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ABSTRACT

Today’s network devices share buffer across queues to avoid drops

during transient congestion and absorb bursts. As the buffer-per-

bandwidth-unit in datacenter decreases, the need for optimal buffer

utilization becomes more pressing. Typical devices use a hierarchi-

cal packet admission control scheme: First, a Buffer Management

(BM) scheme decides the maximum length per queue at the de-

vice level and then an Active Queue Management (AQM) scheme

decides which packets will be admitted at the queue level. Unfortu-

nately, the lack of cooperation between the two control schemes

leads to (i) harmful interference across queues, due to the lack of

isolation; (ii) increased queueing delay, due to the obliviousness

to the per-queue drain time; and (iii) thus unpredictable burst tol-

erance. To overcome these limitations, we propose ABM, Active

Buffer Management which incorporates insights from both BM and

AQM. Concretely, ABM accounts for both total buffer occupancy

(typically used by BM) and queue drain time (typically used by

AQM). We analytically prove that ABM provides isolation, bounded

buffer drain time and achieves predictable burst tolerance without

sacrificing throughput. We empirically find that ABM improves the

99th percentile FCT for short flows by up to 94% compared to the

state-of-the-art buffer management. We further show that ABM

improves the performance of advanced datacenter transport proto-

cols in terms of FCT by up to 76% compared to DCTCP, TIMELY

and PowerTCP under bursty workloads even at moderate load con-

ditions.
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Figure 1: BM and AQM are orthogonal in their goals, and the

hierarchical scheme fundamentally limits the burst absorp-

tion capabilities of the buffer.

1 INTRODUCTION

Network devices are equipped with a buffer to avoid drops during

transient congestion and to absorb bursts. To reduce cost and maxi-

mize utilization, the on-chip buffer is shared across its queues. This

sharing naturally leads to various problems. Concretely, the exces-

sive growth of a queue might harm the performance of another

queue, which might be starved, deprived of throughput, etc. Worse

yet, such harmful interference might occur across queues that are

seemingly independent e.g., queues that are mapped to different

ports or queues that are formed by independent applications.

Network devices typically employ a hierarchical packet admis-

sion control to orchestrate the use of the shared space. First, a

Buffer Management (BM) algorithm [16, 22, 33] dynamically splits

the buffer space across queues. Second, an Active Queue Manage-

ment (AQM) algorithm [24, 32, 42] manages the buffer slice that BM

allocates to each individual queue by selectively admitting the in-

coming packets. Historically, BM and AQM evolved independently

with orthogonal goals. We visualize this in Figure 1. BM aims at

achieving isolation across queues by managing the spatial alloca-

tion of the buffer at the device level. Intuitively, BM’s goal is to

avoid long-lived queue starvation, effectively enforcing fairness

in the steady state. For instance, Dynamic Thresholds [22] aims

at weighted fairness across multiple queues in a device. In con-

trast, AQM’s goal is to maintain stable queuing delays by managing

the temporal allocation of the buffer at the queue level. Intuitively,

AQM prevents bufferbloat by avoiding packets stay in the buffer

for “too long” [24, 32, 42]. For instance, ECN-based AQM such as

RED [24] control the queue lengths via ECN marking; delay-based
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AQM such as Codel [32, 42] control the queueing delays at a fixed

reference value.

While this decoupling has been reasonable and successful in the

past as it allowed BM and AQM schemes to evolve further, two

recent datacenter trends make the need for coordination between

them pressing. First, buffer size is not keeping up with the increase

in switch capacity [20, 27]. In effect, BM no longer has enough

buffer available to provide isolation to each queue. Second, as traffic

becomes more bursty and incast scenarios more prevalent [18, 43,

50], the transient state of the buffer needs to be controlled at the

device-level [20]. To keep up with these trends, a buffer-sharing

scheme needs to provide isolation, bounded drain time and high

burst tolerance.

In this paper, we show that today’s BM and AQM schemes are

fundamentally unable to independently satisfy these requirements.

Driven by this insight, we propose ABM, an Active Buffer Manage-

ment algorithm that incorporates the insights from both BM and

AQM to achieve high burst absorption without sacrificing through-

put. Concretely, ABM leverages both total buffer occupancy at the

device level and the individual queue drain time. Essentially, ABM

is a function of both spatial (used by BM) and temporal (used by

AQM) characteristics of the buffer, effectively providing the best of

both worlds as shown in Figure 1. We analytically show that un-

like state-of-the-art, ABM achieves strong isolation properties and

maintains stable buffer drain time. This allows ABM to provide high

and predictable burst absorption while achieving high throughput.

We consider ABM practical, as it operates using statistics that are

already used by BM or AQM algorithms, thus ABM is well within

the capabilities of today’s devices.

Our results from large-scale simulations show that ABM im-

proves the flow completion times for short flows by up to 94%

compared to existing BM and AQM schemes. Moreover, ABM is not

only compatible with advanced congestion control algorithms (e.g.,

TIMELY, DCTCP and PowerTCP) but improves their performance

in terms of tail FCTs by up to 76% under bursty workloads. Finally,

we show that unlike traditional buffer management schemes, ABM

works well on various buffer sizes, including shallow buffers (e.g.,

Tomahawk [1, 3]).

We view our work as the beginning towards a new class of

ABM algorithms which react to both total buffer occupancy and

the queuing delay.

In summary, our contributions in this paper are:

• We reveal the fundamental limitations of BM and AQM schemes

that prevent optimally absorbing bursts (§ 2.2).

• We analytically show the critical limitations of the state-of-the-

art buffer management scheme (§ 2.3).

• We design Active Buffer Management (ABM), an algorithm that

achieves high burst absorption and maintains high throughput

by leveraging both total buffer occupancy and queue drain time

(§ 3).

• An extensive evaluation that demonstrates the benefits of ABM

in the datacenter context (§ 4).

• As a contribution to the research community, to ensure repro-

ducibility and facilitate future work, we made all of our artifacts

publicly available at https://github.com/inet-tub/ns3-datacenter.

This work does not raise any ethical issues.

2 MOTIVATION

In this section, we make a case for cooperation between Buffer

Management (BM) and Active Queue Management (AQM) to reap

the best out of the precious but limited on-chip buffer space. Here-

after, we say buffer-sharing scheme to refer to any scheme within

the two dimensions of BM and AQM as shown in Figure 1. After

describing ourmodel, we explain the desirable properties of a buffer-

sharing scheme (§ 2.1). We then discuss the limitations of existing

approaches (§ 2.2). Finally, we analytically reveal the pitfalls of the

state-of-the-art BM scheme, namely Dynamic Thresholds (§ 2.3).

Model: We consider an output-queued shared-memory packet

switching chip. Two schemes affect the allocation of the shared

buffer. First, a BM scheme dynamically decides the maximum length

of each queue. Second, an AQM scheme decides whether an incom-

ing packet will be enqueued, marked, trimmed, or dropped. We

consider that packets are grouped into a small set of priorities P.

Each priority exclusively uses a separate queue at each port.

2.1 Desirable Properties

To maximize the benefits of the shared buffer, a buffer-sharing

scheme needs to satisfy three key properties: (i) isolation; (ii) bounded

drain time; and (iii) predictable burst tolerance. Next, we describe

these properties and motivate them through intuitive examples.

2.1.1 Isolation

As the buffer is shared across multiple queues, the excessive use of

buffer by a small set of queues in aggregate might interfere with the

ability of other queues in the switch to use the shared buffer. Such

interference can be particularly harmful if the competing queues

belong to different traffic priorities. As an intuition, consider the

case illustrated in Figure 2. A queue serving a traffic priority that

is particularly critical to the operator (e.g., loss-sensitive traffic)

starves because the buffer is occupied by queues formed on other

ports and even by best-effort traffic. To avoid such harmful inter-

ference across queues, different traffic priorities must be isolated.

Concretely, we require that each priority must be allowed to oc-

cupy a configurable minimum amount of buffer at any given time,

independently of the buffer state.

Formally, let 𝑇𝑝 (𝑡) denote the total allocated buffer to a priority

𝑝 ∈ P in the set of all priorities P at any time 𝑡 . Then 𝑇𝑝 (𝑡) must

always be greater than 𝐵𝑚𝑖𝑛𝑝 , a configurable static value. However,

since the total buffer space, 𝐵 is limited, it is necessary that the

total allocation is within 𝐵. Thus, each priority must also be upper

bound in its allocation (𝐵𝑚𝑎𝑥𝑝 ) to prevent monopolizing the buffer.

Isolation (Minimum Guarantee): 𝑇𝑝 (𝑡) ≥ 𝐵𝑚𝑖𝑛𝑝 (1)

Isolation (Preventing Monopoly): 𝑇𝑝 (𝑡) ≤ 𝐵𝑚𝑎𝑥𝑝 (2)

2.1.2 Bounded drain time

Queueing delays are the root cause of high flow completion times

for short flows in a datacenter [14, 36, 39]. Hence, various schemes

including ECN-based AQM aim at reducing the queue lengths. In-

deed, queuing delay also affects the buffer’s drain time, namely,

how fast the occupied buffer can be made available for incoming

traffic (e.g., a burst or an incast). Importantly, though, queueing

delay is not equivalent to a queue’s length. In fact, two queues with
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the same queue length might experience different queueing delays.

This is possible as a variable number of queues can share the band-

width of a single port. Consider the example shown in Figure 3: a

queue in port 𝑖1 experiences 3x queueing delay compared to the

queue of equal length in port 𝑖2. This is the case as the former queue

can use
1

3
of the port’s bandwidth while the latter can use the full

bandwidth of the port. Even within the same port, queues of equal

length might experience different queueing delay depending on the

underlying scheduling algorithm (e.g., weighted round-robin).

To avoid the harmful consequences of high queuing delays, a

buffer-sharing scheme needs to bound the per-queue drain time.

Concretely, a buffer-sharing scheme needs to bound the occupied

buffer 𝑞(𝑡) of a queue with service rate 𝜇 (𝑡) by a configurable static
value Γ. In fact, the following condition summarizes the bufferbloat

problem [26, 32, 42]: the desired property is to avoid packets staying

“too long” in the buffer.

Bounded drain time:

𝑞(𝑡)
𝜇 (𝑡) ≤ Γ (3)

2.1.3 Predictable burst tolerance

Incast and bursty traffic are key challenges in a datacenter. Dropping

packets of a burst results in costly timeouts and is thus undesirable.

We define burst tolerance as the maximum burst of packets that

the buffer-sharing scheme can store in the buffer until they can be

transmitted via the corresponding port.

Intuitively, a buffer-sharing scheme can absorb an incoming

burst either if there is burst-size amount of empty buffer available

upon arrival (relates to isolation) or if the occupied buffer can drain

fast enough to accommodate the burst (relates to drain time). While

these conditions are sufficient to absorb a burst, they could have

adverse effects. On the one hand, maintaining burst-size amount

of empty buffer at all times deprives queues of the precious buffer,

resulting in potential loss of throughput. On the other hand, allocat-

ing all newly released buffer (from draining queues) to an incoming

burst will starve the draining queues (drop each of their incoming

packets). In conclusion, to provide predictable burst tolerance while

avoiding buffer waste, a buffer-sharing scheme needs a combination

of both isolation and bounded drain time.

2.2 Limitations of Existing Approaches

Next, we show that the existing approaches in BM and AQM cannot

satisfy the desirable properties of a buffer-sharing scheme discussed

in § 2.1. We focus on BM and AQM as these “actively” control the

worst-case (maximum) queue lengths.

We first generalize the steady-state workings of both BM and

AQM using a fluid-flow model. We are in steady state when the

load conditions and buffer occupancy remain unchanged. We de-

fine the threshold of a queue as the value of queue length after

which incoming packets are not admitted in the buffer. Thus, the

steady-state of both BM and AQM can be generalized as shown

in Equation 4, where 𝑇 𝑖𝑝 is the steady-state length of a queue at

port 𝑖 and of priority 𝑝 . In the following, Ψ is a function that any

BM scheme uses to calculate the per-queue thresholds based on

buffer-wide metrics i.e., the instantaneous total buffer occupancy

𝑄 , while Φ is a function that any AQM scheme uses to calculate

the per-queue threshold based on per-queue metrics e.g., length 𝑞

and queue drain rate 𝜇𝑖𝑝 . The effective threshold per queue 𝑇 𝑖𝑝 is

the minimum between the two thresholds,

𝑇 𝑖𝑝 = min

©­­­­«
Ψ𝑖𝑝 (𝑄)︸ ︷︷ ︸
𝐵𝑀

, Φ(𝑞, 𝜇𝑖𝑝 )︸   ︷︷   ︸
𝐴𝑄𝑀

ª®®®®¬
(4)

Limitations ofActiveQueueManagement (AQM):AQMschemes

control the queue lengths/delay at a fixed reference value. For in-

stance, RED [24] queues used in DCTCP [14] would set Φ = 𝐾 ,

where 𝐾 is the marking threshold (a constant). Delay-based AQM

such as PIE [42] queues would set Φ = 𝐾 · 𝜇
𝑖
𝑝

𝑏
where 𝜇𝑖𝑝 is the

drain rate of the queue and 𝑏 is the port bandwidth;
𝐾
𝑏
is the delay

reference value. In principle, delay-based AQM schemes which set

Φ = 𝐾 · 𝜇
𝑖
𝑝

𝑏
can maintain constant queue drain time. As discussed

38



Burst Arrival Rate 
(x10Gbps)

10
20

Co
ng

es
te

d 

Po
rt
s

2
6

10
14

B
u
rs

t 
T
o
le

ra
n
ce

(M
B

)

2

3

4

5

DT

(a) DT’s burst tolerance reduces

with the number of congested

ports due to its unbounded buffer

allocation.

Burst Arrival Rate 
(x10Gbps)

10
20

Co
ng

es
te

d 

Q
ue

ue
s

2
4

6
8

B
u
rs

t 
T
o
le

ra
n
ce

 
(M

B
)

2

3

4

5

DT

(b) DT’s burst tolerance reduces

with the number of congested

per-port queues due to its oblivi-

ousness to drain rate.

Burst Arrival Rate 
(x10Gbps)

10
20

Con
ge

st
ed

 

Po
rts

2
6

10
14

B
u
rs

t 
T
o
le

ra
n
ce

 
(M

B
)

2

3

4

5

ABM

(c) ABM offers predictable burst

tolerance by bounded allocation

regardless of the number of con-

gested ports.

Burst Arrival Rate 
(x10Gbps)

10
20

Con
ge

st
ed

 

Que
ue

s

2
4

6
8

B
u
rs

t 
T
o
le

ra
n
ce

 
(M

B
)

2

3

4

5

ABM

(d) ABM offers predictable burst

tolerance by dynamically adapt-

ing allocations to the buffer drain

time (number of queues per

port).

Figure 5: DT’s burst tolerance is unpredictable as it depends on unpredictable factors. On the contrary, ABM’s burst tolerance

remains high even at times of high load.

earlier in § 2.1, bounded drain time helps in absorbing bursts, since

the occupied buffer can rapidly react to accommodate the incom-

ing burst. However, the total shared buffer occupancy with AQM

controlled queues is 𝑛 · Φ where 𝑛 is the total number of queues

using the buffer. AQM has no visibility over other queues using the

buffer and thus cannot bound the overall buffer occupancy. As a

result, AQM cannot satisfy the isolation property we describe in

§ 2.1.

Takeaway.While AQM can, in principle, guarantee bounded drain

time to help with burst tolerance, AQM cannot fundamentally satisfy

the isolation property due to its inability to control the shared buffer.

Limitations of Buffer Management (BM): Buffer Management

schemes assign thresholds to every queue on a device. Thus, a BM

scheme can, in principle, achieve isolation across queues. For in-

stance, complete partitioning sets Ψ𝑖𝑝 (𝑄) = 𝐵
𝑁

where 𝑁 is the total

number of queues in the buffer. This naturally isolates each queue,

but at the cost of extremely low buffer utilization. More dynamic

schemes, such as Dynamic Thresholds (DT) [22] improve buffer

utilization but sacrifice isolation. We analytically show this and

other limitations of DT in § 2.3. Further, BM schemes are oblivious

to the drain time, since they only react to total buffer occupancy

i.e., BM schemes cannot ensure that packets leave the buffer “fast

enough”. As a result, BM schemes cannot satisfy the drain time and

burst-tolerance property.

Takeaway. BM schemes can, in principle, achieve isolation but are

fundamentally limited in burst tolerance as a result of being oblivious

to buffer drain time.

2.3 Drawbacks of the State-of-the-Art Buffer

Management Scheme

In this section, we shed light on the important drawbacks of the

state-of-the-art buffer management algorithm used in today’s dat-

acenter switches, namely Dynamic Thresholds (DT) [22]. DT is

the most common buffer management today [8, 16, 29, 37, 41]. We

first explain how DT calculates its thresholds. Next, we describe

why it is fundamentally unable to achieve the desirable properties

described in § 2.1.

DT’s workings: DT dynamically adapts the instantaneous max-

imum length of each queue of priority 𝑝 , namely its threshold

according to the remaining buffer and a configurable parameter 𝛼𝑝

often configured per priority.
1
Formally, let 𝐵 be the total shared

buffer and 𝑄 (𝑡) be the total buffer occupancy at time 𝑡 . DT cal-

culates the threshold 𝑇 𝑖𝑝 (𝑡) for a queue of priority 𝑝 at port 𝑖 as

follows:

𝑇 𝑖𝑝 (𝑡) = 𝛼𝑝 · (𝐵 −𝑄 (𝑡))︸       ︷︷       ︸
Total Remaining

(5)

The 𝛼 parameter of a queue affects its maximum length relative to

the other queues. An operator is likely to set higher (resp. lower) 𝛼

values for high-priority (resp. low-priority) traffic. Different vendors

and operators reportedly use different 𝛼 values. For instance, Yahoo

uses 𝛼 = 8 [29] while Cisco uses 𝛼 = 14 [8] and Arista 𝛼 = 1.

In the following, we analytically show that Dynamic Thresholds

(DT) suffers from low and unpredictable burst tolerance. The key

reasons for this limitation are: (i) the unbounded buffer allocation;

and (ii) the obliviousness to the buffer drain time.

Unbounded buffer allocation: To explain why DT is fundamen-

tally unable to bound its allocation, we walk through the workings

of DT in steady-state. We refer to steady-state as the time dur-

ing which the load conditions, the total buffer occupancy, and the

thresholds remain stable (unchanged) i.e., ¤𝑇 𝑖𝑝 (𝑡) = 0; ¤𝑄 (𝑡) = 0.

The threshold calculated by DT for a queue of priority 𝑝 at port 𝑖

in steady-state is given by,

𝑇 𝑖𝑝 (𝑡) =
𝛼𝑝 · 𝐵

1 +
∑︁
𝑝∈P

𝑛𝑝 · 𝛼𝑝
(6)

where P is the set of priorities using the buffer and𝑛𝑝 is the number

of congested queues of priority 𝑝 . As we see in Equation 6, DT’s

threshold for a queue of priority 𝑝 is dependent on the configurable

𝛼𝑝 value and the number of congested queues of each priority using

the buffer. As the number of congested queues 𝑛𝑝 increases, the

threshold decreases arbitrarily close to zero. In effect, DT cannot

1
While 𝛼 can be configured per queue, it is often configured per priority.
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offer any minimum available buffer to any priority, i.e., cannot offer

any isolation.

Figure 4, illustrates this effect. First, the remaining buffer tends

to zero as the number of congested queues increases. Second, the

threshold for a queue of certain priority (e.g., loss-sensitive AF)

drops as the number of congested queues of another priority (e.g.,

best-effort BE) increases. Observe that this occurs even though the

𝛼𝑝 value is higher for the loss-sensitive priority.

Unpredictable burst tolerance: Intuitively, DT’s threshold cal-

culation results in unpredictable burst tolerance for two reasons.

First, DT’s unbounded buffer allocation (which we described before)

cannot predict the amount of buffer available for an incoming burst.

Second, DT is oblivious to drain time, thus unaware of the rate at

which the buffer can be made available for an incoming burst.

To formally verify this intuition, we analyze the state of the buffer

throughout the arrival of a packet burst that arrives in a queue at

port 𝑖 , priority 𝑝 and with a drain rate of 𝜇𝑖𝑝 . We describe the burst

as incoming traffic with an arrival rate 𝑟 . Before the burst arrives,

given the number of congested ports, we denote the aggregate

drain rate as 𝜇. Upon the arrival of a burst at time 𝑡 = 0, the buffer

enters a transient-state: the total buffer occupancy, remaining buffer

and consequently the thresholds change until they stabilize to a

steady-state.

For time 𝑡 = 0
+
, the queue (hosting the burst) starts to grow, and

its threshold changes. The change in the queue’s threshold depends

on the change in the total remaining buffer (see Equation 5). To

study the rate of change of the threshold, we take its derivative

with respect to time and obtain the following:

¤𝑇 𝑖𝑝 (𝑡) = −𝛼𝑝 · ¤𝑄 (𝑡) (7)

We integrate on both sides of Equation 7 in the interval 𝑡 = 0 to

a time 𝜏 when the queue hosting the burst reaches its threshold

i.e., 𝑇 𝑖𝑝 (𝑡) = 𝑄𝑖𝑝 (𝑡). We substitute the initial conditions for 𝑡 = 0

from the steady-state occupancy (Equation 6) and solve for the

time 𝜏 . In essence, the queue experiences zero loss until 𝜏 and the

corresponding queue length at 𝜏 i.e., (𝑟 − 𝜇𝑖𝑝 ) · 𝜏 indicates the burst
tolerance of the buffer given the initial steady-state occupancy.

Depending on the arrival rate 𝑟 of the burst, we split into two cases.

First, if the arrival rate 𝑟 is such that the threshold of each queue

at 𝑡 = 0 drops at a rate less than the corresponding queue’s drain

rate, then all the queues are able to drain according to the changes

in the thresholds. In this case, the burst occupies the steady-state

allocation corresponding to its queue (Equation 6). Notice that

DT’s burst tolerance even when the arrival rate 𝑟 is low, critically

depends on the number of congested queues of each priority due

to its unbounded buffer allocation. Figure 5a illustrates the poor

burst tolerance of DT across different burst arrival rates and initial

steady-state conditions.

Second, if the arrival rate 𝑟 is such that the threshold of each

queue at 𝑡 = 0 drops at a rate greater than the corresponding queue’s

drain rate, then the queues cannot keep up with the changes in the

threshold and the burst experiences drops at time 𝜏 before reaching

its steady-state allocation. In this case, we obtain the burst tolerance

of DT (𝑟 − 𝜇𝑖𝑝 ) · 𝜏 as follows:

Burst Tolerance︷       ︸︸       ︷
(𝑟 − 𝜇𝑖𝑝 ) · 𝜏 =

𝛼𝑝 · 𝐵©­«1 +
∑︁
𝑝∈P

𝑛𝑝 · 𝛼𝑝
ª®¬ ·

(
1 + 𝛼𝑝 · (𝑟−𝜇𝑖𝑝 )−𝜇

𝑟−𝜇𝑖𝑝

) (8)

Observe that DT’s burst tolerance critically depends not only on

the number of congested queues 𝑛𝑝 of each priority but also on

the difference between the burst arrival rate 𝑟 and the aggregate

buffer drain rate 𝜇. Even worse, DT’s obliviousness to drain rate

allows queues to increase in lengths irrespective of their drain time

— effectively increasing 𝑛𝑝 even with low aggregate drain rate 𝜇. As

a result, DT significantly suffers from low burst tolerance. Figure 5b

illustrates the consequences of the obliviousness of drain time in

buffer allocation to burst tolerance.

We have so far proved our intuition, namely that the burst toler-

ance depends on two factors (i) the total buffer occupancy at 𝑡 = 0

in the steady-state (Equation 6) and (ii) the drain rate of the buffer

in the transient-state (Equation 7).

3 ACTIVE BUFFER MANAGEMENT

Driven by our observations in § 2.3, we design a buffer-sharing

scheme that systematically combines the insights of both BM and

AQM while avoiding the pitfalls of existing schemes. Our goal is to

satisfy the properties we identified in § 2.1:

• Provide isolation ⊲ Theorem 1, 2

• Maintain bounded drain time ⊲ Theorem 3

• Achieve predictable burst tolerance ⊲ Equation 11

3.1 The ABM Algorithm

ABM assigns thresholds to each queue considering both spatial,

buffer-wide and temporal, per-queue statistics. Formally, ABM as-

signs a threshold 𝑇 𝑖𝑝 (𝑡) to a queue of priority 𝑝 at port 𝑖 according

to Equation 9 i.e., using a configurable value 𝛼𝑝 , the port’s band-

width 𝑏 and three dynamically changing factors: (i) the number

of congested queues of priority 𝑝 (𝑛𝑝 ) that contributes to isolation

property; (ii) the drain rate of the queue (𝜇𝑖𝑝 ) that contributes to

maintain bounded drain time property; and the remaining buffer

space (𝐵 −𝑄 (𝑡)).

𝑇 𝑖𝑝 (𝑡) =

𝐵𝑢𝑓 𝑓 𝑒𝑟 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡︷                    ︸︸                    ︷
𝛼𝑝 · 1

𝑛𝑝
· (𝐵 −𝑄 (𝑡)) ·

𝐴𝑄𝑀︷︸︸︷
𝜇𝑖𝑝

𝑏
(9)

𝛼𝑝 is the only parameter the operator needs to configure in ABM.

Similarly to DT, a higher 𝛼𝑝 value in ABM results in a higher allo-

cation on average. Unlike DT though, the 𝛼𝑝 defines the minimum

and maximum buffer available to each priority, as we show in § 3.2

𝑛𝑝 denotes the number of congested queues of priority 𝑝 . ABM

considers a queue congested if the queue length is close to the

corresponding threshold. In our evaluation, we consider a queue as

congested if its length is greater than or equal to 0.9 of its threshold.
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𝜇𝑖𝑝

𝑏
denotes the normalized drain rate, where 𝜇𝑖𝑝 is the drain rate of

the queue and 𝑏 is the bandwidth per port.
2
In effect,

𝜇𝑖𝑝

𝑏
is the por-

tion of the port’s bandwidth that is available to the particular queue.

In our analysis, we assume that the drain rate 𝜇𝑖𝑝 is a continuous

value that changes according to the offered load and the scheduling

policy. For instance, each of four queues that are mapped to the

same port will have

𝜇𝑖𝑝

𝑏
= 0.25 if the scheduling is Round Robin. To

ensure practicality, in our evaluations, we measure 𝜇𝑖𝑝 periodically

and use the measurement for the threshold calculation. We also

perform a sensitivity analysis on the periodic update intervals.

(𝐵 −𝑄 (𝑡)) denotes the unused and unreserved buffer space. Im-

portantly, this factor is identical to what DT uses.

3.2 ABM’s Properties

We now show how ABM satisfies the desirable properties, namely

isolation, bounded drain time, and predictable burst absorption. We

also provide formal arguments for these properties, deferring the

full proof to the Appendix A.

ABMoffers isolation across priorities. Concretely, ABM (i) bounds

the total buffer occupied by each priority; and (ii) offers minimum

buffer guarantees to each priority. In effect, no priority can monopo-

lize the buffer and starve others. ABM achieves this by considering

the number of congested queues per priority when calculating

the per-queue thresholds. As an intuition, the per-queue threshold

of a given priority decreases as more queues of that priority are

congested.

Concretely, Theorem 1 addresses the isolation property of mini-

mum guarantee, while Theorem 2 addresses the isolation property

of preventing monopoly. We formally define and discuss the need

for those properties in § 2.1.

Theorem 1 (Isolation - Minimum guarantee). The total amount of

buffer available for any priority 𝑝 is lower bounded by 𝐵𝑚𝑖𝑛𝑝 given by,

𝐵𝑚𝑖𝑛𝑝 ≥
𝐵 · 𝛼𝑝

1 +
∑︁
𝑝∈P

𝛼𝑝

Theorem 2 (Isolation - Preventing monopoly). The total amount of

buffer available for any priority 𝑝 is upper bounded by 𝐵𝑚𝑎𝑥𝑝 given

by,

𝐵𝑚𝑎𝑥𝑝 ≤
𝐵 · 𝛼𝑝
1 + 𝛼𝑝

Notably, both bounds depend only on the 𝛼𝑝 parameter which

the operator configures, and not on the instantaneous state of the

buffer as in DT.

ABM bounds drain time by allocating buffer space proportion-

ately to the drain rate of each queue. In effect, ABM bounds queuing

delay and total buffer drain time irrespective of the number of con-

gested queues in a port, or the scheduling policy. We formally

express the drain time properties of ABM in Theorem 3.

2
If the switch ports are not symmetric in bandwidth, 𝑏 is the bandwidth of the port

with the highest bandwidth.

Theorem 3 (Bounded drain time). The thresholds assigned by ABM

upper bounds the drain time Γ for any queue of priority 𝑝 given by,

Γ ≤
𝐵 · 𝛼𝑝

(1 + 𝛼𝑝 ) · 𝑏

Notably, this bound is only dependent on the 𝛼𝑝 which the oper-

ator configures, and 𝑏 which is the switch port bandwidth which is

static at run-time.

Intuition for proof of Theorem 1, 2, 3: We first define Ω (for-

mally defined in Definition 1) asΩ𝑖𝑝 = 𝛼𝑝 · 1

𝑛𝑝
· 𝜇

𝑖
𝑝

𝑏
. Notice that ABM’s

allocation scheme (Equation 9) is essentially𝑇 𝑖𝑝 (𝑡) = Ω𝑖𝑝 · (𝐵−𝑄 (𝑡)).
We can then view Ω as an adaptive 𝛼 parameter according to DT’s

allocation (Equation 5)
3
. We derive an important property that the

sum of Ω𝑖𝑝 values of all congested queues of a certain priority 𝑝 is

upper bounded by 𝛼𝑝 (Lemma 1). The buffer allocation for a priority

𝑝 in steady state turns out to be

∑
𝑖 Ω

𝑖
𝑝 ·𝐵

1+∑𝑖

∑
𝑝∈P Ω𝑖

𝑝

where P is the set of

priorities using buffer. Based on the property of Ω, we then derive

lower and upper bounds (Theorem 1, 2) for the buffer allocated

to a certain priority. Similarly, using the upper bound for buffer

allocation and dividing by the drain rate 𝜇
𝑝

𝑖
, we bound the drain

time in Theorem 3.

ABM’s allocation scheme in Equation 9 has its roots in the proper-

ties of Ω that offer isolation and bounded drain time properties. For

full proofs, we refer the interested reader to our complete analysis

in Appendix A.

ABM offers predictable burst tolerance thanks to the previous

properties. Intuitively, ABM’s bounded allocation makes it ready

to absorb small bursts and the stable drain time property further

enhances ABM’s burst tolerance as the occupied buffer can readily

react to incoming bursts. To formalize ABM’s burst tolerance, we

analyze the state of the buffer throughout the arrival of a packet

burst that arrives on a queue at port 𝑖 , priority 𝑝 and with a drain

rate of 𝜇𝑖𝑝 . Similar to our analysis of DT in § 2.3, we describe the

burst as incoming traffic with an arrival rate 𝑟 . Upon the arrival of

a burst at time 𝑡 = 0, the buffer enters a transient state.

First, if the arrival rate 𝑟 is such that the threshold of each queue

at 𝑡 = 0 reduces at a rate less than the corresponding queue’s drain

rate, then the aggregate buffer drains according to the changes in

the thresholds and the burst occupies its steady-state allocation as

follows:

Burst Tolerance︷       ︸︸       ︷
(𝑟 − 𝜇𝑖𝑝 ) · 𝜏 =

𝛼𝑝 · 1

𝑛𝑝
· 𝐵 ·

𝜇𝑖𝑝

𝑏

1 + ∑
𝑝∈P 𝛼𝑝

(10)

Notice that ABM’s burst tolerance is independent of the number of

the congested queues of other priorities. Rather, the burst tolerance

only reduces due the number of congested queues of the same

priority.

Second, if the arrival rate 𝑟 is such that the threshold of each

queue at 𝑡 = 0 reduces at a rate greater than the corresponding

queue’s drain rate, then the aggregate buffer cannot drain according

to the changes in the thresholds. In this case, we obtain ABM’s burst

tolerance given by Equation 11, where 𝜇 is the aggregate drain rate

of the buffer at time 𝑡 = 0.

3
Setting Ω𝑖

𝑝 = 𝛼𝑝 reduces to DT’s allocation scheme.
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Burst Tolerance︷       ︸︸       ︷
(𝑟 − 𝜇𝑖𝑝 ) · 𝜏 =

𝛼𝑝 · 1

𝑛𝑝
· 𝐵 · 𝜇

𝑖
𝑝

𝑏©­«1 +
∑︁
𝑝∈P

𝛼𝑝
ª®¬ ·

(
1 + 𝛼𝑝 · 1

𝑛𝑝
· 𝜇

𝑖
𝑝

𝑏
· (𝑟−𝜇𝑖𝑝 )−𝜇

𝑟−𝜇𝑖𝑝

)
(11)

Finally, notice from Equation 11 that ABM’s burst tolerance on

a queue of a certain priority remains independent of the number

of congested queues of other priorities. Further, unlike DT, ABM

accounts for the buffer drain time and achieves a high burst toler-

ance even with low aggregate drain rate. In essence, ABM’s burst

tolerance is a function of the burst arrival rate 𝑟 . Observe from Equa-

tion 11 that the burst tolerance of a certain priority still depends on

the number of congested queues of the same priority. The buffer

occupancy of a priority self-inflicts its own burst tolerance. In § 3.3,

we further optimize ABM’s thresholds to prevent this effect.

Figure 5 illustrates ABM’s burst tolerance properties under vari-

ous buffer states. Observe that ABM’s burst tolerance for a priority

remains high and only depends on rate at which the burst arrives

regardless of the number of ports that are congested (Figure 5c)

and of the number of congested queues per port (Figure 5d). Recall

that DT’s burst tolerance depends on both these factors and is thus

unpredictable as we observe in Figure 5a, 5b.

3.3 Optimizing for Datacenter Workloads

As mentioned above, although ABM alleviates the dependency on

other priorities in its burst tolerance of a given priority, the buffer

occupancy of each priority self-inflicts its own burst tolerance.

To prevent this effect, we further optimize ABM’s thresholds to

maximize its burst tolerance.

To this end, ABM prioritizes all unscheduled packets by using a

higher 𝛼𝑝 value in allocating buffer for two reasons. First, bursty

traffic in a datacenter originates mainly from unscheduled (first

RTT) packets of a flow, since congestion control cannot fundamen-

tally act within the first RTT. Second, short flows that finish within

the first RTT are of utmost importance in a datacenter. Even a single

packet loss could lead to costly timeouts and long flow completion

times.

Specifically, even the unscheduled packets are destined to a spe-

cific queue at each port based on their default traffic priority. How-

ever, ABM uses a higher 𝛼𝑝 value in its thresholds while admitting

such packets to the buffer. We assume that unscheduled packets

arrive with a tag attached by the end-hosts. Observe that such a tag

can also be dynamically obtained if the switch is programmable.

In essence, by prioritizing unscheduled packets, ABM prevents the

self-inflicting effect as seen in Equation 11 i.e., a higher 𝛼𝑝 for un-

scheduled packets diminishes the effect of self-inflicting 𝑛𝑝 factor.

Note that unscheduled packets relate to the transient state of the

buffer, and prioritizing such packets does not affect the steady-state

properties of ABM. As a result, ABM maximizes the burst tolerance

properties and remains independent of the number of congested

ports, as well as the number of congested queues at each port.

3.4 ABM’s Practical Considerations

ABM is attractive in practice for three reasons.

ABM uses statistics that are available to today’s switches.

ABM cannot be easily implemented today, as the MMU is not pro-

grammable even on programmable devices [47]. Still, it is important

to note that ABM only uses statistics that are used either by BM

or by AQM schemes, thus is not fundamentally impossible. 𝛼𝑝

and (𝐵 −𝑄 (𝑡)) are used by DT [22] which is implemented on

most datacenter switches [8, 29, 37, 41]. 𝑛𝑝 , i.e., the number of

congested queues of priority 𝑝 only requires visibility over queue

lengths, which is provided to both AQM and BM schemes to de-

cide whether a packet can to be admitted.

𝜇𝑖𝑝

𝑏
depends on the

port’s bandwidth, the scheduling algorithm, and the number of

congested queues mapped to the same port. The two former do

not change. Thus, if the number of congested queues mapped to

the same port is static, then

𝜇𝑖𝑝

𝑏
also becomes static. If the number

of congested queues (i.e., exceeding a threshold) mapped to the

same port changes over time, then we only need this number to

calculate the rate. For example, if scheduling is round-robin and

there are two congested queues in a port, then the normalized drain

rate is

𝜇𝑖𝑝

𝑏
= 0.5. Further, several congestion control algorithms

implemented in real datacenters already use in-band telemetry and

insert 𝜇𝑖𝑝 in packet headers (e.g., HPCC [35]). Finally, ABM’s thresh-

old also requires a floating point operation similar to DT which

calculates 𝛼𝑝 · (𝐵 −𝑄 (𝑡)).
ABM teaches essential lessons on how to configure 𝛼 values.

Although ABM and DT have major differences in their properties,

their thresholds are in fact similar (cf. Equations 6, vs 9). Thus,

ABM’s insights can help an operator configure DT. Concretely, the

operator could divide 𝛼𝑝 values to the number of queues mapped

to the same port or to the number of congested ports they expect to

have. Finally, an operator can use our mathematical analysis (also

illustrated in Fig. 5) to find an approximation of the burst tolerance

of their DT configuration leveraging their insights about the usual

state of the buffer (i.e., number of congested queues per port and

the number of congested ports).

One can approximate ABM on top of DT. As ABM’s threshold

(Equation 9) is so similar to DT’s formula (Equation 5) an operator

could approximate ABM using DT. To that end, the operator would

need to implement a control-plane function that periodically pulls

queue statistics and reconfigures 𝛼𝑝 per queue according to ABM ’s

thresholds. Observe that most vendors today expose queue statistics

that are required to calculate

𝜇𝑖𝑝

𝑏
and 𝑛𝑝 i.e., queue lengths [2, 6, 7,

11]. How close this approximation would be to ABM depends on

two factors (i) how frequently a device can be reconfigured; and (ii)

how dynamic the traffic patterns are. In § 4.4, we evaluate the effect

of such an approximation by varying the time intervals in which

𝛼𝑝 values are updated. We find that the approximation performs

similarly to ABM for small update intervals, but performs similarly

to DT at high update intervals.

42



DT FAB CS IB (AFD + Elephant trap) ABM

20 40 60 80
Load (%)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(a) Flows of incast traffic

20 40 60 80
Load (%)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn
(b) Short flows of web-search

20 40 60 80
Load (%)

0
20
40
60
80

100

99
-p

ct
 B

uf
fe

r (
%

)

(c) Buffer occupancy

20 40 60 80
Load (%)

0
20
40
60
80

100

Av
g.

 T
hr

ou
gh

pu
t (

%
)

(d) Throughput

Figure 6: Buffer Management under various loads. ABM achieves lower tail FCT (a) for flows contributing to bursts (incast

traffic) and (b) for short flows (web-search) compared to other BM schemes across various loads. In doing so ABM (c) uses less

buffer; and (d) does not sacrifice throughput.

DT FAB CS IB (AFD + Elephant trap) ABM

20 40 60
Request Size (% of buffer size)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(a) Flows of incast traffic

20 40 60
Request Size (% of buffer size)

101

102

99
-p

ct
 F

CT
 sl

ow
do

wn

(b) Short flows of web-search

20 40 60
Request Size (% of buffer size)

0
20
40
60
80

100

99
-p

ct
 B

uf
fe

r (
%

)

(c) Buffer occupancy

20 40 60
Request Size (% of buffer size)

0
20
40
60
80

100

Av
g.

 T
hr

ou
gh

pu
t (

%
)

(d) Throughput

Figure 7: Buffer Management under various request sizes. ABM achieves lower tail FCT (a) for flows contributing to bursts

(incast traffic) and (b) for short flows (web-search) compared to other BM schemes across various request sizes. (c) ABM’s tail

buffer occupancy increases with the request size, while (d) throughput stays untouched.

4 EVALUATION

We evaluate the performance of ABM and compare it with state-of-

the-art approaches in the datacenter setting. Our evaluation aims

at answering the following key questions:

(Q1) How does ABM perform compared to other BMs in burst absorp-

tion and isolation?

We find that ABM improves the 99th percentile FCT slowdown of

the flows contributing to bursts by up to 94% (12.6%) under high

(low) load compared to existing schemes. Moreover, we show that

(unlike DT) ABM offers isolation across priorities as performance

of a given priority is unaffected by the load of other priorities.

(Q2) Does ABM sacrifice short flows or throughput?

ABMdoes not sacrifice throughput or short flows’ FCTs in exchange

for burst absorption. In fact, ABM reduces the 99th percentile FCT

slowdown for short flows by 28.3% on average even at 20% load with

Cubic compared to existing BM schemes, while achieving on-par

throughput.

(Q3) Can ABM further improve FCTs of advanced congestion control

schemes?

We show that ABM improves the tail FCT slowdown under bursty

workloads in DCTCP by 88%; in TIMELY by 33.3% and in PowerTCP

by 2.13% even at moderate burst sizes.

(Q4) How well does ABM perform in extremely shallow buffers?

We show that ABM maintains its performance and improves the

99th percentile FCTs of bursty workloads by up to 92% compared

to other BMs in extremely shallow buffers.

(Q5) Can we reap any of ABM’s benefits by approximating its alloca-

tion with DT?

We perform a sensitivity analysis on the importance of the update

interval in ABM’s benefits. We find that one could benefit from

ABM by re-configuring DT’s 𝛼𝑝 values at every ≈ 8 ms (100x RTT).

4.1 Setup

Our evaluation is based on network simulator NS3 [9].

Topology:We use a Leaf-Spine topology [13] with 8 spine switches

and 256 servers organized into eight leaves. Each link has a capacity

of 10Gbps (4:1 oversubscription) similar to prior work [12, 45].

Moreover, each link has 10𝜇𝑠 propagation delay. Both leaf and

spine switches have 9.6KB buffer-per-port-per-Gbps following the

features of the Broadcom TridentII switch [10, 20].

Workload:We generate traffic using two workloads (i) web-search;

and (ii) incast traffic. First, we generate traffic following the web-

search flow size distribution [14] which is based on real-world

datacenter measurements across various loads in the range 20%-80%.

Second, we generate incast traffic using a synthetic workload similar

to prior work [12, 13]. Specifically, our incast traffic simulates a

distributed file system query-response behavior in a datacenter.

Each server in our topology requests a file from a set of servers
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Figure 8: Cubic, DCTCP and 𝜃-PowerTCP harm each other even though they use different queues with default BM (i.e., DT).

ABM isolates each congestion control algorithm, effectively reducing their tail FCT.
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Figure 9: While advanced congestion control already offers low tail FCT, ABM allows for further improvements through better

buffer allocations compared to the default buffer management (i.e., DT).

chosen uniformly at random from a different rack. All servers that

receive the request respond by transmitting the requested part

of the file. Each file request creates an incast. We evaluate across

different request sizes from 10% -75% of the buffer.

Comparisons and metrics: We compare ABM with four alter-

native BM schemes: Dynamic Thresholds (DT) [22]; Flow Aware

Buffer (FAB) [16], Complete Sharing (CS) and Cisco Intelligent

Buffer (IB) [8]. DT allocates buffer proportionately to the remaining

as we describe in § 2.3. FAB uses DT but prioritizes short flows. CS

allows every queue in the switch to grow as long as there is remain-

ing buffer in the shared space. IB uses Approximate Fair Dropping in

combination with DT representing the typical hierarchical scheme.

We compare the performance of various congestion control algo-

rithms with and without ABM. In particular, we evaluate ABMwith

Cubic [28] (loss-based), DCTCP [14] (ECN-based), TIMELY [38]

(RTT-gradient-based), PowerTCP and 𝜃 -PowerTCP [12] (power-

based). We report the switch total buffer occupancy, throughput

and Flow Completion Time (FCT) slowdown i.e., the actual FCT

divided by the ideal FCT with no other traffic in the network.

Parameter setting: We configure ABM, DT and FAB with 𝛼 = 0.5

for all the queues unless otherwise specified. We update 𝑛𝑝 and 𝜇𝑖𝑝
for ABM once per RTT. We configure IB according to [4]. ABM uses

𝛼 = 64 for unscheduled packets (§ 3.3) and uses headroom similar to

IB. We set𝐾 = 65 packets for DCTCP according to [14] and TIMELY

parameters according to [38]. For PowerTCP and 𝜃 -PowerTCP, we

set 𝑏𝑎𝑠𝑒𝑅𝑇𝑇 to the minimum RTT of the longest path; 𝑁𝑖𝑐𝐵𝑊 is

set to 10Gbps and the 𝛾 parameter is set according to [12]. We set

𝑚𝑖𝑛𝑅𝑇𝑂 = 10ms.

4.2 ABM’s Performance

ABM significantly improves incast-traffic FCTs: In Figure 6a,

we show the 99th percentile FCT slowdown for the flows of incast

workload with a fixed request size of 30% of the buffer size, as

a function of the load created by the web-search workload. All

flows use Cubic. We observe that at low load (20%) ABM reduces

the 99th percentile FCT slowdown by 12.6% on average compared

to DT, FAB, CS and IB. As the load increases, ABM outperforms

alternatives in FCT slowdown by 90.12% at 40% load; and by 94% at

80% load.

In Figure 7a, we show the 99th percentile FCT slowdown for the

flows of incast workload with fixed web-search load in 40% as a

function of the request size of incast traffic. Even for a request size

as small as 12.5% of the buffer size, ABM reduces the FCT slowdown

by 39% on average compared to DT and IB; by 33% compared to

FAB; and by 54% compared to CS. As the request size increases,

ABM’s benefits are more pronounced. At a request size of 50% of

the buffer size, ABM reduces the FCT slowdown of incast workload

by at least 75.1% on average compared to DT, FAB, CS and IB.

In essence, ABM’s bounded buffer allocation (Theorem 2) ef-

fectively limits the used buffer by the web-search workload and

provides enough headroom for the incast workload. Further, ABM’s

prioritization of unscheduled packets (incast traffic) fully exploits

the available headroom.

ABM effectively isolates traffic priorities: To evaluate ABM’s

performance isolation across different priorities compared to the de-

fault, namely DT, we consider the following scenario. The network
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is shared across three priorities each using a different transport pro-

tocol among Cubic, DCTCP, and 𝜃 -PowerTCP. Each priority uses

a distinct queue at each port. The most recent protocol, namely 𝜃 -

PowerTCP is used for the incast workload, while Cubic and DCTCP

serve web-search traffic. Figure 8 (a,b,c) shows the 99th percentile

FCT slowdown of short flows belonging to each priority as a func-

tion of the load carried by Cubic.

At a high level, Figure 8 shows the inability of separated queues

and DT to offer isolation. As the Cubic load increases, the default

(i.e., DT) FCT slowdown performance of DCTCP, and 𝜃 -PowerTCP

significantly increases. In contrast, ABM effectively protects 𝜃 -

PowerTCP and DCTCP from the Cubic load and reduces the tail

FCT slowdown by up to 90.92%. Concretely, we observe that when

ABM manages the buffer the FCT slowdown of both Cubic and

DCTCP stabilizes around 20 (i.e., stops degrading with increasing

Cubic load) and 𝜃 -PowerTCP stabilizes at 10 despite the increasing

Cubic load.

In essence, as ABM bounds the buffer drain time (Theorem 3)

and the buffer occupancy of each traffic priority (Theorem 2), it

reduces the impact of Cubic traffic in other priorities of the shared

buffer.

ABM improves short flows FCTs (even if they are not part

of a burst): ABM not only improves incast workload FCTs, but

also improves FCTs of all short flows. In Figure 6b, we show the

99th percentile FCT slowdown of short flows belonging to the web-

search traffic as a function of the load. We observe that even at 20%

load, ABM reduces the FCT slowdown by 30.7% compared to DT

and FAB; by 38.5% compared to CS; and by 28.9% compared to IB.

At 80% load, ABM reduces the FCT slowdown for short flows by

76% on average. Similarly, Figure 7b we show the 99th percentile

FCT slowdown of short flows belonging to the web-search traffic

as a function of request size of the incast workload and at a fixed

load of 40% from the web-search workload. We observe that ABM

reduces the FCT slowdown for short flows of web-search workload

by 41.8% on average.

ABM does not sacrifice throughput to serve short flows or

bursts:We further evaluate the performance of ABM in terms of

throughput. In Figure 6d, we observe that ABM achieves on-par

throughput compared to alternative approaches. Even under large

request sizes of the incast workload in Figure 7d, ABM does not

sacrifice throughput for low FCTs of short flows.

ABM strategically increases buffer utilization to accommo-

date incast: ABM effectively limits the buffer occupied by medium

and long flows. Even with a buffer-hungry transport algorithm

such as Cubic, shown in Figure 6c, ABM reduces the buffer usage

across various loads by 54.2% on average compared to DT, FAB

and IB; and by 68.9% compared to CS while still achieving on-par

throughput. At the same time, ABM strategically uses more buffer

to accommodate bursts. Figure 7c shows that ABM uses more buffer

as the request size (incast workload) increases. Indeed, ABM uses

5.3% more buffer compared to DT, FAB and IB for large request

sizes.

ABM’s benefits increase as the number of queues-per-port

increases under stable load: To evaluate the impact of 𝜇𝑖𝑝 factor

on ABM’s thresholds, we generate (i) web-search workload at 40%

load; and (ii) incast with request size at 25% of the buffer size
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Figure 10: As the number of queues-per-port increases under

stable loadABM’s buffer occupancy remains low (b), similarly

to its tail FCT (a).

and vary the number of queues per port across which the load

is distributed. Figure 10a shows the tail FCT slowdown of Cubic

and DCTCP when combined with ABM and DT. We observe that

as the number of queues per port increases, ABM shows higher

benefits even with stable load conditions. Concretely, ABM and DT

perform similarly to DCTCP until 4 queues per port, where ABM

only improves over DT by 10%. At 5 queues per port, ABM reduces

the 99th percentile FCT slowdown of Cubic and DCTCP by 88.9%

on average. Furthermore, at 8 queues per port, ABM reduces the

FCT slowdown of Cubic and DCTCP by 92.6%. Figure 10b shows

how even DCTCP uses more buffer as the number of queues per

port increases, even when the load is fixed. Figure 10 validates the

importance of bounded drain time in § 2.1.

ABM can improve FCTs of advanced congestion control algo-

rithms under bursty workloads: Aiming at understanding the

benefit of ABM in conjunction with advanced congestion control,

we evaluated it under the following four scenarios. In each scenario

one congestion control algorithm from Cubic, DCTCP, TIMELY or

PowerTCP runs at the hosts generating web-search at 40% load and

incast traffic at varying request sizes. We then compare the tail FCT

slowdown achieved when ABM manages the buffer compared to

when the default buffer management algorithm does. In Figure 9,

we observe that for small-sized request at 12.5% of the buffer size,

ABM reduces FCT slowdown by 39.1% compared to Cubic (with

DT) and by 10.3% compared to DCTCP For this request size ABM

achieves no improvements compared to TIMELY and PowerTCP.

For medium-sized requests at 37.5% of the buffer size, ABM re-

duces the FCT slowdown by 88% compared to Cubic and DCTCP;

reduces TIMELY’s FCT slowdown by 33.3%. For this request size

ABM achieves no improvements compared to PowerTCP. As the

request size increases further, at 50% of the buffer size, ABM also

reduces the 99th percentile FCT slowdown of PowerTCP by 76%.

Although advanced congestion control can improve the tail

buffer occupancy and consequently the tail FCTs for short flows,

we observe from Figure 9 that ABM can improve FCTs of advanced

congestion control algorithms under bursty workloads.

4.3 ABM’s Performance in Shallow Buffers

Our evaluation setup so far considers a switch with 9.6KB buffer-

per-port-per-Gbps that corresponds to a Trident2 switch.We further

evaluate the benefits of ABM with smaller, yet realistic buffer sizes

e.g., Tomahawk.
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Figure 11: ABMmaintains low tail FCTunder various realistic

buffer sizes that are smaller than Trident2 (which we use

throughout § 4.2). On the contrary, DT and IB cause 10x tail

FCT slowdown for multiple realistic buffer sizes.

To that end, we vary the buffer-per-port-per-Gbps according to

the specifications reported in [20]. We generate web-search work-

load at 40% load and incast workload at a request size at 25% of

the buffer size corresponding to Trident2. We separately consider

DCTCP and PowerTCP.

Figure 11, summarizes our results by showing the 99th percentile

FCT slowdown of the incast flows for DCTCP (a) and PowerTCP

(b). We observe that ABM’s performance is robust to changes in

buffer size even for extremely shallow buffers. Concretely, ABM

achieves similar performance across various buffer sizes both with

DCTCP and PowerTCP.

On the contrary, both DT and IB cannot effectively manage the

buffer when its size is equal or smaller than 7KB per-port-per-Gbps.

Indeed, at this buffer size the FCT slowdown of DT and IB with

DCTCP increases by ≈ 10𝑥 compared to ABM with DCTCP as

we observe in Figure 11a. PowerTCP hides DT’s and IB’s inability

until 6KB per-port-per-Gbps but not further. Concretely, in Fig-

ure 11b, we observe that DT and IB cannot sustain low tail FCTswith

5.12KB per-port-per-Gbps (corresponding to Tomahawk). In sum-

mary, ABM effectively manages the buffer under bursty workloads

even with a shallow buffer of 3.44KB (corresponding to Tofino). For

instance, ABM reduces the 99th percentile FCT slowdown by 96%

with DCTCP and by 92% with PowerTCP compared to alternatives

i.e., DT and IB.

4.4 ABM’s Performance with Periodic &

Infrequent 𝛼 Updates

In § 3.4, we introduced the possibility of approximating ABM on

top of DT via periodically reconfiguring 𝛼 at the control plane. We

now aim at evaluating how sensitive ABM is to the update interval

and what benefits such a practical approximation of ABM can have.

We generate traffic using web-search workload at 40% load and

incast traffic with 75% request size. Flows are destined to one of

the eight queues at each port chosen uniformly at random. We

vary the update interval after which DT’s 𝛼 values are reconfigured

to approximate ABM’s allocation. We chose to have more queues

per port compared to the previous experiment and a relatively

large request size to make the scenario more challenging for ABM.

Finally, in Figure 12a, we plot the 99.9th4 percentile FCT slowdown

4
We report 99.9th rather than 99th to stress ABM further.
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Figure 12: DT can approximate ABM’s allocation if we re-

configure its 𝛼 parameter every 100x RTT (i.e., every 8ms)

according to ABM’s formula. Such a coarse update interval

will already improve DT’s tail FCT by 44.78% compared to

DT (red).

for short flows and the median FCT slowdown for long flows for (i)

ABM with varying update intervals; and (ii) DT (red bar).

At a high level, the 99.9th percentile FCT slowdown for short

flows increases with larger update intervals, as the reconfiguration

rate cannot keep up with the updates in 𝑛𝑝 and 𝜇𝑖𝑝 used in ABM’s

thresholds. Thus, at around 1𝐾x RTT update interval, ABM’s ap-

proximation is equivalent to DT for short flows FCT. Still, ABM’s

approximation significantly improves DT’s performance for up-

date intervals smaller than 1𝐾x RTT (i.e., 80ms) showing ABM’s

practical benefits. For instance, even with 10x RTT (100x RTT) up-

date interval, the tail FCT slowdown of ABM decreases by 84.05%

(44.78%) compared to DT. Importantly, the tail FCT of long flows

is not affected by the intervals. Thus, the achieved throughput of

ABM’s approximation is on par with that of DT.

5 RELATEDWORK

Optimally managing switch buffers has been an active area of re-

search for more than two decades with a wide range of approaches,

including BMs [16, 17, 19, 21–23, 33, 44] and AQMs [24, 32, 42, 49],

scheduling [15, 30, 47] and end-host congestion control [12, 14, 35,

38–40, 48].

BM schemes such as FAB [16], Cisco’s IB [5], TDT [31] and

EDT [46] rely on DT [22] and attempt to give more of the remaining

buffer to short flows. By relying on DT, these schemes inherit its

pitfalls (§ 2.3).

AQM schemes such as RED [24], ARED [25], Codel [32] and

PIE [42] control queue lengths or delays but under unrealistic as-

sumptions. Indeed, AQM schemes assume per-queue buffer iso-

lation i.e., that the maximum length per queue is static. Yet, in

practice, this length dynamically changes, often depriving AQM

from the required buffer to operate normally.

End-host congestion control algorithms have the potential to

reduce the buffer requirements, but are orthogonal to our work.

Control algorithms such as DCTCP [14], DCQCN [51] use mark-

ing schemes as feedback to adjust the sending rates. TIMELY [38]

uses RTT-gradient approach to rapidly react to congestion onset.

Even more advances algorithms use a variety of feedback signals
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e.g., HPCC [35] uses inflight bytes, Swift [34] uses delay and Pow-

erTCP [12] uses the power. Yet, end-host congestion control algo-

rithms cannot act on the first RTT packets, and are fundamentally

unable to orchestrate the buffer-sharing at all times.

6 CONCLUSION

In this paper, we demonstrate the fundamental inability of Buffer

Management and Active Queue Management schemes to address

the challenges that occur from sharing the on-chip buffer across

queues. Furthermore, we analytically show the limitations of the

state-of-the-art buffer sharing scheme. We present ABM, a novel

buffer-sharing scheme that offers isolation, bounded drain time, and

high burst tolerance. ABM is practical in that it only uses statistics

that are available to the MMU. We show that ABM outperforms

all other buffer management schemes in tail FCT while achieving

on-par throughput. Importantly, ABM improves the FCTs of ad-

vanced congestion control algorithms (i.e., TIMELY, DCTCP, and

PowerTCP) under bursty workloads.
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A ANALYSIS

In this section, we formally model and analyze a shared memory

switch architecture with ABM’s allocation scheme. The aim of our

analysis is to show ABM’s formal guarantees and its properties. We

refer the reader to §2 for the terminology and definitions regarding

ports, queues and priorities. Our analysis indeed generalizes both

ABM and DT. Substituting static 𝛼𝑝 values for 𝜔𝑖𝑝 (Definition 1)

gives the analysis of DT.

A.1 Model

For generality, we model a switch with an arbitrary but fixed num-

ber of ports and queues per port. In particular, each port has only

one queue per priority as defined in (§2). The switch in our model

has a shared memory architecture with 𝐵 buffer space. We denote

the instantaneous occupied buffer at time 𝑡 as 𝑄 (𝑡). Our analysis is
based on a fluid model where packet (bits) arrivals and departures

are assumed to be fluid and deterministic.

We denote by 𝛼𝑝 , the parameter used by ABM for each priority

in allocating the buffer. Each priority is associated with a separate

queue at each port. We denote port indices by 𝑖 and priority 𝑝 . P
is the set of priorities using the buffer. The number of congested

queues of a priority 𝑝 at time 𝑡 is denoted by 𝑛𝑝 (𝑡).

A.2 Formalizing ABM’s Allocation

As described in §3, the threshold of a queue at port 𝑖 and belonging

to a priority 𝑝 is calculated based on the alpha parameter 𝛼𝑝 , the

number of congested queues 𝑛𝑝 (𝑡), the normalized drain rate of

the queue indicated by 𝛾𝑖𝑝 (𝑡) and the remaining buffer 𝐵 − 𝑄 (𝑡).
Formally,

𝑇 𝑖𝑝 (𝑡) = 𝛼𝑝 · 𝛽𝑝 (𝑡) · 𝛾𝑖𝑝 (𝑡) · (𝐵 −𝑄 (𝑡)) (12)

where, 𝛽𝑝 (𝑡) = 1

𝑛𝑝 (𝑡 ) is the inverse of the total number of congested

queues of priority 𝑝 at time 𝑡 .

Definition 1 (Omega - Adaptive 𝛼 Parameter). For a queue belong-

ing to a priority 𝑝 , the product 𝛼𝑝 · 𝛽𝑝 (𝑡) · 𝛾𝑖𝑝 (𝑡) in ABM’s buffer

allocation scheme (Eq. 12) is defined as Omega denoted by 𝜔𝑖𝑝 (𝑡) and
is viewed as an adaptive alpha parameter.

𝜔𝑖𝑝 (𝑡) = 𝛼𝑝 · 𝛽𝑝 (𝑡) · 𝛾𝑖𝑝 (𝑡) (13)

Based on the above definition of𝜔 , in the following we derive an

upper bound on the sum of 𝜔 values for all the classes of a priority

𝑝 . Later in our analysis, we will see how the sum of 𝜔 values plays

a key role in ABM’s buffer allocation scheme. We will later use this

upper bound to derive several properties and formal guarantees

provided by ABM.

Lemma 1 (Property of Omega). The instantaneous sum of 𝜔𝑖𝑝 (𝑡)
over all the queues belonging to a priority 𝑝 ∈ P across all the ports

is upper bounded by 𝛼𝑝 . ∑︁
𝑖

𝜔𝑖𝑝 (𝑡) ≤ 𝛼𝑝 (14)

Proof. Using Definition 1 and observing that 𝛽𝑝 (𝑡) is the num-

ber of congested queues of a priority 𝑝 is the same across all the

queues of the same priority, we express the sum of𝜔𝑖𝑝 (𝑡) as follows:∑︁
𝑖

𝜔𝑖𝑝 (𝑡) =
∑︁
𝑖

𝛼𝑝 · 𝛽𝑝 (𝑡) · 𝛾𝑖𝑝 (𝑡) = 𝛼𝑝 · 𝛽𝑝 (𝑡) ·
∑︁
𝑖

𝛾𝑖𝑝 (𝑡)

Since 𝛾𝑖𝑝 (𝑡) is the normalized drain rate, 𝛾𝑖𝑝 (𝑡) is upper bounded
by 1. Finally, we substitute 𝛽𝑝 (𝑡) = 1

𝑛𝑝 (𝑡 ) . We reduce the sum

to an inequality as follows, where the last inequality holds since∑
𝑖 𝛾
𝑖
𝑝 (𝑡) ≤ 𝑛𝑝 (𝑡) i.e., the sum of the normalized drain rates is upper

bounded by the number of congested queues.

𝛼𝑐 · 𝛽𝑝 (𝑡) ·
∑︁
𝑖

𝛾𝑖𝑐 (𝑡) ≤ 𝛼𝑝 · 1

𝑛𝑝 (𝑡)
· 𝑛𝑝 (𝑡) ≤ 𝛼𝑝

□

A.3 Steady-State Analysis

We now analyze the steady-state behavior of ABM’s buffer allo-

cation scheme. Specifically, we say steady-state when the load-

conditions remain stable and a steady buffer occupancy is achieved.

Under steady-state, the queue lengths remain stable at less than or

equal to their corresponding thresholds. To stress on the worst-case

scenarios, we assume that any occupied queue is at the respective

threshold. In our steady-state analysis, for simplicity of presenta-

tion, we drop the time variable in all the equations.

Under steady-state, we are interested in determining the overall

buffer allocation and occupancy denoted by𝑄 , the remaining buffer

space 𝐵 −𝑄 and ABM’s threshold calculation per queue 𝑇 𝑖𝑐 .
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Lemma 2 (Steady-state allocation). Under steady-state, given a set

of congested queues, the overall buffer occupancy𝑄 is given by Eq. 15,

the remaining buffer 𝐵 −𝑄 is given by Eq. 16 and the threshold per

congested queue calculated by ABM is given by Eq. 17.

𝑄 =
𝐵

∑
𝑖

∑
𝑝 𝜔

𝑖
𝑝

1 + ∑
𝑖

∑
𝑝 𝜔

𝑖
𝑝

(15)

𝐵 −𝑄 =
𝐵

1 + ∑
𝑖

∑
𝑝 𝜔

𝑖
𝑝

(16)

𝑇 𝑖𝑝 =
𝐵 · 𝜔𝑖𝑝

1 + ∑
𝑖

∑
𝑝 𝜔

𝑖
𝑝

(17)

Proof. In the steady-state, from the assumption that the queue

lengths are equal to their thresholds, we derive the overall buffer oc-

cupancy by summation of queue lengths of all the congested queues.

Using Eq. 12 and Eq. 13 we express the total buffer occupancy 𝑄 as

follows and solve for 𝑄 leading to the last equality.

𝑄 =
∑︁
𝑖

∑︁
𝑝

𝜔𝑖𝑝 · (𝐵 −𝑄) =
𝐵

∑
𝑖

∑
𝑝 𝜔

𝑖
𝑝

1 + ∑
𝑖

∑
𝑝 𝜔

𝑖
𝑝

The remaining buffer space (Eq. 16) is then straight-forward by sub-

stituting 𝑄 . Finally, the threshold per queue 𝑇 𝑖𝑝 (Eq. 17) is obtained

by definition from ABM’s allocation scheme i.e., 𝑇 𝑖𝑝 = 𝛼𝑝 · 𝛽𝑝 (𝑡) ·
𝛾𝑖𝑝 (𝑡) · (𝐵 −𝑄) = 𝜔𝑖𝑝 · (𝐵 −𝑄).

□

In the following, we derive ABM’s formal guarantee on isolation

i.e., ABM offers minimum buffer space per priority based on the 𝛼

parameters.

Theorem 1 (Isolation - Minimum guarantee). The total amount of

buffer available for any priority 𝑝 is lower bounded by 𝐵𝑚𝑖𝑛𝑝 given by,

𝐵𝑚𝑖𝑛𝑝 ≥
𝐵 · 𝛼𝑝

1 +
∑︁
𝑝∈P

𝛼𝑝

Proof. The threshold𝑇 𝑖𝑝 for each queue of priority 𝑝 is given by

Equation 17. We sum across all ports and obtain the total allocated

buffer as follows,∑︁
𝑖

𝑇 𝑖𝑝 =
𝐵 · ∑𝑖 𝜔𝑖𝑝

1 + ∑
𝑖

∑
𝑝∈P 𝜔

𝑖
𝑝

≥
𝐵 · 𝛼𝑝

1 + ∑
𝑝∈P 𝛼𝑝

where the last inequality holds since

∑
𝑖

∑
𝑝 𝜔

𝑖
𝑝 ≤ ∑

𝑝 𝛼𝑝 from

Lemma 1. □

Theorem 2 (Isolation - Preventing monopoly). The total amount of

buffer available for any priority 𝑝 is upper bounded by 𝐵𝑚𝑎𝑥𝑝 given

by,

𝐵𝑚𝑎𝑥𝑝 ≤
𝐵 · 𝛼𝑝
1 + 𝛼𝑝

Proof. The proof is similar to Theorem 1. To obtain the upper

bound, we use the property that

∑
𝑖

∑
𝑝∈P 𝜔

𝑖
𝑝 ≥ 𝛼𝑝 , a case when

only the priority 𝑝 is using the buffer. □

Theorem 3 (Bounded drain time). The thresholds assigned by ABM

upper bounds the drain time Γ for any queue of priority 𝑝 given by,

Γ ≤
𝐵 · 𝛼𝑝

(1 + 𝛼𝑝 ) · 𝑏

Proof. Using Equation 17 from Lemma 2 and noting that the

drain time is occupied buffer divided by its drain rate (𝛾𝑖𝑝 · 𝑏), we
obtain the drain time Γ as follows for a queue at port 𝑖 and of

priority 𝑝 ,

Γ =
𝐵 · 𝛼𝑝 · 1

𝑛𝑝
· 𝛾𝑖𝑝

𝛾𝑖𝑝 · 𝑏 · (1 + ∑
𝑖

∑
𝑝 𝜔

𝑖
𝑝 )

≤
𝐵 · 𝛼𝑝

𝑏 · (1 + 𝛼𝑝 )

The last inequality holds since

∑
𝑖

∑
𝑝 𝜔

𝑖
𝑝 ≥ 𝛼𝑝 and

1

𝑛𝑝
≤ 1. □

A.4 Transient-State Analysis

In this section we analyze ABM’s transient-state properties. We

define transient-state as a state when the buffer is initially in the

steady-state and at time 𝑡 = 0 load conditions change, creating a

transient buffer state until the queue lengths stabilize. In particular,

we consider that at time 𝑡 = 0, a set of initially empty queues

have incoming traffic. As a result, the thresholds and queue lengths

undergo a transient state. Due to the appearance of new queues,𝜔𝑖𝑝
of some of the existing queues get affected due to the changes in 𝛽𝑝

(number of congested queues of a priority 𝑝) and 𝛾𝑖𝑝 (normalized

drain rate). In the following, we introduce and describe certain

notations specific to our transient-state analysis.

• The arrival rate of traffic at each new queue is denoted by 𝑟

and the arrival process is fluid and deterministic. Note that

we consider each port has a bandwidth of unit 1 and 𝑟 is in

the same unit.

• 𝐺𝑒 denotes the set of queues whose 𝜔𝑖𝑝 gets affected.
5

• 𝐺𝑛𝑒 denotes the set of queues whose𝜔𝑖𝑝 does not get affected.
• For simplicity we denote the queue at port 𝑖 and of priority

𝑝 with ordered pairs as (𝑖, 𝑝).
• The set of ordered pairs of existing queues is denoted as 𝑆𝑜𝑙𝑑 .

Observe that 𝑆𝑜𝑙𝑑 = 𝐺𝑛𝑒 ∪𝐺𝑒 .
• The ordered pairs of new queues that trigger transient state

are denoted as 𝑆𝑛𝑒𝑤 .

• Dot over a variable denotes its rate of change i.e., derivative

with respect to time. For example ¤𝑥 denotes
𝑑𝑥
𝑑𝑡

.

A.5 Preliminaries

While the transient-state begins at 𝑡 = 0, the initial buffer occupancy

is based on the prior steady-state (Lemma 2) as expressed in Eq. 18

and Eq. 19.

𝑇 𝑖𝑝 (0) =
𝜔𝑖𝑝 · 𝐵

1 +
∑︁
𝑆𝑜𝑙𝑑

𝜔𝑖𝑝

(18)

𝑄𝑖𝑝 (0) =


𝜔𝑖
𝑝 ·𝐵

1+
∑︁
𝑆𝑜𝑙𝑑

𝜔𝑖𝑝

, for ∀(𝑖, 𝑝) ∈ 𝑆𝑜𝑙𝑑

0 , for ∀(𝑖, 𝑝) ∈ 𝑆𝑛𝑒𝑤

(19)

5
Note that the 𝜔𝑖

𝑝 values of𝐺𝑒 only reduce. (It is not possible that 𝜔𝑖
𝑝 increases due

the appearance of a new queue)
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At 𝑡 = 0
+
, 𝜔𝑖𝑝 of 𝐺𝑒 change and remain same for the entire dura-

tion of transient state. At the same time, the 𝜔𝑖𝑝 of 𝐺𝑛𝑒 remains

unchanged. Hence, such changes are assumed to occur at time 𝑡 = 0

and the time variable is dropped for 𝜔𝑖𝑝 in the equations.

From Eq. 12, we express the rate of change of thresholds and

queue lengths as follows,

¤𝑇 𝑖𝑝 (𝑡) = −𝜔𝑖𝑝 ·
∑︁

𝑆𝑜𝑙𝑑∪𝑆𝑛𝑒𝑤

¤𝑄𝑖𝑝 (𝑡) (20)

¤𝑄𝑖𝑝 (𝑡) =
{
𝑚𝑎𝑥 [−𝛾𝑖𝑝 ,𝑚𝑖𝑛[ ¤𝑇𝑝 (𝑡), 𝑟 − 𝛾𝑖𝑝 ]] ∀(𝑖, 𝑝) ∈ 𝑆𝑜𝑙𝑑
𝑟 − 𝛾𝑖𝑝 ∀(𝑖, 𝑝) ∈ 𝑆𝑛𝑒𝑤

(21)

It can be proved by contradiction that

𝑑𝑇 𝑖
𝑝 (𝑡 )
𝑑𝑡

≤ 0 < 𝑟 − 𝛾𝑖𝑝 . Solving
Eq. 20 and Eq. 21 for 𝑡 = 0+,

¤𝑇 𝑖𝑝 (𝑡) = −𝜔𝑖𝑝 · ©­«
∑︁
𝑆𝑜𝑙𝑑

𝑚𝑎𝑥 [−𝛾𝑖𝑝 ,
𝑑𝑇𝑝 (𝑡)
𝑑𝑡 (𝑡=0+)

]ª®¬ − 𝜔𝑖𝑐 ·
∑︁
𝑆𝑛𝑒𝑤

(𝑟 − 𝛾𝑖𝑝 )

(22)

Recall that 𝑆𝑜𝑙𝑑 = 𝐺𝑒 ∪𝐺𝑛𝑒 . All the queues belonging to 𝐺𝑒 , will

experience a change in their 𝜔𝑖𝑝 values at 𝑡 = 0
+
resulting in their

queue-lengths greater than threshold. As a result, the rate of change

of their queue lengths is their corresponding drain rates. Eq. 22 can

then be expanded as,

¤𝑇 𝑖𝑝 (𝑡) = −𝜔𝑖𝑝 · ©­«
∑︁
𝐺𝑒

−𝛾𝑖𝑝 +
∑︁
𝐺𝑛𝑒

𝑚𝑎𝑥 [−𝛾𝑖𝑝 , ¤𝑇 𝑖𝑝 (𝑡)] +
∑︁
𝑆𝑛𝑒𝑤

(𝑟 − 𝛾𝑖𝑝 )
ª®¬
(23)

From Eq. 23, arrival rate of traffic in new queues i.e 𝑟 can be ex-

pressed as,

𝑟 =

∑︁
𝑆𝑛𝑒𝑤∪𝐺𝑒

𝛾𝑖𝑝∑︁
𝑆𝑛𝑒𝑤

1

−

¤𝑇 𝑖𝑝 (𝑡) + 𝜔𝑖𝑝 · ©­«
∑︁
𝐺𝑛𝑒

𝑚𝑎𝑥 [−𝛾𝑖𝑝 , ¤𝑇𝑝 (𝑡)]
ª®¬

𝜔𝑖𝑝 ·
∑︁
𝑆𝑛𝑒𝑤

1

(24)

By applying summation over 𝐺𝑛𝑒 in Eq. 23 (will be seen later how

this will be useful), r can be expressed as,

𝑟 =

∑︁
𝑆𝑛𝑒𝑤∪𝐺𝑒

𝛾𝑖𝑝∑︁
𝑆𝑛𝑒𝑤

1

−

∑︁
𝐺𝑛𝑒

¤𝑇 𝑖𝑝 (𝑡) +
©­«
∑︁
𝐺𝑛𝑒

𝑚𝑎𝑥 [−𝛾𝑖𝑝 , ¤𝑇𝑝 (𝑡)]
ª®¬ ·

∑︁
𝐺𝑛𝑒

𝜔𝑖𝑝

(
∑︁
𝐺𝑛𝑒

𝜔𝑖𝑝 ) · (
∑︁
𝑆𝑛𝑒𝑤

1)

(25)

Now it can be observed that the value of 𝑟 influences all ∀(𝑖, 𝑝) ∈
𝐺𝑛𝑒 , ¤𝑇 𝑖𝑝 (𝑡). In other words, the value of 𝑟 influences the total i.e∑
𝐺𝑛𝑒

¤𝑇 𝑖𝑝 (𝑡) which is the aggregate rate at which thresholds drop

for the non-affected set of queues i.e 𝐺𝑛𝑒 .

A.6 Case-1: Aggregate drain rate tracks the

threshold changes

In this case, the arrival rate 𝑟 is such that, the queues belonging

to 𝐺𝑛𝑒 are able to reduce in length exactly tracking the changes in

their thresholds. As a result, their queue-lengths remain equal to

the threshold throughout the transient state i.e,(
𝑑𝑇 𝑖𝑝 (𝑡)
𝑑𝑡

)
(𝑡=0+)

≥ −𝛾𝑖𝑝 (26)

leading to, ∑︁
∀(𝑖,𝑝) ∈𝐺𝑛𝑒

(
𝑑𝑇 𝑖𝑝 (𝑡)
𝑑𝑡

)
(𝑡=0+)

≥
∑︁

∀(𝑖,𝑝) ∈𝐺𝑛𝑒

−𝛾𝑖𝑝 (27)

Using Eq. 26 and Eq. 27 in Eq. 25, the condition on 𝑟 can be

expressed as,

𝑟 ≤

∑︁
𝑆𝑛𝑒𝑤∪𝐺𝑒

𝛾𝑖𝑝∑︁
𝑆𝑛𝑒𝑤

1

+ ©­«
∑︁
𝐺𝑛𝑒

𝛾𝑖𝑝
ª®¬ ·

1 +
∑︁
𝐺𝑛𝑒

𝜔𝑖𝑝

(
∑︁
𝐺𝑛𝑒

𝜔𝑖𝑝 ) · (
∑︁
𝑆𝑛𝑒𝑤

1)
(28)

For such an arrival rate of traffic at new queues, in the following

theorem we state the time up to which the new queues experience

zero transient drops.

Theorem 4. For an arrival rate 𝑟 within Case-1 (Eq. 28) at a set of

new queues 𝑆𝑛𝑒𝑤 , given an initial state of the buffer at time 𝑡 = 0, a

new queue (𝑖, 𝑝) ∈ 𝑆𝑛𝑒𝑤 experiences zero transient drops up to a time

𝑡1𝑖𝑝 given by Eq. 29

𝑡1𝑖𝑝 =

𝜔𝑖𝑝 · 𝐵 · (1 +
∑︁
𝐺𝑛𝑒

𝜔𝑖𝑝 )

𝑋1 · 𝑌1

𝑋1 = (1 +
∑︁
𝑆𝑜𝑙𝑑

𝜔𝑖𝑝 )

𝑌1 = ((𝑟 − 𝛾𝑖𝑝 ) · (1 +
∑︁
𝐺𝑛𝑒

𝜔𝑖𝑝 ) + 𝜔𝑖𝑝 · (
∑︁
𝐺𝑒

−𝛾𝑖𝑝 +
∑︁
𝑆𝑛𝑒𝑤

(𝑟 − 𝛾𝑖𝑝 )))

(29)

Proof. Substituting Eq.26 and Eq.27 in Eq. 23 and using the

result in Eq. 21 gives,

¤𝑇𝑝 (𝑡) =

−𝜔𝑖𝑝 · ©­«
∑︁
𝐺𝑒

−𝛾𝑖𝑝 +
∑︁
𝑆𝑛𝑒𝑤

(𝑟 − 𝛾𝑖𝑝 )
ª®¬

1 +
∑︁
𝐺𝑛𝑒

𝜔𝑖𝑝

(30)

¤𝑄𝑖𝑝 (𝑡) =



−𝜔𝑖𝑝 · ©­«
∑︁
𝐺𝑒

−𝛾𝑖𝑝 +
∑︁
𝑆𝑛𝑒𝑤

(𝑟 − 𝛾𝑖𝑝 )
ª®¬

1+
∑︁
𝐺𝑛𝑒

𝜔𝑖𝑝

,∀(𝑖, 𝑝) ∈ 𝐺𝑛𝑒

−𝛾𝑖𝑝 ,∀(𝑖, 𝑝) ∈ 𝐺𝑒
𝑟 − 𝛾𝑖𝑝 ,∀(𝑖, 𝑝) ∈ 𝑆𝑛𝑒𝑤

(31)
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These differential equations will be valid as long as 𝑄𝑖𝑝 (𝑡) = 𝑇 𝑖𝑝 (𝑡)
for ∀(𝑖, 𝑝) ∈ 𝐺𝑛𝑒 ,𝑄𝑖𝑝 (𝑡) ≥ 𝑇 𝑖𝑝 (𝑡) for ∀(𝑖, 𝑝) ∈ 𝐺𝑒 and𝑄𝑖𝑝 (𝑡) < 𝑇 𝑖𝑝 (𝑡)
for newly created queues i.e∀(𝑖, 𝑝) ∈ 𝑆𝑛𝑒𝑤 . Solving these equations,
using the initial conditions, Eq. 18 and Eq. 19 leads to,

𝑇 𝑖𝑝 (𝑡) =
𝜔𝑖𝑝 · 𝐵

1 +
∑︁
𝑆𝑜𝑙𝑑

𝜔𝑖𝑝

−

𝜔𝑖𝑝 · ©­«
∑︁
𝐺𝑒

−𝛾𝑖𝑝 +
∑︁
𝑆𝑛𝑒𝑤

(𝑟 − 𝛾𝑖𝑝 )
ª®¬ · 𝑡

1 +
∑︁
𝐺𝑛𝑒

𝜔𝑖𝑝

(32)

𝑄𝑖𝑝 (𝑡) =

𝜔𝑖
𝑝 ·𝐵

1+∑𝑆𝑜𝑙𝑑
𝜔𝑖
𝑝

− 𝜔𝑖
𝑝 ·𝑡 · (

∑
𝐺𝑒

−𝛾𝑖𝑝+
∑

𝑆𝑛𝑒𝑤
(𝑟−𝛾𝑖𝑝 ))

1+∑𝐺𝑛𝑒
𝜔𝑖
𝑝

∀(𝑖, 𝑝) ∈ 𝐺𝑛𝑒
𝜔𝑖𝑝 · 𝐵

1+
∑︁

∀(𝑖,𝑝) ∈𝑆𝑜𝑙𝑑
𝜔𝑖𝑝

− 𝛾𝑖𝑝 · 𝑡 ∀(𝑖, 𝑝) ∈ 𝐺𝑒

(𝑟 − 𝛾𝑖𝑝 ) · 𝑡 ∀(𝑖, 𝑝) ∈ 𝑆𝑛𝑒𝑤
(33)

As we can observe from Eq. 32 and Eq. 33, the new queues will

grow in length without dropping packets up to a time 𝑡1𝑖𝑝 when the

threshold equals the queue length. The transient state continues

after 𝑡1𝑖𝑝 until all the queues achieve a steady state occupancy. By

equating Eq. 32 and Eq. 33 for the case of ∀(𝑖, 𝑝) ∈ 𝑆𝑛𝑒𝑤 , we obtain
𝑡1𝑖𝑝 as in Eq. 29. □

In order to offer guarantees, it is absolutely required that either 𝛾𝑖𝑝
is constant. The reason being that there is a dependency between

𝛾𝑖𝑝 and the number of queues of the same port using buffer, a de-

pendency that is fundamentally impossible to evade unless 𝛾𝑖𝑝 is

constant. As a result of this assumption, 𝐺𝑒 = 𝜙 and 𝑆𝑜𝑙𝑑 = 𝐺𝑛𝑒
and Eq. 29 reduces to,

𝑡1𝑖𝑝 =
𝛼𝑝 · 1

𝑛𝑝
· 𝛾𝑖𝑝 · 𝐵

(𝑟 − 𝛾𝑖𝑝 ) · (1 +
∑︁
𝑆𝑜𝑙𝑑

𝜔𝑖𝑝 + 𝜔𝑖𝑝 ·
∑︁
𝑆𝑛𝑒𝑤

1)
(34)

As an example, we can further simplify for a case with one high

priority and one low priority using the buffer where load variations

occur for High Priority whose 𝛼 value is 𝛼𝐻 and the existing Low

Priority in the queues have 𝛼 value of 𝛼𝐿 . We can then guarantee

that for an arrival rate 𝑟 that satisfies Case-1 will experience zero

drops i.e., no transient drops if its duration 𝑡 satisfies the following

condition:

𝑡1𝑖𝑝 =
𝛼𝐻 · 1

𝑛𝑝
· 𝛾𝑖𝑝 · 𝐵

(𝑟 − 𝛾𝑖𝑝 ) ·
©­«1 + 𝛼𝐿 + 𝛼𝐻 · 1

𝑛𝑝
· 𝛾𝑖𝑝 ·

∑︁
∀(𝑖,𝑝) ∈𝑆𝑛𝑒𝑤

1

ª®¬
(35)

Observe that Eq. 35 is independent of the number of queues of Low

Priority and hence it can be said that High Priority isolation can be

guaranteed.

A.7 Case-2: Aggregate drain rate is slower than

the changes in thresholds

In this case, the arrival rate 𝑟 is such that, the queues belonging to

𝐺𝑛𝑒 are unable to reduce in length in accordance with the changes

in their thresholds. As a result, their queue-lengths remain greater

than the threshold throughout the transient state i.e,(
𝑑𝑇 𝑖𝑝 (𝑡)
𝑑𝑡

)
(𝑡=0+)

< −𝛾𝑖𝑝 (36)

leading to, ∑︁
∀(𝑖,𝑝) ∈𝐺𝑛𝑒

(
𝑑𝑇 𝑖𝑝 (𝑡)
𝑑𝑡

)
(𝑡=0+)

<
∑︁

∀(𝑖,𝑝) ∈𝐺𝑛𝑒

−𝛾𝑖𝑝 (37)

Using Eq. 36 and Eq. 37 in Eq. 25, the condition on 𝑟 can be ex-

pressed as,

𝑟 >

∑︁
𝑆𝑛𝑒𝑤∪𝐺𝑒

𝛾𝑖𝑝∑︁
𝑆𝑛𝑒𝑤

1

+ ©­«
∑︁
𝐺𝑛𝑒

𝛾𝑖𝑝
ª®¬ ·

1 +
∑︁
𝐺𝑛𝑒

𝜔𝑖𝑝

(
∑︁
𝐺𝑛𝑒

𝜔𝑖𝑝 ) · (
∑︁
𝑆𝑛𝑒𝑤

1)
(38)

Theorem 5. For an arrival rate 𝑟 within Case-2 (Eq. 38) at a set of

new queues 𝑆𝑛𝑒𝑤 , given an initial state of the buffer at time 𝑡 = 0, a

new queue (𝑖, 𝑝) ∈ 𝑆𝑛𝑒𝑤 experiences zero transient drops up to a time

𝑡1𝑖𝑝 given by Eq. 39.

𝑡1𝑖𝑝 =
𝜔𝑖𝑝 · 𝐵
𝑋2 · 𝑌2

𝑋2 = 1 +
∑︁

∀(𝑖,𝑝) ∈𝑆𝑜𝑙𝑑
𝜔𝑖𝑝

𝑌2 = (𝑟 − 𝛾𝑖𝑝 ) + 𝜔𝑖𝑝 · ©­«
∑︁

∀(𝑖,𝑝) ∈𝑆𝑜𝑙𝑑
−𝛾𝑖𝑝 +

∑︁
∀(𝑖,𝑝) ∈𝑆𝑛𝑒𝑤

(𝑟 − 𝛾𝑖𝑝 )
ª®¬ (39)

We omit the proof of Theorem 5. The proof is similar to Theorem 4.

As an example, with one high priority (𝛼𝐻 ) queue experiencing

burst and low priority (𝛼𝐿) queues occupying buffer, from Lemma 1

on the property of𝜔 and observing that

∑
∀(𝑖,𝑝) ∈𝑆𝑜𝑙𝑑 −𝛾𝑖𝑝 is the Total

drain rate of the congested ports of 𝑆𝑜𝑙𝑑 , we derive the following

relation where 𝑛 is the number of congested ports belonging to

𝑆𝑜𝑙𝑑 and 𝐵𝑊 is the bandwidth of each port assuming ports are of

same bandwidth (the assumption is not critical to our analysis, it

can easily generalized).

𝑡1𝑖𝑝 =

𝛼𝐻
(1+𝛼𝐿) ·

1

𝑛𝑝
· 𝛾𝑖𝑝 · 𝐵

©­«(𝑟 − 𝛾𝑖𝑝 ) + 𝛼𝐻𝑛𝑝 · 𝛾𝑖𝑝 · ©­«−𝑛 · 𝐵𝑊 +
∑︁
𝑆𝑛𝑒𝑤

(𝑟 − 𝛾𝑖𝑝 )
ª®¬ª®¬

(40)

where 𝑛 is the number of congested ports belonging to 𝑆𝑜𝑙𝑑 i.e.,

𝑛 · 𝐵𝑊 =
∑︁

∀(𝑖,𝑝) ∈𝑆𝑜𝑙𝑑
−𝛾𝑖𝑝 (41)
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Notice that the presence of 𝑛 in Eq. 40, is a dependency on the

number of congested ports of Low Priority. However, 𝑛 only creates

a positive effect on 𝑡1𝑖𝑝 i.e., greater the 𝑛 greater is 𝑡1𝑖𝑝 . On the other

hand, Eq. 40 is independent of negative dependencies as was in

the traditional algorithm DT where a higher number of congested

queues lead to lower 𝑡1𝑖𝑝 leading to faster transient drops.

A.8 Burst Tolerance

Building on the analysis in the previous sections, in this section,

we discuss how the steady-state and transient-state behavior of

ABM relates to burst tolerance. We denote the burst tolerance for a

queue of priority 𝑝 at port 𝑖 as 𝐵𝑢𝑟𝑠𝑡𝑖𝑝 and is defined as follows:

𝐵𝑢𝑟𝑠𝑡𝑖𝑝 = 𝑟 · 𝑡1𝑖𝑝 (42)

where 𝑟 is the arrival rate of traffic and 𝑡1𝑖𝑝 is the amount of time

starting from 𝑡 = 0 until the queue experiences zero drops.

Based on our analysis of transient state in Appendix A.4, we

generate analytical graphs as shown in Figure 5 (§2.3). For each

arrival rate 𝑟 , we first distinguish whether 𝑟 falls under case-1

(Appendix A.6) or case-2 (Appendix A.7). We then calculate the

corresponding time 𝑡1𝑖𝑝 until the burst experiences zero drops. We

then multiply 𝑟 and 𝑡1𝑖𝑝 to obtain the burst tolerance.
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