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ABSTRACT
Learned index structures have been shown to achieve favorable
lookup performance and space consumption compared to their
traditional counterparts such as B-trees. However, most learned
index studies have focused on the primary indexing setting, where
the base data is sorted. In this work, we investigate whether learned
indexes sustain their advantage in the secondary indexing setting.
We introduce Learned Secondary Index (LSI), a first attempt to use
learned indexes for indexing unsorted data. LSI works by building
a learned index over a permutation vector, which allows binary
search to performed on the unsorted base data using random access.
We additionally augment LSI with a fingerprint vector to accelerate
equality lookups. We show that LSI achieves comparable lookup
performance to state-of-the-art secondary indexes while being up
to 6× more space efficient.
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1 INTRODUCTION
Unlike traditional index structures such as B-trees, learned in-
dexes [? ] build a model over the underlying data to predict the
position of a lookup key in a sorted array. Learned indexes effec-
tively compress the cumulative distribution function (CDF) of the
data. When the underlying data has a learnable pattern, the result-
ing learned index can be both faster and smaller than its traditional
counterpart. Learned index structures can be built in a variety of
ways (e.g., top down [? ? ], bottom up [? ? ]), but all learned index
structures provide (1) a mapping from keys to predicted positions,
and (2) the maximum error that prediction can incur. Exact lookups
can thus be performed via binary search on the underlying data,
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restricted to the area around the predicted position. While the ini-
tial proposal [? ] considered neural networks as a building block,
current proposals use simple functions which are fast to build and
evaluate [? ]. Extensive studies including the Search on Sorted Data
benchmark [? ? ] and an independent analysis by Maltry and Dit-
trich [? ] have shown that learned indexes are competitive with
their traditional counterparts [? ? ] in at least one specific scenario:
equality and range lookups of integer keys in a sorted, in-memory
array.

Since their initial conception, learned indexes have been ex-
tended to support updates [? ? ? ], strings [? ], spatial data [? ? ],
and disk-based systems [? ? ]. However, all of these proposals use
learned indexes in a “clustered index” setting: where the underly-
ing data is already sorted. In other words, existing proposals are
primary index structures. The case when the underlying data is not
sorted is also important (and arguably more common, as an instance
of a table can only be sorted by a single key). Unfortunately, this
case has received very little attention. As Ferragina and Vinciguerra
point out [? ], the most obvious way to use learned indexes in a
secondary index scenario is to store sorted (key, pointer) pairs,
very much like what is being stored in the leaf nodes of a B+-tree.
These sorted pairs are the dominant size component of a traditional
index, so the space overhead between a traditional and learned
secondary index would be roughly similar. This raises the question
whether the superior lookup efficiency and space savings of learned
indexes prevail in the secondary indexing case.

In this paper, we introduce Learned Secondary Index (LSI)1. LSI
is based on PLEX [? ], which is a bottom-up learned index combin-
ing RadixSpline [? ] and Hist-Tree [? ]. We selected PLEX for its
simplicity, since PLEX uses only one hyperparameter (the maxi-
mum prediction error). LSI addresses the following problem: given
an unsorted, in-memory array of integer keys, find the smallest
key that is greater than or equal to the lookup key (lower-bound
lookup). Our key insight is that we do not need to explicitly store
the key array (like in B+-tree leaf nodes) – instead, we store a per-
mutation vector that stores a mapping between the key’s position in
a sorted order and the unsorted position of each key. Using PLEX’s
prediction, we index into this permutation vector and perform a bi-
nary search on the underlying (unsorted) data array using random
access. For equality lookups, we provide an additional optimization:
since the learned index is imperfect (and thus provides a range of

1https://github.com/learnedsystems/LearnedSecondaryIndex
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Figure 1: Learned Secondary Index and its lookup procedure.
The local search uses the permutation vector to locate cor-
responding entries in the base data. The fingerprint vector
prunes unnecessary accesses.

values in the permutation vector instead of the exact value), mul-
tiple entries of the underlying unsorted data need to be checked.
To reduce these “false positives,” LSI additionally stores hash fin-
gerprints (typically a few bits) for each entry in the permutation
vector. These fingerprints introduce an interesting trade off: If we
want to answer a search using fingerprint bits, we need to resort to
a linear scan over the predicted (error-bounded) range, while we
could use binary search otherwise. And, obviously, fingerprint bits
only help with equality lookups (where the lookup key is part of
the data) and do not accelerate lower-bound lookups in general.

We show that LSI can compete with established secondary in-
dexes such as ART [? ] in terms of lookup performance while
consuming up to 6× less space.
Related Work. There is limited work on using learning for sec-
ondary indexing. HERMIT [? ] learns a mapping between a primary
and correlated secondary columns using linear functions. That
way it can reuse a primary index for indexing secondary columns.
Cortex [? ] follows a similar approach but can also capture more
complex correlations.

2 LEARNED SECONDARY INDEX
LSI consists of three parts: a permutation vector, a learned index,
and a fingerprint vector, which we will describe in the following
(see Figure ??).
Permutation Vector. The permutation vector is a compressed
representation of the sorted order of the underlying unsorted base
data d . Specifically, the permutation vector p is set so that every
entryp[i] contains the index intod corresponding to the ith smallest
key. In other words, if one wished to access the 6th smallest key, one
would access d[p[6]]. The permutation vector allows us to build
a learned index over the sorted keys, and then map predictions
from that learned index into the underlying unsorted base data. We
bitpack these permutation vectors, allowing each entry to be stored
using approximately loд2n bits, making the size of the permutation
vector O(n logn). Additional techniques, like Lehmer codes [? ],
could be used to further compress this vector, at the cost of higher
decompression time.

Learned Index. The learned (or approximate) index maps a lookup
key to a bounded search range. One could think of the inner nodes
of a B+-tree as such an approximate index. A lookup in a B+-tree’s
inner node structure will identify a leaf node, which depending on
the fanout contains k entries. In other words, a lookup will bound
the last-level search to k entries. In our implementation, we use the
learned index PLEX [? ], selected for its simplicity. PLEX builds a
spline model over the cumulative distribution function (CDF) of
the data and bounds the of the last-level search to a user-defined
range (defined by the model’s maximum error). Note that LSI does
not store an explicit representation of the sorted key array. This is
in contrast to a B+-tree, which stores actual keys in its leaf nodes.
Instead, LSI uses the permutation vector to map PLEX’s predictions
into the underlying data. While this approach can save significant
space, the downside is that LSI produces false positives, since PLEX
only produces approximate ranges. We use the permutation vector
to perform binary search within the approximate range. Note that
the cost of this binary search is higher than for sorted data, as all
memory accesses to the unsorted base data are likely out of cache.
Fingerprint Vector. For equality lookups, the approximate range
returned by the learned index needs to be entirely searched. As
a result, many non-relevant keys may be scanned. To mitigate
this, we create a fingerprint vector, which stores fixed-sized hash
fingerprints (e.g., 8 bits) for each key. We use the Murmur3 hash
function to generate hash values and extract the first x bits as hash
fingerprints. When performing an equality lookup, we first ensure
that the fingerprint of the lookup keymatches the fingerprint stored
in the fingerprint vector – if it does, we then access the permutation
vector to get the index into the underlying data, and then access
the underlying data. However, if the fingerprints do not match, we
skip accessing both the permutation vector and the underlying data,
potentially saving cache misses.

2.1 Building LSI
Building LSI involves multiple steps. First, we create a sorted copy
of the base data. Then we build a cumulative distribution function
(CDF) on the sorted data, which maps each key to its position in the
sorted array. Note that the data may contain duplicates, which will
result in a “steeper” slope in the CDF that can in turn be more diffi-
cult to approximate. An alternative would be to remove duplicates
upfront and maintain a rank structure to map from the duplicate-
free representation to the base data. However, we found that to
not be worthwhile, both in terms of space and lookup performance.
Once we have created the CDF, we build an error-bounded learned
index (PLEX) over it. Next, we create a bit-packed permutation
vector that maps from the sorted data (over which we have built the
index) to the unsorted base data. Finally, we build an array contain-
ing fingerprints. The sorted copy of the data is then discarded, as it
is no longer needed. Overall, LSI has two parameters, the maximum
error of its learned index and the number of fingerprint bits.

2.2 Lookup Procedure
Lookups proceed as follows (see Figure ??). First, we query the
learned index model with the lookup key which returns a range
that is guaranteed to contain the lookup key in a sorted version
of the array. Next, we perform a local search within the search
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Figure 2: Build time in seconds. The text annotations denote
the error bounds.

range. If it is an equality lookup, we perform a linear search on the
fingerprint vector and, if a fingerprint matches, perform a random
access to the base data using the permutation vector. Once we
have found a matching key in the base data, we keep scanning
the fingerprint vector for matching fingerprints (as there may be
duplicates in the base data). However, after having found a first
qualifying key in the base data, we can stop scanning the fingerprint
vector once we found a non-matching fingerprint. If the lookup is
a lower-bound lookup, we cannot use the fingerprint vector and
use binary search within the search range.

3 EVALUATION
We evaluate Learned Secondary Index (LSI) using a variation of the
SOSD benchmark [? ? ] on a c5.9xlarge AWSmachine with 36 vC-
PUs and 72GiB of RAM. We perform single-threaded lower-bound
and equality lookups on four real-world datasets from SOSD. To pre-
vent out-of-order execution, we use a memory barrier in between
individual lookups. Each dataset consists of 200M 64-bit unsigned
integer keys: amzn (book popularity data), face (randomly sampled
Facebook user IDs), osm (cell IDs from Open Street Map), and wiki
(timestamps of edits from Wikipedia). We generate random 8-byte
payloads for each key. We compare LSI with several baselines: the
STX B-Tree (BTree) [? ], the Adaptive Radix Tree (ART) [? ], and a
robin-hood hash table (RobinHash) [? ].
Build Times.While BTree and ART can index unsorted keys out of
the box, LSI’s learned index (PLEX) needs a sorted copy of the data
to build a CDF and train its model on the CDF. However, inserting
keys in random order into the BTree is about 8× slower than first
sorting the keys and then using its bulk loading functionality. We
hence bulk load the BTree, which also yields denser nodes. Likewise,
ART achieves a speedup of almost 2×when inserting keys in sorted
order, despite not having a separate bulk loading interface. Figure ??
shows the total build times, which includes the time for sorting the
data (except for RobinHash where sorting does not have an effect).
BTree achieves the lowest build times, followed by RobinHash and
LSI with an error bound of 8. As one would expect, decreasing the
error bound increases the build time since the learned index model
requires more spline points to satisfy the error bound. ART does
not offer bulk loading functionality and has the highest build times,
except for amzn where RobinHash requires the most time to build.
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Figure 3: Lower-bound lookups using non-existing keys.
The text annotations denote the error bounds.

Lower-Bound Lookups.We first study the performance of lower-
bound lookups, i.e., returning the value of the first key that is not
less than the lookup key. We remove a random subset of keys (10%)
from the dataset and use them as lookup keys. For all datasets, ex-
cept wikiwhich contains duplicates, lookups will be with keys that
do not exist in the data. Hence, we cannot use fingerprint hashes
and also cannot compare against hash tables. Figure ?? shows the
results. LSI achieves the best trade off between size and lookup
latency. It matches ART’s lookup latency while consuming up to
6× less space. Note that both BTree and ART support updates while
LSI does not. Also, compressing the leaf layer of BTree in a similar
fashion (using bit-packed TIDs instead of 8-byte payloads) would
yield space savings but would not necessarily improve performance.
TIDs in ART cannot be compressed as easily as they are inlined
into 8-byte child pointers.
Equality Lookups. We now look at the special case of equality
lookups. In this experiment, we enable hash fingerprints (8 bits)
in LSI and also compare against RobinHash. Figure ?? shows the
results on the amzn dataset. RobinHash achieves a latency of around
440 ns per lookup which is faster than LSI’s 660 ns but also con-
sumes 4× the amount of space. Using hash fingerprint bits requires
LSI to perform a linear scan through the search range. We now
perform a micro experiment to study the trade off between us-
ing fingerprints (with linear search) and binary search. We train
LSI with four different error (4, 16, 64, and 256) and six different
fingerprint configurations (0, 1, 2, 4, 8, and 16 bits). If there are fin-
gerprint bits, we use linear search and use binary search otherwise.
As shown in Figure ??, the variants using 4 and 16 fingerprint bits
are faster than binary search for certain error configurations.
Space Breakdown. Table ?? shows the space breakdown of LSI
with errors of 4 (LSI4) and 8 (LSI8) compared to ART, BTree, and
RobinHash for the amzn dataset. LSI spends 64% and 80% of its
space on the permutation vector with an error bound of 4 and 8,
respectively. This raises the questions whether we can compress
the permutation vector.
Compressing thePermutationVector.The information-theoretic
lower bound for storing a permutation of n elements is O(loд2(n!))
bits. Compared to our current bit-packed representation which re-
quires O(n ∗ loд2(n)) bits, this saves at most 1.44 bits per key (see
Figure ??). Using a BeneÅą network [? ], we can get arbitrarily close
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Table 1: Space breakdown of LSI for the amzn dataset.

Index Overall Size (MiB) Model (MiB) Permutation (MiB)

LSI4 943 342 601
LSI8 754 153 601
ART 4,343 - -
BTree 2,923 - -
RobinHash 8,192 - -

to the information-theoretic lower bound, however, we would sac-
rifice lookup time due to the compressed representation. An access
to the compressed bitvector would cost O(loд2(n)) time instead of
the O(1) random access if we merely bitpack. Hence, in the best
case, we can reduce the size of the permutation vector in Table ??
from 601MiB to roughly 557MiB.
Using a Different Approximate Index. The approximate index
layer of LSI requires an index structure that given a lookup key re-
turns an error-bounded range. Besides other error-bounded learned
indexes such as PGM [? ], one could also use a Recursive Model
Index (RMI) [? ] and remember the maximum model error. Another
option is the recently proposed Compact Hist-Tree (CHT) [? ]. CHT
is a compact, read-only radix tree with a fixed fanout and also re-
turns an error-bounded range. Figure ?? shows the results when
replacing PLEX in LSI with CHT on the amzn dataset. In summary,
LSI achieves a better space-performance trade off when using PLEX
as learned index.
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4 CONCLUSIONS
We have introduced LSI, a new learned data structure that can
index unsorted data. LSI is a first step towards learned secondary
indexing. We have shown that our approach can compete with
state-of-the-art secondary indexes while being more space efficient.
In future work, we plan to extend LSI into multiple directions. First,
we want to explore indexing data blocks instead of individual tuples
which will lower the overhead of the permutation vector for low
and medium cardinality columns. Second, we plan to integrate
model error correction techniques [? ] to narrow the search range
and hence reduce the number of false positives. Finally, we want to
explore applications to disk-based systems.
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