TASK ALLOCATION FOR EFFICIENT PERFORMANCE
OF A DECENTRALIZED ORGANIZATION

by

CHONGHWAN LEE

B.S., Electrical Engineering and Mathematics
University of Maryland, College Park
(1985)

Submitted to the Department of Electrical Engineering and
Computer Science in partial fulfillment of the

Requirements for the Degree of

Master of Science
in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
August 1987
© Massachusetts Institute of Technology

Signature of Author

Department of Electrical Engineering and Computer Science
August 7, 1987

Certified by

John N. Tsitsiklis
Associate Professor, Electrical Engineering
Thesis Supervisor

Accepted by

Professor Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

TASK ALLOCATION FOR EFFICIENT PERFORMANCE
OF A DECENTRALIZED ORGANIZATION
by

CHONGHWAN LEE

Submitted to the Department of Electrical Engineering and
Computer Science on August 7, 1987 in partial fulfillment of the
requirements for the Degree of Master of Science in
Electrical Engineering and Computer Science

ABSTRACT

Task allocation scheme in an organization is discussed. The behavior of an organization is
mathematically modeled by a decentralized gradient-like algorithm for additive cost func-
tions. The objectives of allocation are reduction of individual load, speedy performance, and
organizational security. The allocation scheme is sought for three types of organizations clas-
sified by the flexibility of their communication structure; namely, fixed organization, flexible
organization, and semi—flexible organization.

Thesis Supervisor: Dr. John N. Tsitsiklis

Title: Associate Professor of Electrical Engineering

ACKNOWLEDGEMENTS

I would like to thank my research supervisor, John Tsitsiklis for his insightful
guidance, generosity, and kindness. I also wish to thank my academic advisor,

Michael Athans for his experienced advice in the course of my degree program.

I am grateful to my office mates in the Laboratory of Information and Decision
Systems for their friendship. Especially, I thank Thomas Richardson and Zhi-Quan

Luo for their encouragement and academic discussions.

Finally, I wish to express my thanks to my parents and sisters for their spiritual,

emotional support in my life.

This research was supported by the Office of Naval Research under grant
N00014-85-K-0519, (NR 649-003).

For God so loved the world that He gave His only begotten Son, that whoever believes

in Him should not perish but have everlasting life. (John 3:16)

TABLE OF CONTENTS

Abstract ... 2
Acknowledgements ... 3
Table of Contents oo 5
Chapter 1 Introduction .. 7
L1 Background ... 7
1.2 Problem Statementoc 9
1.3 Literature Survey ocoiiiiiii 12
L4 Outline ... 14
Chapter 2 Mathematical Model 17
2.1 Decentralized Gradient-like Algorithm for Additive Cost Functions 17
2.2 Problem Formulationoccoi i 19
2.3 SUMMATY ..oiiiiiii 39
Chapter 3 Direct Communication 43
3.1 Total number of Links as an amount of communication 43
3.2 Repeated number of Links as an amount of communication 74
Chapter 4 Indirect Communication 111
4.1 Introduction i 111
4.2 Flexible Organizational Structure 112

4.4 Semi-flexible Organizational Structure 120
Chapter 5 Summary and Extensions ccovveevnnnn... 125
5.1 SUMINATY ottt ittt ettt et e e e, 125
5.2 Extension ... e e 126
AppPendiX 130
Referencesoiuiiiiiiiiii i e 133

Chapter 1. INTRODUCTION

1.1 Background

In an organization, how to partition a task and assign subtasks to divisions is an
important problem. This topic is closely related to the issue of the ‘organizational
structure’ and the ‘efficiency of organizational performance’. An ‘organization’ could
be a human organization, interconnected machines, or computer network. We will
use the word ‘agent’ or ‘division’ in order to refer to a constituent of an organization
— for example each person, machine, or a processor of a computer network. Here,
what we mean by organizational structure is purely a communicational structure;
namely, who should communicate with whom. The hierarchy among agents is not
discussed. Efficiency generally means how quickly an organization can perform its
task. In order to understand the issue clearly, let us consider the examples in Figure

1-1, 1-2, 1-3.

In the diagrams in these figures, the rectangles represent organizational tasks,
and the circles represent agents of the organization. In Figure 1-1, dotted lines
connecting task 1 and task 2 represent coupling between two tasks. This means that
the decision making for task 1 affects the outcome of task 2 and/or vice versa. If tasks
1,2,3 are assigned to agents 1,2,3, respectively, agents 1 and 2 must communicate.
Couplings among the divisional tasks necessitate certain communication links among
the agents; therefore, they require a certain type of organizational structure. On the
other hand, if the organizational structure is fixed, a task must be partitioned in such
a way that subtasks assigned to disconnected agents are decoupled. For example, if

we have a fixed organization like Figure 1-2, subtasks assigned to agents 1,2,3 must

be decoupled from those assigned to agent, 4,5.

As for the efficiency of organizational performance, consider Figure 1-3. Suppose
we have three agents with equal capacity and a global task comprised of 6 mutually
decoupled, equal-size subtasks. Intuitively, we know that (b) is a more efficient

allocation than (c), because with partition (b) the task will be executed sooner than

with partition (c).

One of the obstacles to the discussion of this problem of task partition is the
conceptual difficulty of constructing mathematical models which precisely describe
the behavior of organizations. A particular mathematical model has been developed
in [1] based on a decentralized gradient-like algorithm. This algorithm is basically a
descent-type optimization algorithm for parallel processing. Each processor has a lo-
cal cost function to optimize, and each processor has its own variable that it updates
at each iteration. Each local cost function may depend, however, on the variables to
be updated by other divisions. With each processor updating its own variable and
communicating information with other processors, the algorithm achieves the goal
of optimizing the sum of local cost functions. Such a decentralized gradient— like
algorithm for additive cost functions could describe the behavior of an organization
of boundedly rational agents, as they adjust their decisions toward the objective of
minimizing an organizational cost function. The minimization of the cost funct\'}on is
viewed as the organizational task, and the value of each variable in the cost function
represents a decision made by the associated division. Alternatively, the value of
each variable can be viewed as the mode of operation of the associated division if
we set the organizational objective to be the optimal operation, in the sense that

the variables have the values minimizing the cost function. An iterative minimiza-

8

tion process models the boundedly rational agents, who make tentative decisions
based upon available information of the decisions made in other divisions and adjust
decisions as they gain additional information. Partitioning the organizational task
mathematically translates to decomposing the global cost function into the sum of
subcost (or local cost) functions. The problem of partitioning an organizational task

will be formulated in this mathematical framework in the next section.

1.2 Problem statement

It is useful to specify the purposes of partitioning the task, in order to formulate
the problem in a way that is relevant to some real world situations or applications.

The purposes of the partition are classified as follows:

1. Reduction of individual load:

When the task is complex or the scale of the task is big, a single agent with limited
capacity simply cannot handle it. The agent’s memory is limited. Its power is
limited. Actually, this is the reason why organizations are formed. We can reduce
the load of an agent by partitioning the task. In our formulation, the load of each
agent will be measured by the complexity of the subcost function assigned to that

agent. (The measure of the complexity of the subcost function will be precisely

defined later.)

2. Speed of performance:

Even if one agent may be able to handle the whole task, it is often better to have the
agents in the organization share the task so that they finish the task sooner. The

speed of organizational performance may be represented by the speed of convergence

9

of the decentralized algorithm discussed earlier.

3. Security:

Under special conditions such as defense projects, it is not desirable to set the oper-
ation under the control of a single agent. The ‘decentralized gradient-like algorithm
for an additive cost function’ is an appropriate model of the organization serving
this purpose. In this algorithm, a processor does not know what other processors’
subcost functions are. This means that each agent keeps only a fraction of organiza-
tional secrets. We also want to minimize the amount of communication because an
organization can reduce the leakage of secrets by keeping the amount of communi-
cation minimal. The amount of communication will be defined in two different ways

in order to model certain different situations.

Therefore, the task should be partitioned so that these purposes are fulfilled.
For convenience of exposition, we assume that the global cost function is quadratic,
and its minimization represents the organizational task. The only thing that matters
is the coupling between variables introduced by the cost function. Thus, assuming
a quadratic function is no loss of generality. We also assume that the complexity
of a subcost function is measured by the number of terms in that subcost function.

Mathematically, our problem is :

Given a quadratic cost function, find a decomposition into the sum of subcosts such

that
Objective 1 :

The number of terms in each subcost is small.

10

Objective 2 :

The speed of convergence of the decentralized gradient-like algorithm is maximized.
Objective 3 :

The amount of required communication is minimized. (If the subcost assigned to
agent ¢ depends upon a decision variable determined by agent j, agent 7+ and agent

J are required to communicate with each other according to the model.)

It is conceivable that one may formulate a multi-objective optimization problem,
which accounts for all of these three objectives. However, our understanding of the
decentralized gradient-like algorithm is too restricted to solve it. In fact, analytical
understanding of the speed of convergence seems impossible. Moreover, these three
objectives may well be conflicting with one another. Therefore, we have to deal with

each of the three objectives separately. The following are some feasible problems.

Given a quadratic cost function, find a decomposition into the sum of subcost func-

tions that

Problem 1 :

minimizes the number of terms of the agent with highest load; under the constraint
that the amount of required communication is less than a certain number or under

a constraint that the communication structure of an organization is restricted.

Problem 2 :

minimizes the amount of required communication; under the constraint that the

number of terms (representing load) assigned to each processor is less than a certain

11

integer.
Problem 3 :

maximizes the speed of convergence.

When designing an organization with a severe constraint on the communication
structure, a designer needs to compute the maximum load of divisions in order to
figure out the required capabilities of divisions. Problem 1 provides a mathematical
framework to study this issue. Problem 2 deals with the situation where the capabil-
ities of each division are already fixed. The issue is how to allocate the tasks cleverly
in order to minimize the amount of communication. Solutions to Problem 2 can also
be used as a measure of coupling of the task. It shows how much cooperation it

takes to perform the task when information is distributed.

More detailed, rigorous formulation of these problems will be presented in Chap-

ter 2.

1.3 Literature Survey

There has been little literature concerning mathematical formulation of organi-
zational behaviors, especially task assignment strategy. Reference [1] suggests using
decentralized descent-type algorithms as a model of behavior of boundedly ratio-
nal human decision makers. The mathematical framework of [1] will be adopted
for our research. Reference [2]| discusses a design method for certain classes of hu-
man organizations. It does not develop a specific mathematical model for human

organizations. Rather, it suggests a general design method that applies to some

12

human organizations that already have tractable analytical model. Other literature
mostly models an organization in an information theoretic framework. Reference [3|
develops a model for interacting decision makers. A decision maker is modeled by
a processor that takes input (stimulus), processes it, and produces an appropriate
output(response). Each processor has several algorithms to choose for this informa-
tion processing. Internal decision strategies of choosing an algorithm are introduced.
Total activity of a processor and the performance measure are expressed in terms
of these internal decision strategies, and bounded rationality is modeled by the con-
straints on total activity of a processor. Reference (3] characterizes the internal
decision strategies that give optimal or satisficing performance under constrained or
unconstrained total activity. In [4] each member of an organization is again mod-
eled as an information processor. Techniques for allocating information processing
tasks to members are discussed. Creating self-contained tasks is analogous to de-
composing a global cost function in our formulation. Self-contained tasks translate
to decoupled subcost functions in our formulation. Reference [5] uses a queueing
network model to describe a team of two decision makers. Two decision makers
are modeled as two service stations with different processing capabilities, different
processing rates (expertise), and common information. There are three classes of
tasks, and tasks arrive at the team of decision makers dynamically. Reference [5]

discusses the optimal policy to select/allocate these tasks.

Our proposed, mathematical model of an organization is simpler than the in-
formation processor models of [3], [4], [5] in the sense that a ‘Decentralized-descent
algorithm’ does not describe an organization’s interaction with the external envi-
ronment. On the other hand, our model is more explicit in showing interactions

between divisions or the coupling of organizational task.

13

The mapping problem in [8] is quite similar to some of our proposed problems.
Consider a program made up of several modules. When these modules are executed
in parallel, some modules must communicate with each other. When parallel pro-
cessors are incompletely connected, a pair of modules that must communicate with
each other should be executed by neighboring processors. The mapping problem is
how to assign modules to processors so that the number of such successfully placed
pairs of modules are maximized. A set of modules and their communication require-
ment are analogous to our subtasks and their couplings. However, there are a few
differences. In the mapping problem, communication structure of modules and the
interconnection of processors are fixed. In our problem, couplings among subtasks
depend upon how we decompose a global task. How we decompose a global task is

a more important issue than how we map subtasks to agents.

1.4 Outline

In Chapter 2, the mathematical model recruited for the discussion will be ex-
plained in detail. Mathematical realization of suggested problems will be made in
various ways. For each realization, a strategy for solution will be briefly indicated.
In subsequent chapters (Chapter 3 — Chapter 4), each formulation will be discussed

in detail, and solutions for them are discussed in detail.

14

(a) Global task 1 2 3

(b) Divisional tasks | 1 - - 2 3

(c) Agents @—@ @

Figure 1-1

" Figure 1-2 Organizational structure

15

(a) Global task

1

(b) Aséignment

1 2

&

(c) Assignment

1 2 3

910

Figure 1-3 Comparison of two assignments

16

Chapter 2 . MATHEMATICAL MODEL

2.1 Decentralized Gradient-like Algorithm for an Additive Cost Function

In this section we introduce the decentralized gradient-like algorithm for an
additive cost function and make some important observations. We also discuss how

this algorithm models the behavior of an organization.

For the cost function, J(z) = J(z1,Z2,....,Tar) = Efil J(Z1,%2, .., Tnr) , the
processor 1 has the subcost J* and is responsible for the variable z;. The algorithm

is summarized as follows:

Algorithm 2.1.1

At each iteration n,

1. Each processor j evaluates the partial derivative A'I: (n) = %j(n) for every 1

such that J’ depends on z;.

2. Each processor j transmits Af: (n) to processor 1, for every processor ¢ such that

J7 depends on z;.

3. Each processor ¢ updates z; according to

(1) = o)~ ()7, Mo

(Here, ~; is a positive scalar stepsize.)

4. Each processor i transmits z;(n + 1) to all processors j that depend upon z;.

Algorithm 2.1.1 is a synchronous version of a decentralized gradient-like algo-
rithm. Since processors communicate all the necessary information at the end of

each iteration, this algorithm is mathematically doing the following:

17

Z(n + 1) = Z(n) — DVJ(Z(n))

where D = diag(y1,72, .-y YM)-

This is a steepest descent algorithm with scaling, and +; is a scaling factor of the

i-th component of the gradient.

An asynchronous version of Algorithm 2.1.1 is basically the same as Algorithm
2.1.1 except that the asynchronous version does not require z’s and A’s to be trans-
mitted at each iteration. It also allows communication delay. It has been shown in
[1] that the asynchronous version of Algorithm 2.1.1 converges if the A’s and z’s are

transmitted frequently enough. A precise mathematical statement is in [1].

An important observation is that for all the pairs i and j such that J7 depends
upon z;, z; must be transmitted from processor i to j, and A'Z-' must be transmitted
from processor j to i. It is not necessary that all the processors communicate with
each other. Therefore, a path is only required between certain pairs of processors.

A set of subcost functions requires a certain class of communication networks.

We view minimizing the global cost function, J(z1,....,zpm) = >_; J* as a task
of an organization. Values of M variables, z,,z5,....,2)s represent decisions the orga-
nization has to make to accomplish the task. In order to reduce the work load and
to enhance the security of organizational information, an organization distributes
the authorities to make such decisions to M divisions. Each division, i has an au-
thority to determine the value of z;. Each subcost J* specifies the subtask entrusted
to division i. J* is known only to division i. Therefore, each division does not

know what others are doing; this is to serve the security objective. Each state of

18

computation shows how far the organization has advanced in performing the task.

Iterative computation models boundedly rational divisions (or human decision mak-

ers), which make decisions based upon partial knowledge and update the decisions

as they acquire more information, hopefully in a direction that decreases costs.

2.2 Problem formulation

In this section we rigorously formulate the proposed problems within the mathe-

matical framework described in section 2.1. In order to make our discussion concise,

we define the following symbols in advance.

J(z1,Z2,...,Zp) : the global cost function

DM; :

Ji

nt(z) :

d(DM;) :

L(G) :

decision maker, processor, agent, or division which is responsible for the

value of z;

: a subcost function

(If a certain term of the global cost function is in J*, we say that the term
is ‘assigned to DM;’.)

the number of cross terms of J*

(We assume that J*’s are quadratic; therefore, we can count the number
of cross terms. We count a product of two variables as one term. For

example, for J! = 12 + z,(z3 + 4), nt(:) = 2.)

aJ7

: a partial derivative oz

degree, the number of links incident upon DM;
a set of nodes of a graph G whose degree is 1. (leaves)

maz; nt(:) : maximum of nt(z) over all s.

19

Gq = (Vg, Eq): undirected graph with a node set Vq and an edge set Eq

G = (V,E) : undirected graph with a node set V and an edge set Eq

Given a cost function J(zy,z2,....,Zps), there are many ways to decompose
it as the sum of M subcost functions, J*’s such that J(z1,22, .00y TM) = Eﬁl Jt.

Basically, our problem is to find a decomposition that meets the specified objectives.

2.2.1 Global cost function

As mentioned ahead, the study is restricted to the quadratic cost function,

J(:L’l, :BM) = (zl, ceey zM)Q(xla ""zM)T

where @ is a symmetric matrix. In order to represent J, we will often use an undi-
rected graph Gg = (Vg, EqQ), where Vg = {1,2,...,M} and Eq = {(1,)|Q(¢,7) #
0}. (Q(¢,5) is an entry of Q, ¢-th row and j-th column.) Conceptually, the
matrix @ or the graph Gg characterizes an organizational task. For example, the
dimension of @ represents the scale of the organizational task. Dense Q represents
a situation where the organizational task is very intricate in nature. In other words,
a decision made by a division affects many other divisions, no matter how the task
is partitioned. Therefore, sophisticated coordination or cooperation [7] strategy is
desired for this kind of task. On the other hand, a diagonal matrix, Q represents a

situation where each division can perform its own task without any interaction with

other divisions.

20

In our formulation we assume that Gq is connected. For G not connected, one
can always permute the rows and columns of @ and transform it to a block-diagonal
matrix, Q’. Therefore, if @’ has k diagonal blocks, the cost J can be decomposed into
k subcosts completely decoupled, and the problem is reduced to our formulation by
considering each connected piece of G separately. We also assume that the diagonal

elements of Q are non—zero.

2.2.2 Assumptions on decomposition

We assumed in the previous section that
Q(i,7) #0, i=1,2,...M

This means that the global cost function J does not miss any square term. We now
mandate that each square term Q(7,7)z? must be in J* in the decomposition. The
interpretation of this assumption is that each division (DM;) must take over the
partial task (z?) that does not involve decisions of other divisions. This assumption

makes mathematical formulation clear.

If J7 depends upon z;, there must be a path from DM; to DM; through which
z; will be communicated, and a path from DM; to DM; through which z\{ will be
communicated. This fact was mentioned in the previous section. We will consider
the issue of decomposing a global cost function under two different assumptions

concerning the communication between such pairs of processors.

The first assumption is that if J’ depends upon z;, there must be a direct
bidirectional link between DM; and DM;. We call this assumption ‘Direct Com-

munication’. This assumption is motivated by the security purpose. If information

21

of z; or)\{ travels from a source to destination through other DM’s, other DM’s
have chances to acquire that information. This is not desirable for the security of
information, so we want a direct link between DM; and DM;. This assumption is
also motivated by the speed consideration. If information is relayed by intermediate
DM’s as described above, delays of information transfer will be longer, and inter-

mediate DM’s will be unnecessarily overloaded by carrying information in transit.

The second assumption is more relaxed. We only require that DM; and DM;
be connected through a series of links if J* depends upon z;. Information on the
value of variables or partial derivatives can be communicated en route other pro-

cessors between this kind of pair of processors. We call this assumption ‘Indirect

Communication’.

From these assumptions, the following lemma immediately follows.
Lemma 2-1

Let the global cost function be J = z7Qz. If Q(¢,5) # 0, there must be a path
between DM; and DM; in G no matter how J is decomposed. Moreover, DM; and

DM; are within two hops under ‘Direct Communication’ assumption.

Proof

Let us say that z;z; isin J k in a decomposition. Since J* depends upon z; and
z;, the value of z; and the partial derivative ,\i-‘ must flow between DM; and DM;.
Therefore, a path between DM; and DM}, is required. Likewise, a path between
DM; and DMj is required. Therefore, there must be a path between DM; and
DM; in G.

22

Under the ‘Direct Communication’ assumption a link must exist between DM;
and DMj, and between DM; and DMj. Therefore, DM; and DM are within two

hops in G. (If k = i or k = j, the result still holds, trivially.)

2.2.3 Measure of objectives

In this section the mathematical definitions of three objectives of decomposition

are discussed; namely,
Objective 1: balance of loads
Objective 2: the amount of communication

Objective 3: the speed of convergence

Objective 1 reflected the idea that one of the purposes of a decomposition is
to balance loads that fall on each division of an organization. In our model (De-
centralized gradient-like algorithm for additive cost functions), the load on each
division DM; arises from the task of minimizing a subcost function J¢. Therefore,
a reasonable measure of the load on DM; will be the amount of effort or resources
DM; has to exert to minimize J*. This effort or resources include memory spaces
and computational operations. In Algorithm 2.1.1, the local memory of processor

DM; must contain the the subcost function J*, the set of variables,
SV (i) = {a:;'-|J" depends upon z;},

the set of partial derivatives
SP(i) = {\¥|J* depends upon z;}.

Notice that

|SV ()| = the number of variables J* has

23

|SP(3)| = the number of subcost functions that depend upon z;

As for the computational operations, DM; must recesve the values of partial deriva-
tives from |SP(7)| processors in order to update z;. Also, DM; must add |SP(5)|
partial derivatives in order to update z;. (Recall g—;’i =2 %;.) DM; must send

the updated z; to |SP(¢)| processors whose subcost function depends upon z;. DM;

also has to compute |SP(7)| partial derivatives and send to |SP(5)| corresponding

Pprocessors.

Therefore, the accurate measure of the load on processor DM; will be a function
of not only J* but also the whole decomposition of J. The sum of the following will
be an accurate measure of load on DM;: the cost of memory space for storing
J*, the cost of storing variables proportional to |SV ()|, the cost of storing partial
derivatives proportional to |SP(7)|, the cost of receiving values of partial derivatives
proportional to |SP(z)|, the cost of adding |SP(z)| partial derivatives, the cost of
transmitting its variable proportional to |SP(7)|, the cost of computing |SP()|

partial derivatives, the cost of transmitting these partial derivatives proportional to

|SP(3)].

In order to simplify our analysis, we will use an approximate measure of loads
on each processor. We simply define the load of processor DM; to be the number
of cross terms J* contains . This definition is possible because we are using the
quadratic function as a global cost function in our model. We can count the number
of cross terms in a quadratic cost function. The advantage of this definition is that
we can view the decomposition process as assigning each cross term to processors.
Every time a cross term in a global cost function is assigned to a processor, the load

on this processor is increased by one. The analysis is simplified a lot in this way.

24

This definition of load is a relatively faithful approximation to the accurate measure
of load stated above. If the number of terms grow in a subcost function, the required
memory space to store this subcost function must also become big. Generally, if the
number of cross terms in J* is big, J* depends upon many variables (big |SV (3|).

We use nt(i) to denote the number of terms assigned on DM;.

We define the measure of balance to be the maximum of these numbers of terms

over all processors, i.e. maz; nt(7). For the same global cost function J, smaller

maz; nt(i) means more balanced decomposition.

The amount of communication, again, will be extremely complicated if we want
to follow our algorithmic model literally. We would have to count every single
message transmitted and received. Theoretical analysis of this is impossible. Even
if we were able to count all the message flows, the result would mean nothing more
than the cost of communication in parallel processing. We present two approximated
measure of the amount of communication, and explain how these measures can be

interpreted more meaningfully.

First, we consider the number of processor pairs that need to communicate with
each other. We have stated that DM; and DM; must communicate with each other
if J* depends upon z; or J7 depends upon z;. We count the number of such pairs
and use this number as the amount of communication. As long as a pair of processors
need to communicate with each other, we do not care how many bits of information
need to be actually exchanged. This is a convenient simplification. Under the first
assumption on decomposition in section 2.2.2 (‘Direct Communication’), this number

of processor pairs is the total number of necessary links in a set of processors in order

25

to perform the organizational task with the corresponding partition of tasks. We
call this measure of the amount of communication TL (Total number of Links).
This measure, T'L can also be interpreted as the measure of risk of the leakage of
organizational secret if every direct channel has the same probability of information
leakage. If an organization has a fixed structure in terms of its communication ability
(this will be explained in Section 2.2.4), TL is a total number of edges in the graph

representing the fixed organizational structure.

As an alternative, we define the amount of communication slightly differently
from TL. Decomposing a quadratic global cost function J(z;,z2,....,Zpr) can be
viewed as assigning each cross term of J to one of processors, DM,;, DM,, ..., DM,.
If the cross term z;z; is allocated to DMy, k # i,k # j, two links must exist; namely,
a direct link from DM; to DM}, and a direct link from DM; to DMjy. If the cross
term z;z; is allocated to DM; or DM;, one link must exist; namely a link between
DM; and DM;. From this fact we can define the measure of necessary communica-
tion as the sum of the number of links introduced by this rule over all cross terms. We
call this number ‘RL’ (Repeated number of Links). Obviously, this is not an exact
number of necessary links under the assumptions of previous chapters. The reason
is that the number of links can be counted repeatedly for the same pair of processors
that need to communicate with each other. (For this reason RL will be often called
‘superposed link’.) However, this definition of communication load serves as an
approximate measure. There is another interpretation for this measure RL. The
work load of each division nt(z) is defined to be the number of terms assigned to that
division DM;. Let us imagine that each division consists of individuals, and each
individual is responsible for one term. In the same division, the decision variable of

its own is known to every individual. However, for security purpose, individuals are

26

not allowed to inform one another with the values of decision variables they received
from other division. In this set-up, division DM; must communicate with all other
individuals in other divisions who are assigned with a cross term involved with z;.

Therefore, RL is a total number of communication channels in this set-up.

As for the speed of convergence, the best measure for mathematical analysis
would be the rate of convergence of the algorithm. However, the reasonable, coherent
definition of the rate of convergence for distributed and asynchronous algorithm
is very messy in terms of its mathematical expression. Also, it is very difficult
to compute. This theoretical approach becomes mathematically intractable. For
example, the speed of convergence is related to many factors other than how we
decompose the global cost function. It depends upon the stepsize and the frequency
of communication between processors as well. Finding analytical relations between
these factors and the speed of convergence is mathematically intractable. The only
way to gain some understanding is to perform insightful computer simulations. One
would want to show through simulation that balanced assignments of subcosts in
general improve the speed of convergence. Therefore, the whole analysis of the
speed of convergence should inevitably be done heuristically. We suggest that one
should simulate Algorithm 2.1.1 and count the number of iterations of the simulation
program until it approaches the solution sufficiently close. We suggest using this
quantity as a measure of the speed of convergence. We suggest one should design the
simulation program in a way that this iteration count represents the real time taken
to run Algorithm 2.1.1. Now, the issue is how to decompose a global cost function
in order to meet this objective of fast convergence. It is intuitively clear that the

balanced decomposition ends up with faster speed of convergence. Therefore, we

27

conclude that Objective 2 (fast convergence) of Section 1.2 is embedded in Objective

1 (balance of loads) in general.

2.2.4 Three types of organizations

We have rigorously stated the objectives of decomposition of a global cost func-
tion (or partitioning an organizational task) and our assumptions. In this section
we classify organizations into three classes; namely, fixed organization, flexible orga-
nization, semi-flexible organization. This classification is based upon the flexibility
of their communication structure. (‘Communication structure’, here, simply means
which pairs of divisions or Processors can communicate directly. It can be repre-
sented by a graph, where each node symbolizes a division or a processor, and each
link symbolizes a pair of processors that can communicate directly with each other.)
Our problem is to decompose the global cost function in order to meet the objectives
(section 2.2.3) under the assumptions in Section 2.2. This problem shows distinctive

lineaments when solicited for these different types of organizations.

In a fixed organization, the communication structure is strictly fixed. Each
division is a priori determined to be responsible for a certain decision variables.
(Decision variables of an organization mathematically translates to variables of J in
section 2.2.1.) Which pairs of these divisions can directly communicate with each
other is again determined a priori. Since the task allocator or a task allocating algo-
rithm does not have an authority to specify or modify the communication structure
of an organization, it has to find a decomposition that only requires communication
through predetermined links. (Recall if J* depends upon z;, a communication be-

tween a processor responsible for z; and one for z; must communicate with each

28

-

other.)

In a flexible organization, the communication structure is not predetermined.
The task allocator or task allocating algorithm has an authority to impose a com-

munication structure of an organization.

In a semi-flexible organization, the communication structure of an organiza-
tion is fixed. However, which processor is responsible for which decision variable
is not determined a priori. The task allocator or the task allocation algorithm has
an authority to determine the mapping from a set of decision variable to a set of

processors as well as the decomposition of a global cost function.

2.2.5 Specific formulations

Our problem is to find a decomposition that meets the objectives specified in
section 2.2.3 under the assumptions specified in section 2.2.1 and 2.2.2. We are
concerned with two objectives; namely, the balance of loads and the reduction of
the amount of communication. We have concluded that the speed of convergence
(Objective 3) is embedded in the objective of the balanced load. We suggested two
definitions for the amount of communication in section 2.2.3. In section 2.2.2, we
suggested two different assumptions on decomposition; namely, ‘Direct Communica-
tion’ and ‘Indirect Communication’. Since we have two definitions of the amount of
communication to select and two assumptions to choose from, we can think of four
combinations for the formulation of problems. We can match each of these four prob-

lems to three different types of organizations specified in section 2.2.4. Therefore,

we have twelve cases to consider.

29

2.2.5-1 ‘Direct Communication’
< TL as the amount of communication >

A. Fixed organization

Since the organization has a fixed communication structure, the total number
of links is also fixed. T'L is invariant of a decomposition of J. Therefore, we can only
consider the balance of load. Our problem is, then, to find a decomposition that

minimizes maz; nt(i) such that ‘Direct Communication’ assumption is satisfied.

Load Balancing in a Fixed Structure
Given Gg = (Vg, Eg) and a graph G = (V, E), find a decomposition that minimizes

maz;nt(z).

B.F lexible organization

Let us consider T'L as our objective. If we do not care about the other objective
(the balance of loads), the problem of minimizing T L becomes trivial. If we assign
the global cost function to a single processor, TL is M — 1, where M is the number
of variable. (M = |Vg|) TL is M — 1 because J has all the variables z;,z3,..., Zps.
M — 1 is a minimum TL because G has M nodes, and connected by Lemma 2-1.

(Recall that we assumed G¢ is connected.):

If we care about the balance of load while minimizing T L, the problem becomes

nontrivial.

Minimal Link

30

Given J = zTQz, nt}, find a decomposition that minimizes TL such that nt(s) <

ntf, i=1,2,..., M.

This problem models a situation where each division has a limited capacity
(nt}), and we want to partition an organizational task (minimizing J) such that the
size of divisional task (nt(z)) is within the capacity of corresponding division. The

aim of decomposition is to minimize necessary amount of communication (T'L).

Now, let us consider maz; nt(7) as our objective. Again, if we do not care about

the amount of communication, the problem becomes trivial. We equally split the
. . . . G

cross terms of J and assign pieces to processors. It will produce maz; nt(z) = [Iﬁ—l]

If we restrict the amount of communication, the problem becomes nontrivial.

Load Balancing with Limited Link

Given J = z7Qz, TL*, find a decomposition that minimizes maz; nt(s) such that

TLLTL~.

C. Semi-flexible organization

Like Fixed organization, T'L is fixed in this case. The problem is to find an
assignment of decision variables and a subcost functions to processors that minimize

maz; nt(1).

Mapping for Load Balancing
Given Gg and G = (V,E), find a decomposition J(Z) = Y ;J* and a matching

between {z1,z3,...,zp} and V, so that these minimize maz; nt(z).

Even before the issue of finding a decomposition J(Z) =), J* is discussed,

31

finding a feasible matching between {z;,z2,...,Z)} and V is a notrivial problem. It

will be discussed in detail in Chapter 3.

< RL as the amount of communication >

A. Fixed organization
Let us consider RL as an objective. The problem is, then,

Minimal Superposed Link in a Fixed Structure
Given a graph G, Gq, and nt}, find a decomposition that minimizes RL such that
the message is only transferred through the edges of G, and such that nt(:) < nt?,
1=1,2,...,M.
(We can cast off the constraint on the capacity of each processor by letting nt(z) =

00, Vi.)

We can also consider maz;nt(z) as our objective.

Load Balancing with Limited Superposed Links in a Fixed Structure
Given a graph G, Gg, and RL*, find a decomposition that minimizes maz;nt(s)
such that the message is only transferred through the edges of G, and such that
RL < RL*.

B. Flexible organization

As in the case of (TL, Flexible organization), the problem of minimizing RL

32

becomes trivial if we do not care about the balance of loads. We know that RL is
increased either by one or two whenever we assign a cross term. If we do not care
about the balance of loads, for each cross term z;z;, we assign it to either DM; or
DM;. This way, RL is increased only by one for each cross term. Therefore, RL is
|Eg|, and this is minimum. As in the case of (T L, Fixed organization), we can put

constraints on the capacity of each processor.

Minimal Superposed Link

Given J = zTQz, nt}, find a decomposition that minimizes RL such that nt(s) <

nt;,1=1,2,...,.M.
If we use maz;nt(i) as our objective, the problem is

Load Balancing with Limited Superposed Link

Given J = zTQz, RL*, find a decomposition that minimizes maz; nt(:) such that

RL < RL*.

C. Semi—flexible organization

Mapping for Minimal Superposed Link

Given Gg, G = (V, E), and nt] for i = 1,2,..,M, find a one-to—one mapping,

and a decomposition that minimize RL such that nt(t) < nt},i=1,2,.... M.

(We can cast off the constraint on the capacity of each processor by letting nt(z) =

0o, Vi.)

33

Mapping for Load Balancing with Limited Superposed Link

Given Gg, G = (V,E), and RL*, find a one-to—one mapping,

and a decomposition that minimize maz; nt(¢) such that RL < RL*.

2.2.5-2 ‘Indirect Communication’
< TL as the amount of communication >

A. Fixed organization

Since G is fixed, TL is also fixed. The only objective we can consider is

maz;nt(z). The problem is, then,

Given Gg = (Vg,Eg) and a graph G = (V,E), find a decomposition that

minimizes maz; nt().

We have assumed that Gq is connected. Therefore if |Vg| = |V|, and G is not
connected, feasible decomposition does not exist. On the other hand, as long as G
is connected, the problem becomes trivial. Since we allow indirect communication,
any pair of processors can communicate their messages with each other as long as

G is connected. Therefore, we can equally split cross terms of J and assign pieces

to processors. Then,

maz; nt(i) = ['—Efl—]

34

B. Flexible organization

In this case we can trivially find a decomposition that minimizes both TL and
maz; nt(s) at the same time. We have assumed that Gg is connected, so G ends up
being connected for any decomposition of J. Therefore, minimum TL is M — 1. (G
is a tree.) Moreover, since we allow indirect communication, any pair of processors
can communicate with each other in a tree-structured organization. Thus we can

achieve

maz; nt(i) = [I?M—d]

C. Semi-flexible organization

TL is fixed. Allowing indirect communication, again, trivializes the problem of
minimizing maz; nt(¢). Again, if G is not connected, the problem is infeasible. As

long as G is connected, for any one-to-one mapping,

we can achieve

by splitting cross terms of J equally.

< RL as the amount of communication >

A. Fixed organization

35

Under ‘Direct Communication’ assumption, whenever a cross term z;r; was
assigned, RL was increased either by one or two. Also, z;z; can be assigned only
to processors that has direct access to both DM; and DM;. Under ‘Indirect Com-
munication’ assumption, z;z; can be assigned to any processor that has a path in
G to both DM; and DM;. Whenever z;z; is assigned to DM}, RL is increased
by nd(DM;, DM}) + nd(DM;, DM}), where nd(DM;, DM,,) is the distance of the
shortest path between DM; and DM; assuming every edge has a distance 1. (nt
stands for ‘nominal distance’.) Therefore, when we choose RL as an objective, the

problem is formulated as the following:

Minimal Message Ambulation

Given a graph G, Gg and nt}, find a decomposition that minimizes
>) nd(DM;,DM;) + nd(DM;, DMy)
k z;zj in Jk
such that
nt(7) <nt; +=12,.,.M

(We can cast off the constraint on the capacity of each processor by letting nt(i) =

00, Vi.)

We can also consider maz; nt(i) as our objective.

Load Balancing with Limited Message Ambulation

Given a graph G, Gg, RL*, find a decomposition that minimizes maz; nt(¢) such

that

Y. > nd(DM;,DMy) + nd(DM;,DM;) < RL*

k ZiZTj in Jk

36

B. Flexible organization
When we choose RL as an objective the problem is:

Minimal Superposed Link

Given J = z7Qz, nt}, find a decomposition that minimizes RL such that nt(7) <
nty,1=1,2,...,.M.
When we choose maz; nt(i) as an objective, the problem is:

Load Balancing with Limited Superposed Link

Given J = zTQz, RL*, find a decomposition that minimizes maz; nt(s) such that

RL < RL*.

In both problems, the solution turns out to be identical to the case of ‘Direct
Communication’. Even though we allow indirect communication, the best route of

the message flow for each cross term is a direct link in order to make RL small.

C. Semi-flexible organization

As in the case of ‘Fixed organization’, RL is

Yo Y nd(o(z),0(zk)) + nd(o(z;),0 (),

k ziz; in Jk

once the one-to-one mapping
o:{z1,Z2,.00e0Zpg} — V

is determined.

37

Mapping for Minimal Message Ambulation

Given Gg, G = (V, E), and nt] for i = 1,2,..,M, find a one-to—one mapping,

and a decomposition that minimize

d. . nd(o(z:),0(zk)) + nd(o(z;), 0 (=)

k z;z; in Jk

such that nt(s) < nt}, ¢ =1,2,...,M.

Mapping for Load Balancing with Limited Message Ambulation

Given Gg, G = (V, E), and RL*, find a one-to—one mapping,

and a decomposition that minimize maz; nt(¢) under the constraint,

Z Z nd(o(z;),0(zk)) + nd(o(z;),0(zx)) < RL*

k z;z; in Jk

38

2.3 Summary

The problem is to find a decomposition J =) . J *, given a quadratic function
J = zTQxz so that the objectives:
1. Balance of decomposition
2. Reducing the amount of communication

are satisfied.

We can view this problem as a combinatorial optimization problem. A decom-
position J = Zi J* can be viewed as a mapping from the set of cross terms in J to
the set of processors. * (Figure 2-1) The total number of such mappings are finite

(less than or equal to M|Fel where M is the number of processors, and |Eg| is the

number of cross terms).

The summary of these twelve cases are in the following charts. In the following

chapters, we will discuss nontrivial problems formulated in this chapter.

* One may imagine splitting a cross term and assign pieces to different processors.

For example,
J = :z:f + a:% + x% + 3z122 + 3z2z3 + 37371

J! = zf + z122
J? = :vg + 2z,z5 4 373
J3 = zf + 3z3z,
However, by this type of splitting, we cannot improve any of nt(:), TL, RL. There-

fore, this type of decomposition is not considered, and a decomposition can be viewed

as a mapping explained above.

39

J = 10:1:? + :c§ + :r,§ + 22 4 2129 4 22575 + T3T4 + T474

J! =10z2 + 2,25 + 21523
J?= :t:g + z3z4
J3 = Z% + T4T1

4 _ .2
J* =z}

Nz Xa

,Xq. X"l

Figure 2-1 Decomposition viewed as a mapping

40

Summary chart for ‘Direct Communication’

TL

RL

Load Balancing

Minimal Superposed Link

in a

Fixed in a Fixed Structure
Organization Fixed Structure -
| Load Balancing
with
Limited Superposed Links
Minimal Link Minimal Superposed Link
Flexible
Organization Load Balancing ~ Load Balancing
with with
Limited Link Limited Superposed Link
| Mapping for
Semi—ﬂexible Mé,pping for Minimal Superposed Link

Organization

Load Balancing

Mapping for

Load Balancing

with

Limited Sﬁperposed Link

41

Summary chart for ‘Indirect Communication’

TL " RL

Minimal

Message Ambulation
Fixed Trivial
Organization Load Balancing

with Limited

Message Ambulation

Minir.ﬁa.l Superposed Link
Flexible
Organization Trivial Load Balancing

with

Limited Superposed Link

Mapping for Minimal
Semi-flexible Message Ambulation
Oi‘ga.niza.tion Trivial |

Mapping for
Load Balancing
with Limited

Message Ambulation

42

Chapter 3. DIRECT COMMUNICATION

In this chapter, the solution of nontrivial problems formulated in Chapter 2 is

discussed.

3.1 TL as an amount of communication

3.1.1 Fixed organization

When an organizational structure is fixed, and a global task is given, a natural
question is whether this organization is able to handle the task. This question must
be answered before the issue of balancing loads is discussed. An organization’s ability
is determined by two criteria. First, each subdivision of an organization must be
able to handle the subtask allocated to it. Second, the organizational structure must
support necessary communication among subdivisions caused by coupling among
subtasks. From this point of view, the question is whether there exists a proper
decomposition of the given global task for this organization. A proper decomposition
requires that the size of each subtask be within the capacity of the subdivision
to which it is assigned. A proper decomposition also requires that if a decision
of one subdivision affects the task of another subdivision, two subdivisions should
have a communication link. The following formulation describes this question of

organization’s ability to handle the task:

43

Let Gg = (Vg,Eq) be the graph describing the structure of J, and let G =
(V,E) be the graph describing the fixed organizational structure. Given Gg =
(V@,EQ), G = (V,E) (both graphs are assumed to be connected graphs) and nt},
t=1,2,3,...,M, does there exist a decomposition
such that nt(s) < nt},i=1,2,3,...,M, and

such that ‘Direct Communication’ assumption is satisfied.

The algorithm for this problem consists of two phases. Phase 1 reduces this
problem to well known Max-flow network problem. Phase 1 constructs a corre-
sponding digraph for Max-flow problem. Phase 2 can be any algorithm that effi-
ciently solves Max-flow problem. The following lemma will be often used to prove

the algorithm.

Lemma 3-1
If a cross term z;z; is to be assigned to DM; or DM;, G must have an edge (%, 5).
If a cross term z;z; is to be assigned to DMy, k # 1,5, G must have edges (¢,k) and
(7,k).

Proof

The proof follows immediately from ‘Direct Communication’ assumption.

As mentioned in the end of Chapter 2, a decomposition J = Y, J* can be viewed
as a mapping from the set of cross terms in J to the set of processors. Therefore,
with the help of this lemma, the problem above can be equivalently stated as the

following:

44

Given Gg = (Vg,Eq) and G = (V, E), does there exist a mapping
$:Eg —V

such that

if ¢(¢,7) = DMy, k # i,k # j, then, (DM;, DMy),(DM;,DM}) € E
if ¢(1,7) = DM; or ¢(¢,5) = DMj, then (DM;,DM;) € E

and such that [¢~'(DM;)| < nt} , Vi.

The following algorithm solves this problem.

Let M = |V|, the number of processors.

Algorithm 3.1
Phase 1
1. Create |Eg| nodes corresponding to cross terms of J. Let m;; denote the node
corresponding to z;z;.
2. Create M nodes corresponding to processors. Let n; denote a node correspond-
ing to DM;.
3. For each cross term z;z;, do
If (DM;, DM;) € E, make an edge from m;; to n; and make an edge from
m;; to n;.
For each neighbor of DM; in G, say DM, # DM;,
If (DM, DM;) € E, make an edge from m;; to ny.
If no edge is made for z;z;, terminate with an output;
“Organization cannot handle this task.”

Let all the edges created in Step 3 have infinite capacity.

45

4. Create the source node s and make an edge from s to each m;;. Each edge,
(s,m;;) created at Step 4 has capacity 1.

5. Create the sink node ¢t and make an edge from each n; to t. Each edge (n4,t)

created at Step 5 has capacity nt}.

The digraph constructed by Phase 1 is in Figure 3-1. Let the set of edges
produced in Step 3 be E3. We can see, then, (mij,nk) € E3 if and only if Z;T; can
be assigned to DM, without violating Lemma 3-1. If no edge is constructed for some

cross term, this cross term cannot be assigned to any processor, so the organization

cannot handle this task. (Line of Step 3)

Phase 2

1. Run Ford-Fulkerson labeling algorithm for the constructed digraph.
(Set an initial feasible flow through each link that is integer. Each flow can be
set zero initially.)

2. If maximum flow is |Eg|, the organization can handle this task;

3. If maximum flow is less than |Eg|, the organization cannot handle this task.

Let us prove this algorithm. Ford-Fulkerson algorithm [6] updates flows through
an ‘augmented path’. An augmentation path is a special path from the source to
the sink in the undirected graph resulting from the original graph by ignoring arc
directions. The augmented path satisfies the following two conditions:

1. If the direction of the original ark is the same as the direction of the augmen-

tation path, the flow through the original arc is strictly less than the capacity

of the arc.

46

2. If the direction of the original ark is opposite to the direction of the augmenta-

tion path, the flow through the original arc is strictly greater than zero.

Let P, be an augmentation path at certain iteration of Ford-Fulkerson algorithm.

Let e be an edge of this augmentation path P,. Let the push flow through e be

capacity of ark — actual flow if e has the same direction

as the original ark
push(e) =

actual flow if e has the opposite direction
to the original ark

Ford-Fulkerson algorithm finds an augmentation path at each iteration and pushes

flow in the direction of the augmentation path by the amount
6 = min.cp, push(e)

Since all the arc capacities of the graph in Fig 3-1 are integers, if our initial flows
are integers, § is an integer. Inductively, all the flows are kept to be integers during

the run of the algorithm.

If maximum flow is |Eq|, flows through all the arcs incident upon the source s
must be 1 because we have |Eq| such arcs with capacity 1. Each node m;; has one
edge (m;;,nx) with flow 1 because of the flow conservation, and because we have
shown that the flow through any arc is kept integer. This means there is a feasible

assignment of the cross term z;z; is to DMj.

If maximum flow is less than |Egq|, we claim that no assignment of cross terms
can satisfy Lemma 3-1 and the capacity constraint of processors. We prove this by
contradiction. Suppose there is a satisfactory assignment. For each cross term z;T;,
we can find the processor DM, to which this cross term is assigned. We can, then,

set the flow through (m,;,n,) to be 1. Since the assignment of cross terms satisfies

47

the capacity constraint of processors, the flow through arcs into the sink ¢ is within

the capacity of these arcs. Therefore, the maximum flow is |Eg|. Contradiction.

Thus, Algorithm 3.1 is proved.

Phase 1 of algorithm 1.1 takes O(|Eq|M) because for each cross term, every
node should be checked if it can handle the cross term. Ford-Fulkerson algorithm
takes O(|A|) where A is a set of edges of the graph in Fig 3-1. |A| is no greater
than |Eq| + M + |Eg|M. Therefore, for our problem, Step 1 of Phase 2 takes
time O(|Eq|M). Since the maximum flow is no greater than |Eq|, Phase 2 takes
O(|Eq|*M). Algorithm 1.1 has running time O(|Eq|*M). (At step 1 of phase 2,
any max-flow algorithm can be used as long as they generate integral solution. If

we use such an algorithm other than Ford-Fulkerson, the time complexity may be

different.)

We can extend Algorithm 1.1 in order to obtain a balanced allocation of the
global cost function, given a fixed processor network. Let us say that the best—

balanced allocation is the one that minimizes the load of the most heavily loaded
processor.

Load Balancing in a Fixed Structure
Given Gg = (Vg, Eq) and a graph G = (V, E), find a decomposition that minimizes
maz; nt(1).

We can solve this problem by running the phase 2 of algorithm 1.1 recursively.

Algorithm 3.2

48

1. Run Line 1 through Line 4 of phase 1 of Algorithm 3.1
Set nt* = [JFHQ.l'I

3]

. Create the sink node ¢t and make an edge from each n; to t.
3. Set the capacity of each edge (n;,t) to be nt*.
4. Run Ford-Fulkerson labeling algorithm for the constructed digraph.

(Set an initial feasible flow through each link that is integer. Each flow can be

set zero initially.)

If maximum flow is |Eg|, stop;

(min maz; nt(i) = nt*)

If maximum flow is less than |Eqg|, nt* := nt* +1

go to Line 3.

We know that the algorithm terminates before nt* becomes greater than |Eq|
because min maz; nt(i) is no greater than |Eq|. Therefore, the time complexity
of Algorithm 3.2 is O(|Eq|*M). In Step 4 of Algorithm 3.2, if we do binary search
of nt* rather than increase it one at each iteration, we can run Ford-Fulkerson

algorithm only O(log |Eq|) times. Therefore the complexity of Algorithm 3.2 can
be improved to O(M|Eg|log|Eq|).

When the fixed organizational structure happens to be a tree, we present a

special algorithm in order to minimizes maz;nt(s).

Fixed Tree:
Given Gq (a graph describing a global cost function) and T = (V, Er) (a tree struc-

tured network of decision makers), find a decomposition that minimizes maz; nt(z).

The following lemma is used in order to analyze the algorithm.

49

Lemma 3-2
Suppose the organizational structure is a tree, and DM; is responsible for z;.
1. If DM; and DM; are directly linked, i.e. (DM;,DM;) € Er, the cross term
T;Z; is assigned either to DM; or to DM;.
2. If DM; and DM; are connected by exactly two hops, i.e. there exists DM such
that (DM;, DMy), (DM,, DMy) € Er and (DM;,DM;) ¢ E, T;r; is assigned
to DMj.

Proof

1. Suppose DM; and DM; are directly linked, and z;z; is assigned to DM,
k # i,5. J* depends upon z; and z;. Therefore, by ‘Direct Communication’
assumption , (DM;, DM}) € Er and (DMj;,DM}) € Ep. Therefore, DM;,
DM;, and DM, form a cycle. Contradiction.

2. Suppose DM; and DM; are connected through DMj. If z;z; is assigned to
DM; or DM;, by ‘Direct Communication’ assumption, (DM;,DM;) € Er.
Therefore DM;, DM;, DM}, form a cycle. Contradiction. If T;z; is assigned to
DM, l # 1,5,k. By ‘Direct Communication’ assumption , (DM;,DM,) € Er
and (DM,,DM,) € Er. Therefore, DM;, DM;, DMy and DM; form a cycle.
Contradiction.

Q.E.D.

Algorithm 3.3

Given a tree, T = (V, E7) and J(z,, 2,, Tp1),

Step 1. Check if the given tree can handle the cost function. In other words, for all

cross terms z;z;, check if DM; and DM; are within two hops.
Step 2. Assign each square term z? in J*.

50

For each cross term z;z;, if there exist DM such that (DM;,DM;) € Er,
(DM;, DMy) € Er, z;z; is assigned in J*

Step 3. Let us define
nec(?) = the number of terms necessarily assigned to DM; by step 2.
mz = maz; nec(t)
L(G), leaves = a set of nodes of a graph G whose degree is 1.
B(G) = a set of edges incident upon the nodes in L(G)

T(n) = (V(n), Ex(n))
T ifn=1

(V(r—1)-L(T(n-1)), Er(n—1)-B(T(n—1))) ifn>2
For iteration n from 1 to r where T'(r) = @, do the following:
for all pairs 7,5 such that DM; € L(T'(n)), DM, € T(n),
and (.DM,',DM_.,') S E(n)
a) if nec(i) < mz,
z;r; is assigned to DM;

nt(:) = nec(:) + 1 ; frozen

b) if nec(:) = mz, and nec(y) < muz,
T;z; is assigned to DM;
nt(i) = nec(s) ; frozen
nec(y) := nec(y) + 1

c) if nec(i) = mz, and nec(j) = maz,
z;z; is assigned to DM;
nt(i) = nec(?) + 1 = mz + 1 ; frozen

(The terminology ‘frozen’ means that no more cross term can be assigned

to the processor; therefore, nt() is set.)

51

Explanation:

Step 1. For some trees, no decomposition can satisfy our assumptions. See Figure 3-2
as an example.

Step 2. This step assigns to each DM; all the terms that J* must necessarily have
according to to the second point of Lemma 3-2. (At the end of Step 2, we are
left with at most M —1 cross terms to assign. These cross terms are characterized
as z;z; such that (DM;, DM;) € Ey.)

Step 3. At each iteration, we take leaves and their neighbors (A leave is defined as a
node whose degree is 1) and eliminates leaves with their incident edges. The
number of cross terms assigned to these leaves are frozen when they are removed.

Step 3 is a strategy to assign cross terms corresponding to the edges of the tree.

Theorem 3.3

Algorithm 3.3 minimizes maz; nt(t), for a fixed tree in polynomial time, and mz <

maz; nt(i) < mz+1

Proof

First, we claim that at any iteration n, nec(i) < mz for any leaf DM; as long as
nt(z) has not been frozen. Suppose not. Let DM; be the first node in the progression
of Algorithm 3.3 such that DM; is a leaf and nec(i) > mz. Since nec(k) < mz for
all processors DM, before Step 3, the only way it can happen is nec(:) = mz at
a certain time n, and a cross term T;z; is assigned to DM;. DM, must be a leaf
incident on DM; when this happens, and this DM; is frozen as the assignment of
z;z; is made. (Figure 3-3a) At this time n, nec(l) < mz because we defined DM; to
be the first node such that nec exceeds mz while bing a leaf. Since nec(s) is mz, and
DM, is a leaf incident upon DM;, z;z; cannot be assigned to DM;. Contradiction.

Secondly, if no incidence of Step 3-c happens, nec(k) < mz for each processor

52

DMj. Therefore, mazy nt(k) = mz.

Finally, if Step 3-c happens at some iteration n (Figure 3-3b), we know from
the first claim that maz nt(k) = mz + 1 at the end of the algorithm. We claim that
min mazy nt(k) is indeed mz + 1 for this global function. Let us say that DM; is
a leaf with nec(i) = mz, and DM; is its neighbor with nec(j) = mz. If nec(t) and
nec(y) are both originally mz before Step 3 begins, obviously mazy nt(k) > mz +1,
because z;z; must be assigned to either DM; or DM; by Lemma 3-2. Therefore,
maxzy nt(k) = mz + 1. Even though nec(i) < mz or nec(j) < mz before Step 3, we
cannot make nec(i) or nec(s) less than mz at time n with keeping nt(k) < mz for
all k. For example, if nec(z) < mz before Step 3, some cross terms of the form z;T)
must have been assigned to DM; at certain iterations before n. Take an arbitrary,
such /, and say z,;z; has been assigned to DM; at iteration n; < n. Therefore, at
iteration n;, DM; is a leaf incident on DM;, and nec(l) = mz (Figure 3-3c). It
nec(l) is mz before Step 3, z;z; must be assigned to DM; as long as we try to make
mazy nt(k) less than mz + 1. If this is the case for all I, nec(:) has to be mz at time
n in order to keep nt(k) < mxz for all k. If for some I, say I, nec(l;) < mz before
Step 3, there must have been some cross terms of the form z;, =, that has been
assigned to DM, at some iteration ny, < ny. Therefore, at iteration ny, DM, is a
leaf incident on DM;,, and nec(p) = mz (Figure 3-3d) If nec(p) is mz before Step
3, 21, zp, must be assigned to DM, as long as we try to make maz; nt(k) less than
mz + 1. If this is the case for all p, nec(l) has to be mz at time np in order to keep
nt(k) < mz for all k. If for some p, say p;, nec(p1) < mz before Step 3, there must
have been some cross terms of the form z,, z, that has been assigned to DM,, at
some iteration n, < n,, and nec(q) = mz at iteration np. If we keep repeating this
argument, we will eventually get to a node DM, such that nec(*) is mz before Step

3, because the graph G is a finite tree. Therefore, nec(:) must be mz at iteration n

53

in order to keep nt(k) < maz for all k. Therefore mazy nt(k) > mz + 1. Since we
get mazy nt(k) = mz + 1 at the end of Algorithm 3.3, mazy nt(k) = mz + 1.
Q.E.D.

3.1.2 Flexible organization

Minimal Link

Given Gq = (Vg, Eg), nt}, find a decomposition that minimizes T'L such that

nt(i) < ntf, i=1,2,..,|Vg]

Load Balancing with Limited Link

Given Gg = (Vg, Eq), tI*, find a decomposition that minimizes maz; nt(i) such

that TL < TL*.

The recognition version (discussion problem) of these two problems are identical.

INSTANCE
Gq = (Vg,Eq), M = |Vq|
tl, total number of necessary links

nt*, maximum of nt(z) over i = 1,2,..... M

PROBLEM

Does there exist a decomposition with total number of necessary links, ¢l

and maz; nt() = nt* ?

54

No efficient algorithm for ‘Minimal link’ or ‘Load Balancing with Limited link’
has been found. We conjecture that the recognition version of these problems is

NP-complete.

An efficient algorithm can be designed, however, for a special case of ‘Minimal
Link’ problem. When the global cost function is J = zTQz, where Q is bandwidth
limited matrix, a dynamic programming can be used, provided that some additional

constraint is imposed on the assignment of existing cross terms.

Minimal Link for bandwidth limited cost
Given J = zTQz, where Q is bandwidth limited by a fixed integer W, (Q(:,7) = 0
ifi—7]>wW)
find a decomposition J = dokd k that minimizes TL subject to the following con-
straints:
Constraint 1 : nt(7) < nt}
Constraint 2 : any cross term z;z; (¢ < j) can be only in subcost function J k,

where k satisfies j — W + 1 < k < j. (See Figure 3-4)

The special feature of this problem is that the interaction between variables is
local. If two variables z;, z; are sufficiently distant (|§ — 5| > W), two processors
(or divisions of an organization) responsible for these variables can make decisions
independent of each other. Here is the reason. Without loss of generality, let us
assume ¢ < j. For any cross term of the form z;z,, in the cost function J, li—w| < W.
If 1 <w < j, z;z, can be assigned to processors DM, w41, DM, _w2,...DM,,,

but not DM;. (Figure 3-5a) If w < ¢ < j, z,z; can be assigned to processors

55

DM; w41, DM;_w3,...,DM;, but not DM;. (Figure 3-5b) Therefore, no cross
term of the form z;z, can be in J7. By the same token, no cross term of the form
z;T, can be in J*. Therefore, J* does not depend upon z,;, and J7 does not depend

upon z;. Dynamic programming takes advantage of this feature of the locality of

interaction.

Decomposing a cost function can be viewed as assigning cross terms to proces-
sors. Let us break up this labor of assigning cross terms into M stages, where M
is the number of variables. At each stage t € {1,2,3,....M }, we assign all the cross

terms of the form

iz, t—-WH+1<I<t.

Because of Constraint 2, these cross terms can only be assigned to
DMt—W+la -DMt—W+21 sevey sDMt

(Figure 3-4) Therefore, the number of choices for a decision at each stage is at most
W(W —1) (W processors to choose for each of at most W — 1 cross terms of the
form ziz;, t —W + 1 <1 < t). This gives hopes for polynomial-time dynamic
programming because W is fixed. A state at each stage should contain the number
of cross terms assigned to each processor up to that stage. A state also includes the
location of communication links required by the assignments of cross terms up to

that stage.

Let us describe the dynamic programming rigorously. Let the vector f](t) e zwv

describe the number of terms assigned to processors DM;_w 41, DM;_w 2, ..., DM,

56

until the beginning of step ¢. More precisely,

Ui (t)
U(t) = Us:(t)

Uw (2)

the number of cross terms
assigned to DM;_w ;
Ui(t) = until the beginning of stept ift—W +i>1

0 ift-W4+4¢<0

Notice that only the cross term of the form z;z,, | < s < t is assigned to
processors until the beginning of step ¢. This kind of cross term cannot be assigned
to processor DM; from constraint 2. Therefore, DM, does not have any cross term
at the beginning of step t. Consequently, Uw(t) = O for all ¢t = 1,2,..., M. Also,
since no assignment has been made at the beginning of step 1, U (1) = 0. (Figure

3-6)

Let the symmetric matrix V (t) € {0,1}W*% describe the link structure neces-
sary for the assignment done until the beginning of step t. More precisely, V(t) is a
upper diagonal matrix such that

Jorl1<i<j<M

1 if link (DMy_w i, DMs_w ;)
is necessary for cross terms
Vi; (t) = assigned until the beginning of step ¢

0 otherwise
Notice that Vi = 0 for 1 = 1,2..,W — 1, because cross term involving z; has not

been assigned until the beginning of step ¢. Also, ‘7(0) = 0 because no assignment

has been made at the beginning of step 1, so no link is necessary.

57

Let d(t) € {0,1,2, s W}W=1) describe a decision made at stage ¢.
di(t)

=] 4o

dW—:l(t) J

This decision d;(t) is where to assign a cross term of the form

Tt—W4iTt, 1= 1,2, ,W -1
0 ifzi_wysz;isnotinJ

di(t) =
k if z;_w iz, is assigned to DM;_w

i=12,3,..W—-1 £k=1,23,.. W

Now we are ready to write an equation that describes the state evolution. Let

us define a vector C(d(t)) € ZW:
Ci(d(t)) = the number of components having the number i in d(t)

C,-(J(t)) is the number of cross terms newly added to DM;_yw ;.

The evolution of U (%) is

Uit1(t) + Ci(d(t)) for i=1,2,...,W-1
Us(t+1) =)
Cw (d(t)) for i=W

(See Figure 3-7)
Vij(t+1) tells whether there is a link between DM;1-w+iand DMy, y_w; at the

beginning of step ¢ + 1. Let us consider the case i < j < W — 1, first. (See Figure

3-8a) If there is to exist link (DMyy1_wi, DMiy1-wj), JE+H1=W+9) should have

58

a term involving z;11_w4;, or J¢+1=W+5) should have a term involving Tl Wi

Since cross terms of the form
Ty, t—-WH+1<Il<t

are assigned at step ¢, the only way that this link is newly added at step t is the

following:
1) Ti4+1—-W44iTt is assigned to .DMt+1_W+J' or

2) Z4y1-w 45Tt is assigned to DMy was -

Now, let us consider the case 1 < j = W — 1. (See Figure 3-8b) In this case
t+1—W +j =t. If there is to exist link (DM 1w i, DMy), JE+H1-W+i) ghoyld
have a term involving z;, or J! should have a term involving ;4 _w;. Since cross

terms of the form

Tz, t-WH+1<Il<t

are assigned at step ¢, the only way that this link is newly added at step ¢ is the

following:
1) Z¢41-w4iZs is assigned to DMy _wy; = DM, or

2) ziz; is assigned to DM, ,_w,; forsomet —W +1<1 < ¢.
For 1 < j = W, as mentioned before, V;;(t + 1) = 0.
fori=1,2,..,7—1

Vit +1)
V(.,'+1)(]'+1) (t) \% (di+1 (t) = J + 1) \% (dJ.'.l(t) =i+ 1) for J =2toW —2

=9 (dis1(t) =W)V (di(t) =7 +1, some 1<k<W—1) forj=W —1
0 forj =W
where V is Boolean ‘OR’.

59

Let us define

cost(V (t), d(t)) = the number of newly added links at step t
then, t/ = Y12, cost(V (), d(t)).

(U(t), V(¢)) is a state, and the state space is

X ={(0, V)|U; <nt;, i =1,2,... M}

Now we can describe ‘Minimal Link for bandwidth limited cost’ in the frame-

work of dynamic programming.

{ Uis1(t) + Ci(d(t)) for i=1,2,...,W-1
U,'(t + 1) =
Cw (d(t)) for i=W

V,;,'(t +1)
V(i+1)(j+l) (t) V (dig1)=75+ 1) Y (dj+1(t) =1+1) forj=2toW —2

=9 (@is1(t) =W)V (de(t) =i+ 1, some 1<k<W —-1) forj=W —1
0 for j =W

(UaV)(l) =0, (U,V)(t) €X

M
minimize Zcost(f}(t), d(t))
t=1

We can solve this problem using the dynamic programming algorithm.[10]

If we restrict TL* to be M — 1 (In other words the organizational structure is

a tree.), some analytical statements can be made concerning ‘Load Balancing with

60

Limited Link’. The following problem represents a situation where an organization

with M agents cannot afford to build more than M — 1 communication links.

Load Balancing for tree structure

Given J = zTQz, find a decomposition that minimizes maz;nt(1) such that

TL<M-1.
or equivalently,

Given J = z7Qz, find a decomposition that minimizes maz;nt(i) such that

TL=M-1.

We assume that Gg is connected. Therefore, it immediately follows from
Lemma 2-1 that the resulting graph G must be connected for any decomposition.

Therefore, the constraint TL < M — 1 is equivalent to the constraint TL = M — 1.

Some analytical properties of these problems have been studied.

Definition 3-4
A centralized tree , T. = (V,E),|[V| = M is a tree that has one node DM; with
d(DM;) = M — 1 and M — 1 nodes with degree 1. We call the node with degree,
M — 1 center.

Lemma 3-5

For a graph G = (V, E), if all the pairs of nodes in V are within two hops from one

another, and G has no cycle, it forms a centralized tree.

Theorem 3-6

In the ‘Load Balancing for tree structure’ problem, if Gq has a clique of size c,

61

maz; nt(z) > (°_1).

1)

2
Proof
When the whole graph, Gq is a clique of size ¢ = M:
any pair of nodes of G have to be within two hops from each other. (Lemma
2-1) Therefore, the organizational structure is a centralized tree. (Lemma 3-5
) Let DM; be the center, then all the (";1) cross terms between ¢ — 1 neighbors
must be assigned in J*. (Lemma 3-2) Therefore, nt(s) > (°3!) Q.E.D.
When Gg has a clique of size ¢ < M:
let S be a subgraph of G that consists of ¢ nodes corresponding to the clique.
If all the nodes in S are within two hops from one another, the argument is
reduces to 1). If there exists a pair, DM;,DM; in S such that DM; and DM;
are connected through DM not in S, all ¢ nodes in S must have a direct link
to DMjp; otherwise, a node not having a direct link to DM k has more than two
hops to either DM; or DM;. Therefore, DM}, is a center of a centralized tree
of size ¢ + 1. J* must have at least (;) Q.E.D.

An interesting observation about this problem is the following:

Given Gq and the constraint, TL = M — 1, it is possible for a tree that is not a

subgraph of G to minimize maz; nt(z) over all possible trees.

This is illustrated in Figure 3-9. This fact indicates that an organization can mini-

mize the load of the highest—loaded division under a strong constraint on the number

of communication links by introducing a link between divisions not directly influ-

encing one another.

Let us now observe some theoretical results for special cost functions. The

62

following lemma will be used many times for analytical discussion of ‘Load Balancing

for tree structure’.

Lemma 3-7
Suppose the global cost function J has cross terms T;T;, T;jZk, and zpz;. If there
exists a link between DM; and DM, and between DM; and DM, in the graph G,
I #1,5,k, (Figure 3-10a) cross terms z;z; and z;z, must be assigned to DM, as

well as cross term z;z;. Therefore, a link between DM; and DM, is necessary.

Proof
From Lemma 3-2, z;z; must be assigned to DM;.
Suppose z;ry is assigned to DM; or DM, then there exists a link between DM;
DMjy. Therefore, DM; and DM, are three hops apart because there is a unique
path between any pair of nodes in a tree. (Figure 3-10b) This contradicts Lemma
2-1 because Q(7,k) # 0.
Suppose z;zy is assigned to DM;. Then, there exists a link between DM; and DM;
by ‘Direct Communication’ assumption, so DM;, DM;, DM; form a loop. This
contradicts the tree constraint.
Suppose z;z is assigned to DMy, I' # i1’ # j,I' # 1. In this case, there exists a
link between DM; and DM, DM}, and DM;. Therefore, DM; and DM}, are four
hops apart. (Figure 3-10c) This again contradicts Lemma 2-1. Therefore, z;z;
must be assigned to DM;.
Q.E.D.

Let the global cost function be described by Gq = (Vq,Eg). We discuss the

cases of special cost functions such that Gg has a subgraph S = (Vs,Es) of the

63

form

Vs ={i,1,2,.....,n} 3-1)
Es={(45)7=12,..,n}u{(5,5 +)y =1,2,..,n—1} (3-2)

(See Figure 3-11)

Lemma 3-8
Assume that G has the structure introduced by equation (3-1), (3-2). For j =
1,2,..,n — 1, if z;z; is assigned to DM, (k # i and k # j, j = 1,2,..,n) then,
T;Z(;4+1) must also be assigned to DMj,.
For j = 2,...,n, if z;z; is assigned to DMj, (k#iand k # 5,5 = 1,2,..,n) then,

T;ZT(;—1) must also be assigned to DMj,.

Proof

i) For j = 2,...,n, Since z;z; is in DM}, there exists a link between DM; and
DMy, DM; and DM, in G, the resulting organizational structure (Direct Com-
munication assumption). Therefore, by Lemma 3-7, Z;Tj4+) must be assigned
to DM.

ii For j =1,2,...,n — 1, the same argument shows that z;z;_; must be assigned

to DM;.

Theorem 3-9
Assume that G has the structure introduced by equation (3-1), (3-2). If z;z; (7 is
any of {1,2,...,n}) is assigned to DM}, where k # i,k # j,7 = 1,2....,n, cross terms
z;z;, J = 1,2,..,n are assigned to DM;,. The resulting structure of an organization

must contain the following edges:

{(DMy, DM;)} U {(DMy, DM;)|j = 1,2, ...,n}

64

Proof
By recursively applying the result of Lemma 3-8, we can easily see that z;z; must
be assigned to DMj, for all ziz; j = 1,2,...,n if one of them is assigned to DMj.
Therefore, from ‘Direct Communication’ assumption, the resulting graph must con-

tain

{(DMy,DM;)} U {(DMy,DM;)|j = 1,2, ...,n}

Theorem 3-10
Assume that Gq has the structure introduced by equation (3-1), (3-2). Suppose

there is a link between DM; and DM; for some j < n in G. (ziz; must be assigned

either to DM; or DM;.)

1) If TiT;41 is assigned to DM, cross terms, TiTj42, TiTj43,..., TiTy must all be

assigned to DM;.

2) If z;T;_, is assigned to DMj, cross terms, ZiTj_2, T;Tj_3,..., T;T1; must all be

assigned to DM;.

Proof

1) Since T;T;41 is assigned to DM;, there is a link between DM; and DM;,.
(See Figure 3-12) The global cost J has TiTj42y Tj41T542,L54+2%i-
Thus, by Lemma 3-7, z,z;,, must be assigned to DM;
Consequently, there exists a link between DM. j+2 and DM;. By using the same
argument recursively, we can show that z;z;,3,....,z;T, must all be assigned to
DM;.

2) Same proof as 1) in reverse direction

65

CRTRR T MBS TP mew- crvtees e o x o0 s e o~ .

Now we observe the case where Gg = (Vq, EQ) is of the form

VQ={i,1,2,3,..,n} (3-13)
Eq ={(DM,',DM_7')|]. =1,2,3...,n}U
{(DM;, DM;1)lj = 1,2,3, ,n — 1}U (3—4)

{(DM,,, DM,)}
(Figure 3-13)

The results of Lemma 3-8 and Theorem 3-9 can be directly applied to this case
because the graph S = (Vs, Es) described in eqn 3-1 and eqn 3-2 is a subgraph of

Gq described by eqn 3-3 and eqn 3-4. Theorem 3-10 can be modified as follows:

Theorem 3-11
Consider G described by eqn (3-3) and (3-4). Suppose there is a link between DM;
and DM; for some 1< j < n in G. (z:z; must be assigned either to DM; or DM;.
) If z;z;:, where (5,5') € Eq, is assigned to DMj, all the cross terms of the form

z;z; | = 1,2..,n, must be assigned to DM;.

Proof

For the sake of concise explanation, let us define
r(j) = (j+1) modn (meaning ‘right neighbor')

In(j)=(U —1) modn (meaning ‘left neighbor')

then, j' = rn(j) or In(j).
i) Suppose z;z; is assigned to DM; for any k # In(j). We claim that TkTyn (k)
must also be assigned to DM;. From ‘Direct Communication’ assumption,

there exists a link between DM; and DM,. (See Figure 3-14) The global cost

66

function J has z;zy, TkTrn(k)s Trn(k)Ti- Lherefore, by Lemma 3-7, TiTyn (k)
must be assigned to DM;.

If TiZT,n(j) is assigned to DM;, all the cross term of the form
iz, l=(+2)modn ,l=(j+3)modn ,..Il= (j+n—1) mod n

are assigned to DM; by induction.
Suppose z;z\ is assigned to DM; for any k # rn(s). We can show that ZkZin(k)
must also be assigned to DM by the same argument in the opposite direction.

Therefore, by induction, if TiZin(j) is assigned to DMj, all the cross term of the

form

zz;, l=(—2)modn ,l=(5—3)modn sl =({F —n+1) mod n

are assigned to DM;.
Q.E.D.

From this theorem we can also conclude the following:

If there is a link between DM; and DM; for some 1 < 7 < nin G, and zT,

where (7,5') € Eq, is assigned to DM;, the resulting graph G is a centralized tree

with the center DM;.

i)

Lemma 3-12

If z;z; is assigned to DM;, j' # 1,7, the resulting graph G is a centralized tree with
the center DM;:.

Proof
3" =In(j) or ri(5):

There must be a link between DM; and DM; by ‘Direct Communication’

67

- assumption, and z;z; is assigned to DM;:. Therefore, by Theorem 3-11, all the

cross term of the form
iz, 1=1,2,...,n
are assigned to DM;:. Therefore, the resulting graph is a centralized tree with
the center DM;.
i) 57 # In(j) and 57 # ri(j):

Since z;z; is assigned to DM;, there is a link between DM; and DM;:, and
DM; and DM;:.

The global cost function J has TiTj, TjTrn(5)sTrn(;)Tsi> SO by Lemma 3-7 TiTrn(j)
must be assigned to DM;:. Therefore, there must be a link between DM;: and

DM, (j). By recursively applying Lemma 3-7, we can see that all the cross

term of the form

iz, l=(+2)modn ,l=(j+3)modn ,..I=In(j")
are assigned to DM;.
The global cost function J has ZiTj, T;Tin(5)sTin(j)Ti, SO by Lemma 3-7 T;iTin(5)
must be assigned to DM;:. Therefore, there must be a link between DM;» and
DM, ;). By recursively applying Lemma 3-7, we can see that all the cross term
of the form

zizy, l=(—-2)modn ,I=(j—3)modn ,..,l=rn(j)
are assigned to DM;..

Therefore, the resulting graph is a centralized graph with the center DM;.
Q.E.D.

Theorem 3-13

For a global cost function described by Gg in eqn (3-3) and (3-4), with n > 3, the

68

optimally balanced decomposition under ‘tree constraint’ gives

MiNree maz; nt(i) =n

and the resulting graph is a centralized tree with the center DM;.

i)

Proof

Suppose for some j € {1,2,...,n}, z;z; is assigned to DMy, k # ¢,7. By Lemma
3-12, the resulting organizational structure is a centralized tree with the center
DM. (Figure 3-15a) For all [# k,i, DM; and DM, are two hops apart, and
DMy is the connector. Therefore, by Lemma 3-2, n — 1 cross terms of the form

z;z1, | # k,1, must necessarily be assigned to DMj. Also, for
l=(k+1) modn, (k+2) mod n,..,(k+n—2) mod n

DM, and DM, ;) are two hops apart, and DMj is the connector. Therefore,

cross terms of the form ZiT,p (1) must be assigned to DM}, for
I =(k+ 1) mod n, (k+2) modn,...,(k+n—2) mod n

Consequently J* must have at least 2n — 3 cross terms. Thus, nt(k) > 2n — 3.
Suppose for all j = 1,2,...,n, z;z; is assigned to DM; or DM;. By Lemma
3-1, there must exist a link between DM; and DM; for j = 1,2..,n Therefore,
the resulting organizational structure is a centralized tree with the center DM;.
(Figure 3-15b) For all § = 1,2,..,n, DM; and DM,y are two hops apart,
and DM; is a connector. Therefore, by Lemma 3-2, cross terms of the form
T;jTrn(j)» J = 1,2,..,n must be assigned to DM;. If we assign cross terms of the
form z;z; to DM for j = 1,2,..,n, J* ends up having n cross terms, and J7

ends up having one cross term, for j = 1,2,..,n.

nt(7) =1, ;7=1,2,..,n

69

Therefore,

maz nt = n

From i) and ii)

min maz nt = n

Q.E.D.

Concerning analytic discussions of the relationship between flexible organiza-
tional structure and its global cost function, there is a lot of room for research. The

following open questions are suggested for future research.

Does there always exist a tree contained in G which minimizes maz;nt(i) over all
trees?

As for an organizational task, what more can be said about Gq in between two
extremes of strong connectivity and diagonality?

How can we define a measure of intricacy of the task? One idea of defining a coupling

measure is

1
maz(;,;) shortest path between 1 and j in Gq

We want to examine other ways of defining a measure of coupling. We expect that
min maz; nt(i) increases as a measure of coupling in the task increases under a
constrained ¢{l. We also want to develop some criteria according to which one can
check a cost function (represented by Gg) to see if decentralized computation results

in better speed of convergence.

70

3.1.3 Semi-flexible organization

So far, we have implicitly assumed that DM; is in charge of the value of z;.
We are also interested in the following problem where the organization designer has
freedom to mandate which division (DM’s) is responsible for which decision (z:s),
but communication structure of an organization is fixed. Like Fixed organization,

TL is fixed in this case. The problem is to find an assignment of decision variables

and a subcost functions to processors that minimize maz; nt(1).

Mapping for Load Balancing
Given Gg = (V@,Eq) and G = (V, E), find
a decomposition J(£) = >, J* and
a matching between {z,,z,,...,zps} and V,

so that these minimize maz; nt(s).

This problem is a hybrid of two problems; mapping strategy for parallel pro-
cessing [11] and load balancing. Once a matching between {z1,z2,...,z0} and V
is determined, the problem is reduced to ‘Load Balancing in a fixed structure’ in
section 3.1.1. Let us break up this problem into two parts; 1) matching, 2) decom-
position of J. In matching part, if we assume |[V| = [Vql, we can think of |Vp|!
matchings. Because of ‘Direct Communication’ assumption, we have to elect from
these matchings ones having the following property: if (2, j) € Gq, o(z;) and o(z;)
are within two hops in G. If we run algorithms presented in section 3.1.1 for each of
these matchings, and single out the one with smallest min maz; nt(7), ‘Mapping for
Load Balancing’ will be solved. Therefore, the focus should be on how to efficiently

elect matchings with the property specified above. First, let us consider the question

71

of whether such a mapping exists.

Existence of a feasible Mapping

Given Gg = (V@, Eg) and G = (V, E), does there exist a one-to—one mapping
o : {z1,Z2,., g} —V

such that

o(z;) and o(z;) are within two hops from each other in G, V(¢,5) € Eq.

Here is another way of viewing ‘Existence of a feasible Mapping’ in the frame-

work of graph theory. Let us define a transformation of the graph G = (V, E).
F(G) = (v, Ey)
where
Ef=E U {(DM;,DM;) ¢ E|DM; and DM; are two hops from each other}

(See Figure 3-16 as an example) ‘Existence of a feasible mapping’ is equivalent
to whether Gg can be embedded in F(G). If there is a one-to-one mapping o in
‘Existence of a feasible mapping’ problem, each node 7 of Gq can be embedded in
o(z;) in F(G). For each pair (i,5) € Eq o(z;) and o(z;) are within two hops from
each other in G, so (0(z;),0(z;)) € F(G). Therefore, Gg can be embedded in F(G).
Conversely, if G is embedded in F(G), we can construct a one-to-one mapping o
such that o(z;) is the node in which ¢ € Vq is embedded. Then, for all edge
(1,7) € Gq, (o(z:),0(z;)) € F(G) because Gg is embedded in F(G). Therefore,

o(z;) and o(z;) are in two hops from each other in G.

The problem of determining whether Gq can be embedded in F(G) is a special

case of ‘Subgraph Isomorphism’ problem. [9]

72

—-

Subgraph Isomorphism
INSTANCE : Graphs H; = (V1,E,), Hy = (Va, Es)

QUESTION : Does H, contain a subgraph isomorphic to H,?

If we restrict H; to be a set of graph
{graph H | 3 a graph T such that F(T) = H}

this restricted version is equivalent to ‘Existence of a feasible Mapping’. (Note that

some graphs do not belong to this set. For an example, see the Appendix.)

Though ‘Existence of a feasible Mapping’ is equivalent to a subproblem of ‘Sub-
graph Isomorphism’, ‘Existence of a feasible Mapping’ is very similar in structure to
the original ‘Subgraph Isqmorphism’, which is known to be NP—complete. There-
fore, we conjecture that this problem is NP-complete. Consequently, we conjecture

that ‘Mapping for Load Balancing’ is also NP-complete.

73

3.2 RL as an amount of communication

When RL is used as a measure of the amount of communication, task allocation
in a flexible organization becomes tractable. Also, it turns out that task allocation
in a flexible organization is a special case of task allocation in a fixed organization.
Therefore, the case of flexible organization will be presented first, and the idea used

for this case will be generalized for the case of fixed organizational structure.

3.2.1 Flexible organizational structure

Minimal Superposed Link
Given J = 27 Qz, nt}, find a decomposition that minimizes RL such that nt(z) <

nt,1=1,2,...,M.

If communication load is defined by RL (section 2.2.3), minimization of com-

munication load is done by a special binary integer linear programming. Let

V = {DM,;,DM;,DMs, ..., DM}

Eq = {unordered pair (¢,7)|the cross term zizjtsin J }
Let the variable
Xk = { 1 if zz; is assigned to DM
0 otherwise

74

e ™

Since each cross term is assigned to one processor,

Let the capacity of processor DM; be nt; (the number of cross terms it can handle).

The number of cross terms assigned to DM} must be within its capacity, so
Z Xijk < nt]
(1,5)€eA

For a variable X, =1, if k is ¢ or J, one link is introduced; namely a link between
DM; and DM;. If k is neither 7 nor J, two links are introduced; namely a link be-
tween DM; and DMj, and a link between DM; and DMj,. (section 2.2.3) Therefore,

communication load, RL is

E 2 X5k + Z Xijk + Z Xijk

ki, k#] k=i k=3

In summary the decomposition problem is reduced to the following binary integer
linear programming problem. We call this problem binary integer linear program-

ming problem ‘BIL’.
minimize Ek#,k# 2Xijk + Dy Xijr + Z:k=j Xiik
such that
o1 Xije =1 V(i,j) € Eq
Dig)eBe Xisk S<ntp. (BIL)
Xijk =0 for (¢,5) ¢ Eq
Xk € {0,1}

75

Without the last constraint, which is the integrality constraint, this linear pro-
gramming problem is a linear network problem. In fact this problem can be formu-
lated as a ‘minimum cost network flow’ [6] problem. Figure 3-17 shows a minimum
cost network flow problem that is equivalent to BIL. Each node, m;; corresponds to
a pair (i,5) € Eq. Each node, n; corresponds to DM; € V. Minimum cost network
flow problems can be easily (polynomially) transformed to Hitchcock problems.[6]
Figure 3-18 shows how to transform our minimum cost flow problem to a Hitchcock
problem. In Hitchcock problem a feasible set is represented by a system of linear
equations, and the coefficients of those linear equations form a node-arc incidence
matrix. A node-arc incidence matrix is ‘totally unimodular’ [6]. Therefore, optimal
vertices have integer elements. Consequently, a simplex algorithm produces an inte-
ger optimal flow of the network, so a simplex algorithm solves BIL. We can expect
any variation of simplex algorithm to solve BIL as long as feasible points move from
vertex to vertex. We now explicitly show that some well-known algorithms can be

applied to to solve BIL.

Primal-Dual algorithm

Primal-Dual algorithm [6] can be run to solve the minimum cost network flow prob-
lem corresponding to BIL (e.g. Figure 3-17). Let us call the network N. Let f
be a vector that indicates the flow of the network, and let f(¢,5) be a flow through
a directed arc (z,7). For a feasible flow, f » Primal-Dual algorithm [6] constructs
an increment network, N'(f), for the current feasible flow by changing arcs of N

as follows: for each directed arc (my;,k) with cost ¢, add a directed arc (k,m;j;)

76

with capacity [0, f(m;;, k)]. and with cost —e. (Figure 3-19a) For each arc (n;,t),
change the capacity to [0, nt} — f(n;,)] and add a directed arc (t,n;) with a ca-
pacity [0, f(n;,t)]. (Figure 3-19b) At each iteration, Primal-Dual algorithm finds
a negative—cost cycle in N’ and increases flow through arcs of this cycle by the

minimum over the upper bounds of arcs in the negative cycle.

We claim that if we choose an integer initial flow, the algorithm will produce

an integer optimal flow.

Proof
Let f be a current flow that is integral. Since the bound of flow along any arc
of the network (e.g. Figure 3-17) is integer, a bound of flow along any arc in the
increment network N'(f) is integer. Therefore, if a negative cycle exists in N'(f)
the incremental flow f is integer. This incremental flow is along the arcs of that
negative cycle. For the arcs that is not in the negative cycle, their flow does not
change. Therefore, the new flow is also integer. By induction, all the flows in

sequence are integers.

The integer flows of minimum cost network flow problem correspond to feasible
assignments of cross terms. The cost of flow corresponds to the communication
load required by the assignments of cross terms. Therefore, if we manage to have
a feasible, integer initial flow, we can obtain optimal decomposition by running
Primal-Dual algorithm for the network exemplified by Figure 3-17. Now the focus
of discussion should be on how to obtain a feasible, integer initial low. We can
obtain a feasible, integer initial flow by converting the network like Figure 3-17 into
a single-source, single-sink network. Add a source node, s to the network like Figure
3-17 and construct a link from s to each node m;;. Let the capacity of these links

be [0,1] (Figure 3-20) By running max-flow algorithm like Algorithm 3.1 on this

77

single-source, single-sink network, we can obtain integer initial flow through arcs of

type (m;,nx) and (ng,t).

Load Balancing with Limited Superposed Link
Given J = zTQz, RL*, find a decomposition that minimizes maz; nt(7) such that

RL < RL*.

The idea used for ‘Load Balancing in a Fixed Structure’ (section 3.1.1) can be
used for this problem. The smallest maz; nt(i) we can possibly have is [I—%‘?—l] , where
|Eq| is total number of cross terms in J, and M is the number of processors. For the
most unbalanced decomposition, maz; nt(s) is |Eq| (if the cross terms are assigned
to a single processor). Initially, we set the capacity of all the arcs of type (nk,t)
to be [I—%Q—I], and minimize RL. Minimizing RL is solving ‘Minimal Superposed
Link’, so we can use Primal-Dual algorithm. If we obtain RL < RL*, we achieve
min maz;nt (i) ; otherwise, increase the capacity of arcs (ng,t) by one. If we do not
obtain RL < RL* until the capacity of these arcs becomes |Eq|, given instance of
the problem is infeasible. In other words, no matter how we decompose J, we need
more than RL* for amount of communication. The following algorithm summarizes

our discussion:

Algorithm 3.4

1. Construct a network corresponding to BIL, where nt;, = dummy for k =

1,2,.,M
E
2. Set dummy = [IT}—l]

78

PitatN

3. Do while dummy < |Eq|
Run Primal-Dual algorithm
If RL < RL*, min maz; nt(i) = dummy; terminate
dummy := dummy + 1

4. Return “Infeasible”

3.2.2 Fixed organization

In previous sections the amount of communication was defined as the total
number of message transfers, where a processor must transmit one message for each
cross term that is assigned to another processor, and which involves its variable.
A flexible organizational structure was assumed. It means that the task allocator
has an authority to construct a link between any processors if necessary. If one or
more messages need to be transferred in the previous section, the allocator can freely
put links between those processors. In this section, the case of fixed organizational
structure is discussed. The links between processors are fixed; therefore, the allocator
or the allocation algorithm must decompose the global cost function such that the
message might be transferred only through existing links. Under this constraint we

want to minimize the amount of necessary communication defined by RL.

Minimal Superposed Link in a Fixed Structure
Given a graph G, Gg and nt}, find a decoposition that minimizes the RL such that

the message is only transferred through the edges of G and such that nt(i) < nt?,
i=1,2,..,M.

79

When an organization has fixed structure a priori, (here, structure simply means
which subdivision can communicate with which.) and the task allocator should
partition the global task, he must partition it in a way that the necessary message
transfer among subtasks should be allowed only those pairs of subdivisions that can
communicate with each other. Each subdivision has its own capacity. Consider
a situation where the leader of this organization wants to allocate the tasks with
lowest amount of message transfers possible. The formulation in this section mathe-
matically models this task allocation problem of an organization. We can also apply

this problem to a situation of a computer processor network on which distributed

algorithm is running.

This problem is a generalization of the problem solved in section 3.2.1. sections.
If the fixed structure of this problem is a complete graph, this problem is exactly
equivalent to the problem solved in section 3.2.1. We can design a polynomial-time
algorithm by slightly modifying the algorithm introduced in the previous sections.
Instead of running ‘Primal-Dual algorithm’ on the network in Figure 3-17, we can
run this algorithm on a modified network that corresponds to the fixed organizational

structure. The following algorithm shows how to construct such a network.

Algorithm 3.5

Phase 1

1. Create |Eq| nodes corresponding to cross terms of J. Let m;; denote the node
corresponding to z;z;.

2. Create M nodes corresponding to processors. Let n; denote the node corre-
sponding to DM;.

3. For each cross term z;z;, do

80

If (DM;, DM;) € E, make an arc from m;; to n;, and make an arc from
m;; to n;. Let the cost of these two arcs be 1.
For each neighbor of DM; in G, say DM, # DM;,
If (DM, DM;) € E, make an arc from m;; to ni. Let the cost of
this arc be 1.
If no arc is made for z;z;, terminate with an output;
“Organization cannot handle this task.”
All the arcs created in Step 3 have infinite capacity.
4. Create the sink node ¢ and make an arc from each n; to t. Each arc (n;,t)

created at Step 4 has capacity nt, and cost 0.

At Step 3, if no arc is made for some cross term z;z;, that means DM; and DM;
are not within two hops from each other. Therefore, this term cannot be assigned

to any processor. (Lemma 2-1) The organization cannot handle this task.

Phase 2

Run the ‘Primal-Dual algorithm’ as in the previous section.

We can also consider maz;nt(7) as our objective while setting the amount of

communication defined by RL as a constraint.

Load Balancing with Limited Superposed Links in a Fixed Structure
Given a graph G, Gq, and RL*, find a decomposition that minimizes maz; nt(s)

such that the message is only transferred through the edges of G, and RL < RL*.

The same idea used for ‘Load Balancing with Limited Superposed Link’ can

81

be used. As in Algorithm 3.5, which is for ‘Minimal Superposed Link in a Fixed
Structure’, a graph is constructed corresponding to the problem instance. The only
difference is that the capacity of all the arcs of the type (ns,t) are set to be equal;
initially fj%q-l], the best balance possible. At each iteration, we minimize RL using
Phase 2 of Algorithm 3.5. If we obtain RL < RL*, we have achieved min maz;nt(i).

Otherwise increase the capacity of all the arcs of the type (ns,t) by one.

Algorithm 3.6
E
1. Set dummy = [Iﬁ—l]
2. Run Step 1 throug Step 3 of Phase 1 of Algorithm 3.5

3. Create the sink node ¢ and make an arc from each n; to t. Each arc (n;,t)

created at Step 4 has capacity dummy, and cost 0.
4. Do while dummy < |Eq|
Run Phase 2 of Algorithm 3.5
If RL < RL*, min maz; nt(:) = dummy; terminate
dummy := dummy + 1

5. Return “Infeasible”

3.2.3 Semi-flexible organizational structure

In this section we will discuss the situation where the communication structure
of an organization is fixed, but the task allocator has the freedom to assign to
subdivisions decision variables as well as subtasks. This situation is best explained

by the following mathematical statement of the formulation.

82

Mapping for Minimal Superposed Link

Given Gg, G = (V,E), and nt} for : = 1,2,.., M, find a one-to—one mapping,

and a decomposition that minimize RL such that nt(s) < nt,1=1,2,..,M.

Mapping for Load Balancing with Limited Superposed Link

Given Gg, G = (V,E), and RL*, find a one-to—one mapping,

and a decomposition that minimize maz;nt(i) such that RL < RL*.

The one-to-one mapping ¢ mathematically represents the assignment of de-
cision variables to subdivisions. Each variable, z; represents the decision which
each subdivision is delegated to make, where the global task is to make a decision

(1,Z2,...,) that minimizes the cost function J.

Here is the recognition version of these two problems

Problem 1

Given Gg = (V@, Eq), G = (V,E), and nt} for i = 1,2,..,M, RL*,

does there exist a one-to-one mapping,

and a decomposition such that

nt(i) < ntf, i=1,2,.,M, RL<RL* ?

Theorem 3-14

The recognition version of two problems above (Problem 1) is NP-complete.

Proof

Let us restrict the problem by making
nt’{ = |EQ| Vi
and
RL" = |Eq|

This restricted version is, then, equivalent to ‘subgraph isomorphism’ [9] problem.
Now, the restricted version is

Problem 2
INSTANCE: GQ = (VQ,EQ), G = (V, E),

PROBLEM : nt(i) = |[Eg| Vi;

does there exist a one-to-one mapping,

and a decomposition such that

nt(s) < nt}, i=1,2,..,M and RL < |Eqg|?

84

Subgraph Isomorphism
INSTANCE: Gq = (Vg,Eq), G = (V,E),

PROBLEM : Is Gg a subgraph of G

Suppose the instance of Problem 2 is ‘yes’. For any one-to-one mapping o, the
assignment of one cross term increases RL either by 1 or 2. Since we have |Egl
cross terms, and RL < |Eq|, RL must be increased only by 1 for the assignment of
each cross term z;z;. Therefore, there must exist a link between the node o(z;) and
o(z;). (Otherwise, the assignment of z;x; increases RL by 2.)‘ Therefore, Gg can
be embedded in G.

Suppose the instance of ‘Subgraph Isomorphism’ is ‘yes’. Take the subgraph
of G, which is isomorphic to Gg. We can define the mapping such that o(z;) is
the node of G corresponding in this isomorphism to the node of Gq representing
z;. As long as the decomposition is concerned, assign the cross term z;z; either to
o(z;) or to o(z;). This way, the assignment of each cross term ncreases RL only
by 1. Therefore, RL is |Eq| in the end. Since the number of cross terms are |Eq|,

nt(i) < |Eq| for any decomposition. Thus, the instance of Problem 2 is ‘yes’.

We have shown that subgraph isomorphism problem is polynomially trans-
formed to Problem 2. Subgraph isomorphism problem is known to be NP—complete.

It is obvious that Problem 2 is in NP. Therefore, Problem 2 is NP—complete.

Let us consider a special case of our problem; namely,
V| = |Vgl

If we restrict the general graph isomorphism problem to a special case where V| =

|Val, this special graph isomorphism problem is still NP-complete. (If we again

85

restrict to an instance where Gq is a ring, it is equivalent to Hamiltonian circuit

problem.) Therefore, the following, special case of our problems are still NP-
complete.

Problem 3
INSTANCE: Gq = (Vg,EQ), G = (V,E), [V| = |Vg|

PROBLEM : nt(i) = |[Eq| Vi ;

does there exist a one-to-one mapping,

and a decomposition such that

nt(s) <nt¥, i=1,2,.,M and RL < |Eg|?

Problem 4
INSTANCE: Gq = (Vq,Eq) is a ring, G = (V, E),|[V| = |Vg|

PROBLEM : nt(i) = |Eq| Vi ; does there exist a one-to-one mapping,

and a decomposition such that

nt(i) <ntf, i=1,2,.,Mand RL<|Eg|?

86

Figures of Chépter 3

87

-t

. Figure 3-1 Digraph constructed by Phase 1 of Algorifhm 3.1

Example

- J(z1,Z2,23,24,25) = 10:5?+10:§+10:c§+10:3+10:§ tZTiTo+ z1z4+ 25+ 231y

T = (V,Er), a fixed tree

J has a cross term z;z4,but DJ_{; and DM, are three hops apart.
Figure 3-2 Illustration for Algorifhm 3.3

89

OJL-f-.'h‘me m

DM, —XKL @

necc) <mx

mec(L) =mx -

(o)

G

Figure 3-3 (2) (b) Algorithm 3.3 for Fixed Tree

90

At time ny ‘ | ~ N

e N L N |

\ DMP - - — DMQ, —

- 7 - / |

me ¢ (p)=mx /
l

v

(4)- S

Figure 3-3 (c) (d) Algorithm 3.3 for Fixed Tree

91

z;z; [i—g < W

Without loss of generality, assume 5 > 1, -

Z:Z; can be assigned to these W processors

Figure 3-4 Constraint 2 of Minimal Link for bandwidth limited cost function

92

Pro‘cessors Xy Com be assi3qved 1o
\

;
DD

(L) v < w (G

. 1
processors XX, can be o\ss»afncd. To

S | —\

Figure 3-5 Locality of interaction

93

At the beginning of step ¢

A
() hag beem
determimed. .

BRED
Compomemﬁs oT
C)ct)
U wa (3
U () =0

Figure 3-6 State vector U(t)

94

AT,

E .
0
A\ g

Uy (V)

Figure 3-7 Evolution of the state vector I/

V.-
J
whether thic limk exsts

(£+1) specifies

Figure 2-8 State variable V;;

96

Example

J(II,I2,I3) = 101:§ + 101% + 10;§ ‘1z + 2123

T = 10K, + X %Xa
G =(V,E)
maz; nt(7) =1 .

min maz; nt(i) = 7

x : .. ' A
T =10% + KK 3= 10K

Figure 3-9 maz; nt(i) is minimized in a tree that is not a subset of Go

97

DM

Figure 3-10 a: The condition in Lemma 3-7

98

Figure 3-10 b: Dlustration of the proof of Lemma 3-7

Figure 3-10 c¢: Illustration of the broof of Lemma 3-7

99

S CGo

Figure 3:11 Subgrapﬂ S described by eqn (3-1), (3-2)

100

Figure 3-12 Dlustration of the proof of Theorem 3-10

101

£

Go = (Vo, Eg)

- Figure 3-13 G described by eqn (3-3), (3-4)

102

Figure 3-14 Dlustration of the proof of Theorem 3-11

103

Figure 3-15 a : Illustration of the. proof of Theorem 3-13

104

DM,

F igure 3-15 b : Illustration of the proof of Theorem 3-13.

105

FG) = (V,Ey)

Figure 3-16 Illustration of the tranformation F in Section 3.1.3

106

J'(:z':) = IO:f + 10:3 + 1OI§ + 10:3 +Zi1Z2+ 2123+ 2223 + 292y +'z3:z4

Figure 3-17 Network corresponding to BIL problem

107

Figure 3-18 Transformation of ‘Min-cost flow’ to ‘Hitchcock’

108

o~

C

M i Ty €=

F(ny, ny)

Lo, FTomy,)]
(2)

UQ([n-L.) X

© [0, rbi— F(my,ed 7

Figure 3-19 Construction of an increment network for a flow, f

109

or 2

[
v
AN
t

] .-
. ; .. - e — - - — - — —— -
. -

Figure 3-20 Networ_k for obtzining an integral initial fAow

110

Chapter 4. INDIRECT COMMUNICATION

4.1 Introduction

In Chapter 3, we have assumed that if J* depends upon z;, there must exist a
link between DM; and DM;. In this chapter we relax this assumption. We assume
that as long as there is an undirected path between DM; and DM;, J * can have T;
as its variable and/or J7 can have z; as its variable in the decomposition of J. (A
path is defined to be a sequence of edges of the form, (DM, DM,), (DM, DMs,),
(DM3,DMy),..., (DM;_y, DM;). Let us recapitulate the assumptions under which

we continue our discussion.

Let J = zTQz be the global cost function and Gq be the graph that represents

Gq = (Vq,Eq)
Vo ={1,2,.., M}

Eq = { unordered (7,7)| z;z; is in J}

Assumption 1 : If J* depends upon z;, there is a path between DM; and DM;.
(‘Indirect Communication’ assumption)

Assumption 2 : Gq is connected, and diagonal elements of Q are non-zero.

2

Assumption 3 : Each square term z? is in J* in the decomposition.

Under these assumptions the amount of communication (TL or RL) and the
balance of load (maz; nt(i)) are to be optimized in the decomposition of J. It
has been shown in chapter 2 that if TL is chosen as a measure of the amount of
communication, the optimization becomes trivial. In this chapter the optimization

of RL and maz; nt(z) is discussed.

111

4.2 Flexible organizational structure

Let us consider the cases where the capacity of each processor is fixed, and the
load on the processors is considered balanced as long as load of each processor is

within its capacity. The objective, then, is to minimize the total amount of necessary

communication.

Minimal Superposed Link

Given J = zTQxz, nt}, find a decomposition that minimizes RL such that nt(s) <

nt},1=1,2,....M,

The decomposition of a global cost function can be regarded as an assignment
of all the cross terms of the global cost function to processors, or a mapping from
the set of cross terms to a set of processors. If a cross term z;z; is to be assigned
to a processor DM}, where k # ¢ and k # j, information of the updated value of
z; must be continually sent from DM; to DM, and information of the updated
value of z; must be continually sent from DM; to DMj. Also, updated values of
partial derivatives of the subcost function J* must be continually sent from DM
to both DM; and DM;. There must be communication between DM; and DM,
and also DM; and DMj. Since the organizational structure is flexible, and the
‘indirect communication’ is allowed, the task allocator has a freedom to choose the
communication path between each pair of processors that need to communicate with
each other. Let the chosen paths be P;; and Pjy, respectively. For this assignment

of z;z;, RL is increased by
mt(Iia:j,DMk,P,'k,ij) = l(.DM,',DMk,P,'k) + l(DMJ',DMk,ij)

where [(DM;, DMy, P;;) is the length of the path P;; from DM; to DM, and

112

I(DM;, DMy, P;) is the length of the path Pj) from DM; to DMj. (mt stands
for ‘message transmission’.)

If a cross term z;z; is to be assigned to DM; or DM;, there must be a commu-
nication between DM; and DM;. Again, the task allocator has a freedom to choose

this communication path. Let the chosen paths be P;;. RL for this assignment of

z;z; is, then, increased by
mt(a:,-:c,-,) = l(DM,', .DM_.,',P,'J')

Therefore, given a decomposition (or a mapping from the set of cross terms to
a set of processors) and path selection between each pair of processors that need to

communicate according to this decomposition,
RL = Z mt(:c,-a:_,-,,)
(1.J)EGq

The problem is to find a decomposition and a path selection which minimize this

RL.

We can observe that for a cross term z;z; assigned to DM, k # 1, k # j, the
best path between DM; and DM is a direct path, and so is the path between DM;
and DM}. Therefore,

|(DM;, DMy, P2) =1
(DM, DM, P3) = 1

where ch is a direct path from DM; to DM}, and P;-ik is a direct path from DM;
to DMy (P§ = (DM;, DMy), and P8, = (DM, DMj)) Therefore,

mt(x,-a:_,-, DM, Py, ij) =2

113

o~

For a cross term z;z; assigned to DM; or DM;, the best path between DM; and
DM; is again the direct path.

mt(a:,-z,-, DM;, Pg’-) =1
and
mt(a:,-z,-, DM;, Pg) =1
for this direct path Pf} = (DM;,DM;). Therefore, once a decomposition is de-
termined, the selected paths ought to be direct ones. Therefore, the problem of
selecting communication paths is embedded in the problem of decomposition, so
‘Minimal Superposed Link’ can be rewritten as
such that
M ..
Yk=1 Xk =1 V(i,5) € Eq
Z(i,j)éEQ Xt'jk S nt,’:.
Xijk =0 for (¢,5) ¢ Eq
Xk € {0,1}

where

Eq = { unordered pair (%,)| the cross term z;z; is in J}

This is exactly the same as linear programming formulation of ‘Minimal Super-
posed Link’ problem under ‘Direct Communication’ assumption (Chapter 3). The
conclusion is that ‘Minimal Superposed Link’ problem under ‘Indirect Communica-

tion’ assumption is exactly equivalent to the one under the ‘Direct Communication’

114

assumption. We do not gain anything by relaxing this constraint, because direct

communications are the best in order to have small RL.

Load Balancing with Limited Superposed Link

Given J = zTQz, RL*, find a decomposition that minimizes maz; nt(z) such that

RL < RL*.

Notice that direct communications are the best in order to have small RL. Since
the constraint is RL < RL*, we can find an answer to this problem, again, by solv-

ing ‘Load Balancing with Limited Superposed Link’ under ‘Direct Communication’

assumption.

4.3 Fixed organizational structure

As discussed in the previous section, decomposing a global cost function is
exactly equivalent to assigning all the cross terms to processors. If a task allocator
or algorithm wants to assign cross term z;z; to a processor DMy, k # i, k #
J, he must assure the communication path between DM; and DMj and between
DM; and DM;. Unlike the case of ‘flexible organizational structure’, choice of this
communication path is not completely free. Since the organizational structure is
fixed, a communication route between a pair of processors must be chosen from the
set of paths between this corresponding pair of nodes in the graph representing the
organizational structure. The increment of RL for the assignment of this cross term

is again the sum of length of these two routes. (If z;z; is assigned to either DM;

115

or DMj;, the increment of RL is the length of the chosen route between DM; and
DMj;.) Given any assignment of a cross term, the route that minimizes the increment
of RL is the shortest path between two processors that need to communicate. (In
case of a flexible organizational structure, the shortest path was always the direct
path. In fact, we can see the flexible organizational structure as a special case of

fixed organizational structure, which is a complete graph.)

Minimal Message Ambulation
Given a graph G, Gg and nt;, find a decomposition that minimizes

Y). nd(DM;,DM,)+ nd(DM;, DMy)

k z;z; is in J*

such that

nt(z) <nt; i=1,2,.,.M

where nd(DM;, DM,,) is the distance of the shortest path between DM, and DM,,
assuming every edge has a distance 1. (nd(DM;, DM,,) =0ifl = m) (nd stands
for ‘nominal distance’.)

(We can cast off the constraint on the capacity of each processor by letting nt(:) =

o0, Vi.)

The idea to solve this problem is, like the idea of Chapter 3, to transform
the problem to a network flow problem. A network associated with this problem
is created by building one node, m;; associated with each cross term z;z;, and
building one node, ny associated with each agent of the organization, DM}. Then,
links connecting m’s and n’s are built with some cost of the link. More specifically,
for each link (m;;,ny), let the cost be the sum of the shortest path between DM,
and DM}, and the shortest path between DM 7 and DMj. The solution of min—cost

flow problem on this network gives the solution of ‘Minimal Message Ambulation’.

116

Algorithm 4.1

Phase 1

1.

Create |Eq| nodes corresponding to cross terms of J. Let m;; denote the node
corresponding to z;z;.
Create M nodes corresponding to processors. Let n; denote the node corre-

sponding to DM;.

. For each pair of nodes {m,;,n;}, make an edge (mij,ng)

All the edges created in Step 3 have infinite capacity.
Let the distance of every edge in G be 1.
Compute the distance of the shortest path between each pair of nodes in G.

(Let us use sl(%, 5) to denote the shortest path between the pair {DM;,DM;}.)

. For each edge (m;;,ny),

cost — sl(i,7) ifi=korj=k
sl k) + sl(j,k) ifi#kandj#k

Create the sink node ¢t and make an edge from each n; to t. Each edge (n,t)

created at Step 5 has capacity nt;

Phase 2

Run ‘Primal-Dual algorithm’.

This algorithm can be applied to a more general version of a problem, where

communication overhead is defined more generally. Let each link of G have its own

cost of delivering message; say, the cost of transmitting through (DM;, DM;) is

c(?,7). If a cross term z;z; is to be assigned to a processor DMy, where k # 1 and

117

k # j, there must be communication between DM; and DM;j, and also DM; and
DMp. Let communication paths P;; and P;i be chosen. For this assignment of
z;T;, communication overhead is increased by
Cost(ziz;, DMy, Pie, Pit) =) e(ma)+ Y. ¢(p',q)
(p,9)EP:x (p',9')EP;x

If a cross term z;z; is to be assigned to DM; or DM;, there must be a com-
munication between DM; and DM;. Let the chosen paths be P;;. Communication
overhead is, then, increased for this assignment of z;z; by

Cost(:c,-a:,-, , P,'J') = E c(p, Q)
(p,9)EP

Therefore, given a decomposition (or a mapping from the set of cross terms to

a set of processors) and path selection between each pair of processors that need to

communicate according to this decomposition,

Communication Overhead = Z Cost(z;z;, DM, P,)
(4)EGq
Algorithm 4.1 can be modified to minimize this Communication Overhead. We

only modify Step 4 of Algorithm 4.1.

Algorithm 4.2
Phase 1
1. Create |Eg| nodes corresponding to cross terms of J. Let m;; denote the node
corresponding to z;z;.
2. Create M nodes corresponding to processors. Let n; denote the node corre-
sponding to DM;.
3. For each pair of nodes {m;;,ny}, make an edge (mij,nk).

All the edges created in Step 3 have infinite capacity.

118

4. The distance of each edge in G, (DM;, DM;) is c(i, 7).
Compute the distance of the shortest path between each pair of nodes in G.

(Let us use sl(1, 5) to denote the shortest path between the pair {DM;,DM;}.)

5. For each edge (m;;,n),

cost — sl(i,7) ifi=korj=k
— \sl(E k) +sl(G,k) ifi#kandj Ak

6. Create the sink node ¢ and make an edge from each n; to ¢t. Each edge (mi,t)

created at Step 5 has capacity nt}.

Phase 2

Run ‘Primal-Dual algorithm’.

We can also consider maz;nt(i) as our objective while setting the amount of

communication defined by RL as a constraint.

Load Balancing with Limited Message Ambulation
Given a graph G, Gg, RL*, find a decomposition that minimizes maz;nt(¢) such

that

Y. Y. nd(DM;,DMy) + nd(DM;, DMy) < RL*

k T;z; in JkE

We can apply the same idea that was used in chapter 3 under ‘Direct Commu-

nication’ assumption.

Algorithm 4.3

119

. Set dummy = [I%—I'I

[y

2. Run Step 1 throug Step 5 of Phase 1 of Algorithm 4.2
3. Create the sink node ¢t and make an arc from each n; to t. Each arc (n4,1)
created at Step 4 has capacity dummy, and cost 0.
4. Do while dummy < |Eq|
Run Phase 2 of Algorithm 4.2
If RL < RL*, min maz; nt(i) = dummy; terminate

dummy := dummy + 1

[34]

. Return “Infeasible”

4.4 Semi-flexible organizational structure

Mapping for Minimal Message Ambulation

Given Gq, G = (V, E), and nt} for ¢ = 1,2,.., M, find a one-to—one mapping,
o:{z1,22,cccc,zpg} —V

and a decomposition that minimize
> D nd(o(z),0(zx)) + nd(o(z;),0(zk)
k z;z; in Jk

such that nt(i) < nt}, ¢ =1,2,..., M.

This problem is very similar to ‘Mapping for Minimal Superposed Link’ prob-
lem. The only difference is that we relax the constraint of ‘direct communication’.

Let us restate ‘Mapping for Minimal Superposed Link’ problem.

120

Mapping for Minimal Superposed Link

Given Gq, G = (V, E), and nt}.for : = 1,2,.., M, find a one-to—one mapping,

and a decomposition that minimize RL such that nt(i) < nt,1=1,2,....M.

‘Mapping for Minimal Superposed Link’ is basically a combinatorial optimiza-

tion problem. A feasible domain is a set of pairs, (o, decomposition) such that:

1. If cross term z;z; is assigned to o(zx), k # 1,k # 7, a link exist in G between
o(z;) and o(zx) and between o(z;) and o(z}).
2. If cross term z;z; is assigned to o(z;) or o(z;), a link exist in G between o(z;)
and o(z;).
This feasible domain is defined because we have preassumed that Assumption
1’ : If J* depends upon z;, there is a link between DM; and DM;.
(‘Direct Communication’ assumption) Assumption 2 : Gq is connected,

and diagonal elements of @ are non-zero. Assumption 3 : Each square term z? is

in J* in the decomposition.

‘Mapping for Minimal Message Ambulation’ is formulated from ‘Mapping for
Minimal Superposed Link’ by relaxing Assumption 1. ‘Mapping for Minimal Message

Ambulation’ can be stated as the following:

Problem 4.1

Given Gg, G = (V, E), and nt} for i = 1,2,.., M, find a one-to—one mapping,

o:{z1,Z2,.ccc0,zpg} — V

and a decomposition that minimize RL such that nt(s) < nt}, i = 1,2,..., M under
the following assumptions:
Assumption 1 : If J* depends upon z;, there is a path between DM; and DM;.

(‘Indirect Communication’ assumption) Assumption 2 : Gq is connected,
and diagonal elements of Q are non-zero. Assumption 3 : Each square term z? is

in J* in the decomposition.

Therefore, the feasible domain of this combinatorial problem is a set of pairs

(0, decomposition) such that:

1. If cross term z;z; is assigned to o(zy), k # i,k # 7, a path exist in G between

o(z;) and o(zx) and between o(z;) and o(zy).

2. If cross term z;z; is assigned to o(z;) or o(z;), a path exist in G between o(z;)

and o(z;).

In a very similar manner as Problem 1 of section 3.2.3 (recognition version
of ‘Mapping for Minimal Superposed Link’), the recognition version of Problem 4.1

turns out to be NP—complete.

INSTANCE: Gq, G, nt}, for 1 =1,2,..,M, RL*
PROBLEM : Does there exist a one-to-one mapping o such that
RL < RL* and such that

nt(?) < nt¥,fori=1,2,..,M?

Proof

If we restrict this problem by making

nt(i) = |[Eq| Vi

122

and

RL* = |Eq|

this restricted version is, again, equivalent to ‘subgraph isomorphism’ problem.

Mapping for Load Balancing with Limited Message Ambulation

Given Gg, G = (V, E), and RL*, find a one-to-one mapping,

and a decomposition that minimize maz;nt() under the constraint,

> Y nd(o(z:),0(zk)) + nd(o(z;), o(zx)) < RL*

k z;z; is in Jk

The recognition version of this problem is identical to that of ‘Mapping for

Minimal Message Ambulation’.

Since these problems are NP—complete, one type of approach to these problem
is to consider special cases of these problems, and see if an efficient algorithm can be
found for those special cases. Let us consider a special case of ‘Mapping for Minimal
Message Ambulation’, where the graph G is linear.

G=(V,E)
V = {DM,,DM,,....,DMy}

E = {(DM;,DM;,)|i =1,2,.,.M — 1}
This problem models a situation where the organization has a linear communication

network, and the task allocator wants to assign jobs to agents of an organization

123

with minimal amount of necessary communication. It turns out that even this set
of special instances is NP—complete. We can restrict this set of instances further by

setting

nt; = |EQ| t=1,2,...,.M

This means that all the processors have enough capacity, so the balance of load
needs not be considered. Now let us look at this doubly restricted set of instances.
Let o be an arbitrary one—to-one mapping from Vg to V. For a cross term z;zT; in
J, a simple path between (i) and o(s) is unique because G is linear. Therefore, as
long as z;z; is assigned to an agent on this path, nd(o(?), o(zx)) + nd(o(z;), o(zx))
is the length of this path. It is the minimal increase of RL for the assignment of
z;z; for this mapping, 0. Therefore, the recognition version of the set of instances

being discussed is as follows:

Given G = (Vg,Eq) , G = (V,E) that is linear, and RL*, does there exist a
one-to—one mapping,

o . VQ —_— V
such that
Y nd(a(d),0(5))
(")J.)GEQ
Say o(i) = DM;» and o(5) = DM;:. Then,

nd(o(3),0(s)) = |i' - j'|

Therefore, this formulation is equivalent to ‘Optimal Linear Arrangement’ problem

[9], which is NP-complete.

124

Chapter 5. SUMMARY AND EXTENSIONS

5.1 Summary

In this thesis, the task allocation scheme for an organization is discussed. The
objectives of allocation are reduction of individual load, speedy performance, and
organizational security. A decentralized gradient-like algorithm for an additive cost
function is used as a mathematical model for the behavior of an organization. In this
algorithm, each processor DM; is responsible for the value of one variable z;, and
each processor DM; has the subcost function J*. With each processor updating its
own variable and communicating information with other processors, the algorithm
achieves the goal of optimizing J = 27 *, which is the sum of subcost functions.
Minimizing a global cost function is viewed as as a global task of an organization.
Each subcost function J* is associated with the task of each division of an organi-
zation. Therefore, decomposing a global cost function represents allocating a global

task to divisions. How to decompose J is a central issue of this thesis.

In a decentralized gradient-like algorithm for an additive cost function, if J*
depends upon z;, there must be a communication between DM; and DM;. The
issue of decomposition scheme is discussed under two different assumptions con-
cerning communication method of this type of pair, {DM;,DM;}. The ‘Direct
Communication’ assumption mandates that there must be a direct (bidirectional
) communication link between DM; and DM;. Decomposition of J under this as-
sumption is discussed is Chapter 3. The ‘Indirect communication’ assumption allows
communication messages between DM; and DM. ; to be relayed by other processors.

It is only required that there exist an (undirected) communication path between

125

DM; and DM;. Decomposition of J under this assumption is discussed is Chapter
4. In both chapters the objective of decomposition is to balance the load on each

processor, and to keep the amount of communication small.

The results are summarized in summary charts at the end of this chapter.

5.2 Extensions

As mentioned in Section 5.1, if J* depends upon z;, there must be a commu-
nication capability between DM, and DM;. Such communication may take place
through a single link or a sequence of links depending upon whether we have the
‘Direct Communication’ assumption or the ‘Indirect Communication’ assumption.
In this thesis we assumed that every communication link is a bidirectional link.
If unidirectional links are used instead of bidirectional links, problems formulated
in this thesis are modified. Instead of the undirected graph G = (V,E) used in
order to represent the communication structure in this thesis, the directed graph
G4 = (V, E4) must be used. G4 having a directed edge (DM;, DM;) € E; signifies
that the information of z; can be transmitted from DM; to DM;, and the informa-
tion of ,\'Z: = g_ﬁ can be transmitted from DM; to DM;. ‘Direct Communication’
assumption must be modified to the following: if J7 depends upon z;, there must
be a directed link (DM;, DM;) in G4. ‘Indirect Communication’ assumption must
be modified as the following: if J7 depends upon z;, there must be a directed path
from DM; to DM; in G4. In this thesis TL and RL have been used as a measure
of the amount of communication. RL can be used in this new formulations. How-
ever, T'L must be modified. TL was defined to be the total number of bidirectional
links, required by a decomposition (in case of flexible organization), or built in an

organization (in case of fixed or semi-flexible organization). In a new (extended

126

) formulation, the number of ‘unidirectional’ links must be counted. We can use
TDL (Total number of Directed Links) to denote this new measure of the amount
of communication. Suppose J7 depends upon z;, and J* depends upon z; in a de-
composition. TL is counted as one for the pair {DM;,DM;}, but TDL is counted
as two for this pair, because a unidirectional link (DM;, DM;) and a unidirectional

link (DM, DM;) are both required.

These new formulations are suggested for the future research.

127

Summary chart for ‘Direct Communication’

TL

RL

Algorithm 3.5

Fixed" Algorithm 3.2

Organization Algorithm 3.6
BIL

Flexible Open problem ‘

Organization (NP-complete Algorithm 3.4

conjectured)

Semi-flexible

Organization

- Open problem
(NP-—complete

conjectured)

NP-complete

128

Summary chart for ‘Indirect Communication’

TL RL

Algorithm 4.1

Algorithm 4.2
Fixed Trivial
Organization Algorithm 4.3
Flexible Equivalent to
Organization Trivial the case of

‘Direct Communication’
Semi-flexible NP-complete
Organization

- Trivial

Vg A p—————— s ATt v e e s m e

129

APPENDIX

In this Appendix, we present an example of the graph that does not have an

inverse image of the transformation defined in Section 3.1.3.

In Chapter 3, F(G), a transformation of the graph G = (V,E), and set of

graphs, & were defined as the following:

F(G) = (V,Ey)

Ef = E U Eg44eq
where

Eoddea = {(DM;, DM;) ¢ E|DM; and DM; are two hops from each other}

L = {graph H | 3 a graph T such that F(T) = H}

Concerning the transformation F, it has the following property:

Lemma A.1
Let G; = (V1,E;), and G, = (Va, E2). Let us define G; UG, = (ViuV,, Ey U Ey).
We say G and G, are disjoint if V; NV, = 0.
If G = G1 U G2, where G; and G; are disjoint, F(G) = F(G,) U F(G;), and F(G,)
and F(G;) are disjoint.

Proof

Let Gy = (V1,E;) and G, = (V2, E3). For any pair {v; € Vj,v; € V2}, there is no
path between them in G. Suppose (v1,v2) € Egdded- Then, vy and v, must have

been two hops from each other. Contradiction.

130

Theorem A.1 Necessary condition for being in ©

If a undirected, connected graph H = (Vis Ex), V| > 38 is in the set X, for any edge
(u,v) € Ej, there exist a node k € V}, such that (u,k) € E}, and (v,k) € E,,.
Proof
Since H € L, there exist a graph G = (V, E) such that F(G) = H.
V=V
En=EUEg3409

i (u,v) € E 4deq, v and v must be two hops from each other in G. Therefore, there
exists a node k € V}, such that (u,k) € Ey, and (v,k) € E. Now, let us consider
the case where (u,v) € E}. Since H is connected, from Lemma A.1, G is connected,
too. Because |V| > 3, there must be a node k € V that is a neighbor of 4 or v in G.
If k is a neighbor of both, done. If k is a neighbor of only one of these two, say, u,

(k,v) must be in E,q4.4. Q.E.D.

Any graph not satisfying this necessary condition does not belong to the set X.

The graph in Figure A-1 is an example.

131

-

Figure A-1 : Example of a graph that is not in X

132

References

[1] J.N. Tsitsiklis, “Problems in Decentralized Decision Making and Computation”,
Ph.D. Thesis, MIT, and Léboratory for Information and Decision Systefns Report
LIDS-TH-1424.

[2] K.L. Boéttcher and R.R. Tenney, “On the Analyﬁis and Design of Human Infor-
mation Processing Organizations”, Proc. 8th MIT/ONR Workshop oﬁ c? System;s.
[3] K.L. Bbettcher and A.H. Levis, “Modeling the Interacting Decision Maker with
Bounded Rationality”, IEEE Trans. on Systems, Man, and Cybernetics, vol.SCM-
12, No.3, pp.334-344, May/June 1982. '

[4] D.A. Stabile ana A.H. Levis, “The Design of Information Structures: Basic Al-
locaﬁon Strategies for Organizations”, Proc. 6th MIT/ONR Workshop on C3 Sys-
tems.

[5] Z.J. Wu, P.B. Luh, S.C. Chang, D.A. Castanon, “Optimal Task Allocation for a
Team of Two Decision‘Ma.kers with Three Classes of Impatient Tasks”, Proc. 8th
MIT/ONR Workshop on C® Systems.

| (6] C.H. Pépadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complcziiy. Englewood Cliffs,NJ: Prentice-Hall, 1982.

[7] J.N. Clare, “The Role of Teams in the Organization of Work”, Proc. 5th MIT/ ONR-
Workshop on C3 Systcms. N

(8] S.H. Bokhari, “On the Mapping Problem”, IEEE Trans. on Computers, vol.C-30,
No.3, pp.550-557, March 1981.\‘ -

[9] M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the
Theory of NP'—complciéncs's. Neﬁ York: W.H. Freeman and Company, 1979.

[10] D.P. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models.

133

Englewood Cliffs, N.J.: Prentice-Hall Inc., 1987.

[11] S.-Y. Lee and J.K. Aggarwal, “A Mapping Strategy for Parallel Processing”,
IEEE Trans. on Computers, vol.C-36, No.4, pp.433-442, April 1987.

134

