑐 =
1
𝑁

𝑁∑
𝑖=1

−𝑙𝑜𝑔(𝑃𝑖𝑠𝑦𝑛𝑐 ) (3)

Wav2Lip also uses a visual quality discriminator, which penal-
izes unrealistic faces. Unlike the pre-trained lip synchronization
discriminator, the visual quality discriminator learns by discrimi-
nating the generated images and real images during training. The
discriminator is trained to maximize the 𝐿𝑑𝑖𝑠𝑐 objective function.

𝐿𝑔𝑒𝑛 = Ex∼L𝑔 [𝑙𝑜𝑔(1 − 𝐷 (x))] (4)

𝐿𝑑𝑖𝑠𝑐 = Ex∼L𝐺 [𝑙𝑜𝑔(𝐷 (x))] + 𝐿𝑔𝑒𝑛 (5)

Originally visual quality discriminator only examines the lower
half of the face. But since emotion modification also takes place in
the upper half, wemodify the architecture to discriminate the whole
image. We also introduce residual connections to overcome prob-
lems with vanishing gradients that occurred during the process of
retraining the model on LRS2 data with this modified discriminator
architecture.

3.3.3 Pre-trained Emotion Objective. In addition to the two dis-
criminators listed above, we add a pre-trained emotion objective.
We utilize a DenseNet classifier trained by [25] to predict emotion
labels for each generated frame. We put the logits, z, output by the
final layer through softmax to form the likelihood of each emotion
class 𝑒 ∈ 𝐸:

𝑔𝑒 =
exp(𝑧𝑒 )∑

𝑘∈𝐸 exp(𝑧𝑘 )
(6)

We minimize the deviation of the desired emotion class likeli-
hood, 𝑔𝑑 from the maximum value:

𝐿𝑒𝑚𝑜𝑡𝑖𝑜𝑛 =
1
𝑁

𝑁∑
𝑖=1

1 − 𝑔𝑖
𝑑

(7)

3.3.4 Total Loss. The overall loss minimized by the generator is
given by the weighted sum,

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑠𝑟 · 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝑠𝑤 · 𝐸𝑠𝑦𝑛𝑐 + 𝑠𝑔 · 𝐿𝑔𝑒𝑛 + 𝑠𝑒 · 𝐿𝑒𝑚𝑜𝑡𝑖𝑜𝑛 (8)

where the weights 𝑠𝑟 , 𝑠𝑤 , 𝑠𝑔 , and 𝑠𝑒 are tuned as hyperparameters.

3.3.5 Variants.

Masking. We present two model variants with respect to our
masking strategy. These are the proposed full masking approach
(described in Section 3.1.1) which covers the full face, and half
masking which preserves the original Wav2Lip masking strategy
and enables the use of pre-trained Wav2Lip checkpoints.

Emotion Modification Strategy. Our work explores two avenues
for encouraging emotion modification in generated videos: L1 re-
construction loss and a pre-trained emotion objective. Thus we
explore 3 variants—L1, Emotion Objective, and L1 + Emotion
Objective—in which one of each or both avenues for emotion mod-
ification are utilized. The impact of the emotion objective can be
ablated by simply removing that objective. Since the L1 reconstruc-
tion loss is also critical for maintaining lip synchronization and
visual quality, we cannot simply remove it. It is able to encourage
emotion modification only when we provide target video frames
drawn from the specified destination emotion which differs from
the source emotion from which the input reference image is drawn
(described in Section 3.2). So to ablate the emotion modification
via L1 loss we use source emotion video frames for both inputs and
targets.

3.3.6 Hyperparameters. All variants, except Emotion Objective
without L1, use an L1 reconstruction loss weight (𝑠𝑟 ) of 0.8, a syn-
chronization loss weight (𝑠𝑤 ) of 0.03, a visual quality discriminator
weight (𝑠𝑔) of 0.07, and an emotion objective weight (𝑠𝑒 ) of 0.1. In
the Emotion Objective without L1 variant, the emotion objective
and L1 loss have contrary goals in that the target images whose re-
construction is measured by the L1 loss are from the source emotion
rather than the destination emotion which is optimized for by the
emotion objective. Thus in this variant we use an L1 reconstruction
loss weight (𝑠𝑟 ) of 0.6 and an emotion objective weight (𝑠𝑒 ) of 0.3
to help the emotion modification compete with the L1 loss.

Meanwhile in the L1 and L1 + Emotion Objective variants
we utilize target videos from the destination emotion while using
videos from the source emotion to provide the reference frames that
inform the model of the identity of the speaker. However, while the
MEAD data does contain emotion variations of the same utterances,
the performances are not perfectly synchronized. Thus with the
full masking models we also utilize the destination emotion video
for the masked pose prior input, as this allows the greatest pose
synchronization. The half masking models however do not fully
obscure the emotion information in the pose prior input and thus
we use the source instead of destination emotion for the masked
pose prior, despite the imperfect pose synchronization.

We normalize inputs to the emotion objective by the channel
mean and standard deviation of the MEAD data and convert to
greyscale, as the emotion objective was pre-trained on greyscale
only images. In order to further prevent vanishing gradient issues
with the visual quality discriminator we clamp the gradient norm
between 1e-2 and 1e10. All other settings are as specified by the
original Wav2Lip.

4 EVALUATION
We propose an automated emotion evaluation approach that com-
pares changes in valence and arousal in generated videos against
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Figure 3: Input sad frame (left), generated happy outputs (grid center), and target ground truth happy frame (right). In the grid
the first row is Full masking while the second row is Half masking. The columns are emotion modification strategies left to
right as follows: L1 + Emotion Objective, L1, Emotion Objective.

changes in baseline human performances inMEAD.We also provide
qualitative examples (see Figure 3) and a user study with findings
that corroborate our automated emotion evaluation approach.

4.1 Wav2Lip Retraining

masking LSE-D↓ LSE-C↑ FID↓
full 7.640 6.213 5.938
half 7.013 7.029 7.818

original model

Wav2Lip + GAN 6.469 7.781 4.446

Table 2: Lip sync (LSE-D, LSE-C) and visual quality (FID) for
re-trainedWav2Lipwithmodified visual quality discrimina-
tor necessary for emotion modification, reported on LRS2
dataset compared with original Wav2Lip results.

Since we redesign the architecture of the visual quality discrimi-
nator and introduce a new full face masking strategy in one of our
variants, it was necessary to retrain Wav2Lip on the LRS2 data used
by the original authors. For our fullmasking variants, we retrained
Wav2Lip from scratch following the same procedure as the original
authors except for changing the masking technique and the visual
quality discriminator. For our half masking variants, we were able
to start training from checkpoints provided by theWav2Lip authors
before the introduction of the visual quality discriminator objective.

In Table 2 we report the results of retraining Wav2Lip on LRS2
prior to fine-tuning for emotion modification. We give the three
metrics employed by the original authors: lip synchronization error
distance (LSE-D), lip synchronization error confidence (LSE-C),
and Fréchet inception distance (FID).

LSE-D and LSE-C utilize SyncNet [5], the original architecture
modified by Wav2Lip for their lip synchronization discriminator.
The originally reported accuracy of this model is over 99%. The
LSE-D measures the L2 distance between the SyncNet encodings
of audio and video, where close vectors are trained to represent

synchronization. LSE-C on the other hand represents the SyncNet
confidence output, where a larger number indicates better synchro-
nization.

FID [12] is a commonly used automatic measure of distance
between image datasets. Feature representations of the images in
the dataset are encoded by the pre-trained Inception network and
then the Fréchet distance is calculated between two Gaussians fitted
to these representations. Wav2Lip takes the FID of generated output
frames against ground truth frames as a measure of overall visual
quality, where a lower value indicates higher visual quality from
greater fidelity to the distribution of ground truth frames. Same as
Wav2Lip, we utilize the FID implementation by [29].

While our retrained Wav2Lip models do not achieve identical
performance with the original, they are nevertheless sufficiently
comparable given that our objective is simply to maintain lip syn-
chronization rather than alter it.

Also notably the half masking variant comes out of retraining
more performant than the full masking variant, likely because it
was able to leverage the already high performance of the original
authorsWav2Lip checkpoint as a starting point rather than being
trained from scratch. Initial attempts to re-train the full mask vari-
ant suffered from vanishing gradients in the discriminator. Attempts
to introduce batch normalization greatly harmed discriminator per-
formance, so we instead opted to add residual skip connections to
the discriminator architecture. From there we trained all models
until convergence.

4.2 Qualitative Observations
Figure 3 provides examples of generated frames from all of our
model variants on sad to happy emotion modification based on
inputs from our test split of the MEAD data. The input sad im-
age frame is shown on the left, the happy generated outputs are
provided for each of the 6 model variations in the grid in the cen-
ter, and a frame from the target ground truth happy performance
is provided on the right for contrast. In the grid the top row is
Full masking while the bottom row isHalf masking. The columns
are emotion modification strategies left to right as follows: L1 +
Emotion Objective, L1, Emotion Objective.
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masking emotion modification strategy LSE-D↓ LSE-C↑ FID↓ Δ valence ↑ Δ arousal ↑
full L1 + Emotion Objective 11.357 1.378 103.016 0.729 0.400
full Emotion Objective 10.993 1.855 73.046 0.044 0.200
full L1 11.413 1.477 141.719 0.995 0.803
half L1 + Emotion Objective 10.563 2.101 71.508 1.000 0.522
half Emotion Objective 10.443 2.328 48.819 0.095 0.244
half L1 10.673 2.000 82.709 0.945 0.595

Average Wav2Lip Original 10.032 2.751 31.813 - -
Average Ground Truth 10.651 2.533 26.302 - -

Table 3: Comparison averaged across emotions of Wav2Lip-Emotion variants and ground truth on lip sync (LSE-D, LSE-C),
visual quality (FID), and our novel automated emotion evaluation approach that normalizes change in valence and arousal by
a human baseline. Original model and ground truth shown for contrast, with FID averaged over emotion combinations.

Analysis of a selection of examples seems to indicate that the L1 +
Emotion Objective emotion modification strategy has issues with
blurry outputs but performs the task most faithfully by modifying
the emotion while preserving pose. The L1 emotion modification
strategy on the other hand produces more crisp results with clear
emotion modification but does a poor job of preserving pose and
visual quality. Finally, Emotion Objective emotion modification
does an excellent job of preserving pose and sync, but produces
very little emotion modification.

4.3 Automatic Evaluations
We report automated evaluation results for Wav2Lip-Emotion vari-
ants in Table 3. We follow Wav2Lip’s utilization of pre-trained
automated evaluation metrics (LSE-D, LSE-C, and FID, explained
in Section 4.1) and craft an approach for automatic emotion evalua-
tion (Δ valence and Δ arousal).

To measure valence and arousal in videos we use the NISL2020
model [7], the winner of FG-2020’s Competition in Affective Behav-
ior Analysis in-the-wild (ABAW) [19]. Trained on the Aff-Wild2
dataset [20], this model outputs per-frame valence scores, ranging
from [-1,1], that indicate how positive or negative a facial expres-
sion is. It also outputs per-frame arousal scores, ranging from [0,1],
that indicate how active or calm the expression is. The model in-
corporates information from all the frames of a video in which a
face is detected, and thus assesses the consistency of our generated
videos over a temporal window of frames. We take the average of
each value over all frames in a video to get a video level score.

In order to make our emotion metric comparable across different
pairs of source and destination emotions, we devise the following
normalization scheme. Our test split of the MEAD dataset contains
performed destination emotion target videos associated with the
source emotion input videos that can be used as a baseline for our
evaluation. Thus we get average valence and arousal scores over all
frames of an actor performing a given utterance for the generated
outputs (𝑣𝑔 and 𝑎𝑔), source ground truth emotion (𝑣𝑠 and 𝑎𝑠 ), and
destination ground truth emotion (𝑣𝑑 and 𝑎𝑑 ). We then take the
ratio of the change in the generated video compared to its source
emotion input against the change in the destination emotion video

compared to the source emotion video:

Δ valence =
𝑣𝑔 − 𝑣𝑠

𝑣𝑑 − 𝑣𝑠
(9)

Δ arousal =
𝑎𝑔 − 𝑎𝑠

𝑎𝑑 − 𝑎𝑠
(10)

Thus intuitively positive values indicate change in the "right" di-
rection, with a value of 1 indicating a change in emotion identical
to the ground truth change performed by the actors in the MEAD
dataset. Meanwhile emotion pairs like sad and neutral, instead of
sad and happy, will have smaller ground truth changes and will
be scaled so as not to be drowned out when aggregated with pairs
that have larger ground truth shifts. Finally, scores greater than
1 are possible. While overshooting the valence change towards
happy or sad emotion is desirable, overshooting the valance modifi-
cation towards neutral is not. Thus, we further take Δ valence∗2𝑛 =

1 − |1 − Δ valence| as our normalized score for neutral destination
modifications to penalize overshooting.

The numbers presented in Table 3 are the averaged values over
all videos in each condition, further micro-averaged over all 6 emo-
tion pairs of {sad, neutral, happy}. This reveals that no one model
variant excels in all cases. Unsurprisingly the half masking with
Emotion Objective modification strategy variant performs best
on lip synchronization and image quality metrics as this model
is closest to the original Wav2Lip approach. It takes advantage of
the half masked model checkpoints provided by the authors and
needs to retrain only the visual quality discriminator unlike our full
masking models which also retrain the generator. This model also
achieves better metrics on the LRS2 as shown in Table 2. However,
this model performs relatively poorly on our automated emotion
evaluation.

The best performing models on the emotion evaluation appear
to come from the L1 and L1 + Emotion Objective emotion modi-
fication strategy variants rather the Emotion Objective variants.
This indicates that the L1 reconstruction loss along with the novel
use of destination emotion videos for target frames produces most
emotion modification, while only a small amount of modification is
achieved with the emotion objective alone. Nevertheless the Emo-
tion Objective only variants do still move emotion (particularly
arousal) in the right direction and achieve better synchronization
and visual quality metrics. The L1 + Emotion Objective variant
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emotion modification LSE-D↓ LSE-C↑ FID↓ vd − vs ad − as Δ valence ↑ Δ arousal ↑

A
ll
V
ar
ia
nt
s happy -> neutral 11.543 1.52 95.127 -0.746 -0.213 0.649 0.767

happy -> sad 10.715 1.986 77.768 -0.807 -0.069 2.143 0.121
neutral -> happy 10.56 2.277 93.241 0.74 0.212 0.66 0.808
neutral -> sad 10.774 2.113 98.442 -0.077 0.155 0.185 0.244
sad -> happy 10.82 1.676 65.007 0.807 0.069 0.663 0.377
sad -> neutral 11.03 1.566 91.232 0.084 -0.155 -0.486 0.427

B
es
t V

ar
ia
nt

happy -> neutral 11.017 1.757 72.889 -0.746 -0.213 0.661 0.826
happy -> sad 10.117 2.312 77.642 -0.807 -0.069 3.537 0.455

neutral -> happy 10.462 2.449 67.377 0.746 0.213 1.063 1.032
neutral -> sad 10.375 2.576 69.902 -0.077 0.155 0.383 0.441
sad -> happy 10.489 1.838 68.397 0.807 0.069 1.246 -0.444
sad -> neutral 10.918 1.674 72.839 0.077 -0.155 -0.888 0.825

Table 4: Comparison over pairs of source and destination emotions for lip sync (LSE-D, LSE-C), visual quality (FID), and change
of valence and arousal in generated outputs normalized by human baseline change between ground truth inputs and targets
(vd − vs and ad − as). Top section averaged over Wav2Lip-Emotion variants, and bottom section best all-around variant.

that utilizes both approaches, appears to provide a balance between
synchronization and visual quality against emotion modification.

We contrast our model performances on the synchronization and
visual quality metrics against those same metrics run on the ground
truth data as well as the generated outputs of the original Wav2Lip
run on the synchronized ground truth video and audio. LSE-D and
LSE-C numbers on the ground truth andWav2Lip generated happy,
neutral, and sad videos are averaged over emotions to produce the
numbers at the bottom of Table 3. The FID scores meanwhile are
the average over the FID between all combinations of the three
emotions. While our models’ synchronization and visual quality
performance are worse than that of Wav2Lip on the LRS2 (see
Table 2), our metrics are better aligned for Wav2Lip’s outputs on
MEAD as well as the metrics on the unmodified ground truth itself.
This discrepancy may arise from slight audio desynchronization
in the raw MEAD data. Meanwhile the use of FID to judge visual
quality may be better suited for lip synchronization than emotion
modification, since the latter makes much more salient changes
to the images in the videos. Evidently even real differences in per-
formed emotion made by the same speaker in the MEAD ground
truth data shift the distributions of Inception encodings more than
Wav2Lip’s generated results on LRS2. The FID between original
Wav2Lip outputs on MEAD and ground truth frames from a dis-
tinct emotion is somewhat higher than the FID between ground
truth emotions only, suggesting that the FID nevertheless measures
some additional differences in visual quality produced by video
translation.

We present metrics separately for each emotion modification
pair of source and destination emotions in Table 4. The top section is
averaged over all model variants, while the bottom section presents
the numbers for the best all around performing model, half mask-
ing with L1 + Emotion Objective emotion modification strategy.
We also report the baseline change in valence and arousal between
ground truth inputs and targets (vd − vs and ad − as) to reveal the
NISL2020 model’s sensitivities to changes in each pair of emotions
as performed by humans. Notably the difference between neutral
and sad appears to manifest more as a change in arousal than as a

change in valence. These baseline changes also demonstrates how
the normalized Δ valence and Δ arousal are sensitive to noise in
generated changes when there are relatively small changes of the
ground truth (vd − vs and ad − as) in the denominator, possibly
explaining erratic scores for arousal change between sad and happy
and valence change between sad and neutral.

More generally Table 4 shows how emotion results are highly
dependent on the source and destination emotion while synchro-
nization and visual quality are relatively unaffected. Some destina-
tion emotions may be easier to optimize for or some input source
emotionsmay bemore difficult to alter. Notably the Δ valence scores
for happy to sad are much higher than all others including sad to
happy, possibly indicating that the model is able to exploit traits
of sadness as it appears in the training data more effectively than
other emotions. Nevertheless the best all around performing model
gets Δ valence and Δ arousal values around 1.0 on many emotion
pairs, indicating a general ability to modify emotion comparably
to the ground truth changes performed by the actors in the MEAD
dataset.

4.4 User Study
We conduct a small crowdworker evaluation to rate the clips gener-
ated by the top 3 models on their visual quality, lip synchronization,
and emotion. We randomly select 2 videos per emotion pair for
each of the 3 best performing models shown in the top half of Table
3, giving us 2 * 6 * 3 or 36 videos overall. We create a simple form,
that asks 20 workers to rate each of these 36 videos on their visual
quality and lip synchronization aspects, and to judge the emotion
expressed by the speaker in the video. We select 20 workers from
the Prolific platform [23], who are fluent in English, have partic-
ipated in at least 10 tasks on Prolific, and have a 95% acceptance
score on earlier tasks. For the first two factors, we ask workers
to rank the generated videos between 1 and 5, where 1 stands for
"Very bad lip synchronization" and "Very bad visual quality" and
5 stands for "Excellent lip synchronization" and "Excellent visual
quality". To judge the emotion expressed in the generated video,
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masking emotion modification strategy sync ↑ visual quality ↑ Δ emotion ↑
half L1 + Emotion Objective 2.467 2.138 0.779
half Emotion Objective 3.492 2.887 0.379
half L1 2.758 1.85 0.732

emotion modification sync ↑ visual quality ↑ Δ emotion ↑
happy -> neutral 2.483 2.117 0.833
happy -> sad 2.35 1.967 0.569

neutral -> happy 3.483 2.933 0.454
neutral -> sad 2.95 2.183 0.533
sad -> happy 3.333 2.167 0.621
sad -> neutral 2.833 2.383 0.771

Table 5: User score from 1-5 over Sync and Visual quality, as well as Δ emotion of generated outputs normalized by expected
change. Top half averaged over 3 best variants and bottom half averaged over emotions.

workers scored a video between 1 and 5 where a score of 1 meant
that the speaker in the video is "Very Sad", a score of 3 meant that
the speaker in the video is "Neutral" and a score of 5 meant that
the speaker in the video is "Very Happy"

In order to make our emotion metric comparable across differ-
ent pairs of source and destination emotions, we utilize a similar
normalization scheme as on our automated emotion evaluations.
The raw per-video emotion scores for generated outputs (𝑒𝑔) are
normalized with respect to the ground truth emotion values of
the source and destination emotions (𝑒𝑠 and 𝑒𝑑 ). So for example a
modification from neutral to happy would have 𝑒𝑠 = 3 and 𝑒𝑑 = 5.
We then normalize the raw scores as follows:

Δ emotion =
𝑒𝑔 − 𝑒𝑠

𝑒𝑑 − 𝑒𝑠
(11)

Thus positive values indicate change in the correct direction. And
again, we further take Δ emotion∗2𝑛 = 1 − |1 − Δ emotion| as our
normalized score for neutral destination modifications to penalize
overshooting.

The user study results aggregated over model variants (top of
Table 5) corroborate findings of our novel automatic emotion evalu-
ation by indicating that L1 and L1 + Emotion Objective are most
effective at emotion modification but struggle with synchronization
and visual quality. The per-emotion pair results (bottom of Table
5), show that we achieve meaningful emotion modification across
emotion pairs along with moderate synchronization and visual
quality.

5 CONCLUSION
To our knowledge, Wav2Lip-Emotion is the first approach to cast
the synthesis of facial emotion as a video-to-video translation
task. Our method extends an existing lip synchronization model,
Wav2Lip, with a new task of modifying facial emotion in trans-
lated images through L1 reconstruction and pre-trained emotion
objectives. In order compare results from all model variants on the
MEAD dataset, we propose a novel automatic emotion evaluation
approach and corroborate it with a user study.

Our evaluations support our ability to modify emotion, with
both automatic metrics and human judgements rating the emotion

modification in our best performing models as nearly compara-
ble to the ground truth changes performed by the actors in the
MEAD dataset. Our model also appears to maintain the level of lip
synchronization present in the input videos, as was the original
intent of building on the Wav2Lip architecture. However the visual
quality of our models is only moderate. Greater performance may
be possible from training on additional data with more variety of
posses and speaker identities. While we have taken advantage of the
paired emotion videos in the MEAD dataset for emotion evaluation,
Wav2Lip-Emotion does not require such paired data. It can train on
any videos in which a single speaker is found performing differing
emotions. These could be labeled, as in the CMU-MOSEI dataset [1],
or automatically inferred. Likewise while the present work has been
limited to individual models for translating from a specific emotion
to another one, our approach makes no fundamental obstacle to
a multi-task approach that translates many emotions. By utilizing
additional intensity labels, it may even be possible to dial the level
of emotion modification through a hyperparameter, similarly to the
approach of Fan et al. [10]. Such possibilities suggest the further
promise of this proof of concept of video-to-video translation for
modifying facial emotion.
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