
MIT Open Access Articles

Demo: Observing wideband RF spectrum
with low-cost, resource limited SDRs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Subbaraman, Raghav, Bhaskar, Nishant, Crow, Sam, Khazraee, Moein, Schulman,
Aaron et al. 2022. "Demo: Observing wideband RF spectrum with low-cost, resource limited
SDRs."

As Published: https://doi.org/10.1145/3498361.3538662

Publisher: ACM|The 20th Annual International Conference on Mobile Systems, Applications and
Services

Persistent URL: https://hdl.handle.net/1721.1/146270

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146270

Demo: Observing wideband RF spectrum with low-cost, resource
limited SDRs

Raghav Subbaraman
UC San Diego

rsubbaraman@eng.ucsd.edu

Nishant Bhaskar
UC San Diego

nibhaska@eng.ucsd.edu

Sam Crow
UC San Diego

scrow@eng.ucsd.edu

Moein Khazraee
MIT

moein@mit.edu

Aaron Schulman
UC San Diego

schulman@eng.ucsd.edu

Dinesh Bharadia
UC San Diego

dineshb@eng.ucsd.edu

1 INTRODUCTION
Software Defined Radios (SDRs) combine a universal radio frontend
with flexible processing. The radio frontend can be tuned to capture
various wireless signals, while software processing allows quick
and scalable deployment for diverse applications. SDRs seem like
a good fit for the ever-evolving needs of today’s spectrum usage:
SDRs can be deployed today, then managed and upgraded with
software to support the needs of tomorrow. However, the prevailing
architecture of SDRs prevent real-time observation of wideband RF
signals due to backhaul and processing resource constraints.

For example, low-cost SDRs like the Pluto-SDR [1] are increas-
ingly adopted by the research and maker community. While these
devices have a 61.44 MHz sample rate, the user cannot take ad-
vantage of it due to the low-speed USB-2.0 backhaul. Even if the
backhaul was not limited, processing and long-term storage of tens
of MHz of sampled data is intractable on low-compute laptops or
embedded devices like raspberry-pi. In SparSDR [7], we proposed
a new SDR architecture that allows selective backhaul of informa-
tion, combined with selective software compute. SparSDR performs
a frequency channelization on the radio samples, and backhauls
only the channels where activity is detected. While conventional
SDRs have a fixed backhaul rate and a fixed requirement on com-
pute power, SparSDR’s requirements scale with the activity in the
spectrum or the intended use case.

SparSDR’s ability to channelize and threshold the spectrum al-
lows deployment of applications hitherto thought impossible. In
this work, we deploy SparSDR on a Pluto-SDR, and demonstrate a
BLE beacon scanning application. Monitoring two BLE channels
(37 and 38) separated by 25 MHz is typically thought to require 25
MHz of bandwidth. But with SparSDR, we can selectively backhaul
only those two channels, limiting the bandwidth backhauled to 4
MHz! In addition, SparSDR backhauls samples only when a signal
is present, further reducing the data generated (Figure 1). In typi-
cal BLE beacon scanning scenarios, SparSDR could compress the
spectrum by 288x, reducing the compute requirement for decoding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9185-6/22/06. . . $15.00
https://doi.org/10.1145/3498361.3538662

Ti
m

e

Frequency

SparSDR

Ti
m

e

Frequency

56 MHz
4 MHz

Conventional SDR

Figure 1: Conventional Full-capture SDRs (left) sample the
entire spectrum to capture fleeting signals in limited bands.
SparSDR (right) compresses the spectrum using STFT and
thresholds, thus scaling backhaul and compute proportional
to the true amount of activity in the spectrum.

as well as I/Q sample storage [6]. To improve system accessibility
and adoption, we have integrated SparSDR with software suites
used commonly with the Pluto-SDR: libiio and GNURadio. Users
can use SparSDR to deploy their applications by using the open
source code-base available at github.com/ucsdsysnet/sparsdr.

2 SPARSDR ON PLUTO-SDR
The Pluto-SDR [1] is a device developed by Analog Devices Inc.
It features an AD9363 RF frontend [2] IC, combined with a Xilinx
Zynq-7 FPGA [8] featuring a single-core ARM Cortex-A9 at 667
MHz [3]. Additionally, it features 512 MB of DDR3L RAM, and a
USB 2.0 backhaul. It is possible to modify the Pluto-SDR and unlock
its 56 MHz of RF bandwidth with a tuning range from 70 MHz - 6
GHz [4]. The system level architecture of the Pluto-SDR is described
in Figure 2.
FPGA Implementation: The SparSDR IP is deployed on the Zynq-
7 FPGA on the Pluto-SDR. The IP is built on AXI-Stream interfaces
and can be easily ported to other SDRs1. The SparSDR IP supports
full-rate throughput, and can stream at maximum rate onto the on-
board DRAM. The throughput out of the Pluto-SDR is bottlenecked
by the USB-2 backhaul (Figure 2). The compression protocol has
been upgraded recently to yield close to 2x gain in compression rate.

1SparSDR is also available on the USRP N210 [7]

617

https://doi.org/10.1145/3498361.3538662
https://github.com/ucsdsysnet/sparsdr

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Raghav Subbaraman, Nishant Bhaskar, Sam Crow, Moein Khazraee, Aaron Schulman, and Dinesh Bharadia

SparSDR
on FPGA

Embedded
iio Drivers libiio

Pluto-SDR

Host PC

Embedded

Apps

User

Apps

GNURadio
Apps

Figure 2: Architecture of SparSDR on Pluto-SDR. The software dri-
vers for SparSDR are fully contained within the embedded linux.
libiio or GNURadio may be used from the host PC to interact with
SparSDR . User applications that use SparSDR can be flexibly de-
ployed on the Pluto-SDR’s embedded linux, or on the Host PC.

The configuration registers of SparSDR control the bin-wise thresh-
old, masks and average monitoring intervals. The user can also
control the FFT size and scaling for fine grained control over chan-
nels and dynamic range. The Pluto-SDR’s AD9361 IP and controls
are unmodified, allowing them to be used as-is.
Software and drivers: The Pluto-SDR runs a custom Linux on the
ARM core, and uses ADI’s libiio [5] library to stream samples to
and from the radio. In the same vein, we implemented IIO drivers
for SparSDR, making it possible to use the entire stack with just
IIO API. The Pluto-SDR can fully control and stream from SparSDR
using only the on-board linux system, without the explicit need of
additional compute like a PC or Raspberry-Pi.

2.1 Host-Side Software
Reconstruction signal processing: To decompress and recon-
struct SparSDR’s output, we use a software executable written in
Rust. This executable works on Linux named pipes and can be fit
inside any streaming application. By taking advantage of highly
parallel FFT libraries, the overall footprint of this software scales
with the sparsity in the channel. For more details, we refer the
reader to [7].
GNURadio: For ease of use and a GUI, we integrated control of the
SparSDR IIO modules into gr-iio and created a out-of-tree GNURa-
dio module called gr-sparsdr. This module can be used to interact
with SparSDR on the Pluto-SDR directly from GNURadio, allowing
access to the large set of signal processing libraries.
Software utilities: To aid the SparSDR user in selecting per-bin
thresholds, and correct FFT dynamic ranges, we have written auto-
mated calibration utilities and included them in the open-source
release. These utilities use only libiio commands and can be run
without GNURadio if required.

3 APPLICATION: BLE BEACON SENSING
Personal devices such as smartphones are continuously transmit-
ting BLE beacons. These beacons enable various features such as
COVID-19 contact tracing or finding a lost device. Ability to observe
these beacons in real-time and over a long duration can help us
understand not only spectral usage, but also smart device behaviour
and related security/privacy implications [6]

Sensing all transmitted beacons in real-time however requires us
to observe multiple BLE channels spread across a wide-band. For
example, if the user intends to capture beacons on two channels (1
MHz wide) centered at 2.402 GHz and 2.426 GHz, they would need a
receive bandwidth of 25 MHz. While the PlutoSDR can theoretically

Options

Title: plutoSparSDR

Output Language: Python

Generate Options: QT GUI

Variable

Id: samp_rate

Value: 61.44M

outin

SparSDR Reconstruct

Executable: /home...construct

Compressed format: Pluto v2

Compression FFT size: 1.024k

Zero samples in gaps: False

Band 0 frequency: 0

Band 0 bins: 1.024k

in

QT GUI Sink

Name:

FFT Size: 1.024k

Center Frequency (Hz): 0

Bandwidth (Hz): 61.44M

Update Rate: 10

out

Compressing Pluto Source

IIO context URI: ip:...68.2.1

Bin specification: 0....10000

Average sample interval: 1.04858...8M

Center frequency: 2.425G

Gain: 42

Gain control mode: manual

Buffer size (samples): ...58M

Shift amount: 7

FFT size: 1.024k

Figure 3: An example GNURadio application that streams data fron
a SparSDR enabled Pluto-SDR and reconstructs spectrum activity in
real-time for visualization.

support this bandwidth, this translates to a continuous backhaul
of 800 Mbps which cant be supported by the USB 2.0 interface.
Furthermore, long duration temporal analyses will require us to
store these raw BLE beacon samples, which will need an impractical
amount of disk space (∼350 GB per hour).

This application can benefit greatly from SparSDR. The masking
feature acts as a channelizer, allowing us to selectively backhaul
only the two 1 MHz bands corresponding to the two BLE channels.
This reduces the effective backhaul by a factor of 12.5x. Furthermore
by using thresholds, we can exploit the sparsity of the signals further
reducing the backhaul. The authors of [6] were able to utilize these
SparSDR features on a USRP N210 based setup and run a field
experiment. They were able to capture BLE beacons over three BLE
channels spread across 80 MHz in a public place. The experiment
ran for over 2 days (10 hours per day), and the total space on disk
to store all compressed captures was only 100 GB or approximately
5 GB for every hour.

4 DEMONSTRATION
We will demonstrate BLE beacon sensing across two BLE channels
separated by 25 MHz using a single PlutoSDR and open source
GNURadio based flowgraph (Figure 3) on a consumer laptop.

ACKNOWLEDGEMENTS
This work was supported in part by a grant from Amateur Radio
Digital Communications (ARDC).

REFERENCES
[1] Analog Devices Inc. [n.d.]. ADALM PLUTO Overview. https://wiki.analog.com/

university/tools/pluto.
[2] Analog Devices Inc., AD9363. [n.d.]. https://www.analog.com/en/products/ad9363.

html.
[3] Analog Devices Inc. ADALM-PLUTO, Detailed Specifications. [n.d.]. https://wiki.

analog.com/university/tools/pluto/devs/specs.
[4] Analog Devices Inc., Customizing the Pluto configuration. [n.d.]. https://wiki.

analog.com/university/tools/pluto/users/customizing.
[5] Analog Devices Inc., What is LibIIO? [n.d.]. https://wiki.analog.com/resources/

tools-software/linux-software/libiio.
[6] H. Givehchian, N. Bhaskar, E. Rodriguez Herrera, H. Lopez Soto, C. Dameff,

D. Bharadia, and A. Schulman. 2022. Evaluating Physical-Layer BLE Location
Tracking Attacks on Mobile Devices. In 2022 2022 IEEE Symposium on Security
and Privacy (SP) (SP). IEEE Computer Society, Los Alamitos, CA, USA, 507–521.
https://doi.org/10.1109/SP46214.2022.00030

[7] Moein Khazraee, Yeswanth Guddeti, Sam Crow, Alex C. Snoeren, Kirill Levchenko,
Dinesh Bharadia, and Aaron Schulman. 2019. SparSDR: Sparsity-Proportional
Backhaul and Compute for SDRs. In Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services (Seoul, Republic of Korea)
(MobiSys ’19). Association for Computing Machinery, New York, NY, USA, 391–403.
https://doi.org/10.1145/3307334.3326088

[8] Xilinx, Zynq 7000 overview. [n.d.]. https://www.xilinx.com//support/
documentation/data_sheets/ds190-Zynq-7000-Overview.pdf.

618

https://wiki.analog.com/university/tools/pluto
https://wiki.analog.com/university/tools/pluto
https://www.analog.com/en/products/ad9363.html
https://www.analog.com/en/products/ad9363.html
https://wiki.analog.com/university/tools/pluto/devs/specs
https://wiki.analog.com/university/tools/pluto/devs/specs
https://wiki.analog.com/university/tools/pluto/users/customizing
https://wiki.analog.com/university/tools/pluto/users/customizing
https://wiki.analog.com/resources/tools-software/linux-software/libiio
https://wiki.analog.com/resources/tools-software/linux-software/libiio
https://doi.org/10.1109/SP46214.2022.00030
https://doi.org/10.1145/3307334.3326088
https://www.xilinx.com//support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com//support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

	1 Introduction
	2 SparSDR on Pluto-SDR
	2.1 Host-Side Software

	3 Application: BLE Beacon Sensing
	4 Demonstration
	References

