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Hardness magnification reduces major complexity separations (such as EXP � NC1) to proving lower bounds
for some natural problemQ against weak circuit models. Several recent works [11, 13, 14, 40, 42, 43, 46] have
established results of this form. In the most intriguing cases, the required lower bound is known for problems
that appear to be significantly easier than Q , while Q itself is susceptible to lower bounds, but these are not
yet sufficient for magnification.

In this work, we provide more examples of this phenomenon and investigate the prospects of proving new
lower bounds using this approach. In particular, we consider the following essential questions associated with
the hardness magnification program:

— Does hardness magnification avoid the natural proofs barrier of Razborov and Rudich [51]?
— Can we adapt known lower-bound techniques to establish the desired lower bound for Q?

We establish that some instantiations of hardness magnification overcome the natural proofs barrier in the
following sense: slightly superlinear-size circuit lower bounds for certain versions of the minimum circuit-
size problem imply the non-existence of natural proofs. As the non-existence of natural proofs implies the
non-existence of efficient learning algorithms, we show that certain magnification theorems not only imply
strong worst-case circuit lower bounds but also rule out the existence of efficient learning algorithms.

Hardness magnification might sidestep natural proofs, but we identify a source of difficulty when trying
to adapt existing lower-bound techniques to prove strong lower bounds via magnification. This is captured
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by a locality barrier : existing magnification theorems unconditionally show that the problems Q considered
above admit highly efficient circuits extended with small fan-in oracle gates, while lower-bound techniques
against weak circuit models quite often easily extend to circuits containing such oracles. This explains why
direct adaptations of certain lower bounds are unlikely to yield strong complexity separations via hardness
magnification.
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1 INTRODUCTION

Proving circuit-size lower bounds for explicit Boolean functions is a central problem in Complex-
ity Theory. Unfortunately, it is also notoriously hard, and arguments ruling out a wide range of
approaches have been discovered. The most prominent of them is the natural proofs barrier of
Razborov and Rudich [51].
A candidate approach for overcoming this barrier was investigated recently by Oliveira and

Santhanam [46]. Hardness Magnification identifies situations where strong circuit lower bounds
for explicit Boolean functions (e.g., NP � P/poly) follow from much weaker (e.g., slightly super-
linear) lower bounds for specific natural problems. As discussed in Reference [46], in some cases
the lower bounds required for magnification are already known for explicit problems, but not yet
for the problem for which the magnification theorem holds. This approach to lower bounds has
attracted the interest of several researchers, and a number of recent works have proved magnifi-
cation results [11, 13, 14, 40, 42, 43] (see also References [3, 39, 41, 55] for related previous work).
We provide a concise review of existing results in Appendix A.1.

In this work, we are interested in understanding the prospects of proving new lower bounds
using hardness magnification, including potential barriers.

1.1 Hardness Magnification Frontiers

While hardness magnification is a broad phenomenon, its most promising instantiations seem to
occur in the setting of circuit classes such as NC1. The potential of hardness magnification stems
from establishing the following scenario.

HM Frontier: There is a natural problem Q and a computational model C such that:

1. (Magnification) Q � C implies NP � NC1 or a similar breakthrough.
2. (Evidence of Hardness) Q � C under a standard conjecture.
3. (Lower Bound against C) L � C, where L is a simple function like PARITY.
4. (Lower Bound for Q) Q � C−, where C− is slightly weaker than C.

A frontier of this form provides hope that the required lower bound in Item 1 is true (thanks
to Item 2), and that it might be within the reach of known techniques (thanks to Items 3 and 4,
which provide evidence that we can analyse the circuit model and the problem). Scenarios similar
to HM Frontier were identified already by Oliveira and Santhanam [46], but they did not obtain
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Item 4 (a non-trivial lower bound for the same problem that appears in the magnification theorem).
Subsequent works have addressed this issue and achieved HM frontiers (with Item 4). A striking
example, similar to HM frontier B presented below, appeared in Reference [43] (see also Reference
[11]). Despite the number of works in this area, we note that the HM frontier is achieved only by
some magnification theorems (Item 3 is often unknown; e.g., in the case of results in References
[3, 14]).
To make our subsequent discussion more concrete, we provide five examples of HM frontiers.

Some of these results are new or require an extension of previouswork, and the relevant statements
will be explained in more detail in Section 3. The list of frontiers is not meant to be exhaustive, but
we have tried to cover different computational models.

(A) HM Frontier for MKtP[nc , 2nc ] and AC0-XOR:

A1. If MKtP[nc , 2nc ] � AC0-XOR[N 1.01] for large c > 1, then EXP � NC1 (Section 3.1).
A2. MKtP[nc , 2nc ] � P/poly for large enough c under exponentially secure PRFs [51].

A3. Majority � AC0-XOR[2N o (1)
] (immediate from Reference [49, 54]).

A4. MKtP[nc , 2nc ] � AC0 for any sufficiently large constant c (Section 3.1).

A. MKtP[s, t] refers to the promise problem of determining if anN -bit input has Levin Kolmogorov
complexity at most s versus at least t (cf. Reference [43]). Here N = 2n . The AC0-XOR model is the
extension of AC0 where gates at the bottom layer of the circuit can compute arbitrary parity func-
tions. AC0-XOR[s] denotes AC0-XOR circuits of size s where the size is measured as the number
of gates. This circuit class has received some attention in recent years (cf. Reference [16]), and a
few basic questions about AC0 circuits with parity gates (such as constructing PRGs of seed length
o(n) and learnability using random examples) remain open for AC0-XOR as well.

(B) HM Frontier for MCSP[2n1/3
, 2n2/3

] and Formula-XOR:

B1. MCSP[2n1/3
, 2n2/3

] � Formula-XOR[N 1.01] implies NQP � NC1 (Section 3.2).

B2. MCSP[2n1/3
, 2n2/3

] � P/poly under standard cryptographic assumptions [51].
B3. InnerProduct � Formula-XOR[N 1.99] (immediate consequence of Reference [57]).

B4. MCSP[2n1/3
, 2n2/3

] � Formula[N 1.99] ([26]; see also Reference [43]).

B. Here, NQP is nondeterministic quasi-polynomial time, InnerProduct is the Boolean function
defined as InnerProduct(x ,y) =

∑
i xi ·yi (mod 2), where x ,y ∈ {0, 1}N , Formula-XOR[s] refers to

the class of Boolean formulas over the De Morgan basis with at most s leaves, where each leaf is an
XOR of arbitrary arity over the inputs,1 and MCSP[s, t] denotes a promise minimum circuit-size

problem (MCSP) over N = 2n input bits with YES inputs being truth tables of Boolean functions
onn inputs that are computable by circuits of size s , and NO instances being truth tables of Boolean
functions that are hard for circuits of size t .

1Note that Formula-XOR[N 1.01] ⊆ Formula[N 3.01]. A better understanding of the former class is therefore necessary
before we can understand the power and limitations of super-cubic formulas, which is a major open question in circuit
complexity.
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(C) HM Frontier for MCSP[2n1/2
/10n, 2n1/2

] and Almost-Formulas:

C1. MCSP[ 2
n1/2

10n
, 2n1/2

] � N 0.01-Almost-Formula[N 1.01] implies NP � NC1 (Section 3.3).

C2. MCSP[ 2
n1/2

10n
, 2n1/2

] � P/poly under standard cryptographic assumptions [51].
C3. PARITY � N 0.01-Almost-Formula[N 1.01] (Section 3.3).
C4. MCSP[2n1/2

/10n, 2n1/2
] � Formula[N 1.99] ([26]; see also Reference [43]).

C. An almost-formula is a circuit with a bounded number of gates of fan-out larger than 1. More
precisely, a γ -Almost-Formula[s] is a circuit containing at most s AND, OR, NOT gates of fan-in
at most 2, and among such gates, at most γ of them have fan-out larger than 1. Consequently, this
class naturally interpolates between formulas and circuits. This magnification frontier can be seen
as progress toward establishing magnification theorems for worst-case variants of MCSP in the
regime of sub-quadratic formulas (see the discussion in Reference [43]).

(D) HM Frontier for MCSP[2
√

n] and one-sided error randomized formulas:

D1. MCSP[2
√

n] � GapANDO (N )-Formula[N 2.01]⇒ NQP � NC1 (Section 3.2).

D2. MCSP[2
√

n] � P/poly under standard cryptographic assumptions [51].
D3.1. AndreevN � GapANDO (N )-Formula[N 2.99] (implicit in Reference [23]).

D3.2. MCSP[2n/n4] � GapANDO (N )-Formula[N 2.99] (implicit in Reference [18]).

D4. MCSP[2
√

n] � GapANDO (N )-Formula[N 1.99] ([12], building on References [26, 43]).

D. GapANDN is the promise function on N bits such that it outputs 1 when all input bits are 1,
and outputs 0 when at most 1/10 of the input bits are 1. GapANDO (N )-Formula[s] denotes circuits
with GapANDO (N ) gate at the top with formulas of size s being inputs of the top gate. Therefore,

GapANDO (N )-Formula can be seen as randomized formulas with one-sided error.2 The most inter-
esting aspect of this magnification frontier is that the gap between the known hardness result and
the magnification threshold is nearly-tight (N 2−ε versus N 2+ε ).3

(E) HM Frontier for (n − k )-Clique and AC0:

E1. If (n − k )-Clique � AC0[m1.01] for some k = (logn)C , then NP � NC1 (Section 3.4).
E2. (Non-uniform) ETH⇒ (n − k )-Clique � P/poly for some k = (logn)C (Section 3.4).
E3. Parity � AC0 [1, 21].
E4. (n − k )-Clique � mP/poly for some k = (logn)C ([4]; see Section 3.4).

E. The �-Clique problem is defined on graphs on n vertices in the adjacency matrix representation
of sizem = Θ(n2). (The statements above refers to the regime of very large clique detection.) The

2Suppose there is a GapANDO (N )-Formula circuit computing a function f : {0, 1}N → {0, 1}. Consider a uniform distri-
bution of all subformulas below the top GapANDO (N ) gate. Then for any input x , if f (x ) = 1, then a sample formula from
that distribution always outputs 1 on x ; otherwise, it outputs 0 with probability at least 0.9 on x . However, it is possible
to derandomize a distribution of formulas computing f with one-sided error using a top GapANDO (N ) gate.
3This tight threshold is first observed in Reference [12], we include it here to show that the barrier discussed in this article
also applies to this particular setting.
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class mP/poly refers to monotone circuits of polynomial size. In this frontier, we are modifying
Item 4 from HM frontier so that instead of slightly weaker C− we consider an incomparable C−.
This frontier is, however, particularly interesting, as items E1 and E4 connect hardness magnifi-
cation to a basic question about the power of non-monotone circuits when computing monotone
functions (see References [15, 22] and references therein): Is every monotone function in AC0 com-
putable by a monotone (unbounded depth) Boolean circuit of polynomial size? If this is the case,
then NP � NC1 would follow.

Note that these hardness magnification frontiers offer different approaches to proving lower
bounds against NC1.

Essential Questions. Do magnification theorems bring us closer to strong circuit lower bounds?
To understand the limits and prospects of hardness magnification, the following questions are
relevant.

Q1. Naturalization. Is hardness magnification a non-naturalizing approach to circuit lower
bounds? If we accept standard cryptographic assumptions, then non-naturalizability is a
necessary property of any successful approach to strong circuit lower bounds.4

Q2. Extending known lower bounds.Canwe adapt an existing lower bound proof from Items 3 and
4 in some HM frontier to show the lower bound required from Item 1 in that HM frontier?
Is it possible to establish the required lower bounds via a reduction from L to Q?

Q3. Improving existing magnification theorems. Can we close the gap between Items 1 and 4 in
HM frontier by establishing a magnification theorem that meets known lower bounds, such
as the ones appearing in Item 4?

In the next sections, we present results that shed light into all these questions.

1.2 Hardness Magnification and Natural Proofs

The very existence of the natural proofs barrier provides a direction for proving strong circuit
lower bounds: one can proceed by refuting the existence of natural properties.5 In other words, a
way to avoid natural proofs is to prove that there are no natural proofs. It is also easy to see that
P/poly-natural properties useful against P/poly can be turned into natural properties with much
higher constructivity, e.g., into linear-size natural properties useful against circuits of polynomial-
size.6 If read contrapositively, then this gives a form of hardness magnification.
The initial hardness magnification theorem of Oliveira and Santhanam [46] proceeds in a similar

fashion. It proposes to approachNP � P/poly by deriving slightly superlinear circuit lower bounds
for specific problems such as an approximate version of MCSP, which asks to distinguish truth
tables of Boolean functions computable by small circuits from truth tables of Boolean functions that
are hard to approximate by small circuits. Interestingly, this approach does not seem to naturalize,

4We assume familiarity of the reader with the natural proofs framework of Reference [51]. Intuitively, the natural proofs
barrier says that the existing circuit lower bounds are too strong in the sense that they give us not only the lower bound
we want but also the so called natural property: an efficient circuit accepting many Boolean functions (represented by their
truth tables) that are hard for the respective circuit class, and rejecting all easy functions. However, if such efficient circuits
existed for strong circuit classes such as P/poly, then they would break the existence of strong pseudorandom generators.
See Preliminaries (Section 2) for definitions.
5A similar perspective has been employed in proof complexity in attempts to approach strong proof complexity lower
bounds by extending the natural proofs barrier (see References [38, 50]).
6A more constructive natural property is obtained from a less constructive natural property by applying the less construc-
tive natural property on a suitably long prefix of the input.
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as it appears to yield strong lower bounds only for certain problems, and not for most of them. (The
same heuristic argument appears in Reference [3].) However, this is only an informal argument,
and we would like to get stronger evidence that the natural proofs barrier does not apply here.
We show that hardness magnification for approximate MCSP can be used to conclude the non-

existence of natural proofs against polynomial-size circuits. More precisely, we prove that if approx-
imate MCSP requires slightly superlinear-size circuits, then there are no P/poly-natural properties
against P/poly. This strongly suggests that the natural proofs barrier is not relevant to the mag-
nification approach. Indeed, there remains the possibility that the weak circuit lower bound for
MCSP in the hypothesis of the result can be shown using naturalizing techniques (as there are not
any strong enough plausible cryptographic conjectures known that rule this out), and yet by using
magnification to “break” naturalness, we could get strong circuit lower bounds and even conclude
the non-existence of natural proofs!7

The core of our proof is the following new hardness magnification theorem: If approximate
MCSP requires slightly superlinear-size circuits, then not only NP � P/poly but it is impossible
even to learn efficiently. We can then refute the existence of natural proofs by applying the known
translation of natural properties to learning algorithms [8]. Similar implications hold with a worst-
case gap version of MCSP (in the sense of HM Frontiers B and C but with different parameters)
instead of approximate MCSP, following an idea from Reference [24].
Interestingly, all the implications from the previous paragraph are actually equivalences. In par-

ticular, the existence of natural properties is equivalent to the existence of highly efficient circuits
for computing approximate MCSP and worst-case gap MCSP with certain parameters (cf. Theo-
rem 1). This extends a known characterization of natural properties: Carmosino et al. [8] showed
that P/poly natural proofs against P/poly are equivalent to learning P/poly by subexponential-
size circuits, which was in turn shown to be equivalent by Oliveira and Santhanam [45] to the
non-existence of non-uniform pseudorandom function families of sub-exponential security. The
connection of hardness magnification to learning and pseudorandom function generators might
be of independent interest, since it extends the consequences of magnification into two central
areas in Complexity Theory.

Theorem 1 (Eqivalences forHardnessMagnification). The following statements are equiv-
alent8:

(a) Hardness of approximate MCSP against almost-linear size circuits.

There exist c ≥ 1, 0 < γ < 1, and ε > 0 such that MCSP[(nc , 0), (2nγ
,n−c )] � Circuit[N 1+ε ].

(b) Hardness of worst-case MCSP against almost-linear size circuits.

There exists c ≥ 1 and ε > 0 such that MCSP[nc , 2n/nc ] � Circuit[N 1+ε ].
(c) Hardness of sub-exponential size learning using non-adaptive queries.

There exist � ≥ 1 and 0 < γ < 1 such that Circuit[n�] cannot be learned up to errorO (1/n� ) un-

der the uniform distribution by circuits of size 2O (nγ ) using non-adaptive membership queries.
(d) Non-existence of natural properties against polynomial size circuits.

For some d ≥ 1 there is no Circuit[poly(N )]-natural property useful against Circuit[nd ].

7We remark that lower bounds from HM frontiers A3–E3 and A4–D4 do naturalize. For example, the lower bound from
B3 naturalizes because of the existence of learning algorithms constructed in Reference [34]. The naturalization of C3
is obtained by using Lemma 52 in Reference [34], which shows that each function approximable by a formula of size
n1.99 (unlike a random function) has a non-trivial correlation with some parity function. This allows us to recognize
many functions hard to approximate by n1.99-size formulas (and thus hard for small almost-formulas) by checking their
correlations with all parity functions.
8See Preliminaries (Section 2) for definitions.

Journal of the ACM, Vol. 69, No. 4, Article 25. Publication date: August 2022.



Beyond Natural Proofs: Hardness Magnification and Locality 25:7

(e) Existence of non-uniform PRFs secure against sub-exponential size circuits.

For every constant a ≥ 0, there exists d ≥ 1, a sequence F = {Fn }n≥1 of families Fn of n-bit

Boolean functions fn ∈ Circuit[nd ], and a sequence of probability distributions D = {Dn }n≥1
supported over Fn such that, for infinitely many values of n, (Fn ,Dn ) is pseudo-random func-

tion family that (1/Nω (1) )-fools (oracle) circuits of size 2a ·n .

The proof of this result appears in Section 4.1.We highlight below themost interesting implications
of Theorem 1. (Note that some of them have appeared in other works in similar or related forms.)

• (a)→ (d): The initial hardness magnification result from Reference [46, Theorem 1] (stated
for circuits) implies the non-existence of natural proofs useful against polynomial-size cir-
cuits, indicating that the natural proofs barrier might not be relevant to the magnification
approach.

• (a), (b)↔ (d): Any P/poly natural property useful against P/poly can be transformed into an
almost-linear size natural property that is simply the approximate MCSP[(nc , 0), (2nγ

,n−c )]
or worst-case gap MCSP[nc , 2n/nc ]. (Note the different regime of circuit-size parameters for
these problems.)

• (a), (b) ↔ (c): A weak-seeming hardness assumption for worst-case gap and approximate
versions of MCSP implies a strong non-learnability result: polynomial-size circuits cannot
be learned over the uniform distribution even non-uniformly in sub-exponential time.

• (a), (b) ↔ (e): Hardness magnification for MCSP also yields cryptographic hardness in a
certain regime.

We note that the use of non-adaptivemembership queries in Theorem 4.1 Item (c) is not essential.
It follows fromReference [8] that, in the context of learnability of polynomial size circuits under the
uniform distribution in sub-exponential time, adaptive queries are not significantly more powerful
than non-adaptive queries.9

Toward a more robust theory. While Theorem 1 formally connects hardness magnification and
natural properties, it would be very interesting to understand to which extent different hardness
magnification theorems are provably non-naturalizable. This would provide a more complete an-
swer to Question Q1 asked above. For instance, Theorem 1 leaves open whether hardness magnifi-
cation for worst-case versions of MCSP such as MCSP[nc , 2nε

] refutes natural proofs as well. Note
that one way of approaching this question would be to study reductions from MCSP[nc , 2nγ

] to

its approximate version MCSP[(nc ′, 0), (2nγ ′
,n−c ′ )].10 In Section 4.2, we observe that this question

is related to the problem of basing hardness of learning on worst-case assumptions such as P � NP
(cf. Reference [5]). We refer to the discussion in Section 4.2 for more details.

1.3 The Locality Barrier

The results from the preceding section show that hardness magnification can go beyond natural
proofs. Is there another barrier that makes it difficult to establish lower bounds via magnification?
In this section, we present a general argument to explain why the lower-bound techniques be-
hind A3–E3, A4–D4 in the magnification frontiers from Section 1.1 cannot be adapted (without

9In a bit more detail, one can easily extract a natural property from a learner that uses adaptive queries. In turn, closer
inspection of the technique of Reference [8] shows that a non-adaptive learner can be obtained from a natural property.
10More precisely, the existence of a reduction from MCSP[nc , 2nγ

] to MCSP[(nc′, 0), (2nγ ′
, n−c′ )] shows that lower

bounds for the former problem yield lower bounds for the latter. Since any such lower bound must be non-naturalizable
by Theorem 1, we obtain the same consequence for MCSP[nc , 2nγ

]. (Note that in the context of hardness magnification
it is also important to have highly efficient reductions.)
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significantly new ideas) to establish the required lower bounds in Items A1–E1, respectively. We
refer to it as the locality barrier. While we will focus on these particular examples to make the
discussion concrete, we believe that this barrier applies more broadly (and can be seen as a circuit-
complexity analog of Relativization).
To explain the locality barrier, let us consider the argument behind the proof of B1 presented

in Section 3.2. Recall that this result shows that if MCSP[2n1/3
, 2n2/3

] � Formula-XOR[N 1.01] then
NQP � NC1. This and other known hardnessmagnification theorems are established in the contra-
positive. The core of the argument is to prove that there are highly efficient Formula-XOR circuits

that reduce an input to MCSP[2n1/3
, 2n2/3

] of length N = 2n to deciding whether certain strings
of length N ′ (much smaller than N ) belong to a certain language L′. Then, under the assumption
that NQP ⊆ NC1, one argues that L′ has polynomial size formulas. Finally, since N ′ 
 N , we can

employ such formulas and still conclude that MCSP[2n1/3
, 2n2/3

] is in Formula-XOR[N 1.01], which
completes the proof.
Note that the argument above provides a conditional construction of highly efficient formulas

for the original problem. Crucially, however, we can derive an unconditional circuit upper bound
from this argument: If we stop right before we replace the calls to L′ by an algorithm for L′ (this

is what makes the reduction conditional), then it unconditionally follows that MCSP[2n1/3
, 2n2/3

]
can be computed by highly efficient Formula-XOR circuits containing oracle gates of small fan-in,
for some oracle. Similarly, one can argue that the problems in Items A1–E1 can be computed in
the respective models by highly efficient Boolean devices containing oracles of small fan-in.
We stress that, as opposed to a magnification theorem, where one cares about the complexity

of the oracle gates, in our discussion of the locality barrier, we only need the fact that there is
some way of setting these oracles gates so that the resulting circuit or formula solves the original
problem. (A definition of this model appears in Section 2.5.) A more exhaustive interpretation
of magnification theorems as construction of circuits with small fan-in oracles can be found in
Appendix A.2.

However, we argue that the lower-bound arguments from Items A3–E3 of the hardness mag-
nification frontiers quite easily handle (in the respective models) the presence of oracles of small
fan-in, regardless of the function computed by these oracles. Using a more involved argument, we
can also localize lower bounds from items A4–D4. Consequently, these methods do not seem to be
refined enough to prove the lower bounds required by A1–D1 without excluding oracle circuits
that are unconditionally known to exist for the corresponding problems.
Following the example above, we state our results for the Magnification Frontier B.

Theorem 2 (Locality Barrier for HM Frontier B). The following results hold.

• (B1O) (Oracle Circuits from Magnification): For any ε > 0, MCSP[2n1/3
, 2n2/3

] ∈ Formula-O-
XOR[N 1.01] for some oracle O, where every oracle gate has fan-in at most N ε and appears in
the layer right above the XOR leaves.

• (B3O) (Extension of Lower-bound Techniques above Magnification Threshold): For any δ >
0, InnerProduct over N input bits cannot be computed by N 2−3δ -size Formula-O-XOR circuits

with at most N 2−3δ oracle gates of fan-in N δ in the layer right above the XOR leaves, for any
oracle O.

• (B4O) (Extension of Lower-bound Techniques below Magnification Threshold): There is a
universal constant c such that for all constants ε > 0 and α > 2, MCSP[nc , 2ε/α ·n] cannot be
computed by oracle formulas F with SIZE3 (F ) ≤ N 2−ε and adaptivity o(logN / log logN ).11

11That is, on any path from root to a leaf, there are at most o (log N / log log N ) oracles.
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Here, Sizet (F ) denotes the size of the formula, if we replace every oracle O with fan-in β in
F by a formula of size β t , which reads all its inputs exactly β t−1 times (see Section 5.2.2 for the
motivation of this definition).
The first two items of Theorem 2 are proved in Section 5.1.2. The third item is proved in Sec-

tion 5.2.2. While Theorem 2 does not specify that, we actually localize all proofs of the lower
bounds from B3 and B4 we are aware of. Interestingly, the localization of B4 allows us to refute
the Antichecker Hypothesis from Reference [43] (and a family of potential hardness magnification
theorems), cf. Section 5.2.2. We refer to Section 5 for analogous statements describing the locality
barrier in frontiers A, C, D, and E.

The localizations of lower bounds A3–E3 and A4–D4 often go through for very clean reasons.
For example, localizations of lower bounds A3–C3 based on algebraicmethods boil down to the fact
that any local oracle (computing any function over a small number of variables) can be simulated by
low-degree polynomials over finite fields or the reals. Lower bounds fromA4–D4 and D3–E3 based
on random restrictions localize, typically, because random restrictions simplify local oracles—e.g.,
they can reduce the number of inputs of the oracle so that the restricted oracle can be represented
by a small DNF or a shallow decision tree. However, the actual proofs of localized lower bounds
can becomemore involved, as we need to rule out the existence of small circuits with many oracles
that might depend on each other. In fact, the localization of B4 is technically the most involved
contribution of the article. We note also that it seems rather surprising that we are always able
to localize lower bounds with the right position of oracles—with exactly the same position as the
one from the corresponding magnification theorem or (in the case of lower bounds below the
magnification threshold) a potential magnification theorem.

The recent HM Frontier introduced by Reference [12] for MCSP[2
√

n] and two-sided error ran-
domised formulas is also subject to the locality barrier based on ideas analogous to the barrier for
HM Frontier D (cf. Section 5.1.4). In another recent work, Reference [17] (and Reference [40]) prove
magnification for MCSP[2o (n)] against one-tape Turing machines by constructing highly efficient
uniform oracle algorithms that make short oracle queries. They also prove a sub-quadratic time
lower bound for MCSP[2(1−o (1))n] against one-tape Turing machines and show that this technique
can be localised; it is impossible to extend this technique to MCSP[2o (n)], with the intention of
obtaining magnification (or obtaining magnification from MCSP[2(1−o (1))n] lower bounds against
one-tape Turing machines using similar ideas).

Locality of Computations and Lower-bound Techniques. The fact that many lower-bound
techniques extend to computational devices with oracles of small fan-in was observed already by
Yao in 1989 on a paper on local computations [61]. According to Yao, a local function is one that
can be efficiently computed using only localized processing elements. In our terminology, this cor-
responds to circuits with oracles of small fan-in. Among other results, Reference [61] argues that
Razborov’s monotone circuit-size lower bound for k-Clique [48] and Karchmer and Wigderson’s
monotone formula size lower bound for ST-CONN [35] extend to Boolean devices with monotone
oracles of bounded fan-in. Compared to Yao’s work, our motivation and perspective are different.
While Yao is particularly interested in lower bounds that can be extended in this sense (see, e.g., Sec-
tions 2 and 6 in Reference [61]), here we view such extensions as a limitation of the corresponding
arguments, meaning that they are not refined enough to address the locality barrier.12

12On a more technical level, we are interested in the regime of barely super-linear size circuits and formulas, and our results
do not impose a monotonicity constraint on the oracle.
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We note, however, that not every lower-bound technique extends to circuits with small fan-in
oracles.13 For instance, by the work of Allender and Koucký [3] (also a more recent work by Chen
and Tell [14]), the parity function Parityn over n input bits can be computed by a TC0 circuit
of size O (n) (number of wires) containing ≤ n1−ε oracle gates of fan-in ≤ nε , provided that its

depth d = O (1/ε ). However, it is known that Parityn � TC0
d
[n1+c−d

] for a constant c > 0 [28]
(again, the complexity measure is the number of wires). Since the latter lower bound is super-linear
for every choice of d , it follows by the result of References [3, 14] that it cannot be extended to
circuits containing a certain number of oracles of fan-innε , for a large enough depthd that depends
on ε . Incidentally, the hardness magnification theorems of References [3, 14] do not achieve a
magnification frontier.
In Section 3.2, we identify one specific lower bound related to HM frontier D, which is both

above the magnification threshold and provably non-localizable, cf. Theorem 50. In principle,
there might be ways to overcome the locality barrier and match the lower bound with the
magnification threshold. We refer to Section 1.4 below for additional discussion.

On Lower Bounds through Reductions. The discussion above has focused on the possibility of
directly adapting existing lower bounds from Item 3 in HM frontier to establish the desired lower
bound in Item 1. There is, however, an indirect approach that one might hope to use: reductions.
For instance, in the context of the HM Frontier B discussed above, can we have a reduction from
InnerProduct toMCSP[2n1/3

, 2n2/3
] that would allow us to show thatMCSP[2n1/3

, 2n2/3
] � Formula-

XOR[N 1.01]? The first thing to notice is that, for this approach to make sense, the reduction needs
to have a specific form so that composing the reduction with a candidate Formula-XOR circuit for

MCSP[2n1/3
, 2n2/3

] violates the hardness of InnerProduct. Is there any hope to design a reduction
of this form?
The locality barrier presents a definitive answer in this case. Indeed, it is immediate from the first

two items of Theorem 2 that such a reduction does not exist. For the same reason, it is not possible
to use reductions to establish the required lower bounds in some other magnification frontiers, cf.
Section 5.1.6. Essentially, under the constraints needed for a reduction to be meaningful, we end
up with a class of reductions that produce circuits that are ruled out by the locality barrier.

Locality versus Natural Proofs and Relativization. How does the formal “strength” of the
natural proofs and relativization barriers compare to that of the locality barrier? Locality can be
seen as a circuit-complexity analog of the relativization barrier. While natural proofs are based on
a global condition (cryptographic conjectures), relativization and locality show that some proof
techniques “sweep in” additional results that are not true relative to appropriate oracles.

1.4 Concluding Remarks and Open Problems

Hardness magnification shows that obtaining a refined understanding of weak computational
models is an approach to major complexity lower bounds, such as separating EXP from NC1. As
discussed in Sections 1.1 and 1.2 above, its different instantiations are connected to a few basic
questions in Complexity Theory, including the power of non-monotone operations, learnability of
circuit classes, and pseudorandomness.
One of our main conceptual contributions in this work is to identify a challenge when imple-

menting this strategy for lower bounds. Quoting the influential article [51] that introduced the
natural proofs barrier,

13Of course, any such discussion depends on parameters such as number of oracles and their fan-ins, sowhether a technique
avoids or not the locality barrier is relative to a particular magnification theorem.
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“We do not conclude that researchers should give up on proving serious lower bounds. Quite the
contrary, by classifying a large number of techniques that are unable to do the job we hope to focus
research in a more fruitful direction.”

Razborov and Rudich [51, Section 6]

We share a similar opinion with respect to hardness magnification and the obstruction identified
in Section 1.3. While locality provides a unified explanation for the difficulty of adapting combina-
torial lower-bound techniques to exploit most (if not all) known magnification frontiers, it might
be possible to discover new HM frontiers whose associated lower-bound techniques in Item 3 are
sensitive to the presence of small fan-in oracles. For instance, in the case of uniform complexity
lower bounds, this has been achieved in Reference [42] via an indirect diagonalization that explores
the theory of pseudorandomness.14 Alternatively, it might be possible to establish magnification
theorems using a technique that does not produce circuits with small fan-in oracles. Furthermore,
recent works suggest approaches such as the Explicit Obstructions framework by Reference [12],
or the meta-computational view of PRG constructions by Reference [25], as potential ways of by-
passing the locality barrier. Even if one is pessimistic about these possibilities, we believe that an
important contribution of the theory of hardness magnification is to break the divide between
“weak” and “strong” circuit classes advocated by the natural proofs barrier, and that it deserves
further investigation.
We finish with a couple of technical questions related to our contributions. First, we would like

to understand if it is possible to strengthen items (a) and (b) in Theorem 1 to a wider range of
parameters. For example, is hardness magnification for worst-case MCSP[nc , 2nγ

] with γ < 1 non-
naturalizable? The core of this question seems to be the problem of reducing worst-case MCSP
from item (a) to approximate MCSP from item (b).
A related point is that Theorem 1 does not achieve an HM frontier. In fact, super-linear lower

bounds for general circuits seem far out of reach at present. It would be thus desirable to obtain
an HM frontier that is provably non-naturalizable, or at least a non-naturalizable hardness magni-
fication theorem that would not require a non-naturalizable lower bound.
Another important direction is to show that hardness magnification avoids natural proofs also

in the context of non-meta-computational problems. Interestingly, many magnification theorems
from Reference [43] established for MCSP and variants were subsequently shown to hold for any
sparse language in NP [11]. Could it be the case that hardness magnification overcomes natural
proofs in a much broader sense?
Finally, it would be useful to investigate the locality of additional lower-bound techniques. Can

we, for example, come up with non-localizable lower bounds similar to Theorem 50 that would be
above the magnification threshold and work for a problem more closely related to the one from
the corresponding HM frontier?

2 PRELIMINARIES

2.1 Notation

Given a Boolean function f : {0, 1}n → {0, 1}, tt( f ) denotes the 2n-bit string representing the truth
table of f . However, for any string y ∈ {0, 1}2n

, define fy as the function on n inputs such that
tt( fy ) = y.

14In other words, the magnification theorem discussed in Reference [42] admits a formulation for uniform randomized
algorithms, and its proof provides an algorithm with oracle gates of small fan-in in the spirit of the oracle circuits discussed
here. Nevertheless, the unconditional lower bound established in the same paper does not extend to algorithms with such
oracle gates.
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Circuit[s] denotes fan-in two Boolean circuits (over ANDs, ORs, and NOTs) of size at most s ,
where we count the number of gates. Formula[s] denotes formulas over the basis U2 (fan-in two
ANDs and ORs) of size at most s (counting the number of leaves) with input leaves labelled by
literals or constants.
For a circuit class C, C[s] denotes circuits from C of size at most s .
A function f : {0, 1}n → {0, 1} is γ -approximated by a circuit C , if Prx [C (x ) = f (x )] ≥ γ .

2.2 Complexity of Learning

Definition 3 (Learning). A circuit class C is learnable over the uniform distribution by circuits in
D up to error ε with confidence δ if there are randomized oracleD-circuits Lf such that for every
Boolean function f : {0, 1}n �→ {0, 1} computable by a circuit from C, when given oracle access
to f , input 1n and the internal randomness w ∈ {0, 1}∗, Lf outputs the description of a circuit
satisfying

Pr
w
{Lf (1n ,w ) (1 − ε )-approximates f } ≥ δ .

Lf uses non-adaptive membership queries if the set of queries that Lf makes to the oracle does
not depend on the answers to previous queries. If δ = 1, then we omit mentioning the confidence
parameter.

2.3 Natural Properties, MCSP, and Its Variants

Let Fn be the set of all functions on n variables. R = {Rn ⊆ Fn }n∈N is a combinatorial property of
Boolean functions.

Definition 4 (Natural Property [51]). Let R = {Rn } be a combinatorial property, C be a circuit
class and Γ be a complexity class. Then, R is a Γ-natural property useful against C[s (n)], if there
exists an n0 ∈ N such that the following hold:

• Constructivity: For any function fn ∈ Fn , the predicate fn
?
∈ Rn is computable in Γ in the

size of the truth table of fn .
• Largeness: For every n ≥ n0, Prfn∼Fn

{ fn ∈ Rn } ≥ 1
2O (n ) .

• Usefulness: For every n ≥ n0, Rn ∩ C[s (n)] = ∅.

The following result, which follows from Reference [8], connects the existence of natural prop-
erties useful against a class C to designing learning algorithms for C.
Theorem 5 (From Theorem 5.1 of Reference [8] and Lemma 14 of Reference [30]). Let R be

a P/poly-natural property useful against Circuit[nd ] for some d ≥ 1. Then, for each γ ∈ (0, 1), there

are randomized, oracle circuits {Dn }n≥1 ∈ Circuit[2O (nγ )] that learn Circuit[nk ] up to error 1
nk using

non-adaptive oracle queries to fn , where k =
dγ

a
and a is a universal constant that does not depend

on d and γ .

Definition 6 (Gap MCSP). Let s, t : N → N, where s (n) ≤ t (n) and 0 ≤ ε,σ < 1/2. Define
MCSP[(s,σ ), (t , ε )] on inputs of length N = 2n , as the following promise problem:

• YES instances:y ∈ {0, 1}N such that there exists a circuit of size s (n) that (1−σ )-approximates
fy .

• NO instances: y ∈ {0, 1}N such that no circuit of size t (n) (1 − ε )-approximates fy .

We refer to MCSP[(s, 0), (t , 0)] as MCSP[s, t]. Informally speaking, if ε > 0, we say that
MCSP[(s, 0), (t , ε )] is an approximate version of MCSP. Otherwise, it is a worst-case version of
MCSP.

Journal of the ACM, Vol. 69, No. 4, Article 25. Publication date: August 2022.



Beyond Natural Proofs: Hardness Magnification and Locality 25:13

Remark 7. In Definition 6, if s (n) = t (n), we also require that σ < ε for the yes and no instances
to be disjoint.

Definition 8 (Succinct MCSP). For functions s, t : N �→ N, Succinct-MCSP[s (n), t (n)] is the
following problem. Given an input 〈1n , 1s , (x1,b1), . . . , (xt ,bt )〉 where xi ∈ {0, 1}n ,bi ∈ {0, 1},
decide if there is a circuit C of size s such that C (xi ) = bi for all i = 1, . . . , t .

2.4 Pseudorandom Generators

Definition 9 (Pseudorandom Function Families). For any circuit class C, size functions s (n), t (n) ≥
n, family Gn of n-bit Boolean functions and distributionDn over Gn , we say that a pair (Gn ,Dn ) is
a (t (n), ε (n))-pseudorandom function family (PRF) in C[s (n)], if each function in Gn is in C[s (n)]
and for every randomized circuit AO ∈ CircuitO [t (n)], where O denotes oracle access to a fixed
Boolean function over n inputs, we have

�����
Pr

д∼Dn,w
{Aд (w ) = 1} − Pr

f ∼Fn,w
{Af (w ) = 1}

�����
≤ ε (n),

wherew represents the internal randomness of AO .

Reference [45] states an equivalence between the non-existence of PRFs in a circuit class C and
learning algorithms for C. In particular, we care about the following direction, which they prove
using a small-support version of Von-Neumann’s Min-max Theorem.

Theorem 10 (No PRFs in C Implies Learning Algorithm for C [45]). Let t (n) ≤ 2O (n) . Sup-
pose that for every k ≥ 1 and large enough n, there exists no (poly(t (n)), 1/10)-pseudorandom func-

tion families in C[nk ]. Then, for every ε > 0,k ≥ 1 and large enough n, there is a randomized oracle

circuit in CircuitO [2nε
] that learns every function fn ∈ C[nk ] up to error 1/nk with confidence 1−1/n,

where O denotes membership query access to fn .

2.5 Local Circuit Classes

Our definition of local computation is somewhat similar to some definitions appearing in Reference
[61].

Definition 11 (Local Circuit Classes). Let C be a circuit class (such as AC0[s], TC0
d
[s], Circuit[s],

etc). For functions q, �,a : N → N, we say that a language L is in [q, �,a]–C if there exists a
sequence {En } of oracle circuits for which the following holds:

(i) Each oracle circuit En is a circuit from C.
(ii) There are at most q(n) oracle gates in En , each of fan-in at most �(n), and any path from an

input gate to an output gate encounters at most a(n) oracle gates.
(iii) There exists a language O ⊆ {0, 1}∗ such that the sequence {EOn } (En with its oracle gates set

to O) computes L.

In the definition above, q stands for quantity, � for locality, and a for adaptivity of the corre-
sponding oracle gates.

2.6 Random Restrictions

Let ρ : [N ] → {0, 1, ∗} be a restriction, and ρ be a random restriction, i.e., a distribution of restric-
tions. We say that ρ is p-regular if Pr[ρ (i ) = ∗] = p and Pr[ρ (i ) = 0] = Pr[ρ (i ) = 1] = (1−p)/2 for
every i ∈ [N ]. We also say ρ is k-wise independent if any k coordinates of ρ are independent. For

a function f : {0, 1}N → {0, 1}, we use f �ρ to denote the function {0, 1} |ρ−1 (∗) | → {0, 1} obtained
by restricting f according to ρ in the natural way.

Journal of the ACM, Vol. 69, No. 4, Article 25. Publication date: August 2022.



25:14 L. Chen et al.

We need the following lemma stating that one can sample from a k-wise independent random
restriction with a short seed, and moreover all restrictions have a small circuit description.

Lemma 12 ([27, 60]). There exists a q-regular k-wise independent random restriction ρ distributed
over ρ : [N ] → {0, 1, ∗} samplable with O (k · log(N ) log(1/q)) bits. Furthermore, each output co-
ordinate of the random restriction can be computed in time polynomial in the number of random
bits.

2.7 Technical Results

Lemma 13 (Hoeffding’s Ineqality). LetX1, . . . ,Xn be independent random variables such that
0 ≤ Xi ≤ 1 for every i ∈ [n]. Let X =

∑n
i=1Xi . Then, for any ε > 0, we have

Pr{|X − EX | ≥ εn} ≤ 2 exp(−2ε2n).

3 MAGNIFICATION FRONTIERS

3.1 EXP � NC1 and AC0-XOR Lower Bounds for MKtP

In this section, we present the proofs of the new results stated in HM Frontier A. Recall that Kt(x )
is defined as the minimum over |M |+ log t such that a programM (simulated by a universal Turing
machine) outputs x in t steps. For thresholds θ ,θ ′ : N→ N, we denote by MKtP[θ (N ),θ ′(N )] the
promise problem whose YES instances consist of the strings x ∈ {0, 1}N such that Kt(x ) ≤ θ (N )
and NO instances consist of the strings such that Kt(x ) > θ ′(N ).
We start with the hardness magnification theorem of HM Frontier A1.

Theorem 14. There exists a constant c such that, for every large enough constant d > 1,

MKtP[(logN )d , (logN )d + c logN ] � AC0-XOR[N 1.01] implies EXP � NC1.

Proof. We prove the contrapositive. Assume that EXP ⊆ NC1. First, recall that any N -bit-input

polynomial-size NC1 circuit can be converted into a depth-d ′ AC0 circuit of size 2N O (1/d′ )
for every

positive integer constant d ′ (see, e.g., Reference [2, Lemma 8.1]).
Oliveira, Pich, and Santhanam [43] showed that there exists a problem L ∈ EXP such that

MKtP[θ (N ),θ (N ) + c logN ] ∈ ANDO (N )-LO (θ (N ))-XOR for θ (N ) ≥ logN . (Here the subscript
denotes the fan-in of a gate.) That is, the promise problem MKtP[θ (N ),θ (N ) + c logN ] can be
computed by the following form of an L-oracle circuit: The output gate is an AND gate of fan-in
O (N ), at the middle layer are L-oracle gates of fan-in O (θ (N )), and at the bottom layer are XOR
gates. Under the assumption that EXP ⊆ NC1, we can replace L-oracle circuits with depth-d ′ AC0

circuits of size 2(log N )O (d/d′ )
, which is smaller than N 0.01 by choosing a constant d ′ large enough.

In particular, we obtain a depth-(d ′ +O (1)) almost linear size AC0 circuit with bottom XOR gates
that computes MKtP[θ (N ),θ (N ) + c logN ]. �

The rest of this section is devoted to proving the following AC0 lower bound for MKtP, which
establishes HM Frontier A4.

Theorem 15. For any d = d (N ), for some θ (N ) = d · Õ (logN )3 and any θ ′(N ) = N /ω (logN )d ,
it holds that MKtP[θ (N ),θ ′(N )] � AC0

d
.

Note that Theorem 15 is onlymeaningful ifd = o(logN / log logN ), because otherwise the promise
problem is not well-defined.
The idea of the proof is as follows: Trevisan and Xue [59] showed that there exists a pseudo-

random restriction ρ of seed length polylog(N ) that shrinks every polynomial-size depth-2 circuit
into shallow decision trees. Moreover, the expected fraction of unrestricted variables ρ−1 (∗) is
at least p = Ω(1/ logN ). In particular, by composing d independent pseudorandom restrictions

Journal of the ACM, Vol. 69, No. 4, Article 25. Publication date: August 2022.



Beyond Natural Proofs: Hardness Magnification and Locality 25:15

ρ1, . . . , ρd , every depth-d circuit can be turned into a constant function, while still leaving at least
pd -fraction of inputs unrestricted. The seed length required to sample d independent pseudoran-
dom restrictions is at most d×polylog(N ), and thus Kt(0N ◦ρ) ≤ polylog(N ). Here, ρ1◦ρ2 denotes
ρ2 extended by ρ1. We stress that the exponent of the seed length does not depend on d . Since the
circuit hit with the pseudorandom restriction becomes a constant function, it cannot distinguish
0N ◦ ρ with UN ◦ ρ, i.e., the distribution where the unrestricted variables of ρ are replaced with
the uniform distribution UN . Assuming that there remain sufficiently many unrestricted inputs
(e.g., N /O (logN )d � polylog(N )), the latter distribution has a large Kt complexity, which is a
contradiction to the fact that an AC0

d
-circuit computes a gap version of MKtP.

We note that Cheraghchi, Kabanets, Lu, and Myrisiotis [18] used the pseudorandom restriction
method to obtain an exponential-size AC0 lower bound. A crucial difference in this work is that
instead of optimizing the size of AC0 circuits, we aim at minimizing the threshold θ of MKtP[θ].
Following Reference [59], to generate a random restriction ρ ∈ {0, 1, ∗}N that leaves a variable

unrestrictedwith probability 2−q , we regard a binary stringw ∈ {0, 1}(q+1)N as a random restriction
ρw . Specifically:

Definition 16. For a string w ∈ {0, 1}(q+1)N , we define a restriction ρw ∈ {0, 1, ∗}N as follows:
Write w as (w1,b1) · · · (wN ,bN ), where wi ∈ {0, 1}q and bi ∈ {0, 1}. For each i ∈ [N ], if wi = 1q

then set ρw (i ) := ∗; otherwise, set ρw (i ) := bi .

Note that this is defined so that Prw [ρw (i ) = ∗] = 2−q for every i ∈ [N ], when w is distributed
uniformly at random.
Trevisan and Xue [59] showed that Håstad’s switching lemma can be derandomized by using a

distribution that fools CNFs. To state this formally, we need the following definitions. Define a t-
width CNF as one that has at most t literals in each clause. We say that a distributionD over {0, 1}n
ε-fools a set of functionsSn overn variables if for every f ∈ Sn , | Prx∼D { f (x ) = 1}−Prx∼Un

{ f (x ) =
1}| ≤ ε . Finally, define DT( f ) as the depth of the smallest decision tree computing f .

Lemma 17 (Derandomized Switching Lemma [59, Lemma 7]). Let φ be a t-width M-clause CNF

formula over N inputs. Let p = 2−q for some q ∈ N. Assume that a distribution D over {0, 1}(q+1)N

ε0-fools M · 2t (q+1)-clause CNFs. Then,

Pr
w∼D

[DT(φ�ρw
) > s] ≤ 2s+t+1 (5pt )s + ε0 · 2(s+1)(2t+logM ) .

Theorem 18 (Based on References [59] and [58, Theorem 56]). Let s,M,d,N ∈ N be positive
integers. Letp = 2−q for someq ∈ N so that 1/128s ≤ p < 1/64s . Assume that there is a pseudorandom

generator G : {0, 1}r → {0, 1}(q+1)N that ε0-fools CNFs of size M · 2s · 2s (q+1) . Then, there exists a
distribution R of random restrictions that satisfies the following:

(1) For every circuit C of size M and depth d over N inputs,

Pr
ρ∼R

[DT(C�ρ ) > s] ≤ M ·
(
2−s+1 + ε0 · 2(s+1)(3s+logM )

)
.

(2) For any parameter δ < 1, with probability at least 1 − N (δ + dε0), the number of unrestricted

variables in [N ] is at least �N · pd−1/64 log(1/δ )�.
(3) R can be generated by a seed of length dr in polynomial time.

Proof. We apply the derandomized switching lemma (Lemma 17) d times. In the first iteration,
we set p := 1/64 (and q := 6) and generate ρG (z )[1, ..., (6+1)N ]. (Here, we use the first (6 + 1)N bits
ofG (z) to generate ρG (z ) .) This turns a circuit C of sizeM into a circuit whose bottom fan-in is at
most s . For every other iteration i (where i = 2, . . . ,d), we set p := 2−q and turn a circuitC of depth
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d − i +2 into a circuit of depth d − i +1. Our final pseudorandom restriction ρ ∼ R is defined by the
composition of the d independent pseudorandom restrictions ρG (z1 )[1, ..., (6+1)N ], ρG (z2 ), . . . , ρG (zd ) .
Our proof is essentially the samewith [58], except that (1) we apply the switching lemmad times

(instead of d − 1) to turn depth-d circuits into shallow decision trees, and (2) in References [58, 59],
for the application of constructing a pseudorandom generator for AC0, fixed bits of pseudorandom
restrictions must be generated by using truly random bits, whereas in our case, we generate all
the bits by using G.
In more detail, for each i ∈ [d], let Mi be the number of the gates at level i in C (i.e., the gates

whose distance from the input gates is i). At the first iteration, we set p := 1/64 = 2−6 and q := 6.
We then generate ρ1 := ρG (z1 )[1, ..., (6+1)N ] by choosing a seed z1 ∼ {0, 1}r uniformly at random. We
regard C as a depth-(d + 1) circuit of bottom fan-in 1, and apply Lemma 17 to each gate at level 1
(in the original circuit C). The probability that there exists a gate at level 1 in C�ρ1 that cannot be
computed by a decision tree of depth s is bounded above by

M1 ·
(
2s+1+1 (5/64)s + ε0 · 2(s+1)(2+logM )

)
.

In the complement event (i.e., if each gate at level 1 in C�ρ1 can be computed by a decision tree
of depth s), each gate at level 1 can be written as DNFs and CNFs of width s and, hence, can be
merged into some gate at level 2. Thus, a circuit C�ρ1 can be turned into a circuit of depth d and
bottom fan-in s . Moreover, the number of gates at level 1 is bounded byM ·2s , which is an invariant
preserved during the iterations.
For every other iteration i (i = 2, . . . ,d), we generate ρi := ρG (zi ) by choosing a seed zi ∼ {0, 1}r

uniformly at random. Using the invariant that the number of gates at level i − 1 is at most M · 2s ,
the probability that some gate at level i inC�ρ1 · · ·ρ i cannot be computed by a decision tree of depth
s is bounded above by

Mi ·
(
2s+s+1 (5ps )s + ε0 · 2(s+1)(2s+log(M2s ))

)
.

In the complement event, every gate at level i can be written as width-s CNFs or DNFs of size 2s

and, hence, can be merged into some gate at level i + 1 (for i < d). At the last iteration (i.e., i = d),
the circuit C�ρ1 · · ·ρd can be written as a decision tree of depth s . We define the pseudorandom

restriction ρ as ρd ◦ · · · ◦ ρ1. Item 3 is obvious from this construction.
Overall, the probability thatDT(C�ρ ) > s is at mostM ·(2−s+1+ε0 ·2(s+1)(3s+logM ) ). This completes

the proof of Item 1.
To see Item 2, we divide N input bits into k disjoint blocksT1, . . . ,Tk of size at least t (and, hence,

k = �N /t�), where t is a parameter chosen later. We claim that each block must contain at least one
unrestricted variable in ρ ∼ R with high probability (and, hence, |ρ−1 (∗) | ≥ �N /t�). Fix any block
T = Ti for some i ∈ [k]. As in Reference [58], one can easily observe that the condition that every
variable in T is restricted can be checked by a CNF of size at most |T | (≤ N ). By a simple hybrid
argument, the concatenation of d independent pseudorandom distributions G (z1), . . . ,G (zd ) dε0-
fools CNFs (cf. Reference [58, Corollary 55]). Therefore, the probability that every variable in T is
restricted by ρ ∼ R is bounded by (1 − pd−1/64)t + dε0, where the first term is an upper bound
for the probability that every variable in T is restricted by a truly random restriction. Choosing
t = 64 log(1/δ )/pd−1 and using a union bound, the probability that some block Ti is completely
fixed can be bounded above by �N /t� · (δ + dε0), which completes the proof of Item 2. �

Corollary 19. For every circuit C of size M (≥ N ) and depth d over N inputs, there exists a
restriction ρ such that

(1) C�ρ is a decision tree of depth at most s := 2 log 8M ,

(2) |ρ−1 (∗) | ≥ N /O (logM )d , and

(3) Kt(ρ) ≤ d · Õ ((logM )3).
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Proof. Tal [58, Theorem 52] showed that there exists a polynomial-time pseudorandom gen-
erator G of seed length r := Õ (logM0 · log(M0/ε0)) that ε0-fools CNFs of size M0. We set
M0 := M · 2s · 2s (q+1) , s := 2 log 8M , and ε0 := 2−9s2 . Then the seed length r of G is at most
r = Õ (logM0 · log(M0/ε0)) = Õ (logM · (logM )2). Applying Theorem 18, the probability that
DT(C�ρ ) > s is bounded by 1

2 . Choosing δ = 1/8N , we also have that the probability that

|ρ−1 (∗) | < �N · pd−1/64 log(1/δ )� is at most 1
4 . Thus, there exists some restriction ρ in the sup-

port of R such that DT(C�ρ ) ≤ s and |ρ−1 (∗) | ≥ Ω(N · pd−1/ logN ) ≥ N /O (logM )d . �

Using the assumption that a circuit computes MKtP, we show that shallow decision trees must
be a constant function.

Lemma 20. Let C be a circuit and ρ be a restriction such that C�ρ is a decision tree of depth s . If

MKtP[O (s logN ) + Kt(ρ)] ⊆ C−1 (1), then C�ρ ≡ 1.

Proof. We prove the contrapositive. Assume that C�ρ � 1, which means that there is a path
π : [N ] → {0, 1, ∗} of a decision tree C�ρ that assigns at most s variables so that C�ρπ ≡ 0. Note
that Kt(π ) ≤ O (s logN ), because one can specify each restricted variable of π by using O (logN )
bits. Thus, we have Kt(0N ◦ π ◦ ρ) ≤ O (s logN ) + Kt(ρ). However,C (0N ◦ π ◦ ρ) = C�ρπ (0N ) = 0.

Therefore, we obtain MKtP[O (s logN ) + Kt(ρ)] � C−1 (1). �

Now, we are ready to prove the main result of this section.

Proof of Theorem 15. Assume, by way of contradiction, that there is a circuit C of size M :=
NO (1) and depth d that computes MKtP[d ·Õ (logN )3,N /ω (logN )d ]. Using Corollary 19, we take a
restriction ρ such thatC�ρ is a decision tree of depth s = O (logN ). By Lemma 20, we haveC�ρ ≡ 1,
under the assumption that O (s logN ) + Kt(ρ) ≤ θ (N ), which is satisfied by choosing θ (N ) large
enough. Now, by counting the number of inputs accepted by C�ρ , we obtain

2N /O (log N )d ≤ 2 |ρ
−1 (∗) | = |(C�ρ )−1 (1) | ≤ 2θ ′(N )+1,

where, in the last inequality, we used the fact that the number of strings whose Kt complexity is
at most θ ′(N ) is at most 2θ ′(N )+1. However, the inequality contradicts the choice of θ ′(N ). �

3.2 NQP � NC1 and Formula-XOR or GapAND-Formula for MCSP

This section is devoted to proving HM Frontier B1 and HM Frontier D1. In fact, we provide two
different proofs of HM Frontier B1, one based on Reference [46], another one based on Reference
[11].
In both proofs, the hardness magnification is achieved by constructing an oracle circuit for

MCSP. The most interesting part of the first proof is that it gives a conditional construction assum-
ingQP ⊆ P/poly. While the oracle circuit construction can bemade unconditional (as in the second
proof), it illustrates a potentially more applicable approach: proving the hardness magnification
theorem while assuming the target circuit lower bound is false (i.e., NQP ⊆ NC1).

3.2.1 Reduction-based Approach from Reference [46]. In the initial magnification theorem [46,
Theorem 1], approximate MCSP was shown to admit hardness magnification phenomena. Here,
we present a similar hardness magnification theorem for a worst-case version of MCSP.

A natural way of reducing worst-case MCSP to approximate MCSP is to apply error-correcting
codes. Error-correcting codes map a hard Boolean function to a Boolean function that is hard on
average. A problem with this approach is that error-correcting codes do not guarantee that an
easy Boolean function will be mapped to an easy Boolean function. Our main idea is to enforce
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the latter property with an extra assumption QP ⊆ P/poly. Here, QP denotes TIME[nlog
O (1) n].

Similarly, NQP will stand for NTIME[nlog
O (1) n].

We will use the following explicit error-correcting code.

Theorem 21 (Explicit Linear Error-correcting Codes [33, 53]). There exists a sequence

{EN }N ∈N of error-correcting codes EN : {0, 1}N → {0, 1}M (N ) with the following properties:

• EN (x ) can be computed by a uniform deterministic algorithm running in time poly(N ).
• M (N ) = b · N for a fixed b ≥ 1.

• There exists a constant δ > 0 such that any codeword EN (x ) ∈ {0, 1}M (N ) that is corrupted
on at most a δ -fraction of coordinates can be uniquely decoded to x by a uniform deterministic
algorithm D running in time poly(M (N )).

• Each output bit is computed by a parity function: for each input length N ≥ 1 and for each
coordinate i ∈ [M (N )], there exists a set SN ,i ⊆ [N ] such that for every x ∈ {0, 1}N ,

EN (x )i =
⊕

j ∈SN ,i

x j .

Under the assumption that QP ⊆ P/poly, we present an efficient reduction from worst-case
MCSP to approximate MCSP: Given the truth table of a function f , we simply map it to EN (tt( f )).
The following lemma establishes the correctness of this reduction.

Lemma 22 (ReducingWorst-caseMCSP toApproximateMCSP). Assume QP ⊆ P/poly. Then
the error-correcting code EN from Theorem 21 satisfies the following:

(1) fn ∈ Circuit[2n1/3
]⇒ EN (tt( fn )) ∈ Circuit[2

√
m],15

(2) fn � Circuit[2n2/3
]⇒ EN (tt( fn )) is hard to (1 − δ )-approximate by 2

√
m-size circuits,

wherem = Θ(n).

Proof. For the first implication, we consider the map

C, i �→ EN (tt(C ))i ,

where C is a circuit with n inputs and size 2n1/3
, i ∈ {0, 1}m , andm = log |EN |. The map takes an

input of length 2O (n1/3 ) , and is computable in time 2O (n) ; hence, the map is in QP ⊆ P/poly. Thus,

there exists a circuit F of size 2O (n1/3 ) that, taking the description of a circuit C of size 2n1/3
and

i ∈ {0, 1}m as input, outputs the ith bit of EN (tt(C )). Therefore, if fn is computed by a circuit C of

size 2n1/3
, then the function i �→ EN (tt( fn ))i is computable by a circuit F (C, -) of size 2O (n1/3 ) < 2

√
m .

The second implication is obtained in a similar way by considering the map

C, i �→ DN (tt(C ))i ,

where C is a circuit with m = log |EN | inputs and size 2
√

m , i ∈ {0, 1}n and DN is an efficient
decoder of EN . The new map is computable in time 2O (m) and again is in QP ⊆ P/poly. Therefore,
if EN (tt( fn )) is (1 − δ )-approximated by a circuit C of size 2

√
m , fn is computable by a circuit of

size 2O (
√

m) < 2n2/3
. �

Since the error-correcting code of Theorem 21 can be computed by using one layer of XOR gates,
we obtain the following corollary.

Corollary 23. If QP ⊆ P/poly, then MCSP[2n1/3
, 2n2/3

] is reducible to MCSP[(2
√

n , 0), (2
√

n ,δ )]
by using a many-one reduction computed by a linear-size circuit of XOR gates.

15Here, we identify EN (tt(fn )) with the function whose truth table is EN (tt(fn )).
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We are ready to prove the main result of this section:

Theorem 24 (Magnification for Worst-case MCSP via Error-correcting Codes).
Assume that MCSP[2n1/3

, 2n2/3
] � Formula-XOR[N 1+ε ] for some constant ε > 0. Then either QP �

P/poly or NP � NC1.

Proof. We prove the contrapositive. Assume that QP ⊆ P/poly and NP ⊆ NC1. Reference
[46, Lemma 16] shows that NP ⊆ NC1 implies MCSP[(2

√
n , 0), (2

√
n ,δ )] ∈ Formula[N 1+ε ] for any

constant ε > 0. By combining this with Corollary 23, we obtain that MCSP[2n1/3
, 2n2/3

] ∈ Formula-
XOR[O (N 1+ε )]. �

3.2.2 Kernelization-based Approach from Reference [11]. Now, we give another proof of HM
Frontier B1 by adapting techniques from Reference [11]. In fact, the following proof implies (under
a straightforward adjustment of parameters) both HM Frontier B1 and HM Frontier D1.

Theorem 25 (Magnification for Worst-case MCSP via Kernelization for GapAND-

Formula-XOR). Assume that MCSP[2n1/3
] � GapANDO (N )-Formula-XOR[N ε ] for some constant

ε > 0. Then NQP � NC1.

Proof Sketch. The following proof is just an adaption of Theorem 3.4 of Reference [11].

Let N = 2n and s = 2n1/3
= 2(log N )1/3 . Let S = MCSP[2n1/3

]−1 (1) (that is, all yes instances of

MCSP[2n1/3
] on inputs of length N ), and m = |S |. We have that m ≤ sO (s ) . Let EN be the error

correcting code from Theorem 21. Recall that EN maps from {0, 1}N to {0, 1}b ·N for a constant b.
Let T = c1 · logm for a large enough constant c1. Suppose we pick T random indexes I =

(i1, i2, . . . , iT ) from [b ·N ] independently and uniformly at random. Given x ∈ {0, 1}N , letHI (x ) :=
(EN (x )i1 ,EN (x )i2 , . . . ,EN (x )iT

).
By a Chernoff bound and a union bound, we can see that with high probability over random

choices of I , all inputs from S are mapped into distinct strings in {0, 1}T by HI . We fix such a good
collection of indexes Igood.
Now, consider the following language:

Lcheck : [b · N ]T × {0, 1}T × [b · N ] × {0, 1} → {0, 1},

which takes as inputs I (hash function coordinates), w (hash value), i (index), and z (check-bit).

Lcheck (I ,w, i, z) guesses an input y ∈ {0, 1}N , and accepts if HI (y) = w , MCSP[2n1/3
](y) = 1, and

EN (y)i = z. It is easy to see that Lcheck is in NQP.

Given x ∈ {0, 1}N , we claim that MCSP[2n1/3
](x ) = 1 iff Lcheck (Igood,HIgood (x ), i,EN (x )i ) = 1 for

all i ∈ [b · N ].

(1) When MCSP[2n1/3
](x ) = 1, on the particular guess y = x , Lcheck (Igood,HIgood (x ), i,EN (x )i )

accepts for all i ∈ [b · N ].

(2) When MCSP[2n1/3
](x ) = 0, we set z = HIgood (x ). By our choice of Igood, there is at most one

x ′ satisfying both MCSP[2n1/3
](x ′) = 1 and HIgood (x ′) = z. If there is no such x ′, then all

Lcheck (Igood,HIgood (x ), i,xi ) reject. Otherwise, we have x � x ′. Let i be an index such that
EN (x )i � EN (x ′)i . Then Lcheck (Igood,HIgood (x ), i,EN (x )i ) rejects.

Moreover, in the second case, Lcheck (Igood,HIgood (x ), i,EN (x )i ) indeed rejects at least for a con-
stant fraction of i ∈ [b · N ], since EN (x ) is an error correcting code,
Now suppose NQP ⊆ NC1 for the sake of contradiction. Since HIgood (x ) can be computed

by T = N o (1) many XOR gates (Igood is hardwired into the circuit), we can construct b · N
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Formula-XOR[N o (1)] circuits C1,C2, . . . ,Cb ·N , such that if MCSP[2n1/3
](x ) = 1 then Ci (x ) = 1 for

all x , and otherwise Ci (x ) = 0 for a constant fraction of i’s.
By a simple error reduction via random sampling, we constructm = O (N ) Formula-XOR[N o (1)]

circuits D1,D2, . . . ,Dm , such that if MCSP[2n1/3
](x ) = 1 then Di (x ) = 1 for all x , and otherwise

Di (x ) = 0 for at least a 0.9 fraction of inputs. Hence, we have MCSP[2n1/3
] ∈ GapANDO (N )-

Formula-XOR[N o (1)], a contradiction to the assumption. �

Remark 26. We note that GapANDO (N )-Formula-XOR[N ε ] circuits are a special case of both

Formula-XOR[N 1+ε ] circuits and GapANDO (N )-Formula[N 2+ε ] circuits. Therefore, the above
proof implies both HM Frontier B1 and HM Frontier D1.

3.3 NP � NC1 and Almost-formula Lower Bounds for MCSP

Recall that near-quadratic formula lower bounds are known for MCSP[2no (1)
, 2no (1)

]. However,
a hardness magnification obtained by a super efficient construction of anticheckers established
in Reference [43] states that NP ⊆ P/poly implies almost linear-size circuits for a worst-case

version of parameterized MCSP[2no (1)
, 2no (1)

]. Consequently, if we could make the hardness mag-
nification work for formulas, then NP � NC1 would follow. We make a step in this direction by
showing that NP ⊆ NC1 implies the existence of almost-formulas of almost linear size solving

the worst-case MCSP[2no (1)
, 2no (1)

], cf. Theorem 29. This is established by a more detailed analysis
of the proof from Reference [43] extended with an application of the Valiant-Vazirani Isolation
Lemma (cf. Reference [6, Lemma 17.19]) in the process of selecting anticheckers. We also observe
that almost-formulas of sub-quadratic size cannot solve PARITY, cf. Theorem 30. These results
yield HM Frontier C1 and HM Frontier C3.
We start the presentation with a lemma needed to derive HM Frontier C1.

Lemma 27 (Anticheckers). Assume NP ⊆ NC1. Then for any λ ∈ (0, 1) there are circuits {C2n }∞n=1
of size 2n+O (nλ ) , which given tt( f ) ∈ {0, 1}N , output 2O (nλ ) n-bit strings y1, . . . ,y2O (nλ ) together with

bits f (y1), . . . , f (y
2O (nλ ) ) forming a set of anticheckers for f , i.e., if f is hard for circuits of size 2nλ

then every circuit of size 2nλ
/2n fails to compute f on one of the inputsy1, . . . ,y2O (nλ ) . Moreover, each

pair yi , f (yi ) is generated by a subcircuit of C2n with inputs y1, . . . ,yi−1, f (y1), . . . , f (yi−1),tt( f )
whose only gates with fanout > 1 are y1, . . . ,yi−1, f (y1), . . . , f (yi−1).

Proof. This proof follows [43]. Our contribution here is the “moreover” part, but we also give a
more succinct self-contained proof. For each Boolean function f the desired set of anticheckers is
known to exist, the only problem is to find it with a circuit of the desired size and formula-like form.
To do so, wewill simulate the proof of the existence of anticheckers butmake the involved counting
constructive by using linear hash functions and the assumption NP ⊆ NC1. Additionally, for the
“moreover” part of the lemma, we will employ the Valiant-Vazirani Isolation Lemma (cf. Reference
[6, Lemma 17.19]) in the process of selecting good anticheckers.

Let λ ∈ (0, 1) and f be a Boolean function with n inputs hard for circuits of size 2nλ
. For j n-bit

strings y1, . . . ,yj and s ∈ [0, 1], define a predicate

Pf (y1, . . . ,yj )[s] iff ≤ s fraction of all circuits of size 2nλ

/2n compute f on y1, . . . ,yj .

Further, let Rf (y1, . . . ,yj ) be the number of circuits of size 2nλ
/2n that do not make any error on

y1, . . . ,yj when computing f . Note that Pf and Rf depend on j values of f , not on the whole tt( f ),
but for simplicity we do not display f (y1), . . . , f (yj ) among the parameters of Pf and Rf .
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Suppose that given tt( f ), we already generated y1, . . . ,yi−1, f (y1), . . . , f (yi−1) such that
Pf (y1, . . . ,yi−1)[(1 − 1/4n)i−1] holds. For i = 1 the generated set is empty. We want to
find yi , f (yi ) such that Pf (y1, . . . ,yi )[(1 − 1/4n)i ]. To do so, we will construct a formula

F (y1, . . . ,yi , f (y1), . . . , f (yi )) of size 2O (nλ ) (if i ≤ 2O (nλ )) such that under the assumption
Rf (y1, . . . ,yi−1) ≥ 2n2, both of the following hold:

F (y1, . . . ,yi , f (y1), . . . , f (yi )) = 1 ⇒ Pf (y1, . . . ,yi )[(1 − 1/4n)i ],

Pf (y1, . . . ,yi−1)[(1 − 1/4n)i−1] ⇒ ∃yi , F (y1, . . . ,yi , f (y1), . . . , f (yi )) = 1.

Assume for now that we already have such a formula F . We first show how to find yi , f (yi ) given
F by an exhaustive search through all n-bit strings in combination with Valiant-Vazirani Lemma.

Consider a 2O (nλ )-size formula F r,h (y1, . . . ,yi−1, z, f (y1), . . . , f (yi−1), f (z)) computing the fol-
lowing predicate

F (y1, . . . ,yi−1, z, f (y1), . . . , f (yi−1), f (z)) ∧ “h(z) = 0r ”, (1)

where z ∈ {0, 1}n , r ≤ n + 2 and h ∈ Hn,r for a pairwise independent efficiently computable hash
function collection Hn,r from {0, 1}n to {0, 1}r . Formula F r,h exists since NP ⊆ NC1. By Valiant-
Vazirani Lemma, for fixed y1, . . . ,yi−1, f (y1), . . . , f (yi−1), if h is chosen randomly from Hn,r and
r randomly from {2, . . . ,n + 1}, then with probability ≥ 1/8n, there is a unique z satisfying (1).

Therefore, the probability that none of 2O (nλ ) many randomly chosen tuples r ,h guarantees a

unique solution is < (1 − 1/8n)2
O (nλ ) ≤ 1/22

O (nλ )/8n . That is, there exist a set R of 2O (nλ ) tuples
r ,h such that for each y1, . . . ,yi−1, f (y1), . . . , f (yi−1), at least one tuple r ,h from R will guarantee
a unique solution. Consequently, for each y1, . . . ,yi−1, f (y1), . . . , f (yi−1) for at least one r ,h ∈ R
the following 2n+O (nλ )-size formula:

Dr,h
j (y1, . . . ,yi−1, f (y1), . . . , f (yi−1)) =

∨
k=1, ...,2n

(bk
j ∧ F r,h (y1, . . . ,yi−1,b

k , f (y1), . . . , f (yi−1), f (bk )),

where bk
j is the jth bit of the kth n-bit string bk (in the lexicographic order), outputs the jth bit of a

good antichecker yi . Since NP ⊆ NC1, we can select the right yi from the 2O (nλ ) candidate strings

corresponding to tuples r ,h from R by applying a formula of size 2O (nλ ) on top of them. Having
yi , a formula of size poly (n)2n with access to tt( f ) can generate f (yi ). See Figures 1 and 2 for the
above oracle circuit construction.
Iteratively, a circuit of size 2n+O (nλ ) will generate y1, . . . ,y2O (nλ ) , f (y1), . . . , f (y

2O (nλ ) ) such

that Pf (y1, . . . ,y2O (nλ ) )[(1 − 1/4n)2
O (nλ )

] as long as Rf (y1, . . . ,y2O (nλ ) ) ≥ 2n2. Deciding whether

Rf (y1, . . . ,yi ) ≥ 2n2 is in NP ⊆ NC1 (on input y1, . . . ,yi , f (y1), . . . , f (yi ), 12
nλ

), so there are for-

mulas of size 2O (nλ ) for it. Since (1−1/4n)2
O (nλ ) ≤ 1/22

O (nλ )/4n , we reach Rf (y1, . . . ,yi ) < 2n2 with

i ≤ 2O (nλ ) . When this happens, the remaining < 2n2 circuits of size 2nλ
/2n can be generated by

an NPcoNP algorithm, and since NP ⊆ NC1, by a formula of size 2O (nλ ) . Finally, for each of the re-
maining circuits, we can find an n bit string witnessing its error exhaustively by a formula of size

2n+O (nλ ) . Altogether, the desired anticheckers y1, . . . ,y2O (nλ ) with bits f (y1), . . . , f (y
2O (nλ ) ) will

be generated by a circuit of size 2n+O (nλ ) . Note that this circuit will have the desired formula-like
structure, because its only gates with fanout bigger than 1 are those computing tuples yi , f (yi ).

Claim 28. If Pf (y1, . . . ,yi−1)[(1 − 1/4n)i−1] and Rf (y1, . . . ,yi−1) ≥ 2n2, then for some yi ,

Pf (y1, . . . ,yi )[(1 − 1/4n)i−1 (1 − 1/2n)].
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Fig. 1. The oracle circuit Dr,h
j for any (r ,h) ∈ R and j ∈ {0, 1}logn . The NP-oracles, represented as boxes, are

simulated in the proof by polynomial-sized formulas assuming NP � NC1.

Claim 28 is proved by a standard counting argument, cf. Reference [43, Claim 22]. Observe that
with Claim 28, we can construct the desired formula F . Here, we employ approximate counting
with linear hash functions: If X ⊆ {0, 1}m is a set of size s , then there are matrices A1, . . . ,Alog(4sc )

such that each Aj defines a linear function mapping a Cartesian power X c to (s (1 + ε ))c/ log(4sc ),
for c = 2(ε−1 (log log s + log ε−1)). Moreover, for each Aj there is X c

j ⊆ X c satisfying ∀x ∈ X c
j ∀x ′ ∈

X c (x � x ′ → Aj (x ) � Aj (x ′)), and
⋃

j X
c
j = X c . Mapping x ∈ X c to Aj (x ) in the jth block of size

(s (1 + ε ))c/ log(4sc ), for the first Aj with x ∈ X c
j , thus defines an injection from X c to (s (1 + ε ))c ,

which witnesses that the size of X is ≤ s (1 + ε ). See, e.g., Reference [31, Section 3, 2nd paragraph]
for details.
Therefore, once we have Pf (y1, . . . ,yi )[(1− 1/4n)i−1 (1− 1/2n)], we can conclude that there are

matricesA1, . . . ,A2O (nλ ) defining an injective mapping of a Cartesian power (with exponent of rate

poly (n)) of the set of all circuits of size 2nλ
/2n that compute f on y1, . . . ,yi to the same Cartesian

power of (1 − 1/4n)i−1 (1 − 1/2n) (1 + 1/4n) ≤ (1 − 1/4n)i fraction of the set of all circuits of size

2nλ
/2n. The existence of such matrices, not only witnesses Pf (y1, . . . ,yi )[(1 − 1/4n)i ] but is also

an NPcoNP property, and since NP ⊆ NC1, decidable by a formula F of size 2O (nλ ) . �

Theorem 29 (Improved Magnification via Anticheckers). Assume that MCSP[2n1/2
/2n,

2n1/2
] is hard for circuits C (with 2n inputs) of size 2n+O (n1/2 ) with the following form. Given tt( f ),

subcircuits of C generate y1, . . . ,y2O (n1/2 ) , f (y1), . . . , f (y
2O (n1/2 ) ) so that each yi , f (yi ) is generated

by a subcircuit of C with inputs y1, . . . ,yi−1, f (y1), . . . , f (yi−1),tt( f ) whose only gates with fanout
> 1 are y1, . . . ,yi−1, f (y1), . . . , f (yi−1). Having y1, . . . ,y2O (n1/2 ) , f (y1), . . . , f (y

2O (n1/2 ) ), C applies a

formula of size 2O (n1/2 ) on top of these gates.
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Fig. 2. The overall oracle circuit for any iteration i ≤ 2O (nλ ) , where Rf (y1, . . . ,yi ) ≥ 2n2.

Then NP � NC1.

Proof. If NP ⊆ NC1, then MCSP[2n1/2
/2n, 2n1/2

] can be solved by circuits of size 2n+O (n1/2 ) of
the required form: given a Boolean function f , apply Lemma 27 to generate a set of its anticheckers
y1, . . . ,y2O (n1/2 ) together with bits f (y1), . . . , f (y

2O (n1/2 ) ) and using NP ⊆ NC1 decide whether f is

hard for circuits of size 2n1/2
/2n on y1, . . . ,y2O (n1/2 ) . �

Note that circuits from the assumption of hardness magnification via anticheckers, Theorem 29,

are 2O (n1/2 )-almost-formulas of almost linear size, which gives us HM Frontier C1. We can now
complement it with HM Frontier C3.
Consider an s-almost-formula. Each gate G of F with fanout larger than 1 is computed by a

formula with inputs being either the original inputs of F or gates of F with fanout larger than 1.
We call any maximal formula of this form a principal formula of G.

Theorem 30. PARITY � nε -almost-Formula[n2−9ε ], if ε < 1.

Proof Sketch. For the sake of contradiction, assume PARITY has nε -almost-formulas of size
n2−9ε . Since there are only nε gates of fanout > 1, we can replace these gates by appropriate con-
stants and obtain formulas Fn of size n2−8ε computing PARITY with probability ≥ 1/2 + 1/2nε

. In
more detail, each formula Fn checks if the principal formulas compute the fixed constants. If this
is the case, then Fn outputs the output of the original almost-formula (since gates with fan-out
larger than 1 are fixed, the output can be computed by a formula). Otherwise, Fn outputs a fixed
constant, whichever is better on the majority of the remaining inputs. This does not increase the
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size of the resulting formula Fn by more than a constant factor. As pointed out by Komargodski-
Raz [36], each Boolean function f on n input bits can be approximated by a real polynomial of

degree O (t
√
L( f )

logn

log logn
) up to a point-wise additive error of 2−t , and this can be shown to im-

ply that each formula of size o((n/t )2 (log logn/ logn)2) computes PARITY over n input bits with
probability at most 1/2+1/2t+O (1) (for large enough t ). Taking t = n2ε , we get a contradiction. �

3.4 NP � NC1 and AC0 Lower Bounds for (n − k )-Clique

In this section, we discuss the proofs of some statements claimed in HM Frontier E from Section 1.1.
Recall that we consider graphs on n vertices that are described in the adjacency matrix represen-
tation. The input graph is therefore represented usingm = Θ(n2) bits. We begin with the proof of
the magnification result in HM Frontier E1.

Proposition 31. Let k (n) = (logn)C for some constantC . If there exists ε > 0 such that for every
depth d ≥ 1, (n − k )-Clique � AC0

d
[m1+ε ], then NP � NC1.

Proof. We use a straightforward reduction to the magnification theorem for k-Vertex-Cover
established in Reference [46, Theorem 7]. (We state Proposition 31 in a slightly weaker form just
for simplicity.) Indeed, a graph G on n vertices has a vertex cover of size ≤ k if and only if G
has an independent set of size ≥ n − k . In turn, the latter is true if and only if the complement
graph G has a clique of size ≥ n − k . Therefore, by negating input literals, the complexities of
(n −k )-Clique and k-Vertex-Cover are equivalent with respect to AC0 circuits. For this reason, the
hardness magnification theorem of Reference [46] immediately implies Proposition 31. �

We state below conditional and unconditional lower bounds on the complexity of detecting very
large cliques. The next proposition implies the lower bound claimed in HM Frontier E4.

Proposition 32 ([4]; see also Reference [32, Section 9.2]). For k (n) ≤ n/2, every monotone

circuit for (n − k )-Clique requires 2Ω(k1/3 ) gates.

Interestingly, the problem can be solved by (bounded depth) polynomial size monotone circuits if
k ≤

√
logn [4].

Finally, by the observation employed in the proof of Proposition 31, for non-monotone com-
putations the complexities of detecting large cliques and small vertex covers are equivalent. A
consequence of this is that one can show the following result, which implies the statement in HM
Frontier E2.

Proposition 33. If ETH for non-uniform circuits holds, then (n − k )-Clique � P/poly as long as
ω (logn) ≤ k ≤ n/2.

Indeed, under ETH the k-Vertex-Cover problem cannot be solved in time 2o (k ) · poly(m) (see
References [29] and [19, Theorem 29.5.9]). Further discussion on the conditional hardness of k-
Vertex-Cover that also applies to (n − k )-Clique appears in Reference [46].

4 HARDNESS MAGNIFICATION AND NATURAL PROOFS

4.1 Equivalences

The main contribution of this section is new hardness magnification results showing non-
learnability of circuit classes from slightly super-linear lower bounds for the approximate version
of MCSP and the gap version of MCSP. We use these magnification results to prove Theorem 1.

Lemma 34 (Hardness Magnification for Learnability from Lower Bounds for Approx-
imate MCSP). Let s, t : N → N be size functions such that n ≤ s (n) ≤ t (n) and ε,δ be
parameters such that ε < 1/2, 0 ≤ δ ≤ 1/9. If for infinitely many input lengths N = 2n ,
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MCSP[(s, 0), (t , ε )] � Circuit[N ·poly(t (n)/ε )], then for infinitely many input lengthsn, Circuit[s (n)]
cannot be learnt up to error ε/2 with confidence 1 − δ by t (n)-size circuits using non-adaptive mem-
bership queries over the uniform distribution.

We also show a related result that gives lower bounds for learnability of a circuit class C using
C-circuits by starting with a lower bound against worst-case MCSP instead of the average-case.

Lemma 35 (Hardness Magnification for Learnability from Lower Bounds for Gap
MCSP). Let c ≥ 1 be an arbitrary constant. If there is ε < 1/2, such that infinitely many in-
put lengths N = 2n , MCSP[nc , 2n/nc ] � Circuit[N 1+ε ], then for every γ ∈ (0, 1), for infinitely
many input lengths n, Circuit[nc ] cannot be learnt up to error 1/O (n2c ) with confidence 1 − 1/n by

Circuit[2O (nγ )]-circuits using non-adaptive membership queries over the uniform distribution.

Lemmas 35 and 34 can be used to derive Theorem 1, which we recall below.

Theorem 36 (Theorem 1 Recalled). The following statements are equivalent:

(a) Hardness of approximate MCSP against almost-linear size circuits.

There exist c ≥ 1, 0 < γ < 1, and ε > 0 such that MCSP[(nc , 0), (2nγ
,n−c )] � Circuit[N 1+ε ].

(b) Hardness of worst-case MCSP against almost-linear size circuits.

There exists c ≥ 1 and ε > 0 such that MCSP[nc , 2n/nc ] � Circuit[N 1+ε ].
(c) Hardness of sub-exponential size learning using non-adaptive queries.

There exist � ≥ 1 and 0 < γ < 1 such that Circuit[n�] cannot be learned up to errorO (1/n� ) un-

der the uniform distribution by circuits of size 2O (nγ ) using non-adaptive membership queries.
(d) Non-existence of natural properties against polynomial size circuits.

For some d ≥ 1 there is no Circuit[poly(N )]-natural property useful against Circuit[nd ].
(e) Existence of non-uniform PRFs secure against sub-exponential size circuits.

For every constant a ≥ 0, there exists d ≥ 1, a sequence F = {Fn }n≥1 of families Fn of n-bit

Boolean functions fn ∈ Circuit[nd ], and a sequence of probability distributions D = {Dn }n≥1
supported over Fn such that, for infinitely many values of n, (Fn ,Dn ) is pseudo-random func-

tion family that (1/Nω (1) )-fools (oracle) circuits of size 2a ·n .

Proof of Theorem 1. The following implications establish the desired equivalences.

(a) =⇒ (c ): For the parameters c,γ , ε given by (a), we apply Lemma 34 for s (n) = nc and t (n) = 2nγ
,

to see that for someγ ′ > 0,Circuit[nc ] cannot be learned by circuits of size 2O (nγ ′ ) via non-adaptive
queries up to an error O (1/nc ).

(c ) =⇒ (d ): We show the contrapositive of this implication. Suppose that for every d ≥ 1, there
exists a Circuit[poly(n)]-natural property that is useful against Circuit[nd ] for all large enough n.

By Theorem 5, for every c ≥ 1, we can learn Circuit[nc ] by a sequence of oracle Circuit[2O (n1/2 )]-
circuits up to an error of n−c , by choosing d = 2ac for the constant a from Theorem 5.

(d ) =⇒ (a), (d ) =⇒ (b): Trivial, using the fact that random functions are hard.

(c ) =⇒ (e ): Follows from the contrapositive of Theorem 10.

(e ) =⇒ (c ): Follows from the non-uniform version of Proposition 29 in Reference [45], using
essentially the same proof.

(b) =⇒ (c ): For the parameter c given by (b), we apply Lemma 35 to see that Circuit[nc ] cannot
be learned by circuits of size 2O (nγ ) via non-adaptive queries up to an error O (1/nc ), for any γ ∈
(0, 1). �
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Wenow complete the proof of Theorem 1 by proving Lemmas 34 and 35. In both lemmas, we pro-
ceed by applying the learning algorithm as a “distinguisher,” which helps to solve MCSP. This idea
appeared already in Reference [45]. In more detail, we run the learning algorithm on an input of
MCSP and check if the learning algorithm successfully learnt the function represented by the input.
If the input was an easy instance of MCSP, then our algorithm will accept with high probability.
Otherwise, it will reject. By standard amplification and derandomization procedures, we then ob-
tain the desired circuit for MCSP. The crucial point is that the circuit will be, in fact, very efficient.

Proof of Lemma 34. For the promise problem MCSP[(s, 0), (t , ε )] over N inputs, define

Πyes = {y ∈ {0, 1}N | ∃ circuit of size ≤ s (n) that computes fy },
Πno = {y ∈ {0, 1}N | no circuit of size ≤ t (n) (1 − ε )-approximates fy }.

We prove the contrapositive of the statement, by showing a reduction from MCSP[(s, 0), (t , ε )]
to a learning algorithm for Circuit[s (n)] using non-adaptive membership queries over the
uniform distribution. For a fixed ε < 1/2 and 0 ≤ δ ≤ 1/9, let {Dn }n≥1 ∈ Circuit[t (n)] be the
corresponding sequence of oracle circuits, which learns Circuit[s (n)] up to error ε/2, where Dn

makes non-adaptive queries to some function f ∈ Circuit[s (n)] over n inputs.
Let q = q(n) = 200

ε2
. Define FN : {0, 1}N × {0, 1}nq (n) × {0, 1}t (n) → {0, 1} as the sequence of

randomized circuits such that:
z ∈ Πyes =⇒ Pr

y1,w
{FN (z,y1,w ) = 1} > 2/3,

z ∈ Πno =⇒ Pr
y1,w

{FN (z,y1,w ) = 1} < 1/3.

The reduction FN does the following. Let Y = (x1, . . . ,xt (n) ) be the set of queries made by Dn .
FN runs the learner Dn with input w as its source of internal randomness and answers its oracle
queries to fz by using the other input z ∈ {0, 1}N . If the output string of the learner cannot be
interpreted as a t (n)-sized circuit, then FN outputs 0. Otherwise, let h be the t (n)-sized circuit
on n inputs, which can interpret the hypothesis output by the learner as a t (n)-sized circuit. FN

then interprets the random input y1 as a sequence of q random examples v1, . . . ,vq ∈ {0, 1}n and
computes h on each of these. It then forms a string u ∈ {0, 1}q , where for every i ∈ [q],ui = 1
if and only if h(vi ) = fz (vi ). Finally, it uses a threshold gate on T on q(n) inputs to check if the
Hamming weight of u is at least ((1 − 3ε/4)q).
We now show the correctness of the reduction. If z ∈ Πyes , then fz is computed by some circuit

of size at most s (n). Thus, for every random choice of y1 and w , Dn can learn the function fz
and with probability at least (1 − δ ), output a hypothesis h that has an error of at most ε/2 with
respect to fz . Now, for the q samples given by y1, by an application of Hoeffding’s inequality
(Lemma 13), the probability that the Hamming weight of u ∈ {0, 1}q is lesser than (1 − 0.6ε ) q is
at most 2 exp(−2qε2/100), which is at most 1/4 for our choice of q. When δ ≤ 1/9, we see that
T (u) = 1 with probability at least (1 − δ )3/4 ≥ 2/3.

However, if z ∈ Πno , then no circuit of size at most t (n) can even (1 − ε )-approximate fz . Thus,
for any random choice of y1 andw , any hypothesis h which Dn outputs is a circuit of size at most
t (n) and thus is at least ε-far from fz . By a similar application of Hoeffding’s inequality, we see
that the probability that the Hamming weight of u ∈ {0, 1}q is greater than (1 − 0.9ε ) q is at most
2 exp(−2qε2/100) ≤ 1/4. Therefore, T (u) = 0 with probability 2/3.
For the next step, we need to derandomize the circuits FN . Define EN as

EN : {0, 1}N×
(
{0, 1}n ·q+t (n)

)R
→ {0, 1},

EN (z,y (1), . . . ,y (R ) ) =MAJR (FN (z,y (1) ), . . . , FN (z,y (R ) )),

where R = CN and each y (j ) ∈ {0, 1}n ·q+t (n) , for each j ∈ [R].
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When z ∈ Πyes , then using Hoeffding’s inequality, we see that with probability at most 2−2N

(for suitably chosen C), the string (FN (z,y (1) ), . . . , FN (z,y (R ) )) has Hamming weight ≤ 3R/5.
Similarly, when z ∈ Πno , with probability at most 2−2N , the string (FN (z,y (1) ), . . . , FN (z,y (R ) ))
has Hamming weight ≥ 2R/5. Thus, the majority gate differentiates between the two cases except
with probability at most 2−2N . We use Adleman’s trick [6] to fix a string α ∈ {0, 1}R ·(n ·q+t (n))

which correctly derandomizes FN on all inputs in Πyes and Πno and call the resulting circuit as
E∗N which computes the function E∗N : {0, 1}N → {0, 1}.
We next compute the size of E∗N . Each FN (z,y (i ) ) is fixed to FN (z,α (i ) ), where

α (i ) ∈ {0, 1}(n ·q+t (n)) is the ith section of the hardwired random string α . Observe that for
the set of oracle queries Y made by Dn , it is enough to use appropriate literals from the input z
whenever we need to access the truth table of fz . Indeed, wheneverDn uses a random example, the
randomness comes from α (i ) which is fixed non-uniformly and whenever it makes a membership
query, the set of queries Y is fixed for Dn because of its non-adaptivity. Recall that the size of
the circuit Dn is t (n) and the hypothesis h output by the learner can be interpreted as a circuit
and efficiently computed by another circuit of size poly(t (n)). Thus, the circuit size to compute
FN (z,α ) is at most poly(t (n) ·q) and the total circuit size to construct E∗N isO (N ·poly(t (n)/ε )). �

Proof Sketch of Lemma 35. We show a two-sided error randomized reduction from MCSP
[nc , 2n/nc ] to {Dn }n≥1. Let q = q(n) = O (n3c ). The reduction is almost the same as that of
Lemma 34. Here, we use a threshold gate on q(n) inputs which answers 1 whenever the Hamming
weight of its input is greater than (1 − 1/n1.5c )q(n).

When the input to MCSP[nc , 2n/nc ] is a yes instance, with probability at least (1 − 1/n), Dn

outputs a hypothesis hn ∈ Circuit[2nγ
] which has error at most 1/O (n2c ). Now for the q(n)

samples drawn uniformly at random, the probability that h agrees with the input instance on at
least a (1 − 1/n1.5c )q(n) samples is at least (1 − 1/n)2/3.
When the input to MCSP[nc , 2n/nc ] is a no instance, any hypothesis h which Dn outputs must

have error greater than 1/O (nc+2). Indeed, if the error is less than O (1/nc+2), then by hardwiring
all the error inputs by using circuits of size at most O ( 2n

nc+2 · n), we get a circuit of size at most
2n/nc , which is a contradiction to the promise of the no instance. By Hoeffding’s inequality, the
probability thath agrees with the input instance on atmost a (1−1/n1.5c )q(n) samples is at least 2/3.
The derandomization is the same as that of Lemma 34, obtained by repeating the above

reduction R = O (N ) times and computing the majority over the R outputs of the reduction. The
circuit size to compute MCSP[nc , 2n/nc ] is thus O (N · 2O (nγ )n3c ) = O (N 1+ε ), for ε = o(1). �

4.2 Toward a More Robust Theory

The question of non-naturalizability of hardness magnification for worst-case versions of MCSP is
connected to the question of basing hardness of learning on the assumption NP � Circuit[2O (nγ )].
For simplicity, we illustrate the connection on the case of hardness magnification for
MCSP[nc/2n,nc ], but with a different choice of parameters, we could similarly consider versions
of worst-case MCSP closer to those appearing in the existing HM frontiers such as HM frontier C.

Proposition 37. Assume that there is d ≥ 2 such that NP � Circuit[2O (n1/d )] implies hardness

of learning Circuit[nd ] by 2n1/d
-size circuits with error 1/nd . Then, there is a constant e such

that for every γ ∈ (0, 1) and c ≥ 1, MCSP[nc/2n,nc ] � Circuit[N 1+eγ c ] implies that there is no
P/poly-natural property against P/poly.

Proof. By Theorem 5, P/poly-natural property against P/poly implies that for every d there

are 2n1/d
-size circuits learning Circuit[nd ] with error 1/nd . By our assumption, this implies
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NP ⊆ Circuit[2O (n1/d )], for some d ≥ 2. We can now use NP ⊆ Circuit[2O (n1/d )] as the assumption
in the proof of Theorem 29 to conclude that there is a constant e independent of γ such that for
c ≥ 1, MCSP[nc/2n,nc ] ∈ Circuit[N 1+eγ c ]. �

A form of the opposite implication (i.e., non-naturalizable hardness magnification for a worst-
case version of MCSP implying that we can base hardness of learning on an assumption such as
NP � P/poly) holds as well. However, we need to assume NP-completeness of MCSP. Moreover,
instead of the non-naturalizability of hardness magnification, we need to assume a reduction
from worst-case MCSP to approximate MCSP. Note that such a reduction, if implemented very
efficiently, could be used to obtain a non-naturalizable hardness magnification for worst-case
MCSP from a non-naturalizable hardness magnification for approximate MCSP.

Definition 38. A p-time algorithm A k-reduces MCSP[s, t] to MCSP[(s, 0), (t , ε )] if it maps an
instance of MCSP[s, t] to an instance of MCSP[(s, 0), (t , ε )] and

(1) For f ∈ Circuit[s], A(tt( f )) is the truth table of a Boolean function in Circuit[sk ].
(2) For f � Circuit[t], A(tt( f )) is not (1 − ε )-approximable by circuits of size t1/k .

Proposition 39. Assume there is a p-time algorithmk-reducing MCSP[s, t] to MCSP[(s, 0), (t , ε )]
and that for all 0 < α < β < 1, MCSP[2αn , 2βn] is NP-complete. If for every sufficiently small α > 0
there is β < 1/k and 2βn-size circuits learning Circuit[2αn] with error ε , then NP ⊆ P/poly.

Proof. Let A be the p-time k-reduction from the statement and α > 0 be sufficiently small.
Assume we can learn in 2βn-size Circuit[2kαn] with error ε and kα < β < 1/k . This implies that
MCSP[(2kαn , 0), (2βn , ε )] is in P/poly. SinceA reduces an NP-complete problem MCSP[2αn , 2k βn]
to MCSP[(2kαn , 0), (2βn , ε )], this shows that NP ⊆ P/poly. �

5 THE LOCALITY BARRIER

5.1 Lower Bounds above Magnification Threshold

5.1.1 The Razborov-Smolensky Polynomial Approximation Method. In this section, we observe
that the lower-bound techniques of Razborov and Smolensky [49, 54] can be “localized.” The
following proposition instantiates the locality barrier for HM Frontier A.

Proposition 40 (Locality Barrier for HM Frontier A). The following results hold.

• (A1O) (Oracle Circuits from Magnification): MKtP[nc , 2nc ] ∈ AND-O-XOR[N 1.01]. More
precisely, MKtP[nc , 2nc ] is computed by circuits with N 1.01 gates and of the following form:
the output gate is an AND gate of fan-in O (N ), at the middle layer are oracle gates of fan-in
poly (n), and at the bottom layer are XOR gates.

• (A3O) (Extension of Lower-bound Techniques): For a constantd , assume thatO1, . . . ,Od ∈ N
satisfy

∏d
i=1Oi ≤

√
N/ω (logN )d . Then Majority cannot be computed by a depth-d

polynomial-size oracle (AC0[⊕])O circuit whose oracle gates on the ith level have fan-in at
most Oi .

The first item is immediate from the proof of Theorem 14 in Section 3.1. In what follows, we
prove the second item of Proposition 40.
Recall that the proof techniques of Razborov and Smolensky [49, 54] consist of two parts: The

first lemma shows that any low degree polynomial cannot approximate Majority. (A simple proof
sketch can be found in, e.g., Reference [37].)

Lemma 41. For any polynomial p ∈ F2[x1, . . . ,xN ] of degree ≤
√
N/4,

Pr
x∼{0,1}N

[p (x ) � Majority(x )] ≥ 1

4
.
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The second lemma shows that AC0[⊕] circuits can be approximated by low degree polynomials.
We show that this argument can be localized.

Lemma 42. Let C be a depth-d polynomial-size oracle AC0[⊕] circuit whose oracle gates on
the ith level have fan-in at most Oi . Then there exists a polynomial p ∈ F2[x1, . . . ,xN ] of degree

≤ O (logN )d ·∏d
i=1Oi such that Prx∼{0,1}N [p (x ) � C (x )] < 1

4 .

Proof Sketch. We convert each layer of the circuit C into a low degree probabilistic
polynomial p that approximates C .
Consider the ith level of a circuit C . NOT, OR, AND, and XOR gates can be converted into a

probabilistic polynomial of degree O (logN ) and error 1/poly(N ) in the standard way [49]. To
represent an oracle gate O as a low-degree polynomial, we simply take the multilinear extension
of the oracle gate O. Note that, at the ith level, the fan-in of the oracle gate O is bounded by Oi ;
thus, the oracle gate at the ith level can be represented as a polynomial of degree ≤ Oi . Thus,
in either cases, any gate at ith level can be represented as a probabilistic polynomial of degree
max{O (logN ),Oi }. Continuing this for i = 1, . . . ,d and composing resulting polynomials, we
obtain a probabilistic polynomial of degree

∏d
i=1 max{O (logN ),Oi } that approximates C . This

implies via standard techniques the existence of a (deterministic) polynomial of the same degree
that correctly computes the circuit on most inputs. �

These two lemmas immediately imply the Majority lower bound for (AC0[⊕])O :

Proof of (A3O) of Proposition 40. Suppose that there exists a depth-d polynomial-size
oracle AC0[⊕] circuit that computes Majority and satisfies the condition of Proposition 40. By
Lemma 42, there exists a polynomial p of degree at most O (logN )d · ∏d

i=1Oi ≤ o(
√
N ) that

approximates Majority. However, this contradicts Lemma 41. �

Finally, we mention that an incomparable bound can be obtained by using a lower bound for
AC0[⊕] interactive compression games.

Proposition 43 ([44, Corollary 5.3]). (A3O) Majority � (AC0[⊕])O[poly(n)] if the total

number of input wires in the circuit feeding the O-gates is N /(logN )ω (1) .

5.1.2 The Formula-XOR Lower Bound of Reference [57]. This section captures an instantiation
of the locality barrier for HM Frontier B. Throughout this section, we use the {−1, 1} realization
of the Boolean domain (that is, −1 represents True and 1 represents False). Let Formula-XOR on
variables x1, . . . ,xn be the class of formulas where the input leaves are labeled by parity functions
of arbitrary arity over x1, . . . ,xn .

Proposition 44 (Locality Barrier for HM Frontier B). The following results hold.

• (B1O) (Oracle Circuits from Magnification): For any ε > 0, MCSP[2n1/3
, 2n2/3

] ∈ Formula-
O-XOR[N 1.01], where every oracle O has fan-in at most N ε and appears in the layer right
above the XOR leaves.

• (B3O) (Extension of Lower-bound Techniques): For any δ > 0, InnerProduct over N input

bits cannot be computed by N 2−3δ -size Formula-O-XOR circuits with at most N 2−3δ oracle

gates of fan-in N δ in the layer right above the XOR leaves, for any oracle O.

To prove item 2 of Proposition 44, we adapt Tal’s [57] lower bound for bipartite formulas,16 for
which we need the following results.

16A bipartite formula on variables x1, . . . , xn, y1, . . . , yn is a formula such that each leaf computes an arbitrary function
in either (x1, . . . , xn ) or (y1, . . . , yn ). Formula-XOR circuits are a subset of bipartite formulas as one can always write
⊕(x1, . . . , x2n ) as the parity of ⊕(x1, . . . , xn ) and ⊕(xn+1, . . . , x2n ).
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Lemma 45 ([52, 57]). Let F be a De Morgan formula of size s that computes f : {−1, 1}n → {1, 1}.
Then, there exists a multilinear polynomial p over R of degreeO (

√
s ), such that for every x ∈ {−1, 1}n ,

p (x ) ∈ [F (x ) − 1/3, F (x ) + 1/3].

For any function f : {−1, 1}n → {−1, 1}, f is ε-correlated with a parity pS (x ) =
∏

i ∈S xi , if
|Ex ∈{−1,1}n [f (x ) · pS (x )]| ≥ ε .

Lemma 46. For any δ > 0, let F (x1, . . . ,xn ) be a Formula-O-XOR formula of size s , where every

oracle O has fan-in at most nδ and appears in the layer right above the XOR leaves. Then the
following hold true:

(1) There exists a multi-linear polynomial p (x1, . . . ,xn ) over R with at most sO (
√

s ) · 2nδ ·O (
√

s )

monomials such that for every x ∈ {−1, 1}n , sign(p (x )) = F (x ).
(2) There exists a parity function fT (x1, . . . ,xn ) that is at least ( 1

sO (
√

s ) ·2nδ O (
√

s )
)-correlated with F .

Proof. We assume that the oracle function is a Boolean function on nδ inputs. Let t ≤ s/nδ

be the number of oracle gates in F . Let p1, . . . ,ps be the leaves of F , where each pi is an XOR gate
over x1, . . . ,xn and every oracle gate д1, . . . ,дt is such that дi (x ) = O (pi1 (x ), . . . ,pi� (x )), where
� = nδ and pi j ∈ {p1, . . . ,pt } for every i ∈ [t], j ∈ [�].
Let F ′ be a De morgan formula obtained by replacing oracle gates in F with new variables zi

(for notational simplicity, we assume that every leaf is an input to some oracle gate), for i ∈ [t].
We now use Lemma 45 on F ′ to get a degree d = O (

√
t ) polynomial q(z) such that for every

z ∈ {−1, 1}t , sign(q(z)) = F ′(z). Expanding q(z) as a multilinear polynomial:

q(z) =
∑

S ⊆[t ], |S | ≤d

q̂(S )
∏
i ∈S

zi .

To prove the first item, we replace each zi by the original leaf, andwe get that for every x ∈ {−1, 1}n ,

F (x ) = sign ��
�

∑
S ⊆[t ], |S | ≤d

q̂(S )
∏
i ∈S

дi (x )��
	

= sign ��
�

∑
S ⊆[t ], |S | ≤d

q̂(S )
∏
i ∈S

��
�

∑
U ⊆[�]

Ô (U )
∏
j ∈U

pi j (x )��
	
��
	

= sign

��������
�

∑
S ⊆[t ]

S={i1, ...,i |S | }
|S | ≤d

∑
Ui1, ...,Ui |S | ⊆[�]

q̂(S ) · ��
�

∏
1≤k≤ |S |

Ô (Uik
)

∏
j ∈Uik

pik j (x )��
	

��������
	

,

where the second equality uses the fact that any Boolean function on � inputs can be represented
by a multilinear polynomial of degree at most � where each coefficient is between [−1, 1]. Clearly,
the number of monomials is at most sO (

√
s ) · 2nδ ·O (

√
s ) .

To prove the second item, first observe that for every z ∈ {−1, 1}t , q(z) · F ′(z) ∈ [2/3, 4/3],
because |q(z) − F ′(z) | ≤ 1/3 for every z. This also means that for the polynomial
r (x ) = q(д1 (x ), . . . ,дt (x )), Ex ∈{−1,1}n [r (x ) · F (x )] ≥ 2/3.
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Given that q̂(S ) = Ez∈{−1,1}s
[
q(z)

∏
i ∈S zi

]
, we see that |q̂(S ) | ≤ 4/3. We have

2/3 ≤ E
x ∈{−1,1}n

[F (x ) · r (x )]

= E
x ∈{−1,1}n

⎡⎢⎢⎢⎢⎢⎣
F (x ) ·

∑
S ⊆[t ], |S | ≤d

q̂(S )
∏
i ∈S

дi (x )

⎤⎥⎥⎥⎥⎥⎦
≤

∑
S ⊆[t ]

S={i1, ...,i |S | }
|S | ≤d

∑
Ui1, ...,Ui |S | ⊆[�]

q̂(S )
∏

1≤k≤ |S |
Ô (Uik

) E
x ∈{−1,1}n

⎡⎢⎢⎢⎢⎢⎣
F (x )

∏
1≤k≤ |S |

∏
j ∈Uik

pik j (x )

⎤⎥⎥⎥⎥⎥⎦
.

Since |q̂(S ) | ≤ 4/3 for every S ⊆ [t] and |Ô (U ) | ≤ 1 for everyU ⊆ [�], we see that there exists a set
S of size at most d and sets Ui1 , . . . ,Ui |S | such that |Ex ∈{−1,1}n [F (x ) · ∏1≤k≤ |S |

∏
j ∈Uik

pik j (x )]| ≥
1

t O (
√

t ) ·2nδ O (
√

t )
≥ 1

sO (
√

s ) ·2nδ O (
√

s )
. Taking pT be the parity of the parities given by

pT =
∏

1≤k≤ |S |
∏

j ∈Uik
pik j (x ), we see that pT is 1

sO (
√

s ) ·2nδ O (
√

s )
-correlated with F . �

Define the Inner Product modulo 2 function, InnerProductn : {−1, 1}n × {−1, 1}n → {−1, 1} as
IPn (x ,y) = (−1)

∑n
i=1 (1−xi )(1−yi )/4.

Proof Sketch of Proposition 44. The first item follows from an inspection of the proof of
Theorem 25 in Section 3.2. Theorem 24 gives the same oracle circuit construction (with different
oracles) under the assumption QP ⊆ P/poly.
The second item follows from Lemma 46. We observe that three different techniques used to

show Formula-XOR lower bounds localize. First, Tal’s lower bound based on sign rank shows that
the sign rank of any Formula-XOR circuit F is at most the number of monomials in the polynomial

p given by the first item of lemma 46. Since this is at most sO (
√

s ) · 2nδ ·O (
√

s ) and InnerProduct
has a sign rank that is at least 2n/2 [20], the lower bound follows. Second, Tal’s lower bound
based on the discrepancy of a function also localizes, as he shows that the discrepancy of F is
at least a constant times the correlation of F with the parity fT given by item 2 of Lemma 46,
which is at least Ω( 1

sO (
√

s ) ·2nδ O (
√

s )
), whereas the discrepancy of the inner product is at most 1/2n/2

(cf. Reference [32, Lemma 14.5]), thus proving the given lower bound for inner product. Finally, we
also observe that the lower-bound technique of showing high correlation of F with some parity
fT and the fact that inner product has exactly 2−n/2-correlation with any parity also localizes to
give the same lower bound. �

5.1.3 Almost-formula Lower Bounds. This section captures an instantiation of the locality
barrier for HM Frontier C. We recall the following definition. Consider an s-almost-formula. Each
gate G of F with fanout larger than 1 is computed by a formula with inputs being either the
original inputs of F or gates of F with fanout larger than 1. We call any maximal formula of this
form a principal formula of G.

Theorem 47 (Locality Barrier for HM Frontier C). The following results hold.

• (C1O) (Oracle Circuits from Magnification): MCSP[2n1/2
/2n, 2n1/2

] is computable by 2O (n1/2 )-

almost-formulas of size 2n+O (n1/2 ) with oracles of fanin 2O (n1/2 ) at the bottom layer of principal
formulas computing gates with fanout larger than 1.

• (C3O) (Extension of Lower-bound Techniques): For every ε < 1, PARITY is not in nε -almost-
Formula[n2−9ε ] even if the almost-formulas are allowed to use arbitrary oracles of fanin < nε

at the bottom layer of principal formulas computing gates with fanout larger than 1.
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Proof. The first item follows by inspecting the proof of Theorem 29. It is not hard to see that

MCSP[2n1/2
/2n, 2n1/2

] is computable by 2O (n1/2 )-almost-formulas FN of size 2n+O (n1/2 ) with local

oracles of fanin 2O (n1/2 ) . Moreover, the only gates of fanout larger than 1 are the gates computing
anticheckers y1, . . . ,y2O (n1/2 ) with bits f (y1), . . . , f (y

2O (n1/2 ) ). We want to show that the local
oracles are at the bottom of principal formulas generating gates with fanout larger than 1. To
achieve this, we need to modify formulas FN a bit.
First, note that FN contains an oracle that is applied on top of anticheckers y1, . . . ,y2O (n1/2 ) with

bits f (y1), . . . , f (y
2O (n1/2 ) ). To ensure that this oracle is at the bottom of a principal formula com-

puting a gate with fanout bigger than 1, we simply add dummy negation gates to the output gate
and the gates computing anticheckersy1, . . . ,y2O (n1/2 ) with bits f (y1), . . . , f (y

2O (n1/2 ) ), if necessary.
Second, note that each yi+1, f (yi+1) is generated as follows: (1) if Rf (y1, . . . ,yi ) ≥ 2n2 then

a subformula F ′ generates anticheckers yi+1, f (yi+1), and (2) if Rf (y1, . . . ,yi ) < 2n2 then
a subformula F ′′ generates anticheckers yi+1, f (yi+1). In both cases, we replace predicates
Rf (y1, . . . ,yi ) < 2n2 by oracles. In case 1, subformulas of F ′ with oracles at the bottom compute

predicates F r,h from the proof of Lemma 27. This process generates a set of 2O (n1/2 ) potential
anticheckers. F ′ chooses the right antichecker by applying another oracle. To ensure that this
top oracle is at the bottom of a principal formula, we add dummy negation gates to the gates
generating the potential anticheckers. This increases the number of gates with fanout larger than

1 only by 2O (n1/2 ) . In case 2, yi+1, f (yi+1) is generated by oracles outputting circuits that have not
been killed yet and evaluating them on all possible inputs. Here, we ensure that the oracles are at
the bottom by asking them to perform both tasks: choose the next alive circuit and evaluate it on
a given input. The oracle selecting the right antichecker from the set of potential anticheckers is
treated in the same way as in case 1. All in all, we obtain the desired oracle almost-formulas.
The second item is proved analogously to Theorem 30. For the sake of contradiction assume

PARITY has nε -almost-formulas of size n2−9ε with local oracles at the bottom of principal
formulas. Since there are only nε gates of fanout > 1, we can replace these gates by constants
and obtain formulas Fn of size n2−8ε with local oracles at the bottom computing PARITY with
probability ≥ 1/2 + 1/2nε

. Let L′( f ) be the size (i.e., the number of leafs) of the smallest formula
with local oracles at the bottom computing f . Since oracles have fanin < nε and are located
at the bottom, each function f : {−1, 1}n �→ {−1, 1} can be approximated by a polynomial of

degree O (t
√
L′( f )

logn

log logn
nε ) up to point-wise error of 2−t . This implies that each formula of

size o((n/t )2 (log logn/ logn)2 (1/nε )2) with local oracles at the bottom computes PARITY with
probability at most 1/2+1/2t+O (1) (for large enough t ). Taking t = n2ε , we get a contradiction. �

5.1.4 GapAND-Formula Lower Bounds. This section captures an instantiation of the locality
barrier for HM Frontier D.

Theorem 48 (Locality Barrier for HM Frontier D). The following results hold.

(1) (D1O) (Oracle Circuits from Magnification): MCSP[2
√

n] ∈ GapANDO (N )-ON o (1) -

Formula[N 2].
(2) (D3O) (Extension of Lower-bound Techniques): For 0 < β < ε < 1, AndreevN �

GapANDO (N )-ON β -Formula[N 3−ε ].

(3) (D3O) : Furthermore, MCSP[2n/n4] � GapANDO (N )-ON β -Formula[N 3−ε ], for 0 < β < ε < 1.

Item 1 of the theorem above follows directly from Theorem 25.
Next, we show that the classicalN 3−o (1)-formula size lower bound for theAndreev’s function [23,

56] localizes, even in the presence of a GapAND gate of bounded fan-in at the top of the formula.
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Proof of Item 2. Let m = N /2, recall that AndreevN is defined on a 2m-bit string z = x ◦ y,
where x ,y ∈ {0, 1}m . For simplicity, we assumem is a power of 2 in the following.

AndreevN (x ,y) first partitions x into logm blocks x1,x2, . . . ,xlogm , each of length m/ logm.
After that, it computes i ∈ {0, 1}logm as i = PARITY(x1) ◦ PARITY(x2) ◦ . . . PARITY(xlogm ). It then
treats i as an integer from [m], and outputs yi .
Now, suppose there is a GapANDO (N )-ON β -Formula[N 3−ε ] formula for AndreevN . Suppose

we fix the y variables to a string w ∈ {0, 1}m , and apply a random restriction keeping exactly
one variable from each block alive to x variables, then w.p. 0.9, we obtain a GapANDO (N )-ON β -

Formula[N 1−ε · polylog(N )] formula computing fw : {0, 1}logm → {0, 1} [56].
That is, for all w ∈ {0, 1}m , there exists an ON β -Formula[N 1−ε · polylog(N )] for-

mula 0.8-approximating fw . Note that there are at most 2N 1−ε+β ·polylog(N ) such ON β -
Formula[N 1−ε · polylog(N )] formulas, and there are 2N possible w ’s (Note that O is a fixed
oracle that does not depend onw). Since eachON β -Formula[N 1−ε · polylog(N )] formula can only
0.8-approximate 2α ·N many functions from {0, 1}logm → {0, 1} for a constant α < 1, there must
exist aw such that fw cannot be 0.8-approximated by such formulas, contradiction. �

Next, we observe that the N 3−o (1)-formula lower bound for MCSP [18] also localizes.

Proof of Item 3. We first observe that the PRG construction of Reference [18] also works for
oracle formulas. (We omit the details of this proof.)

Claim 49 ([18]). For 0 < β < ε < 1, there is M = N 1−Ωβ ,ε (1) and a PRG G : {0, 1}M → {0, 1}N
such that the following hold.

(1) For each fixed z ∈ {0, 1}M , G (z), when interpreted as a function from {0, 1}log N → {0, 1}, can

be computed by a circuit of size N 1−Ω(1) .
(2) For all ON β -Formula[N 3−ε ] formulas C , we have

�����
Pr

z∈{0,1}N
[C (z) = 1] − Pr

z∈{0,1}M
[C (G (z)) = 1]

�����
≤ 0.01.

Now, suppose MCSP[2n/n4] on N = 2n bits can be computed by a GapANDO (N )-ON β -

Formula[N 3−ε ] formula C . Let C1,C2, . . . ,Cb ·N be the ON β -Formula[N 3−ε ] subformulas of C
under the top GapAND gate, where b is a constant.
We know that

Pr
z∈{0,1}N

[MCSP[2n/n4](z) = 1] = o(1).

Since C computes MCSP[2n/n4], and C (x ) = 0 implies Ci (x ) = 0 for at least a 0.9 fraction of
i ∈ [b · N ]. We have that

Pr
i ∈[b ·N ], z∈{0,1}N

[Ci (z) = 1] ≤ 0.2.

On the other side, by the definition of MCSP[2n/n4], and the Item (1) of Claim 49, it follows that

Pr
z∈{0,1}M

[MCSP[2n/n4](G (z)) = 1] = 1.

Again, since C computes MCSP[2n/n4], and C (x ) = 1 implies Ci (x ) = 1 for all i ∈ [b · N ]. We
have that

Pr
i ∈[b ·N ], z∈{0,1}M

[Ci (G (z)) = 1] = 1.
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Therefore, there must exist an i such that
�����

Pr
z∈{0,1}N

[Ci (z) = 1] − Pr
z∈{0,1}M

[Ci (G (z)) = 1]
�����
≥ 0.5,

which is a contradiction to Item (2) of Claim 49. �

Finally, we show that there is a language in E that cannot be computed by GapANDO (N )-

Formula[N 3−ε ] formulas, but it can be computed by an ON o (1) -Formula[N 2] formula. Therefore,
this lower bound does not localize in the sense of Theorem 48.

Theorem 50. There is a language L ∈ E, such that L � GapANDO (N )-Formula[N 3−ε ] for all

constants ε > 0, but L ∈ ON o (1) -Formula[N 2].

Proof. The function L is very similar to the Andreev’s function. On an input x of length
N , let m = logN (we assume N is a power of 2 for simplicity). To avoid the second input to
AndreevN , we want to find a function fhard : {0, 1}m → {0, 1} that cannot be 0.8-computed by
N 1−ε/2 formulas in 2O (N ) time (such a function exists by a simple counting argument). To find
fhard, we simply enumerate all possible functions f : {0, 1}m → {0, 1}, and check whether it can
be 0.8-approximated by an N 1−ε/2-size formula.

There are 22
m
= 2N possible functions onm bits, and (N 1−ε/2)O (N 1−ε/2 ) = 2N 1−ε/2 ·polylog(N ) many

formulas of N 1−ε/2 size. Hence, a straightforward implementation of the algorithm runs in 2O (N )

time.
Next, L partitions x into m blocks x1,x2, . . . ,xm , each of length N /m. After that, it computes

i ∈ {0, 1}m as i = PARITY(x1) ◦ PARITY(x2) ◦ . . . PARITY(xm ). It then outputs fhard (i ).
Now, suppose there is a GapANDO (N )-Formula[N 3−ε ] for L. We apply a random restriction

keeping exactly one variable from each block alive, then w.p. 0.9, we obtain a GapANDO (N )-

Formula[N 1−ε ·polylog(N )] formula for fhard [56], which implies that there is anN 1−ε ·polylog(N )-
size formula 0.8-approximating fhard, contradiction.
Finally, it is easy to verify that L ∈ E and L ∈ ON o (1) -Formula[N 2]. �

5.1.5 AC0 Lower Bounds via Random Restrictions. This section states and proves a result
capturing an instantiation of the locality barrier for HM Frontier E.

Proposition 51 (Locality Barrier for HM Frontier E). The following results hold.

• (E1O) (Oracle Circuits from Magnification): For each k = (logn)C and every large enough

depth d , (n − k )-Clique ∈ (AC0
d

)O[m1+εd ], where εd → 0 as d → ∞, and the corresponding

circuit employs a single oracle gate O of fan-in at most O ((logn)4C ).
• (E3O) (Extension of Lower-bound Techniques): Parity � (AC0)O[poly(n)] if the total

number of input wires in the circuit feeding the O-gates is n/(logn)ω (1) .

Proof. The first item is established by inspection of the proof of Proposition 31, which relies
on the circuit construction from Reference [46] and a straightforward translation between vertex
cover and clique detection. Recall that the circuit in Reference [46] simulates a well-known kernel-
ization algorithm fork-Vertex-Cover. This algorithm produces a graphH containingO (k2) vertices
and a new parameter kH ≤ k . This graph can be described by a string of lengthO (k4), and the pair
(H ,kH ) becomes the input string to the single oracle O that is necessary in the oracle circuit con-
struction. (If O solves vertex cover, then the resulting oracle circuit correctly solves (n−k )-Clique.)
The second item easily follows by simulating oracle circuits via interactive compression games

(see, e.g., Reference [44, Section 5]). In other words, one can view a circuit with oracles as an
interactive protocol between two parties, where one of them has unbounded computational
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power, and the other is restricted to computations in a fixed circuit class. The total number
of wires feeding the oracle gates corresponds to the number of bits sent to the unbounded
party. The desired lower bound for oracle circuits then follows immediately from the main
result from Reference [10], which shows that the random restriction method can be extended to
establish limitations on circuits with oracle gates of large fan-in. �

Informally, the main difficulty with the use of random restrictions in connection to HM Frontier
E is that as soon as one simplifies a Boolean circuit so that the oracle gate O is directly fed by
input literals, one can fix just (logn)O (C ) input variables and eliminate this gate. Sacrificing such
a small number of coordinates will not affect a typical worst-case lower bound based on the
random restriction method.

5.1.6 Lower Bounds through Reductions. Consider a reduction of PARITY to MCSP[2n1/2
/2n,

2n1/2
] by subquadratic-size nε -almost-formulas with nε ′ MCSP (possibly non-local) oracles at

the bottom of each principal formula computing a gate with fanout > 1. By Theorem 47, such

a reduction would imply MCSP[2n1/2
/2n, 2n1/2

] � nε -almost-Formula[N 1.1] assuming that after
replacing all oracles by nε -almost-formulas of size N 1.1 the total size of the resulting circuit
remains < N 2−9(ε+ε ′) . In combination with hardness magnification, this would give us NP � NC1.
Unfortunately, Theorem 47 rules this possibility out.

Corollary 52. PARITY is not computable by subquadratic-size nε -almost-formulas with nε ′

oracle gates computing MCSP[2n1/2
/2n, 2n1/2

], assuming that after replacing all oracles by nε -almost-

formulas of size N 1.1 the total size of the resulting circuit remains < N 2−9(ε+ε ′) for ε + ε ′ < 1.

Proof. Assume the reduction in question exists. By Theorem 29, for every ε > 0 and all

sufficiently big n, MCSP[2n1/2
/2n, 2n1/2

] is computable by N 1.1-size nε -almost-formulas with local
oracles at the bottom of principal formulas computing gates with fanout > 1. By the assumption,
if we replace the MCSP oracles in the reduction by almost-formulas with local oracles, then the
resulting circuit is an nε+ε ′-almost-formula of size N 2−9(ε+ε ′) with oracles of bounded fan-in. This
contradicts the second item of Theorem 47. �

Analogous arguments rule out the possibility of establishing strong lower bounds via reductions
also in other HM frontiers.

5.2 Lower Bounds below Magnification Threshold

The localizations presented in this section show that one cannot obtain strong circuit lower
bounds by “lowering the threshold” in certain hardness magnification proofs (because such
hardness magnification theorems are false). In other words, the localisations of the lower-bound
techniques in this section rule out a family of potential approaches for establishing strong lower
bounds by magnifying an already known (weak) lower bound for a variant of MCSP or MKtP. As
a consequence of one of our results (Theorem 60 in Section 5.2.2), we also refute the Antichecker
Hypothesis from Reference [43].

5.2.1 AC0 Lower Bounds via Pseudorandom Restrictions. In this section, we show that the AC0

lower bounds proved for MCSP (MKtP) via pseudorandom restrictions [18] (see also Section 3.1)
localize in a very strong sense. Consequently, this excludes magnification theorems that can be
proved by approaches that unconditionally give AC0 circuit constructions with local oracles for
MCSP or MKtP.
We use AC0

d
[O1,O2, . . . ,Od ] to denote AC0

d
circuits extended with arbitrary oracles, such that

oracle gates on the ith level (the gates whose distance from the inputs is i) have fan-in at mostOi .
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Theorem 53. There is a constant c such that for all ε > 0, constants d , and O1,O2, . . . ,Od such

that
∏d

i=1Oi ≤ N /(logN )ω (1) , MCSP[nc ,n2c ] � AC0
d
[O1,O2, . . . ,Od ][poly(N )].

Remark 54. We remark that the constraint on oracles in the above theorem is incomparable
to the second item of Proposition 51. Here, we focus on the maximum oracle fan-in at each level,
while there the focus is on the total fan-in of all oracles. A lower-bound result for an explicit
problem with parameters similar to Theorem 53 is not known for AC0 oracle circuits extended
with parity gates (see Reference [44] for results in this direction).

We are going to apply Lemma 17, together with the following well-known results on k-wise
independence fooling CNFs.

Lemma 55 ([7, 58]). k = O (log(M/ε ) · log(M ))-wise independent distribution ε-fools M-clauses
CNFs.

Combining Lemmas 17 and 55, we have the following lemma.

Lemma 56. Let φ be a t-width M-clause CNF formula over N inputs, p = 2−q for some q ∈ N, and
ε0 > 0 be a real. There is a p-regular

k = Θ(log(M · 2t (q+1)/ε0) · log(M · 2t (q+1) ) · q−1)-wise

independent random restriction ρ such that

Pr
ρ∼ρ

[DT(φ�ρ ) > s] ≤ 2s+t+1 (5pt )s + ε0 · 2(s+1)(2t+logM ) .

Moreover, ρ is samplable with O (t · q · polylog(M,N ) · log(1/ε0)) bits, and each output coordinate
of the random restriction can be computed in time polynomial in the number of random bits.

The moreover part follows from standard construction of k-wise independent distributions (see,
e.g., Reference [60]).
We also need the following lemma, which states that an arbitrary oracle with inputs being

small-size decision trees shrinks to a small-size decision tree with high probability, under suitable
pseudorandom restrictions.

Lemma 57. Let O : {0, 1}T → {0, 1} be an arbitrary function, and D1,D2, . . . ,DT be T k-query
decision trees on variables x1,x2, . . . ,xN . Let F := O ◦ (D1,D2, . . . ,DT ) be their compositions. For
s ∈ N, and all k (s + 1)-wise independent 1/(T · k2)-regular random restriction ρ, we have

Pr
ρ∼ρ

[DT(F�ρ ) > s] ≤
(
k (s + 1)

2e2

)−(s+1)

.

Proof. We focus on the following particular decision tree for evaluating {D1,D2, . . . ,DT } with
respect to a restriction ρ : [N ]→ {0, 1, ∗}:

Algorithm Eval(ρ,D1,D2, . . . ,DT ).

• For i from 1 to T:
– Simulate decision tree Di with restriction ρ. That is, when Di queries an index j, we
feed ρ j to Di if ρ j ∈ {0, 1}, and query the jth bit otherwise.

• Let αi be the output of the ith decision tree, we output α = (α1,α2, . . . ,αT ).

To obtain a decision tree for F�ρ , we can run Eval(ρ,D1,D2, . . . ,DT ) to obtain α first and
output F (α ) at the end.
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Let D̃T(F�ρ ) be the query complexity of the above decision tree. Since DT(F�ρ ) ≤ D̃T(F�ρ ),
where DT(F�ρ ) is the minimum complexity among all decision trees computing F�ρ , it suffices to
bound

Pr
ρ∼ρ

[D̃T(F�ρ ) > s].

Consider the event that D̃T(F�ρ ) > s , it is equivalent to that there exists a string w ∈ {0, 1}s ,
such that if we fix the first s queried unrestricted bits in ρ according to w , then Eval ends up
querying > s bits. (Note that since we only care about whether D̃T(F�ρ ) > s , we can force the
algorithm to abort if it tries to make the (s + 1)th query.)
Now, suppose we fix the string w , then the number of queries made by Eval only depends on

ρ. Suppose the algorithm has queried at least s + 1 bits, we let D ′
1,D

′
2, . . . ,D

′
t (t ≤ s + 1) be the

decision trees in which the algorithm made queries during the first s + 1 queries. This implies
that if we run Eval(ρ,D ′

1,D
′
2, . . . ,D

′
t ) with respect to the same stringw , the algorithm also makes

at least s + 1 queries.
Now, since ρ is k (s + 1)-wise independent. The probability that Eval(ρ,D ′

1,D
′
2, . . . ,D

′
t ) makes

at least s + 1 queries with respect to the fixed stringw is bounded by

(T · k2)−(s+1) ·
(
t · k
s + 1

)

≤(T · k2)−(s+1) ·
(
t · k · e
s + 1

)s+1

≤
(
T · k · (s + 1)

t · e

)−(s+1)

≤
(
T · k
e

)−(s+1)

.

Putting everything together, we have

Pr
ρ∼ρ

[D̃T(F�ρ ) > s]

≤2s ·
(
T · k
e

)−(s+1)

·
s+1∑
t=0

(
T

t

)

≤2s ·
(
T · k
e

)−(s+1)

·
(T · e
s + 1

)s+1

≤
(
k · (s + 1)

2e2

)−(s+1)

. �

Remark 58. Clearly, Lemma 57 also holds when ρ is k (s + 1)-wise independent and p-regular,
for p ≤ 1

T ·k2 .

Now, we are ready to prove Theorem 53.

Proof of Theorem 53. We assume N and logN are both powers of 2 for simplicity. Let

p = 1/ log5 N , ε0 = 2− log6 N , s = t = 10 log2 N , M = 2s · N log N , and ρ be the k-wise independent
p-regular random restriction guaranteed by Lemma 56. Note that we have k = ω (log6 N ) and
k = logO (1) N .

Let C ∈ AC0
d
[O1,O2, . . . ,Od ] be a circuit with S gates computing MCSP[nc ,n2c ]. For each

i ∈ [d], let Si be the number of gates at level i (i.e., the gates whose distance from the input gates
is i). Recall that Oi is the maximum oracle fan-in at level i . We are going to prove the stronger
claim that S = Ω(N log N ). Now, suppose for the sake of contradiction that S ≤ N log N /8.
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Now, we proceed in d iterations. We will ensure that at the end of the ith iteration, all gates at
level i become s-query decision trees with high probability. At the ith iteration, we apply ρ

τi = �log1/p Oi � + 1

times. It is straightforward to see that the composition of τi independent restrictions from ρ is a
k-wise independent pi -regular random restriction for pi = p

τi ≤ 1
Oi ·log5 N

.

Note that each oracle gate at original level i has inputs computed by s-query decision trees
(at the first step, one can treat the input variables as 1-query decision trees). By Lemma 57 and
noting that k ≥ s (s + 1) and Oi · log5 N ≥ Oi · s2, with probability at least

1 − Si ·
(
s (s + 1)

2e2

)−(s+1)

≥ 1 − Si · N − log N ,

all oracle gates at level i become s-query decision trees after these τi restrictions.
Similarly, note that each AND/OR gate at level i are equivalent to a CNF or DNF with width-s

and size at most 2s · S . By Lemma 56, again with probability at least

1 − Si ·
(
2s+t+1 (5pt )s + ε0 · 2(s+1)(2t+logM )

)
≥ 1 − Si ·

(
220 log

2 N+1 (5 · (1/ log5 N ) · 10 log2 N )10 log
2 N

+ 2− log6 N · 2(10 log2 N+1)(20 log2 N+log(N log N ·210 log2 N ))
)

≥ 1 − Si ·N − log N ,

all AND/OR gates at level i become s-query decision tree after these τi restrictions.
Finally, note that in total, we have applied ρ at most

τtotal = 2d + log1/p
�
�

d∏
i=1

Oi
�
	
= log1/p N − ω (1)

times, and the final output gate shrinks to an s-query decision tree with probability at least

1 − 2 · S · N − log N .

Since S ≤ N log N /8, with probability at least 3/4, after all these restrictions, C is equivalent to an
s-query decision tree.

Now let pend = pτtotal = N −1 · p−ω (1) . By Chebyshev’s inequality, the number of unrestricted
variables at the end of the restriction is at least Nremain =

1
2 ·pend ·N = (logN )ω (1) with probability

at least 1/2. Therefore, with probability at least 1/4, at the end of the restrictions, it holds that the
remaining circuit C is equivalent to an s-query decision tree D, and the number of unrestricted
variables is at least Nremain.

Suppose we fix all these remaining unrestricted variables to be 0 to get an input x∗,
since each restriction from ρ can be computed by a poly(n)-size circuit, x∗ has a circuit of
poly(n) · logN = poly(n) ≤ nc size (now, we set c). Let S be the set of input variables that
D queries on the input x∗. Note that there are at least 2Nremain−|S | ways of assigning values to
unrestricted variables while keeping variables in S all 0. And, we can see that F ’s output on x∗

is the same as its output on all of these assignments. But there must exist at least one assignment

such the MCSP value is at least (logN )2c = n2c (2Nremain−|S | = 2nω (1)
), contradiction to the

assumption that C computes MCSP[nc ,n2c ]. �
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5.2.2 The Nearly Quadratic-formula Lower Bound of Reference [26]. In this section, we prove
that the nearly quadratic-formula lower bound of Reference [26] localizes, and thereby proving
the third item of Theorem 2. This localization indeed refutes a family of possible approaches to
establish circuit lower bounds through hardness magnification via “lowering the threshold.”
More concretely, consider the following hypothesized approach. Suppose we can compute

MCSP[2
√

n] by a formula F with NP oracles, such that when we replace every oracle O with
fan-in β in F by a formula of size βk that reads all its inputs exactly βk−1 times, the size of the new
formula is less than N 1.99. Then, we know that NP cannot be computed by formulas of size nk that
reads all its inputs exactly nk−1 times, as otherwise, we get an N 1.99-size formula for MCSP[2

√
n],

which is a contradiction to the lower bound in Reference [26]. If this holds for all k > 0, then we
would have NP � Formula[nk ] for all k .

In the following, by localizing Reference [26], we show that there is no such oracle formula
construction for MCSP even if the oracles can be arbitrary. This excludes magnification theorems
obtained by approaches that unconditionally produce circuits with oracles, and essentially ad-
dresses a question from Reference [43]. It also suggests that the consideration of almost-formulas
in HM Frontier C is unavoidable.

A Size

Measure on Oracle Formulas and a Potential Approach to Formula-size Lower Bound

We first introduce a size measure Sizet on oracle formulas to formalize the previous discussion.
For a parameter t and an oracle formula F , we define Sizet (F ) as the size of the formula, if we

replace every oracle O with fan-in β in F by a formula of size β t that reads all its inputs exactly
β t−1 times.
More formally,

SIZEt (F ) :=
⎧⎪⎨⎪⎩

SIZEt (F1) + SIZEt (F2) F = F1 ∧ F2 or F = F1 ∨ F2,

β t−1 ·
(∑β

i=1 SIZEt (Fi )
)

F = O (F1, F2, . . . , Fβ ).

Proposition 59. For a constant k > 0, if there is an NP oracle formula F (all oracles are languages

in NP) for MCSP[2
√

n] such that SIZEk+1 (F ) ≤ N 2−ε for a constant ε > 0, then NP � Formula[nk ].

Proof. Suppose NP ⊆ Formula[nk ] for the sake of contradiction. Then, in particular, each NP
language can be computed by a size-nk+1 formula that reads all its inputs exactly nk times by
adding some dummy nodes in the formula. Therefore, by replacing all NP oracles in F by such
formulas, we have an N 2−ε -size formula for MCSP[2

√
n], in contradiction to the lower bound

in Reference [26]. �

Localization of Reference [26]

Our following theorem shows that the above approach is not viable even with k = 3 by
localizing Reference [26], with a moderate constraint on the adaptivity of the oracle circuits.

Theorem 60. There is a universal constant c such that for all constants ε > 0 and α > 2,

MCSP[nc , 2(ε/α ) ·n] cannot be computed by oracle formulas F with SIZE3 (F ) ≤ N 2−ε and adaptivity
o(logN / log logN ) (that is, on any path from root to a leaf, there are at most o(logN / log logN )
oracles).

Remark 61. It is not hard to see that the adaptivity can be at mostO (logN ) given the condition
SIZE3 (F ) ≤ N 2−ε .

Before proving Theorem 60, we first show it refutes the Antichecker Hypothesis (restated
below) from Reference [43].
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The Antichecker Hypothesis. For every λ ∈ (0, 1), there are ε > 0 and a collection Y =

{Y1, . . . ,Y� } of setsYi ⊆ {0, 1}n , where � = 2(2−ε )n and each |Yi | = 2n1−ε
, for which the following holds.

If f : {0, 1}n �→ {0, 1} and f � Circuit[2nλ
], then some set Y ∈ Y forms an antichecker for f : For

each circuit C of size 2nλ
/10n, there is an input y ∈ Y such that C (y) � f (y).

Corollary 62. The Antichecker Hypothesis is false.

Proof. It is easy to see that, assuming the Antichecker Hypothesis, we can solve

MCSP[2n1/3
, 2n2/3

] with a formula F of N 2−ε size that uses N 2−ε oracles of fan-in poly(n)2n1−ε
=

polylog(N ) · 2(log N )1−ε
= N o (1) only at the layer above the inputs, for some ε > 0. However, since

SIZE3 (F ) ≤ N 2−ε+o (1) , F cannot compute MCSP[2n1/3
, 2n2/3

] by Theorem 60, contradiction. �

Now, we are ready to prove Theorem 60.

Proof of Theorem 60. Let k = log3 N , and ρ be the k-wise independent (1/
√
k )-regular

random restriction guaranteed by Lemma 12.
For an oracle formula F and a subformula G of it, we say G is a maximal subformula if G is an

entire subtree rooted at either the root, an oracle gate, or a gate whose father is an oracle.
We are going to apply t = Θ(logk N ) independent pseudorandom restrictions ρ1, ρ2, . . . , ρt ,

each distributed identically to ρ, where t will be set precisely later.

The Overall Proof Structure

To analyze the size of the oracle formula under the random restriction sequence ρ1, ρ2, . . . , ρt ,
we define a potential function Φ inductively for all maximal subformulas of the given formula
F . As it will be clear from the definition, Φ is not only a function of the structure of the oracle
formula but also depends on the history of the pseudorandom restrictions.
Formally, for each maximal subformulaG of the given formula F , and for each integer 0 ≤ i ≤ t ,

we define a random variable ΦG,i , which denotes the potential function of G after the first i
pseudorandom restrictions and only depends on ρ1, ρ2, . . . , ρi .

Definition of Tiny Formulas and Blow up. For an oracle formula, if the top gate is an oracle, then
we say it is tiny if it depends on at most logN variables. Otherwise, we say it is tiny if it depends
on at most ctiny · k variables, for a constant ctiny to be specified later.
After each pseudorandom restriction, for a formula with an oracle gate at the top, when it

depends on at most b = 20 variables, we blow it up to a formula of size B = 2b (note that if there
are two oracle gates u,v such that u andv both depend on at most b variables and u is an ancestor
of v , then it suffices to only blow up u).
The above two definitions (tiny formulas and the process of blowing up) may not seem easy to

understand at first. Let us explain the motivation behind them. The key difficulty of the proof is
to handle the oracle gates properly. The process of blowing up ensures that whenever an oracle
becomes too small, we just replace it with a constant size normal formula, so it becomes easier to
deal with.
The definition of tiny formulas is more subtle. As it will be clear in Case II and Case III of the

inductive definition of Φ, setting the threshold of being tiny to logN for oracle formulas with top
oracle gates ensures that the corresponding event of becoming tiny happens with high probability,
which is indeed crucial in our proof.

The properties of Φ. We require the following properties on Φ.
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(1) For an oracle formula F , Φ is multiplied by a factor of cF

k
under ρ in expectation, where cF

depends on F but it is upper bounded by a universal constant.
(2) With probability 1 − pF , for all stages, and all maximal subformulas G of F , Φ = 0 for G

implies that G is tiny, where pF depends on F but it is upper bounded by N −2.
(3) It holds that either Φ = 0 or Φ ≥ 1. Together with the second item, it implies that if the

oracle formula is not tiny then Φ ≥ 1.

With these carefully designed properties of Φ, the overall proof is straightforward. We first
show that Φ of F is closely related to SIZE3 (F ), and our conditions on the oracle formula imply
that Φ of the whole oracle formula is bounded by N 2−ε+o (1) at the beginning. Then after roughly
t ≈ logk (N 2−ε+o (1) ) rounds of restrictions from ρ, Φ becomes 0 with a good probability, which
also implies the whole oracle formula becomes tiny (only depend on polylog(N ) bits).
But then, we argue that after t rounds of restrictions from ρ, with high probability the number

of unrestricted variables is still at least N Ω(1) . Using a similar argument as from References
[26, 43, 46], we show that the tiny oracle formula left behind cannot compute MCSP[nc , 2ε/α ·n]
on the remaining variables, which concludes the proof.

The Inductive Definition of the Potential Function Φ

In the following, we gradually develop the definition of the potential function Φ. We remark that
Cases I and II below are actually special cases of Cases III and IV, respectively. We discuss them
first in the hope that they provide some intuitions and make it easier to understand the more
complicated Cases III and IV.

Case I: Φ for a Pure Formula. We begin with the simplest case of pure formulas F (formulas
with no oracles) of size S . We define

Φ =
⎧⎪⎨⎪⎩
S S ≥ 100 · k ,
0 otherwise.

It follows from the shrinkage lemma [23], formula decomposition [56, Claim 6.2], and the
k-wise independence of ρ that, when S ≥ 100 · k , the expected size of S drops by a factor of at
least k/cTal, for a universal constant cTal (we can set cF = cTal). Otherwise, the formula is tiny. It is
straightforward to verify that all three properties of Φ are satisfied (we can set pF = 0 in this case).

Case II: Φ for a Pure Oracle. Next, we consider the case that F is a pure oracle O with fan-in T
(pure oracle means each input to O is just a variable). We set

Φ = T 2 · k3

at the beginning. And set Φ ← Φ/k after each ρ. Whenever it happens Φ < 1, we set Φ = 0
afterwards. Here, we can simply set cF = 1.
Now, we argue that with probability at least 1 − N −5 (that is, we set pF = N −5), when Φ = 0, O

only depends on at most logN variables and therefore becomes tiny.
Note that Φ = 0 means at least logk T

2 rounds of random restrictions have been applied.17

Their composition is a k-wise independent restriction that keeps a variable unrestricted with
probability at mostT −1. Therefore, the probability that the number of alive variable is larger than

17Note that for this argument, a potential function of T · k already suffices. We use T 2 · k3 here to make it consistent with
Case III.
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logN is smaller than(
T

logN

)
·T − log N ≤

(
e ·T
logN

) log N

·T − log N ≤
(

e

logN

) log N

≤ N −5.

Note that in the above inequalities, we can safely assume T > logN .

Case III: Φ for an Oracle Formula with an Oracle Top Gate. Then, we move to the case of a
maximal subformula F with an oracle top gate O with fan-in T . Let Φi be the corresponding
potential function of the maximal subformula with root being the ith input to O . We set

Φ = max �
�

T∑
i=1

Φi , 1/k�
	
·T 2 · k4,

at the beginning.
When

∑T
i=1 Φi > 0, we still let Φ = (

∑T
i=1 Φi ) · T 2 · k4. When

∑T
i=1 Φi first becomes 0 (this

could happen before the first restriction, if
∑T

i=1 Φi = 0 at the beginning), we set Φ = T 2 · k3 and
decrease it by a factor of k during each later restriction, and set it to 0 if it becomes < 1.
Here, we set cF to be the maximum of cF ′ for all maximal subformulas F ′ whose root is an input

to the top oracle gate O in F .
First let us argue that Φ is multiplied by a factor of cF

k
after each ρ in expectation. When∑T

i=1 Φi = 0, it is evident from the way we set Φ (note that cF ≥ 1). When
∑T

i=1 Φi > 0, it follows
from the induction as each Φi is multiplied by a factor of cF

k
after each ρ in expectation. In the

borderline case when
∑T

i=1 Φi > 0 before ρ and becomes 0 afterwards. One can see Φ drops from
at least T 2 · k4 to at most T 2 · k3.
Moreover, when

∑T
i=1 Φi = 0, with probability at least 1 − ∑T

i=1 pFi
(Fi is the ith subformula

whose root is an input to the top oracle gate O in F ) all the subformulas are tiny, so at this time
the oracle depends on at most O (T · k ) variables.
Therefore, when Φ drops to 0, with probability at least 1 − ∑T

i=1 pFi
− N −5 the whole oracle

formula becomes tiny, by a calculation similar to the pure oracle case. Therefore, we can set
pF =

∑T
i=1 pFi

+ N −5.

Case IV: Φ for a Formula with Oracle Leaves. Finally, we deal with the most complicated case
when the maximal subformula F is a formula with oracle leaves. Suppose F is a formula of size S
withm oracle leaves. Let Φi be the potential function of the subformula corresponding to the ith
oracle leaf. Also, let cdrop be the maximum of the cF ’s of all the subformulas corresponding to the
oracle leaves.
The difficulty in analyzing this case is that there could be many oracles that are tiny but have

not blown up yet, and we have to keep track of the number of such oracles. Let Nactive be the
number of remaining active tiny oracles (oracles that are tiny but have not blown up). Clearly,
Nactive ≤ S at the beginning.
We set

Φ = S + Nactive · k2 +
m∑

i=1

Φi · k4

at the beginning. When S ≤ 100 · k happens, we change Φ to be

Nactive · k2 +
m∑

i=1

Φi · k4

afterwards.
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After each ρ, if S ≥ 100 · k , the expected size of S becomes at most

c1 · S/k + c2 · k · �
�

m∑
i=1

Φi + Nactive
�
	
,

for two universal constants c1 and c2. This bound holds because, by Claim 4.4 of Reference [27],
a formula of size S can be decomposed into 6S/k subformulas, each of size at most k , and each
formula has at most two subformula children.
The number of active oracle leaves (that are not blown up) is at most

∑m
i=1 Φi + Nactive. Hence,

at least 6 · S/k −∑m
i=1 Φi − Nactive subformulas do not contain an active oracle leaf, and their total

expected size isO (S/k ) after ρ (by Lemmas 4.1 and 4.3 of Reference [27], and Reference [56]). For
those subformulas containing active oracle leaves, their total size is at most (

∑m
i=1 Φi+Nactive) ·O (k )

after ρ (this takes account of the worst case situation that all these active oracle leaves blow up).
Also, we can see that after ρ, Nactive becomes at most

Nactive/k
2 +

m∑
i=1

Φi

in expectation. This is because for a tiny active oracle depending on at most logN variables, the
probability that it does not blow up after ρ is at most(

logN

b

)
· k−b/2 ≤ (logN )b−1.5·b = (logN )−10 ≤ 1/k2.

By induction, we also have that
∑m

i=1 Φi is multiplied by a factor of
cdrop

k
in expectation as well

after each ρ. Therefore, after ρ, the expectation of Φ can be bounded by

c1 · S/k + c2k �
�

m∑
i=1

Φi + Nactive
�
	
+ �
�
Nactive/k

2 +

m∑
i=1

Φi
�
	
· k2 + �

�

m∑
i=1

Φi
�
	
·
cdrop

k
· k4

≤ S · c1
k
+ Nactive · k2 ·

c2 + 1/k

k
+

m∑
i=1

Φi · k4 ·
(
cdrop + c2/k

2 + 1/k

k

)
.

We can set

cF = max(c1, c2 + 1/k, cdrop + c2/k
2 + 1/k ).

Recall that when S ≤ 100 · k happens, we change Φ to be

Nactive · k2 +
m∑

i=1

Φi · k4

afterwards.
By the previous discussion, after this Φ still drops by a factor of k/cF in expectation after each ρ.

Note that when Φ = 0, we can see the size of the whole formula is smaller than B · 100 · k = O (k ),
therefore it is tiny (here, we set ctiny = B · 100). This is because Φ = 0 implies S ≤ 100 ·k happened
at some point, and also Nactive =

∑m
i=1 Φi = 0. They together imply that all oracles have blown up,

and the size bound follows, since each oracle adds at most B leaves.
Let Fi be the subformula with root being the ith oracle leaf. In this case, we can setpF =

∑m
i=1 pFi

.
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The MCSP Lower Bound

Let F be an oracle formula with SIZE3 (F ) ≤ N 2−ε and adaptivity τ = o(logN / log logN ). We first
need to verify that cF is upper bounded by a universal constant. One can upper bound

cF ≤ max(c1, c2 + 1/k, cTal) + τ · (c2/k
2 + 1/k ) ≤ max(c1, c2 + 1/k, cTal) + o(1) = O (1).

We can also upper bound pF by pF ≤ N −5 · N 2 = N −3.
By the inductive definition of the potential function Ψ on maximal subformulas, it is not hard

to show that

Φ ≤ SIZE3 (F ) · kO (τ ) ≤ N 2−ε+o (1) .

Note that this inequality crucially employs the definition of SIZE3 (·).
After each ρ, Φ is reduced by a factor of k/cF . After

t = �logk/cF
Φ� + 2

rounds of ρ, the expected Φ of the overall formula becomes < 1/10, which means with probability
0.9 − pF ≥ 0.8 it is tiny and only depends on at most O (k ) = O (log3 N ) variables.
Note that by definition

(k/cF )t ≤ Φ · k3,

and therefore

kt ≤ Φ · k3 · (cF )t ≤ N 2−ε+o (1),

as (cF )t = (cF )O (log N / log log N ) = N o (1) .
The composition of t independent ρ keeps a variable unrestricted with probability

k−t/2 ≥ N −1+ε/2−o (1) , and is clearly pairwise independent. By Chebyshev’s inequality, after
t restrictions from ρ, with probability 0.5, at least

1/2 · N · N −1+ε/2−o (1) ≥ N ε/2−o (1)

variables remain active. So with probability at least 0.3, after t restrictions from ρ, the remaining
formula F only depends on O (log3 N ) variables, and the number of remaining unrestricted
variables is at least N ε/2−o (1) .

Suppose we fix all these remaining unrestricted variables to be 0 to get an input x∗.
Since each restriction from ρ can be computed by a poly(n)-size circuit, x∗ has a circuit of
poly(n) · t = poly(n) ≤ nc size (here, we set c). Let S be the set of input variables that F depends

on. Note that there are at least 2N ε/2−o (1)−|S | ways of assigning values to unrestricted variables
while keeping variables in S all 0. Since F only depends on S , F ’s output on x∗ is the same as its
output on all of these assignments. But there must exist at least one assignment such the MCSP
value is at least N ε/α = 2(ε/α ) ·n as α > 2. Therefore, F cannot compute MCSP[nc , 2(ε/α ) ·n]. �

APPENDIX

A REVIEW OF HARDNESS MAGNIFICATION IN CIRCUIT COMPLEXITY

A.1 Previous Work

We focus on some representative examples. For definitions and more details, check Section 2 or
consult the original papers.

Srinivasan [55] (Informal). If there exists ε > 0 such that n1−o (1)-approximating MAX-CLIQUE
requires Boolean circuits of size at leastm1+ε (wherem = Θ(n2)), then NP � Circuit[poly].
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Allender-Koucký [3] and Chen-Tell [14]. The following results hold.

• Let Π ∈ {BFE,WS5 ,W5-STCONN}. Suppose that for each c > 1 there exist infinitely many

d ∈ N such that TC0 circuits of depth d require more than n1+c−d
wires to solve Π. Then,

NC1 � TC0.
• Suppose that for each c > 1 there exist infinitely many d ∈ N such that MAJ cannot

be computed by ACC0 circuits of depth d with n1+c−d
wires. Then MAJ � ACC0, and

consequently TC0 � ACC0.

Lipton-Williams [39]. If there is ε > 0 such that for every δ > 0 we have CircEval �
Size-Depth[n1+ε ,n1−δ ], then for every k ≥ 1 and γ > 0 we have CircEval � Size-Depth[nk ,n1−γ ]
(in particular P � NC).

Oliveira-Santhanam [46]. The following results hold.

• Let s (n) = nk and δ (n) = n−k , where k ∈ N. If MCSP[(s, 0), (s,δ )] � Formula[N 1+ε ] for

some ε > 0, then there is L ∈ NP overm-bit inputs and δ > 0 such that L � Formula[2mδ
].

• Suppose there exists k ≥ 1 such that for every d ≥ 1 there is εd > 0 such that
MCSP[(s, 0), (s,δ )] � AC0

d
[N 1+εd ], where s (n) = nk and δ (n) = n−k . Then NP � NC1.

• Let k (n) = no (1) . If there exists ε > 0 such that k-Vertex-Cover � DTISP[m1+ε ,mo (1)], where
the input is an n-vertex graph represented by an adjacency matrix of bit lengthm = Θ(n2),
then P � NP.

• Let k (n) = (logn)C , where C ∈ N is arbitrary. If for every d ≥ 1 there exists ε > 0 such that
k-Vertex-Cover � AC0

d
[m1+ε ], then NP � NC1.

Oliveira-Pich-Santhanam [43] and McKay-Murray-Williams [40] (Informal). If there
exists ε > 0 such that for every small enough β > 0,

• MCSP[2βn] � Circuit[N 1+ε ], then NP � Circuit[poly].
• MKtP[2βn] � TC0[N 1+ε ], then EXP � TC0[poly].
• MKtP[2βn] � U2-Formula[N 3+ε ], then EXP � Formula[poly].
• MKtP[2βn] � B2-Formula[N 2+ε ], then EXP � Formula[poly].
• MKtP[2βn] � Formula-XOR[N 1+ε ], then EXP � Formula[poly].
• MKtP[2βn] � BP[N 2+ε ], then EXP � BP[poly].
• MKtP[2βn] � (AC0[6])[N 1+ε ], then EXP � AC0[6].

Many results for MKtP admit analogues for MrKtP, which considers a randomized version of Kt
complexity introduced by Reference [42]. An advantage of MrKtP is that strong unconditional
lower bounds against uniform computations are known, while the hardness of problems such as
MCSP and MKtP currently relies on cryptographic assumptions.
Reference [40] also show magnification from weak lower bounds against one-pass streaming

algorithms to separating P and NP, which was later observed to extend to weak lower bounds
against one-tape Turing machines by Reference [17].

Chen-McKay-Murray-Williams [13] and Chen-Jin-Williams [11] (Informal). The follow-
ing results hold.

• If there is ε > 0, c ≥ 1, and an nc -sparse language L ∈ NP such that L � Circuit[n1+ε ], then
NE � Circuit[2δ ·n] for some δ > 0.

• If there is ε > 0 such that for every β > 0 there is a 2nβ
-sparse language L ∈ NTIME[2nβ

]
such that L � Circuit[n1+ε ], then NEXP � Circuit[poly].
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More recently, Reference [11] established that many hardness magnification theorems for
problems such as MCSP and MKtP hold in fact under the assumption that a sufficiently sparse
and explicit family of languages in NP admits weak lower bounds in many models previously
considered. We refer to their work for more details.

Chen-Jin-Williams [12] If there exists ε > 0 such that for every small enough β > 0,

• MCSP[2βn] does not have N 2+ε -size probabilistic formulas, then ⊕P � NC1.
• MKtP[2βn] does not have N 2+ε -size probabilistic formulas, then EXP � NC1.

Interestingly, Reference [12] also shows an unconditional lower bound for MCSP and MKtP
against N 2−ε -sized probabilistic formulas (with the same size parameter). In other words, they
show an arbitrarily small gap between the magnification threshold and known lower bounds for
probabilistic formulas, which is known for very few other magnification results.
Hardness Magnification results have also been established in related areas, such as Frege lower

bounds in proof complexity [41] and non-commutative arithmetic circuit lower bounds [9].

A.2 Hardness Magnification through the Lens of Oracle Circuits

We can view the results from Appendix A.1 as unconditional upper bounds on the size of small
fan-in oracle circuits solving the corresponding problems, for a certain choice of oracle gates. In a
magnification theorem, it is important to upper bound the uniform complexity of the oracle gates.
For our discussion, this is not going to be relevant.
We repeat here a definition from Section 2, for convenience of the reader.

Definition 63 (Local Circuit Classes). Let C be a circuit class (such as AC0[s], TC0
d
[s], Circuit[s],

etc). For functions q, �,a : N → N, we say that a language L is in [q, �,a]–C if there exists a
sequence {En } of oracle circuits for which the following holds:

(i) Each oracle circuit En is a circuit from C.
(ii) There are at most q(n) oracle gates in En , each of fan-in at most �(n), and any path from an

input gate to an output gate encounters at most a(n) oracle gates.
(iii) There exists a language O ⊆ {0, 1}∗ such that the sequence {EOn } (En with its oracle gates

set to O) computes L.

In the definition above, q stands for quantity, � for locality, and a for adaptivity of the
corresponding oracle gates.
The fact that existing magnification theorems produce such circuits is a consequence of the

algorithmic nature of the underlying proofs, which show how to reduce an instance of a problem
to shorter instances of another related problem. By inspection of each proof, it is possible to
establish a variety of upper bounds. We explicitly state some of them below.

Proposition 64. The following results hold.

• [3] For every Π ∈ {BFE,WS5 ,W5-STCONN} and every β > 0, Πn ∈ [O (n1−β ),nβ ,O( 1
β

)]–

TC0[O (n)].
• [39] For every δ > 0, CircEvaln ∈ [n · poly(logn),nδ ,n1−δ ]– Circuit[n · poly(logn)].
• [46] For every constructive function n ≤ s (n) ≤ 2n/poly(n) and parameter 0 < δ (n) < 1/2,

MCSP[(s, 0), (s,δ )] ∈ [N , poly(s/δ ), 1]– Formula[N · poly(s/δ )].
• [46] Let k = (logn)C , where C ∈ N. Then k-Vertex-Cover ∈ [1, (logn)4C , 1]– AC0

d
[m1+ε ],

where εd → 0 as d → ∞.
• [43] For every β > 0 and for every constructive function s (n) ≤ 2βn , Gap-

MKtP ∈ [N , poly(s ), 1]– Formula-XOR[N · poly(s )].
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• [43] For every constructive function s (n) ≤ 2n/poly(n), it follows that Gap-
MCSP ∈ [N · poly(s ), poly(s ), poly(s )]– Circuit[N · poly(s )].

• [40] For every constructive function s (n) ≤ 2n/poly(n), we have MCSP[s (n)] ∈
[O (N /poly(s )), poly(s ),O (n/ log(s ))]– Circuit[N /poly(s )].

We stress, however, that not every hardness magnification theorem needs to lead to an
unconditional construction of efficient oracle circuits. (All the proofs that we know of produce
such circuits though.)
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