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1 INTRODUCTION
Software Defined Radios (SDRs) combine a universal radio frontend
with flexible processing. The radio frontend can be tuned to capture
various wireless signals, while software processing allows quick
and scalable deployment for diverse applications. SDRs seem like
a good fit for the ever-evolving needs of today’s spectrum usage:
SDRs can be deployed today, then managed and upgraded with
software to support the needs of tomorrow. However, the prevailing
architecture of SDRs prevent real-time observation of wideband RF
signals due to backhaul and processing resource constraints.

For example, low-cost SDRs like the Pluto-SDR [1] are increas-
ingly adopted by the research and maker community. While these
devices have a 61.44 MHz sample rate, the user cannot take ad-
vantage of it due to the low-speed USB-2.0 backhaul. Even if the
backhaul was not limited, processing and long-term storage of tens
of MHz of sampled data is intractable on low-compute laptops or
embedded devices like raspberry-pi. In SparSDR [7], we proposed
a new SDR architecture that allows selective backhaul of informa-
tion, combined with selective software compute. SparSDR performs
a frequency channelization on the radio samples, and backhauls
only the channels where activity is detected. While conventional
SDRs have a fixed backhaul rate and a fixed requirement on com-
pute power, SparSDR’s requirements scale with the activity in the
spectrum or the intended use case.

SparSDR’s ability to channelize and threshold the spectrum al-
lows deployment of applications hitherto thought impossible. In
this work, we deploy SparSDR on a Pluto-SDR, and demonstrate a
BLE beacon scanning application. Monitoring two BLE channels
(37 and 38) separated by 25 MHz is typically thought to require 25
MHz of bandwidth. But with SparSDR, we can selectively backhaul
only those two channels, limiting the bandwidth backhauled to 4
MHz! In addition, SparSDR backhauls samples only when a signal
is present, further reducing the data generated (Figure 1). In typi-
cal BLE beacon scanning scenarios, SparSDR could compress the
spectrum by 288x, reducing the compute requirement for decoding
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Figure 1: Conventional Full-capture SDRs (left) sample the
entire spectrum to capture fleeting signals in limited bands.
SparSDR (right) compresses the spectrum using STFT and
thresholds, thus scaling backhaul and compute proportional
to the true amount of activity in the spectrum.

as well as I/Q sample storage [6]. To improve system accessibility
and adoption, we have integrated SparSDR with software suites
used commonly with the Pluto-SDR: libiio and GNURadio. Users
can use SparSDR to deploy their applications by using the open
source code-base available at github.com/ucsdsysnet/sparsdr.

2 SPARSDR ON PLUTO-SDR
The Pluto-SDR [1] is a device developed by Analog Devices Inc.
It features an AD9363 RF frontend [2] IC, combined with a Xilinx
Zynq-7 FPGA [8] featuring a single-core ARM Cortex-A9 at 667
MHz [3]. Additionally, it features 512 MB of DDR3L RAM, and a
USB 2.0 backhaul. It is possible to modify the Pluto-SDR and unlock
its 56 MHz of RF bandwidth with a tuning range from 70 MHz - 6
GHz [4]. The system level architecture of the Pluto-SDR is described
in Figure 2.
FPGA Implementation: The SparSDR IP is deployed on the Zynq-
7 FPGA on the Pluto-SDR. The IP is built on AXI-Stream interfaces
and can be easily ported to other SDRs1. The SparSDR IP supports
full-rate throughput, and can stream at maximum rate onto the on-
board DRAM. The throughput out of the Pluto-SDR is bottlenecked
by the USB-2 backhaul (Figure 2). The compression protocol has
been upgraded recently to yield close to 2x gain in compression rate.

1SparSDR is also available on the USRP N210 [7]
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Figure 2: Architecture of SparSDR on Pluto-SDR. The software dri-
vers for SparSDR are fully contained within the embedded linux.
libiio or GNURadio may be used from the host PC to interact with
SparSDR . User applications that use SparSDR can be flexibly de-
ployed on the Pluto-SDR’s embedded linux, or on the Host PC.

The configuration registers of SparSDR control the bin-wise thresh-
old, masks and average monitoring intervals. The user can also
control the FFT size and scaling for fine grained control over chan-
nels and dynamic range. The Pluto-SDR’s AD9361 IP and controls
are unmodified, allowing them to be used as-is.
Software and drivers: The Pluto-SDR runs a custom Linux on the
ARM core, and uses ADI’s libiio [5] library to stream samples to
and from the radio. In the same vein, we implemented IIO drivers
for SparSDR, making it possible to use the entire stack with just
IIO API. The Pluto-SDR can fully control and stream from SparSDR
using only the on-board linux system, without the explicit need of
additional compute like a PC or Raspberry-Pi.

2.1 Host-Side Software
Reconstruction signal processing: To decompress and recon-
struct SparSDR’s output, we use a software executable written in
Rust. This executable works on Linux named pipes and can be fit
inside any streaming application. By taking advantage of highly
parallel FFT libraries, the overall footprint of this software scales
with the sparsity in the channel. For more details, we refer the
reader to [7].
GNURadio: For ease of use and a GUI, we integrated control of the
SparSDR IIO modules into gr-iio and created a out-of-tree GNURa-
dio module called gr-sparsdr. This module can be used to interact
with SparSDR on the Pluto-SDR directly from GNURadio, allowing
access to the large set of signal processing libraries.
Software utilities: To aid the SparSDR user in selecting per-bin
thresholds, and correct FFT dynamic ranges, we have written auto-
mated calibration utilities and included them in the open-source
release. These utilities use only libiio commands and can be run
without GNURadio if required.

3 APPLICATION: BLE BEACON SENSING
Personal devices such as smartphones are continuously transmit-
ting BLE beacons. These beacons enable various features such as
COVID-19 contact tracing or finding a lost device. Ability to observe
these beacons in real-time and over a long duration can help us
understand not only spectral usage, but also smart device behaviour
and related security/privacy implications [6]

Sensing all transmitted beacons in real-time however requires us
to observe multiple BLE channels spread across a wide-band. For
example, if the user intends to capture beacons on two channels (1
MHz wide) centered at 2.402 GHz and 2.426 GHz, they would need a
receive bandwidth of 25 MHz. While the PlutoSDR can theoretically
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Figure 3: An example GNURadio application that streams data fron
a SparSDR enabled Pluto-SDR and reconstructs spectrum activity in
real-time for visualization.

support this bandwidth, this translates to a continuous backhaul
of 800 Mbps which cant be supported by the USB 2.0 interface.
Furthermore, long duration temporal analyses will require us to
store these raw BLE beacon samples, which will need an impractical
amount of disk space (∼350 GB per hour).

This application can benefit greatly from SparSDR. The masking
feature acts as a channelizer, allowing us to selectively backhaul
only the two 1 MHz bands corresponding to the two BLE channels.
This reduces the effective backhaul by a factor of 12.5x. Furthermore
by using thresholds, we can exploit the sparsity of the signals further
reducing the backhaul. The authors of [6] were able to utilize these
SparSDR features on a USRP N210 based setup and run a field
experiment. They were able to capture BLE beacons over three BLE
channels spread across 80 MHz in a public place. The experiment
ran for over 2 days (10 hours per day), and the total space on disk
to store all compressed captures was only 100 GB or approximately
5 GB for every hour.

4 DEMONSTRATION
We will demonstrate BLE beacon sensing across two BLE channels
separated by 25 MHz using a single PlutoSDR and open source
GNURadio based flowgraph (Figure 3) on a consumer laptop.
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