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ABSTRACT

This paper describes Trio, a programmable chipset used in Juniper

Networks’ MX-series routers and switches. Trio’s architecture is

based on a multi-threaded programmable packet processing en-

gine and a hierarchy of high-capacity memory systems, making

it fundamentally different from pipeline-based architectures. Trio

gracefully handles non-homogeneous packet processing rates for

a wide range of networking use cases and protocols, making it

an ideal platform for emerging in-network applications. We be-

gin by describing the Trio chipset’s fundamental building blocks,

including its multi-threaded Packet Forwarding and Packet Process-

ing Engines. We then discuss Trio’s programming language, called

Microcode. To showcase Trio’s flexible Microcode-based program-

ming environment, we describe two use cases. First, we demonstrate

Trio’s ability to perform in-network aggregation for distributed

machine learning. Second, we propose and design an in-network

straggler mitigation technique using Trio’s timer threads. We pro-

totype both use cases on a testbed using three real DNN models

(ResNet50, DenseNet161, and VGG11) to demonstrate Trio’s ability

to mitigate stragglers while performing in-network aggregation.

Our evaluations show that when stragglers occur in the cluster,

Trio outperforms today’s pipeline-based solutions by up to 1.8×.
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1 INTRODUCTION

Data-intensive applications are the foundation of today’s online

services. With the gradual slowdown of Moore’s law, hardware

accelerators are struggling to meet the performance demands of

emerging cloud applications, such as machine learning, databases,

storage, and data analytics. Further advances are significantly lim-

ited by the amount of computation and memory that can fit in a

single server, driving the need for efficient distributed systems for

data-intensive applications.

The availability of programmable switches, such as Intel’s Tofino [2,

20, 22], has created opportunities to design new packet-processing

protocols and compilers [17, 20, 24, 44, 45, 58, 69, 71]. Tofino switches

have also paved the way to using in-network computing [23, 60, 74]

to accelerate applications such as caching [43], database query

processing [50, 73], machine learning training [36, 48, 55, 63, 77],

inference [76], and consensus protocols [27, 28, 52]. The key idea

of in-network computing is to leverage the switches’ unique van-

tage point to perform part of the computation directly inside the

network, thereby reducing latency and improving performance.

Although programmable switches have been crucial enablers of

this new paradigm, the Protocol Independent Switch Architecture

(PISA) [2, 20, 22, 58] is often a poor fit for emerging in-network

applications, thus limiting further growth and precluding the wide-

spread adoption of in-network computing applications [35, 37, 67].

This paper presents Trio’s programmable architecture for in-

network computing. Trio is Juniper Networks’ programmable chipset

with amulti-billion dollar pre-existing customer base. It has been de-

ployed in hundreds of thousands of routers and switches worldwide

in the core, edge, and datacenter environments. The Trio chipset

has been used in production devices for over a decade.

Trio is built on a set of customized processor cores, with an in-

struction set optimized for networking applications. As a result, the

chipset has the performance of a traditional ASIC, while enjoying

the flexibility of a fully programmable processor by allowing the

installation of new features via software. Trio’s flexible architec-

ture enables it to support features and protocols developed long

after the chipset is released. Trio processor cores have access to

a high-performance large memory system to store data and state

related to system configuration and packets. The memory system

is central to the scalability of emerging applications with large

memory footprints.

Trio’s architecture is fundamentally different from that of Tofino.

Trio has a non-pipelined architecture, so different packets do not
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Figure 1: High-level comparison of a Trio-based

router/switch and a PISA-based switch.

necessarily flow through the same physical paths on the chip. In-

coming packets in Trio are processed independently using thou-

sands of parallel threads (details in §2). These threads use a run-to-

completion model [12, 70], in which a thread will execute as many

instructions as are needed to complete the processing for the packet

it is currently working on. Trio has dedicated logic to ensure pack-

ets of the same flow are delivered in order, but packets of different

flows can be processed out of order, allowing it to efficiently handle

a mix of concurrent applications.

Consequently, Trio can gracefully handle different packet pro-

cessing rates: it can support lower than line-rate for applications

that require rich per-packet processing while maintaining line-rate

for applications with simple per-packet processing needs. In con-

trast, PISA-based switches force all packets to traverse the same set

of pipeline stages, independent of the application. P4 programs [19]

have an all-or-nothing fate, wherein programmability is sacrificed

for line-rate packet processing since PISA-based switches are unable

to support flexible packet processing rates.

In this paper, we first describe the fundamental building blocks

of the Trio chipset, including details of its packet processing en-

gines and the surrounding memory systems (§2). Next, we describe

Trio’s programming language, called Microcode (§3). We then use

in-network aggregation for machine learning training as the first

use case to explain Trio’s flexible Microcode design (§4). We in-

troduce in-network straggler mitigation as a second use case to

demonstrate Trio’s unique ability to launch efficient timer-based

threads (§5). We demonstrate that implementing straggler mitiga-

tion in Trio is straightforward, while, to the best of our knowledge,

enabling efficient straggler mitigation inside PISA-based devices is

challenging, if not impossible.

We implement both use cases on a testbed with a Juniper MX480

device [10], one 64×100Gbps Tofino switch, and six ASUS ESC4000A-

E10 servers, each with one A100 Nvidia GPU [11] and one 100 Gbps

MellanoxConnectX5NIC.We train threeDNNmodels (ResNet50 [41],

DenseNet161 [42], and VGG11 [68]) to demonstrate Trio’s ability

to mitigate stragglers while performing in-network aggregation.

Our evaluations show that when stragglers occur in the cluster,

Trio outperforms SwitchML [63], the state-of-the-art in-network

aggregation platform, by up to 1.8× (§6).

Juniper Networks continues to evolve the Trio chipset for higher

bandwidth, lower power, and additional functionalities for existing

and emerging applications, while also developing software infras-

tructures to support more use cases. We invite the networking

community to identify novel use cases that will leverage Trio’s

programmable architecture.

Figure 2: Trio’s Packet Forwarding Engine (PFE) architec-

ture. Each PFE has hundreds of multi-threaded Packet Pro-

cessing Engines (PPEs).

2 TRIO’S ARCHITECTURE

Since its introduction in 2009, the Trio chipset has gone through six

generations [16] with various performance points and architectures.

This section provides a detailed overview of Trio’s recent architec-

ture. First, we give a high-level overview of packet forwarding and

processing in a Trio-based router1 (§2.1). We then turn to the details

of Trio’s packet processing engines (§2.2). Finally, we explain Trio’s

various memory types and read-modify-write operations (§2.3).

2.1 Trio-based Router Architecture

Figure 1 illustrates the high-level differences between a Trio-based

router (or switch) and a PISA-based switch. There are two impor-

tant components of every Trio-based device: (𝑖) Packet Forwarding
Engines and (𝑖𝑖) Packet Processing Engines, described below.

Packet Forwarding Engine (PFE). PFEs are the central pro-

cessing elements of Trio’s forwarding plane and are used to system-

atically move packets in and out of the device. A Trio-based device

consists of one ormore PFE. Depending on the generation, each Trio

chipset supports a different packet processing bandwidth. Trio’s

first-generation PFEs supported 40 Gbps of network bandwidth

with multiple chips. Today, Trio’s sixth-generation PFE supports

1.6 Tbps in a single chip. A small router may have only a single

PFE, while larger routers have multiple PFEs connected by an inter-

connection fabric, as shown in Figure 1(a). By providing any-to-any

connection between the PFEs, the interconnection fabric expands

the bandwidth of a device much farther than a single chip could

support. Each PPE handles packets in both the ingress and egress

directions. Packets arrive at the system through an ingress PFE and

exit through an egress PFE.

Packet Processing Engine (PPE). Each PFE has hundreds of

multi-threaded Packet Processing Engines (PPEs), as shown in Fig-

ure 2. Each PPE supports tens of threads working on different pack-

ets at the same time. Unlike Tofino’s architecture, where pipelines

cannot access each other’s registers, PPE threads within one PFE

can share state efficiently via shared memory. Section 2.2 explains

the PPE’s thread-based design in more detail.

Parallel packet processing. PFE’s hardware logic automati-

cally divides each incoming packet into head and tail parts (anal-

ogous to PISA’s header and payload). The packet head is the first

1In this paper, we use the term router and switch interchangeably. Historically, Juniper
Networks’ devices are called routers.
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part of a packet and is usually large enough to hold all of the packet

headers needed to process the packet (the size of the packet head

is different for each generation of the Trio devices but is typically

around 200 bytes). The tail consists of the remaining bytes of the

packet (if any). When a new packet arrives, a hardware module

inside PFE, called the Dispatch module, sends the packet head to a

PPE for processing based on availability, and the PPE spawns a new

thread for this packet head. Packet tails are held in the PFE’s Packet

Buffer in the Memory and Queueing Subsystem to avoid storing a

large number of bytes in the PPE threads. By default, each thread

works on a single packet. Many PPE threads work in parallel to

provide the required processing bandwidth.

Reorder Engine. When packet processing is completed, the

modified packet head is sent to a Reorder Engine. The Reorder En-

gine holds the updated packet head until all earlier arriving packets

in the same flow have been processed to ensure in-order delivery.

The Reorder Engine then sends the modified packet heads to the

Memory and Queueing Subsystem to be enqueued for transmission.

2.2 Packet Processing Engine

Trio’s PPEs provide capabilities that are difficult or impossible to

achieve with fixed processing pipelines or existing specialized pro-

cessing units. Each PPE is a VLIW (Very Long Instruction Word)

multi-threaded Microcode engine core. Each micro-instruction con-

trols multiple ALUs, operand and result selection, and complex

multi-way branching. The complexity of the work needed to ex-

ecute a micro-instruction means each instruction takes multiple

clock cycles. Because each PFE typically serves many packets at

the same time, one PPE does not require high single-thread perfor-

mance. Each thread in Trio has only one datapath instruction at

a time. Trio does not dispatch an instruction on the same thread

as the previous instruction into the PPE pipeline until the latter

exits the pipeline. Hence, there is no need to pass data between

instructions on the same thread because subsequent instructions

do not depend on the results from the previous ones before the data

writebacks are completed.

PPE threads. A PPE thread is usually started when a packet

head arrives at the PPE and destroyed when the processing is com-

plete for that packet at this PPE. The thread destruction is auto-

matically handled by the hardware logic in the chip, although the

programmer has control as to when to give up the execution of a

thread. Threads can also start in response to certain internal events,

including statistical collection and timers (more details in §5). Exter-

nal events have the ability to spawn the execution of new threads

through similar mechanisms. Together, the PPEs in the ingress and

egress PFEs handle all functions needed to process a packet (e.g.,

packet parsing, route lookup, packet rewriting).

Per-thread local storage. Each PPE has two main forms of

internal storage. First, each thread has a dedicated pool of local

memory (1.25 KBytes). The local memory can be accessed on any

byte boundary, using either pointer registers or an address con-

tained in the micro-instruction. Before a PPE thread is initiated,

the packet head is loaded into the local memory of that thread.

When an outgoing packet is being sent, the modified packet head

is unloaded from the thread’s local memory. The use of pointer

registers allows efficient access to packet headers, as well as to

other types of data structures. Second, each thread has 32 64-bit

general-purpose registers that are private to it. The local storage

(memory and registers) holds information specific to the packet

being processed. Shared state across packets is held in the Shared

Memory System accessible to all PPEs.

ALU types. There are two ALU types: (𝑖) Condition ALUs and

(𝑖𝑖) Move ALUs. Condition ALUs are used for arithmetic or logical

operations to produce 32-bit data results and/or for comparative

operations to produce 1-bit condition results. Move ALUs produce

32-bit results that can be written into either a register or local

memory. The results from the Condition ALUs can be used as inputs

to the Move ALUs. This ALU organization allows the resources of

each instruction to be flexibly allocated between sequencing control

(described next) and generation of logical/arithmetic results to be

stored in registers/memory. Importantly, each ALU operand and

each Move ALU result can be a bit-field of arbitrary length (up to

32 bits) and an arbitrary bit offset. This has two main benefits. First,

it improves the efficiency of accessing fields of varying sizes in a

packet header. Second, it improves the utilization of memory and

register capacity, allowing each piece of data to use only the bits

it needs. Trio has ALUs in both the PPEs and the Shared Memory

System. The former are used for operations on registers and local

memory, while the latter is used for operations on data stored

in the Shared Memory System. Operations on a packet tail is also

supported by moving sections of the packet tail to the local memory

of the PPE thread.

Sequencing logic. The condition result(s) from one or more

Condition ALU can be used by a sequencing logic unit to select the

next micro-instruction to be executed. Each micro-instruction in-

cludes the address of a target block of one to eightmicro-instructions.

Any or all of the condition results can be ignored, and the com-

bination of the condition results used is highly flexible. Much of

the work done in packet processing involves complex conditional

branches in the code, especially during parsing. Trio’s ability to

perform a complex multi-way branching in a single instruction is

well-matched to the needs of packet processing applications. The

PPE supports a call-return mechanism to subroutines, which can

be nested up to eight levels deep.

Efficient hash calculation. Efficient load-balancing is an im-

portant requirement of all routers/switches. In a Trio-based system,

a Microcode program is responsible for specifying which packet

fields are included in the hash calculation. This allows complete

flexibility as to which packet fields contribute to the load balancing

decision, including the ability to select fields from packet headers

whose protocols have not yet been invented. The hash function in

Trio is a high-quality hash function implemented using dedicated

logic. As a result, the hash function implementation is more effi-

cient than a comparable hash function implemented in software.

The combination of programmable field selection and hardwired

hash function gives PPEs an unprecedented balance of flexibility

and efficiency.

Flexible programming. There is no fixed limit on the num-

ber or type of headers that can be processed by a PPE. Hence, a

PPE can easily create new headers or consume/remove existing

headers in packets using Trio’s Microcode program (§3). As new

protocols are developed, the Trio packet processing architecture can

adapt by enhancing the software that runs on the PPEs. PPEs can
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Figure 3: Trio’s Shared Memory System.

also create or consume packets to accomplish tasks, such as keep-

alive functions, at a much higher rate than can be supported by a

control plane CPU because of PPEs’ multi-threaded architecture.

Importantly, processing cycles are fungible between applications,

enabling graceful handling of the packet processing requirements

of different applications. As a result, Trio-based systems can provide

lower packet rates for applications with richer packet processing

and higher packet rates for those with simpler packet processing,

or a mix of the two.

2.3 Shared Memory System

Recent Trio chipsets support several GBytes of memory in each PFE.

This section gives an overview of Trio’s Shared Memory System.

Advantages of shared memory. For switches and routers,

some data structures, such as counters and policers, need to be

modified at a high rate. To support efficient access to these data

structures by hundreds of PPE threads, Trio’s Shared Memory Sys-

tem serves as the place for all threads to access and modify the

data. All data accesses (read, write, and read-modify-write) to the

Shared Memory System are processed by the read-modify-write en-

gines, located close to the Shared Memory System. When multiple

threads access the same memory location at around the same time,

there is no need to move data from one thread to another. Instead,

data modification happens inside the read-modify-write engines.

This allows high-speed data updates near the memory and nicely

meets the needs of packet processing applications. In contrast, the

cache-line-based coherency model used by conventional proces-

sors requires data to be moved to the thread during access; this

creates longer delays when multiple threads try to modify the same

memory location. Although this model can support more complex

and general operations on the data, it performs poorly for data

structures that can be accessed by hundreds of threads.

Memory types. The Trio memory system is optimized to pro-

vide a high access rate for relatively small (8 bytes) requests. To

achieve the required combination of bandwidth, latency, and ca-

pacity, the memory system uses two types of memory, shown

in Figure 3: (𝑖) a high-bandwidth on-chip memory, with approxi-

mately 70 ns access latency from the PPE; and (𝑖𝑖) a large high-

bandwidth DRAM-based off-chip memory, with approximately

300 ns to 400 ns access latency from the PPE. The on-chip memory

is implemented by a heavily multi-banked SRAM and is typically

used for frequently-accessed data structures. The off-chip memory

has a multi-megabyte on-chip cache which is similar to the on-chip

SRAM and is heavily multi-banked to provide high throughput.

The size of the On-chip SRAM and the Off-chip DRAM cache are

software configurable (typically 2-8 MBytes and 8-24 MBytes, re-

spectively). The Off-chip DRAM is several GBytes. The on- and

off-chip memories are architecturally equivalent and exist in dif-

ferent ranges of a single unified address space. They only differ in

capacity, latency, and available bandwidth. This allows data struc-

tures to be placed in the type of memory that best matches their

capacity and bandwidth requirements.

Memory transactions. The memory system supports read and

write operations of varying sizes, from 8 bytes up to 64 bytes (in 8-

byte increments). Trio can support full memory system bandwidth

with 8-byte accesses. In addition, a rich variety of read-modify-

write operations are supported, including Packet/Byte Counters,

Policers, Logical Fetch-and-Ops (And/Or/Xor/Clear), Fetch-and-

Swap, Masked Write, and 32-bit add. The read-modify-write opera-

tions are enabled by read-modify-write engines, as specified below.

Read-modify-write engines. Packet processing requires ex-

tremely high-rate read-modify-write operations. Processing a sin-

gle packet may involve updates to multiple counters, operations on

one or more policers, and other operations as needed by the appli-

cation. A naive approach to handle read-modify-write operations

is to give one thread ownership of a memory location while the

operation is carried out. But this approach cannot meet the high effi-

ciency requirements of packet processing. In contrast, Trio offloads

the read-modify-write operations to its memory system, where

a range of memory locations is handled by a single read-modify-

write engine. If multiple requests to the same memory location

arrive at around the same time, the engine processes the requests

in sequence, guaranteeing consistency of the updates. There is no

need to issue explicit coherence commands to a location in memory

when mixing read, write, and read-modify-write operations. Each

read-modify-write engine processes memory requests at a rate of

8-byte per clock cycle. Hence, a single read-modify-write engine

for the entire Shared Memory System cannot provide the memory

bandwidth needed to process packets at a sufficiently high rate. To

address this challenge, Trio supports several banks of SRAM and

off-chip cache with their own read-modify-write engine, enabling

the read-modify-write processing bandwidth to scale with the raw

memory bandwidth.

Crossbar and sharedmemory performance. Trio’s Crossbar

is designed to support all read-modify-write engines, such that the

Crossbar itself will never limit the memory performance. If the

load offered to a given read-modify-write engine exceeds the 8-

bytes per cycle throughput, there will be backpressure through the

Crossbar. Juniper Networks increased the number of read-modify-

write engines in each generation of Trio chips so that the memory

bandwidth increases with the packet processing bandwidth.

3 TRIO’S PROGRAMMING ENVIRONMENT

This section gives an overview of Trio’s programming environ-

ment. Section 3.1 describes Trio’s programming language and the
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Figure 4: Programmer uses a C-like language called Mi-

crocode to program new applications and configure the tar-

get Trio routers.

toolchain for programming Trio-based devices. Section 3.2 provides

a packet filtering example programmed in Trio Microcode.

3.1 Trio’s Programming Language and
Toolchain

The programming language for Trio-based devices is a C-like lan-

guage called Microcode. The programmer implements all packet

processing operations in Microcode, including packet parsing, route

lookup, packet rewriting, and in-network computations (if any).

Figure 4 shows the tools needed to program new applications on

Trio. To program a new application on Trio, the programmer uses

the Microcode language to write new applications and adds the new

Microcode program to the existing codebase. Then the programmer

uses Trio’s compiler to generate the software image and configures

the target device.

Expression syntax. Microcode supports C-style expressions.

The supported variable types include scalar (label, bool, and integers

in various sizes) and compound (struct and union). Microcode also

supports pointers and arrays, conditions, function calls and gotos,

and switch statements.

Instruction boundary. A Microcode program has multiple in-

structions. A single Microcode instruction can perform limited

operations, and the programmer needs to explicitly specify the

instruction boundaries. Typically, a single Microcode instruction

can perform four registers or two local memory reads, and two

registers or two local memory writes.

Variable storage classes. When defining a new variable in Mi-

crocode, the programmer needs to specify the location to store the

variable. There are three types of variable storage classes: mem-

ory (PPE’s local memory and registers), bus (indicating that the

variable serves as input to the ALUs), and virtual (indicating con-

stant values). Access to data stored in the Shared Memory System,

such as forwarding tables, is achieved via the external transactions

specified below.

External transaction. PPEs can issue external transaction (XTXN)

to othermodules, such as the SharedMemory System,Hash lookup/in-

sert/delete, high-performance Filters, and counter/policer blocks,

over the Crossbar. These XTXNs can be either synchronous or asyn-

chronous. In synchronous XTXNs, the PPE thread is suspended

until the XTXN reply is received; in asynchronous XTXNs, the

PPE thread continues running normally. PPEs can also fetch data

from the packet tails through XTXNs. In this case, packet tails are

sent from the Memory and Queueing Subsystem, pass through the

Crossbar, and then arrive at the local memory of the PPE. An XTXN

consists of a request by a PPE to a target and a reply sent by the

target back to the PPE. The format of the XTXN depends on the

target block. For instance, read requests sent to the Shared Mem-

ory System take memory address as the parameter, and the data is

returned in the XTXN response register.

Compiler. To compile Microcode programs, the programmer

uses a tool called Trio Compiler (TC). TC maps the source code

for an instruction to the various resources the instruction can con-

trol, including mapping variables to their underlying storage and

assigning instructions to Microcode memory inside PPEs. TC has

characteristics of both compilers and assemblers. On the compiler

side, TC supports the translation of high-level C-style expressions

into hardware instructions. On the assembler side, TC source code

must contain instruction delineation, whereby the programmer

marks the beginning and end of blocks of code representing a sin-

gle instruction. If the code designated to one instruction does not fit,

TC fails the compilation because it cannot implement the requested

actions across multiple instructions. TC does not have a separate

compilation and linking phase. It requires the complete source code

instead of individual modules to generate the binary. This binary

contains data to initialize PPE resources such as Microcode memory

and local memory. It also defines required symbols, such as the ad-

dress in local memory where the packet header starts. This binary

file serves as part of the Junos2 software image used by Trio’s ASIC

driver for device initialization.

vMX Virtual Router. Juniper Networks is making a concerted

effort to enable third-party access to programming Trio-based de-

vices. As a first step to enable third-party access to Trio’s function-

alities, Juniper Networks developed the vMX Virtual Router [5].

vMX is a virtualized Universal Routing Platform and consists of a

virtual control plane (VCP) and a virtual forwarding plane (VFP).

The VCP is powered by the Junos operating system, and the VFP

runs the Microcode engine optimized for x86 environments. vMX is

available as licensed software for deployment on x86-based servers

and cloud services, such as Amazon Web Services.

Advanced Forwarding Interface. In Trio, packet forwarding

is a sequence of operations executed by a PFE. Each operation can

be represented by a node on a graph of potential packet forwarding

operations. The PFE executes a series of operations for an individ-

ual packet based on its type/fields. Juniper Networks’ Advanced

Forwarding Interface (AFI) [3] provides partial programmability by

allowing third-party developers to control and manage a section

of this forwarding path graph via a small virtual container called

a sandbox. The sandbox enables developers to add, remove and

change the order of operations for specific packets.

3.2 Microcode Program Example

We illustrate the usage of Trio Microcode by showing an example

of a filtering application whose function is to forward all incoming

IP packets with no optional headers and drop all non-IP packets

and IP packets with options.

Microcode programworkflow. Figure 5 shows the Microcode

program workflow. Each incoming packet is processed by one PPE

2Juniper Networks’ Junos is the operating system that powers Trio-based devices.
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Figure 5:Microcode programworkflowof the filtering application. Labels in brackets are the corresponding instruction names.

thread. The thread first looks at the packet’s Ethernet header. If

EtherType is equal to 0x0800, the packet is an IP packet, and the

next step is to process the IP header; otherwise, it is a non-IP

packet. In this case, the thread drops the packet and increments

the Packet/Byte Counter for non-IP packets. For an IP packet, the

thread further examines whether it has any IP option fields. The

thread forwards all non-option IP packets, but drops IP packets

with options and increments the Packet/Byte Counter for IP-option

packets. After completing all required operations, the thread exits.

Packet header formats. Programmers need to define packet

header structures in the Microcode program. The format of the

packet header definition is similar to that of P4 [19], where each

header is defined by an ordered list of field names with the corre-

sponding field widths. Here, we show the definition of the standard

Ethernet header as an example.

struct ether_t {
dmac : 48;
smac : 48;
etype : 16;

};

Ethernet header processing. This instruction decides whether

the incoming packet is an IP packet by looking at the EtherType field

in the Ethernet header. If the incoming packet is an IP packet, the

program continues to instruction process_ip; otherwise, it goes
to instruction count_dropped. In this case, we set the intermediate

register ir0 to 0 to indicate the current packet is a non-IP packet,

and count_dropped will use ir0 to calculate the starting address

of the corresponding Packet/Byte Counter for non-IP packets.

process_ether:
begin

ir0 = 0;
if (ether_ptr ->etype == 0x0800) {

goto process_ip;
}
goto count_dropped;

end

IP header processing. This instruction looks at the Version

and Internet Header Length (IHL) fields of the IP header. A Version

value equal to 4 and IHL value equal to 5 indicate the current packet

is a non-option IP packet. For non-option IP packets, the program

continues to instruction forward_packet; otherwise, it goes to
instruction count_dropped. In this case, we set the intermediate

register ir0 to 1 to indicate the current packet is an IP-options

packet, and count_dropped will use ir0 to calculate the starting

address of the corresponding Packet/Byte Counter for IP-options

packets.

process_ip:
begin

const ipv4_t *ipv4_addr = ether_ptr +
sizeof(ether_t);

Figure 6: Packet/Byte Counter layout in our example.

Pointer indicates the starting address of each counter.

ir0 = 1;
if (ipv4_addr ->ver == 4 &&

ipv4_addr ->ihl == 5) {
goto forward_packet;

}
goto count_dropped;

end

Dropped packet counting. This instruction increments the

Packet/Byte Counter for dropped packets. Packet/Byte Counter

is a special counter stored in the Shared Memory System. Each

Packet/Byte Counter is 16 bytes, and consists of two portions:

packet counter portion, which calculates the number of packets;

and byte counter portion, which calculates the number of bytes.

Figure 6 shows the Packet/Byte Counter layout and the correspond-

ing starting addresses in our example. Instruction count_dropped
first calculates the address of the Packet/Byte Counter to be incre-

mented based on DROP_CNT_BASE and ir0. If ir0 is equal to 0,

then the current packet is a non-IP packet, and the corresponding

counter address is DROP_CNT_BASE; otherwise the current packet
is an IP-options packet, and the corresponding counter address is

DROP_CNT_BASE+2. This instruction then issues an external trans-

action (XTXN) called CounterIncPhys, which is specific for in-

crementing Packet/Byte Counter and takes two parameters: the

counter address and the packet length. This XTXN increments the

packet counter portion and the byte counter portion in Packet/Byte

Counter separately: the packet counter portion is incremented by 1,

and the byte counter portion is incremented by pkt_len.
count_dropped:
begin

const : addr = DROP_CNT_BASE + ir0 * 2;
CounterIncPhys(addr , r_work.pkt_len);
goto drop_packet;

end

Packet forwarding and dropping. For completeness, we show

brief definitions of instructions forward_packet and drop_packet
as referenced by prior instructions. In our implementation, both

packet forwarding and packet dropping are completed by multiple

instructions.

forward_packet:
// code to forward the packet
// based on the destination address

drop_packet:
// code to drop the packet
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Figure 7: Trio-ML packet format.

4 USE CASE 1: IN-NETWORK AGGREGATION
IN TRIO

The previous sections described Trio’s flexible packet processing ar-

chitecture, the memory system, and the programming environment.

In this section, we discuss in-network aggregation for distributed

ML training as a concrete use case.

Data-parallel training. One of the common approaches to dis-

tributed Machine Learning (ML) training is data-parallel training.

In this approach, the neural network is replicated across 𝑁 workers

(or replicas), with each worker processing a small subset of the

training data (mini-batch) to compute its local model gradients. At

every iteration, workers must synchronize their model parameters

by exchanging and aggregating their gradients to ensure conver-

gence [39]. This step is called allreduce, and it is most commonly

implemented using a parameter server [53] or ring-allreduce [9, 65].

Overviewof in-network aggregation.The allreduce step puts

significant pressure on the network fabric because the entire set

of model gradients must be exchanged many times throughout

the training process [39, 40, 65]. Recent work proposed in-network

aggregation to improve the performance of distributed ML training

workloads [18, 36, 47, 48, 54, 63, 77]. By aggregating gradients inside

network switches, rather than at end-hosts, in-network aggregation

accelerates training jobs with heavy communication overheads.

Trio-based in-network aggregation. We now describe Trio-

ML, our Microcode implementation to perform in-network aggrega-

tion inside Trio-based devices. Section 5 extends Trio-ML to handle

straggling workers and describes the challenges faced by Tofino-

based in-network aggregation solutions [48, 63] in the presence of

stragglers.

Trio-ML packet format. Figure 7 illustrates Trio-ML’s aggre-

gation packet format. Following previous proposals [48, 63], we use

UDP packets to carry the gradients. Packets are addressed to the

router with a pre-defined destination port (e.g., 12000). After the

UDP header, we define a Trio-ML header that describes the block of

gradients carried in each packet. A block is a subset of DNN model

gradients that fits in one packet. The gradients are 32-bit integers

converted from floating-point using the scaling approach proposed

by ATP [48].

Trio-ML header structure. Figure 8 shows the Trio-ML header

structure, as defined in ourMicrocode program. job_id and block_id
uniquely identify the block of gradients for each training job. All

servers participating in the same job_id send blocks of gradi-

ents using the same sequence of block_ids. src_id identifies the

sender of each packet, enabling the aggregator to keep track of

which servers have contributed their data to the block and to rec-

ognize retransmissions by the servers. Generation number gen_id
is used to distinguish blocks in consecutive iterations of the model

aggregation. The header structure has three additional variables

(age_op, degraded, and src_cnt) that are most meaningful in the

context of stragglers (details in §5).

struct trio_ml_hdr_t { // 12 bytes
job_id : 8; // aggregation job id
block_id : 32; // aggregation block id
age_op : 4; // if the block has aged out
final : 1; // if the block is final block
degraded : 1; // aggregation is partial

: 2; // unused for byte alignment
src_id : 8; // source id of the packet
src_cnt : 8; // number of sources contributing
gen_id : 16; // generation id

: 4; // room to expand grad_cnt
grad_cnt : 12; // number of gradients

};

Figure 8: Trio-ML packet header structure.

Job records.Weuse a hash table (with key = job_id, block_id)
to keep track of ongoing aggregations in the device. Figure 17 in

Appendix A.1 shows the structure definition of job records. Job

records are created at job configuration time and persist until the

job is complete. They contain the current number of active blocks

being aggregated for each job (block_curr_cnt). They also con-

trol memory sharing across jobs by capping the maximum number

of concurrent aggregation blocks (block_cnt_max) and the maxi-

mum number of gradients per block (block_grad_max) for a given
job. In addition, job records hold the parameters required for gener-

ating and forwarding the response, as well as the block expiration

timeout. Finally, job records contain bitmasks indicating which

sources (workers) are participating in the job.

Block records. Trio-ML creates a block record when it receives

a packet with a new block_id from a server. Figure 18 in Ap-

pendix A.1 shows the structure definition of block records. The

Microcode program removes the block record when the block aggre-

gation is complete and the block’s result has been generated. Block

records hold the block’s aggregation state, including the count and

bitmask of sources that must still deliver their packets, pointers to

the aggregation buffer and the parent job record, and the block’s

start time and expiration interval. Figure 9 illustrates the Trio-ML

aggregation Microcode program’s data structure operations when

multiple aggregation jobs are present concurrently, and each job

directs multiple blocks to aggregate in parallel.

Window-based streaming aggregation. Following priorwork [48,

63], we assume servers do not send the entire model to the aggre-

gator at once. Instead, they stream the gradients using a window
parameter. Each server has a parameter called window that con-

trols the number of outstanding gradients waiting to be aggregated.

Section 6 evaluates the impact of window size on performance.

Trio-ML aggregation Microcode program workflow. Fig-

ure 10 shows Trio-ML’s aggregation Microcode program workflow.

Each aggregation packet is processed by one thread. Each thread

starts by extracting job_id and block_id from the packet and us-

ing them to look up the block aggregation record. If the block record

does not exist (i.e., this is the first packet with a certain block_id),
the thread proceeds to create the block record (provided that a job

record with the specified job_id exists). The block record points

to the aggregation buffer in the Shared Memory System (DMEM),

where gradients are summed up. In Trio, packets consist of a head,

which holds the first 192 bytes of the packet, and a tail, which
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Figure 9: Data structure operations in Trio-ML aggregation Microcode program.

Figure 10: Trio-ML aggregation Microcode program work-

flow.

holds the rest of the packet. Packet head data is readily available

in the thread’s Local Memory (LMEM), whereas tail data resides

in the Memory and Queueing Subsystem and must be read into

LMEM before they can be used. Hence, aggregation proceeds in

two phases. Phase one aggregates gradients from the packet head,

while phase two is structured as a loop that aggregates gradients

from the packet tail in 64-byte chunks (16 32-bit gradients). When

all gradients in a packet have been aggregated, the block context

is checked for completeness. If all sources have been accounted

for, the block context is complete, and the result generation phase

starts.

Result packet. Every block produces one aggregation Result

packet. The Result packet is a new packet, whose IP/UDP and Trio-

ML headers are reconstructed from the block and job records, and

whose data (gradients) come from the aggregation buffer. The new

packet must have a head and tail, just as incoming packets do.

Accordingly, the tail is constructed in a loop: each iteration pulls

a 256-byte chunk from the DMEM aggregation buffer into LMEM

and then writes it out to the new tail in the Packet Buffer (PMEM).

Finally, the Result packet is passed to the standard forwarding code

using the nexthop address from the job record (out_nh_addr field).
Hierarchical aggregation. Trio-ML uses single-level aggrega-

tion when all ML sources are connected to interfaces hosted on

the same PFE. In this case, the destination IP address of the Result

packet is the address of the multicast group, which spans all sources

participating in the job. Server membership in the multicast group

is achieved by allowing each server to issue an IGMP registration or

by including server interfaces in a Static Multicast configuration on

the router. Standard IP forwarding then takes care of delivering the

Result packet to all servers. Trio-ML uses hierarchical aggregation

when ML sources span multiple PFEs. In hierarchical aggregation,

one of the PFEs is configured as a top-level aggregator to which

the other (first-level aggregator) PFEs feed their results. With hi-

erarchical aggregation inside a multi-PFE chassis, first-level PFEs

send their packets to the designated top-level PFE directly, with-

out relying on IP forwarding. The top-level PFE sees lower-level

PFEs as individual sources and aggregates them in the same way

as a single-level aggregator does. Hierarchical aggregation can be

extended to work across multiple devices by setting the destination

IP of the Result packet to the IP address of next-level aggregator

and relying on IP forwarding to unicast the packet. The top-level

aggregator will, of course, multicast the final result back to the

servers. A desirable property of hierarchical aggregation is that the

amount of data is reduced as the aggregated gradients move up the

hierarchy, in a manner opposite to multicast replication. Note that

when hierarchical aggregation is being set up, all configurations are

done via the control-plane, and no Microcode changes are needed.

5 USE CASE 2: IN-NETWORK STRAGGLER
MITIGATION

As a first use case, the previous section walked through Trio-ML’s

Microcode program, explaining how it implements in-network ag-

gregation for ML training jobs. This section describes in-network

straggler mitigation as a second important use case.

The straggler problem. In shared clusters hosting several jobs,

different servers often experience uncorrelated performance jitter

due to congestion, load imbalance, resource contention, garbage

collection, background OS activities, or storage delays [13, 26, 33,

34, 38, 51, 56, 79]. As a result, servers that are collectively working

on the same job must wait for the slowest job, hence, decreasing

the overall application performance. This problem is known as

the straggler problem and has been studied extensively for several
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distributed applications, including MapReduce [14, 15, 31, 75, 78],

Spark [57, 79], database queries [59], key-value stores [46], and

machine learning [25, 30, 38, 61, 72]. Google cites the straggler

problem as one of the main causes of poor performance in its data

processing jobs [46], and production traces from Facebook and

Microsoft indicate that jobs can be slowed down by a factor of eight

due to stragglers [14].

The case for in-network straggler mitigation. Existing sys-

tems address the straggler problem in a number of ways, including

cloning [13, 14], speculative execution [15, 31, 79], and rapid reas-

signment [38]. Cloning approaches are prohibitively expensive for

large jobs, such as ML training. Speculatively executing duplicate

work and using rapid reassignment approaches require servers to

coordinate updates via message passing, which delays detection and

mitigation. In addition, today’s straggler mitigation techniques are

all server-based, thereby potentially creating a circular dependency

wherein stragglers may need to be mitigated using other servers

that could be straggling themselves. We argue that decoupling strag-

gler mitigation from servers is a more robust approach. Hence, we

propose in-network straggler mitigation as a more suitable solution

for latency-sensitive applications. In-network straggler mitigation

leverages the network devices’ vantage point to keep track of active

workers and promptly react to stragglers. Importantly, in-network

straggler mitigation avoids the need for extra communication time

across servers to detect straggling workers in distributed systems.

Trio to the rescue.We now explain our approach to implement-

ing in-network straggler mitigation in Trio-based devices. To the

best of our knowledge, it is challenging, if not impossible, to real-

ize efficient in-network straggler mitigation in PISA-based devices

mainly because performing timer-based operations (such as sending

notification packet to servers when the timer for checking straggler

events expires) in P4 requires coordination with the switch control

plane. In comparison, Trio has the ability to perform timer-based

processing and can spawn multiple threads in PPEs. We use our

Trio-ML application (§4) as a running example to explain the use

of Trio’s timer threads for straggler detection and mitigation.

Straggler detection with timer threads. Trio’s architecture

contains tens of high-resolution timers, which can be used to launch

Microcode threads that execute periodically. To detect straggling

sources in our Trio-ML application, we leverage these threads to

trigger periodic scanning of the aggregation hash table. Another

advantage of Trio is that its hash hardware supports a per-record

‘Recently Referenced’ (REF) flag. REF flags are set when a record

is created and whenever it is referenced by a lookup. To detect

stragglers, we program Trio’s timer threads to periodically visit all

hash records to check and clear their REF flags. The timer threads

determine whether the records have aged out by checking each

record’s REF flag prior to clearing it. If the flag is not set, it means

the record has not been accessed for at least the duration of the

timer interval. We use this feature to set a timeout interval to detect

straggling sources.

Multi-thread scanning of large hash tables. One of the key

challenges of in-network straggler detection is that routers and

switches inside the network may have to absorb a large amount

of data from non-straggling servers while waiting for the timeout

to expire. For instance, in our Trio-ML application, the window
parameter allows servers to send up to 65,535 aggregation packets

(each 4 KBytes in size). Trio-ML aggregates these packets as soon

as they arrive, but it needs to keep the block records of partially

aggregated results in its hash table. Our timer threads need to be

able to quickly scan this large hash table to identify aged blocks. We

find it is challenging for a single thread to scan a large hash table

to locate expired records. To address this challenge, we deploy 𝑁
periodic threads operating in parallel. This is achieved by initiating

the threads such that the interarrival interval between back-to-

back threads is 1/𝑁 of the desired timeout interval. Every triggered

thread scans 1/𝑁 of the aggregation table, thus reducing the amount

of processing required by each individual thread by a factor of 𝑁 .

Trio’s timer resolution allows hundreds of threads to be deployed

in this manner. In this scenario, no PPE is reserved specifically for

running timer threads, and every timer thread can be spawned in

any of the PPEs based on availability.

Straggler mitigation. Once a straggler is identified, various

techniques may be used to mitigate its impact on the application’s

performance. The complexity of these techniques depends on the

application. Following prior work [36], Trio-ML gives up on the

straggling source(s) and sends a partial aggregation result to all

the workers, including the straggler(s), along with the number of

sources participating in the partial result.We use the age_op field in
the Trio-ML packet header structure (Figure 8) to indicate whether

a block has aged out due to stragglers. If it has, the degraded field

is set on the Result packet to inform the servers that the aggregation

result has been calculated using only a partial set of workers, and

the src_cnt field informs the senders how many non-straggling

sources contributed to the aggregation result. Servers that receive

partial aggregation results divide the returned aggregated gradient

values by the number of aggregated sources extracted from the

Trio-ML header.

Advanced straggler mitigation. Although the straggler miti-

gation approach we use in Trio-ML is simple, the techniques de-

scribed in this paper are generic and can be used to implement

more complex straggler mitigation approaches for other latency-

sensitive applications. For instance, service providers can use Trio’s

timer threads to identify whether a worker is a temporary straggler

(slows down temporarily) or a permanent one (is out of service

for a very long time), and notify all other workers accordingly.

To do so, the Microcode program needs to implement two types

of timer threads. One type happens more frequently; it detects

straggler events, similar to the timer threads for our ML use case.

Another type happens less frequently; this type detects the per-

server straggler event count, analyzes whether these are temporary

or permanent stragglers, and sends notification to all other workers.

6 EVALUATIONS

This section evaluates the performance of our in-network aggre-

gation and straggler mitigation use cases. First, we explain our

testbed setup and methodology (§6.1). Next, we demonstrate Trio-

ML’s time-to-accuracy and iteration time speedups in the presence

of stragglers, as well as the efficiency of timer threads in Trio (§6.2).

Finally, we benchmark the latency and throughput of the Trio-ML

Microcode program without stragglers (§6.3).
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Figure 11: Our 100Gbps testbedwith a JuniperMX480 router,

a Tofino switch, and six GPU servers.

6.1 Methodology and Setup

Testbed. Our testbed includes six ASUS ESC4000A-E10 servers,

one 64×100 Gbps Tofino switch, and one Juniper Networks’ MX480

router [10]. Each server is equipped with one A100 Nvidia GPU [11]

(40 GBytes of HBM2 memory) and one 100 Gbps Mellanox Con-

nectX5 NIC. The Juniper router is populated with two MPC10E-

15C-MRATE line cards [4]. Each line card hosts 12 × 100 Gbps ports

distributed across three PFEs based on Trio’s 5th generation chipset.

Figure 11(a) shows a photo of our testbed. To demonstrate the power

of hierarchical aggregation in Trio, we connect three servers to PFE1
and another three servers to PFE2, as shown in Figure 11(b). All

PFEs are internally connected; hence, we enable Trio-ML’s hierar-

chical aggregation by configuring PFE4 as the top-level aggregator.

The dotted lines in Figure 11(b) illustrate the internal path of our

hierarchical aggregation setup. For Tofino experiments, we connect

all six servers to a single pipeline because SwitchML’s open-source

code does not yet support hierarchical aggregation across pipelines.

Note that connecting all servers to a single pipeline of the Tofino

switch guarantees the best performance of SwitchML. If servers

are connected to multiple pipelines, recirculation is required and

will result in performance degradation.

DNN Workloads.We evaluate three real-world DNN models:

ResNet50 [41], DenseNet161 [42], and VGG11 [68]. Table 1 summa-

rizes the models and batch sizes used in our experiments. Following

prior work [7, 63, 66], we select batch sizes that achieve the best pos-

sible time-to-accuracy. We train all three models with the ImageNet

dataset [32].

SwitchML setup. For our baseline, we use SwitchML’s open-

source code [64]. SwitchML provides RDMA-based and DPDK-

based implementations. However, its RDMA-based implementation

is not yet integrated with training frameworks. Hence, we use

SwitchML’s DPDK-based implementation integrated with the Py-

Torch [49] training framework. In addition, SwitchML provides two

packet size designs: (𝑖) SwitchML-64, where each packet carries 64

gradients and uses a single pipeline on the Tofino switch to per-

form aggregation, and (𝑖𝑖) SwitchML-256, where each packet carries

256 gradients requiring all four pipelines to perform the aggrega-

tion at line rate. SwitchML-256 performs better than SwitchML-64;

DNN Model Size Batch

size/GPU

Dataset

ResNet50 98 MB 64 ImageNet
VGG11 507 MB 128 ImageNet
DensNet161 109 MB 64 ImageNet

Table 1: DNN models used in our experiments.

therefore, in our evaluations, we use SwitchML-256 with pool size

512, even though it consumes the resources of all four pipelines on

our Tofino switch. Finally, SwitchML end-hosts retransmit their

gradients after 1 ms to tolerate packet loss. But this feature cre-

ates spurious retransmissions during straggling periods, reducing

SwitchML’s performance. Therefore, we disable this feature in our

experiments.

Trio-ML setup. To make an apples-to-apples comparison with

SwitchML, we configure Trio-ML servers to use DPDK integrated

with PyTorch. Unless otherwise stated, we configure each server

to send 1024 gradients per packet and stream the gradients using

a window size of 4096 packets. Section 6.3 evaluates the impact of

varying the number of gradients and the window size on perfor-

mance. For straggler detection, we launch 𝑁 = 100 timer threads

on Trio, each with a 10 ms timeout period, unless otherwise stated.

Straggler generation pattern. To evaluate the impact of in-

network straggler mitigation, we synthetically generate transient

worker slowdown by inserting sleep commands into the servers dur-

ing training. Following prior work [38], we use the “Slow Worker

Pattern” to inject stragglers by selecting three possible delay points

in each iteration and allowing one of the servers to decide to slow

down at each point with a given probability 𝑝 (straggling probabil-

ity). If a worker decides to straggle at a particular delay point, it

will be slowed for a period uniformly randomly chosen between

0.5 and 2× of the typical iteration time, where typical iteration time

refers to the average iteration time of each model when there are

no stragglers in the system.

Ideal setup. To compare Trio-ML to an ideal environment where

no stragglers exist in the system, we use Pytorch with NCCL [8]

and an RDMA backend without adding stragglers.

6.2 Distributed ML Training Speedups

Time-to-accuracy improvements.The ultimate goal of in-network

aggregation is to reduce the time-to-accuracy of distributed ML

training workloads, even in the presence of stragglers. Figure 12

shows the top-5 validation accuracy results for the three DNN

training jobs when the straggling probability 𝑝 is 16%. This proba-

bility emulates an environment with a moderate rate of stragglers.

Note that the probability of a straggler event occurring in a single

iteration increases with the number of workers participating in

a job [56]. Therefore, it is entirely possible that at a large scale,

every training iteration observes at least one straggling worker

even when it is a different straggler in each iteration due to un-

correlated transient effects [38]. As shown in Figure 12(a), when

training ResNet50, Trio-ML reaches 90% target validation accuracy

1.56× faster than SwitchML. Trio-ML recovers from straggler de-

lays via its partial aggregation strategy, whereas SwitchML servers

need to wait for the straggling server. Similarly, Figures 12(b) and

(c) show that Trio-ML outperforms SwitchML by 1.56× and 1.60×

when training DenseNet161 and VGG11, respectively.
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Figure 12: Time-to-accuracy improvements for three DNN models when straggling probability is 𝑝 = 16%.

Figure 13: Impact of straggling workers on training iteration time for three DNN models. Trio-ML is able to maintain the

training iteration time close to the Ideal case.

Training iteration time. To evaluate the impact of straggling

probability on training performance, we sweep through different

probabilities and measure the corresponding training iteration

times. Figure 13 shows the average iteration time for the first 100 it-

erations when training three DNNmodels with Trio-ML, SwitchML,

and the Ideal setup. The figure shows that as the straggling proba-

bility increases, SwitchML’s iteration time increases because the

switch needs to wait for the straggling worker(s) before generating

the aggregation result. Increasing SwitchML’s pool size does not

help, as its aggregation logic requires all participating workers to

contribute before making progress. In contrast, Trio-ML mitigates

the effect of stragglers using its in-network straggler mitigation

technique and is able to maintain the training iteration time close

to the Ideal case. With straggling probability 𝑝 = 16%, Trio-ML

speeds up average iteration time by 1.72× for ResNet50, 1.75× for

DenseNet161, and 1.8× for VGG11, compared to SwitchML.

In-network timer threads’ efficiency. Trio’s timer threads

periodically scan the aggregation records to identify which servers

are straggling beyond the specified timeout interval. To evaluate the

efficiency of this process, we vary the timeout interval on Trio and

measure how long it takes for the non-straggling servers to receive

partial aggregation results. For each timeout interval, we send 20

back-to-back packets and report the time between sending one

aggregation packet and receiving the corresponding result packet

on each server. Figure 14 shows Trio-ML servers are able to recover

from stragglers within 2× the timeout interval.

6.3 Trio-ML Microcode Program Performance

The previous section established Trio-ML’s performance in the

presence of stragglers. This section benchmarks the performance of

our in-network aggregation Microcode program without stragglers

(i.e., 𝑝 = 0). In these benchmarks, we use four servers connected to

the same PFE.

Microcode program analysis. The Trio-ML Microcode pro-

gram is quite compact, using ≈60 instructions. It uses a single

thread per packet where most of the cycles are spent on a loop that

reads gradients from the packet tail into the thread’s local memory

and adds them into the aggregation buffer. This loop’s efficiency

is ≈1.2 run-time instructions per gradient, and it is executed for

every packet from every source. Another loop copies aggregated

gradients into the Packet Buffer when building the aggregation

result packet; it uses less processing time, because it is executed

once per block, i.e., once for the whole set of sources. Trio’s read-

modify-write engines perform the summation of gradients entering

the aggregation buffer. Trio-ML uses 12 such engines, and each add

operation takes two cycles. With a 1 GHz clock speed, the current

Trio generation supports 6 billion operations per second per PFE.

Aggregation latency.We quantify the PFE aggregation latency

by instrumenting the Trio-ML Microcode program to keep track

of the amount of time each aggregation packet spends in Trio.

To compute a faithful estimation of a single thread’s aggregation

latency, we enforce each server to send only one aggregation packet

at a time by setting the window parameter to one. Each experiment

consists of sending 10,000 back-to-back packets, and we repeat

the experiments 20 times. The left y-axis of Figure 15 reports the

average aggregation latency as the number of gradients per packet

is increased. With 64 gradients per packet, the aggregation latency

is 30 𝜇s. Larger packets incur a larger aggregation latency, but this

increase is not always linear. For instance, increasing the packet

size by a factor of 16 (1024 on the x-axis) causes the aggregation
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Figure 14: In-network

timer threads efficiency.

Figure 15: Per PFE aggrega-

tion latency and rate.

latency to increase to 200 𝜇s (a factor of 6.6 increase). This result
suggests Trio is more efficient with larger packets. The right y-axis

of Figure 15 confirms this observation by plotting the aggregation

rate (the ratio of the number of gradients over the aggregation

latency). As shown, the aggregation rate starts to plateau between

512 and 1024 gradients per packet. Next, we evaluate the impact of

increasing the window size for these two packet sizes.

Impact of aggregation window size. Increasing the window pa-
rameter enables the PPE threads to work on multiple aggregations

in parallel. To evaluate the impact of window size on Trio-ML’s ag-

gregation latency and throughput, we configure the servers to send

packets with 512 or 1024 gradients with varying window sizes. We

refer to these two cases as Trio-ML-512 and Trio-ML-1024. Figure 16

shows the interplay between aggregation latency and throughput

as the window size increases. Figure 16(a) shows that increasing

the window size causes the aggregation latency to increase because

the Microcode program needs to handle more simultaneous aggre-

gation packets. Figure 16(b) shows that increasing the window size

improves the aggregation throughput because it pipelines packet

arrivals into the router. The best window is the one that maximizes

the throughput while minimizing latency. We find window size 4096
achieves a good balance between latency and throughput.

7 DISCUSSION AND FUTURE USE CASES

Trio for in-network telemetry. Most network operators require

telemetry or insights into the traffic in their networks for capacity

planning, service-level agreement monitoring, security mitigation,

and other purposes. Current networking devices usually rely on

packet sampling using internal processors embedded in the devices

or external monitoring devices for further processing. Because of

the high rate of traffic through the devices and the limited amount

of processing and bandwidth available for monitoring, only a small

percentage of packets (one in tens of thousands or less) is selected

to be monitored, and the decision to sample packets is often blind,

based on a simple time interval [62]. Trio’s packet processing flexi-

bility and availability of operational resources make it suitable for

in-network telemetry. For instance, service providers can leverage

Trio’s large memory to keep track of incoming packets to main-

tain sufficient information for telemetry. Moreover, Trio’s timer

threads are suitable for periodic monitoring and anomaly analysis.

To provide more intelligent telemetry for network operators, ma-

chine learning-based classification techniques may be performed

on each packet, based on the packet fields already extracted by

B
etter

B
etter

Figure 16: Impact of window size on aggregation latency and

throughput.

Trio for routing purposes. Finally, the data structures can be stored

more efficiently, thereby reducing the transmission bandwidth and

processing cycles of external monitoring devices.

Trio for in-network security. To mitigate DDoS attacks, the

MX systems based on Trio support a feature to identify and dropma-

licious packets, capitalizing on the chipset’s high performance and

flexible packet filter mechanism. Trio also acts as a fast forwarding-

path based on security flows on the SRX security platforms [1].

Trio is capable of performing additional complex in-network se-

curity processing on incoming packets, either by aggregating fea-

tures or by performing inference of ML models installed by ser-

vice providers, to identify and mitigate anomalies in traffic. Unlike

off-device-based solutions, Trio’s programmable architecture for

anomaly detection on the network datapath enables low-latency

threat mitigation.

Packet loss in Trio-ML. Transient traffic spikes may occur in

a datacenter running a variety of diverse applications, and this,

in turn, may lead to aggregation packets being lost. A practical

in-network aggregation system needs a level of resiliency allowing

long-running jobs to survive such hiccups. SwitchML [63] suggests

how such resiliency can be achieved. Trio-ML implementation has

provisions to support this solution, although it is not part of the

current code and we leave this to future work.

Future open sourcing plans.We are considering several future

open source ideas. First, we plan to add comprehensive support for

P4 programming for Trio. Juniper engineering has made an initial

effort to achieve this goal [6], but recent changes and enhancements

to the P4 core specification should allow greater flexibility and

more features to be exposed via the P4 interface. Second, we plan

to create a domain-specific language to allow the full scope of

forwarding-path features of the Trio chipset to be available to third-

party developers. Juniper is exploring development in this area and

welcomes feedback from the community.

8 RELATEDWORK

In-network computing using programmable switches. Sev-

eral prior papers proposed in-network computing by leveraging

some form of programmability inside the network. These approaches

fall into two categories: (1) computation at line-rate using PISA-

based architectures [18, 48, 63] and (2) computation at sub line-

rates using on-chip FPGAs [21]. Our in-network ML aggregation

use case is closely related to Sharp [18], SwitchML [63], ATP [48],

PANAMA [36], and Flare [29]. Sharp [18] is Mellanox’s proprietary
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design geared towards dedicated ML training clusters; it assumes

network bandwidth can be exclusively reserved. In contrast, we con-

sider networks where links are shared across multiple users and ap-

plications. SwitchML [63] and ATP [48] use commercially available

Tofino switches to perform gradient aggregation. Although Tofino

switches can perform line-rate packet processing, their pipelined

architecture has more limited programmability, making in-network

straggler mitigation extremely challenging. We use SwitchML as

a baseline comparison to Trio-ML. SwitchML serves as an apples-

to-apples comparison for our use case, making it a more appro-

priate baseline than ATP. More specifically, ATP’s performance

improvements are impacted by in-network aggregation and an ad-

ditional parameter server, while SwitchML and Trio-ML are more

similar, as both approaches only use switch/router for aggregation.

PANAMA’s [36] in-network aggregation hardware can support flex-

ible packet processing, but it is based on FPGAs acting as bumps-

in-the-wire, making it impractical for large scale deployments. This

paper, however, aims to use Trio’s programmable architecture to

design new stateful in-network applications from the ground up.

Several key features of Trio enable these new applications. First,

Trio’s large memory and fast access to packet tail data enable ef-

ficient in-network computation. Second, Trio’s Shared Memory

System provides several GBytes of storage; this is sufficient for

data storage even in the presence of straggling workers, or when

multiple applications are running simultaneously. Finally, Trio has

no limits on the number of instructions on a single packet, enabling

the Microcode program to launch the computation instructions

required by large packets.

Straggler mitigation. There is a plethora of prior work on un-

derstanding and mitigating the impact of stragglers in distributed

systems [13–15, 25, 26, 30, 31, 33, 34, 38, 46, 51, 56, 57, 59, 61, 72,

75, 78, 79]. In particular, Harlap et al. proposed FlexRR to mitigate

the impact of stragglers on distributed learning jobs [38]. FlexRR

requires peer-to-peer communication among workers to detect

slowed workers and perform work re-assignment. In contrast, we

consider mitigating stragglers inside the network without any mes-

sage passing across workers and without requiring a parameter

server. Tandon et al. [72] and Raviv et al. [61] proposed coding

theory frameworks for mitigating stragglers in distributed learning

by duplicating the training data across workers; however, Trio-ML

does not require data duplication.

Alternative switch architectures. The research community

has been working on alternative switch architectures to address

some of the limitations of PISA-based architectures, such as lack of

shared memory and shallow pipeline depths. The most competitive

example is dRMT (Disaggregated Programmable Switching) [24].

The dRMT switch architecture implements a centralized, shared

memory pool that all match-action stages can access. Instead of

executing the match-action stages in a pipeline, dRMT aggregates

these stages in a cluster and executes them in a round-robin or-

der. A control logic unit schedules the stages so as to maximize

the cluster’s throughput while respecting program dependencies.

However, the centralized memory pool is gated by a mux that con-

nects stages to memory, and only one stage can access memory in

a given clock cycle. This can result in the slow down of program

execution when an application requires memory access in multiple

stages. In Trio, multiple threads can send memory access requests

to the same memory location at around the same time, and Trio’s

read-modify-write engine processes the requests in sequence, guar-

anteeing consistency of the updates. In addition, dRMT’s memory

accesses through the crossbar are scheduled at compile time, and

this reduces the flexibility of incrementally updating and recompil-

ing the application code. The complexity of the crossbar scheduling

algorithm can limit the ability of the architecture to scale to higher

numbers of match-action processors. In contrast, Trio’s crossbar is

scheduled in real-time, thus providing efficient access to memory.

This dynamic scheduling mechanism enables Trio to scale from 16

PPEs in the first generation to 160 PPEs in the sixth generation, and

it will continue to scale higher in the future. Furthermore, in dRMT,

the packet parser and deparser are located outside the match-action

processors. Any parsing of the inner headers of the packets that rely

on the lookup results (e.g., MPLS encapsulated packets) will have to

be recirculated back to the parser for processing. In contrast, Trio’s

PPEs are fully programmable processors, able to handle packet

parsing/deparsing as well as the rest of the packet lookup and pro-

cessing, in a run-to-completion manner. Trio’s multi-threaded PPEs

also allow packets to be processed by different Microcode programs

depending on their processing requirements.

9 CONCLUSION

This paper describes Juniper Networks’ programmable chipset, Trio,

and its use in emerging data-intensive in-network applications. Trio

has been in production for over a decade and has built a large cus-

tomer base with billions of dollars in market share. We describe

Trio’s multi-threaded and programmable packet forwarding and

packet processing engines. We then use in-network aggregation

for distributed machine learning training and in-network strag-

gler mitigation as two use cases to illustrate Trio’s Microcode and

programming environment. Our evaluations show that Trio out-

performs today’s pipeline-based solutions by up to 1.8×. This work

does not raise any ethical issues.
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A APPENDICES

Appendices are supportingmaterial that has not been peer-reviewed.

A.1 Trio-ML Record Structure

Figure 17 shows the structure definition of the job records. The field

without a field name represents unused bits for byte alignment. The

information contained in other fields are listed as follow:

block_curr_cnt: current number of active blocks

block_cnt_max: maximum number of concurrent blocks

block_grad_max: maximum number of gradients per block

block_exp: block timeout interval in millisecond

block_total_cnt: job’s cumulative blocks count

out_src_addr: Result packet source IP
out_dst_addr: Result packet destination IP

out_nh_addr: pointer to egress forward chain

src_cnt: number of ML sources in the job

src_mask_0: bitmask field for job’s sources

src_mask_1: additional bitmask field for job’s sources

src_mask_2: additional bitmask field for job’s sources

src_mask_3: additional bitmask field for job’s sources

struct trio_ml_job_ctx_t { // 58 bytes
block_curr_cnt : 16;
block_cnt_max : 12;
block_grad_max : 12;
block_exp : 8;
block_total_cnt : 32;
out_src_addr : 32;
out_dst_addr : 32;
out_nh_addr : 32;

: 24;
src_cnt : 8;
src_mask_0 : 64;
src_mask_1 : 64;
src_mask_2 : 64;
src_mask_3 : 64;

};

Figure 17: Trio-ML job record structure.

Figure 18 shows the structure definition of the block records. The

field without a field name represents unused bits for byte alignment.

The information contained in other fields are listed as follow:

block_exp: block timeout interval in millisecond

block_age: age of the current block
block_start_time: start time of the current block

job_ctx_paddr: pointer to the job record

aggr_paddr: pointer to the aggregation buffer

grad_cnt: number of gradients in the block

rcvd_cnt: number of received ML sources

rcvd_mask_0: bitmask field for received sources

rcvd_mask_1: additional bitmask field for received sources

rcvd_mask_2: additional bitmask field for received sources

rcvd_mask_3: additional bitmask field for received sources

struct trio_ml_block_ctx_t { // 58 bytes
block_exp : 8;
block_age : 8;
block_start_time : 64;
job_ctx_paddr : 32;
aggr_paddr : 32;

: 20;
grad_cnt : 12;

: 24;
rcvd_cnt : 8;
rcvd_mask_0 : 64;
rcvd_mask_1 : 64;
rcvd_mask_2 : 64;
rcvd_mask_3 : 64;

};

Figure 18: Trio-ML block record structure.
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