
MIT Open Access Articles

Keypoint-Driven Line Drawing Vectorization via PolyVector Flow

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Puhachov, Ivan, Neveu, William, Chien, Edward and Bessmeltsev, Mikhail. 2021.
"Keypoint-Driven Line Drawing Vectorization via PolyVector Flow."

As Published: https://doi.org/10.1145/3478513.3480529

Publisher: ACM|SIGGRAPH Asia 2021 Technical Papers

Persistent URL: https://hdl.handle.net/1721.1/146336

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146336

Keypoint-Driven Line Drawing Vectorization via PolyVector Flow

IVAN PUHACHOV, Université de Montréal, Canada
WILLIAM NEVEU, Université de Montréal, Canada
EDWARD CHIEN, Boston University, USA
MIKHAIL BESSMELTSEV, Université de Montréal, Canada

Final vectorizationInput image Keypoints and
Frame Field

Polyvector FlowTopology

Fig. 1. Given a greyscale bitmap drawing, we use deep learning–based machinery to extract keypoints: junctions, curve endpoints, and sharp corners. We then
compute a frame field aligned to the drawing and extract the drawing topology finding curves connecting the keypoints. Finally, we use our novel PolyVector flow
that aligns those curves to the frame field, robustly disambiguating directions around keypoints. Input image is from www.easy-drawings-and-sketches.com
(c) Ivan Huska.

Line drawing vectorization is a daily task in graphic design, computer an-

imation, and engineering, necessary to convert raster images to a set of

curves for editing and geometry processing. Despite recent progress in the

area, automatic vectorization tools often produce spurious branches or in-

correct connectivity around curve junctions; or smooth out sharp corners.

These issues detract from the use of such vectorization tools, both from

an aesthetic viewpoint and for feasibility of downstream applications (e.g.,

automatic coloring or inbetweening). We address these problems by intro-

ducing a novel line drawing vectorization algorithm that splits the task into

three components: (1) finding keypoints, i.e., curve endpoints, junctions,

and sharp corners; (2) extracting drawing topology, i.e., finding connections

between keypoints; and (3) computing the geometry of those connections.

We compute the optimal geometry of the connecting curves via a novel

geometric flow — PolyVector Flow — that aligns the curves to the drawing,

disambiguating directions around Y-, X-, and T-junctions. We show that

our system robustly infers both the geometry and topology of detailed com-

plex drawings. We validate our system both quantitatively and qualitatively,

demonstrating that our method visually outperforms previous work.

CCS Concepts: • Computing methodologies→ Parametric curve and
surface models.

Authors’ addresses: Ivan Puhachov, Université de Montréal, Canada, ivan.puhachov@

umontreal.ca; William Neveu, Université de Montréal, Canada, william.neveu@

umontreal.ca; Edward Chien, Boston University, USA, edchien@bu.edu; Mikhail Bess-

meltsev, Université de Montréal, Canada, bmpix@iro.umontreal.ca.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0730-0301/2021/12-ART266 $15.00

https://doi.org/10.1145/3478513.3480529

Additional Key Words and Phrases: line drawing, vectorization, frame field,

geometric flow

ACM Reference Format:
Ivan Puhachov, William Neveu, Edward Chien, and Mikhail Bessmeltsev.

2021. Keypoint-Driven Line Drawing Vectorization via PolyVector Flow.

ACM Trans. Graph. 40, 6, Article 266 (December 2021), 17 pages. https:

//doi.org/10.1145/3478513.3480529

1 INTRODUCTION
Line drawings are commonplace in numerous industries, including

cartoon animation and graphic design. These drawings are often

created with traditional tools, such as pen and paper, or in raster

software. Before the image can be printed in high resolution or used

in downstream applications, such as coloring or animation, the artist

often has to recreate their drawings in vector format. Despite recent

progress, many artists, frustrated by the modern vectorization tools,

prefer manual vectorization, although it is tedious and error-prone.

Typical results of automatic vectorization tools include spurious

branches, smoothed out sharp corners, and incorrect geometry or

connectivity around junctions (Fig. 3). The significance of these

topological and geometrical artifacts goes well beyond aesthetics,

as they impede the use of automatic vectorizations in downstream

applications: For instance, sketch-based modeling applications heav-

ily rely on junction positions and connectivity [Gryaditskaya et al.

2020; Lipson and Shpitalni 1996].

One of the core causes for these artifacts is incorrect or imprecise

treatment of positions and directions around keypoints of three
main types, i.e. curve endpoints, junctions, and sharp corners. The

main challenge in robustly finding, disambiguating, and connecting

keypoints is insufficient or noisy local information. For clean and

noisy drawings alike, color intensity and its gradient around each

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

266:2 • Puhachov et al.

(a) (b) (c) (d) (e) ()

Fig. 2. Overview of our method: Starting with a raster image (a), our keypoint extraction network outputs the key topological features and their type: junctions
(yellow), sharp corners (green), and endpoints (blue) (b). We then compute the drawing-aligned frame field, disambiguating directions around junctions, which
we use to generate the rough topological graph of the drawing (c). We then extract the paths over this graph between the computed keypoints, resolving
ambiguities (d) using keypoints type. We therefore compute the topology and the initial geometry of the vectorization (e). Finally, we use our novel PolyVector
Flow to align the initial paths to the frame field, resulting in the final vectorization (f).

keypoint are unreliable. This issue complicates inferring geometry,

such as curve positions and directions around keypoints, as well

as topology, such as deciding whether two curves are connected or

not (Fig. 3).

Traditional vectorization approaches relied on 1-skeleton [Favreau

et al. 2016; Noris et al. 2013] or gradient [Noris et al. 2013]. A recent

line of work robustly disambiguates directions around junctions via

a frame field [Bessmeltsev and Solomon 2019; Stanko et al. 2020].

Their frame field attaches two directions to each pixel, so that at

least one of the directions is aligned to the curve tangent. As a

result, this frame field aligns naturally with the two intersecting

curve directions around X- and T-junctions, typical for line draw-

ings, disambiguating those directions. Our work is inspired by those;

however, their line of work addressed only directions and did not

robustly infer positions of the keypoints.
Our observation is that away from the keypoints — the main

source of topological and geometrical ambiguity — topology is trivial

to infer, and curve geometry has well-defined, purely local criteria:

curves should be aligned with the drawing tangent and be centered

with respect to the drawn stroke. If the locations and connections

between all keypoints are known, the principal task left is to align

centered curves to the image tangents. To this end, we introduce a

novel geometric flow, PolyVector Flow, that aligns a given curve to the
frame field capturing drawing directions, robustly disambiguating

directions around keypoints.

Based on this flow, we propose a novel line drawing vectorization

method that offers robust junctions, sharp corners, and endpoints

resolution in terms of both positions and directions. Our system

contains three stages: (1) determine positions and type of all key-

points via a deep learning system; (2) extract drawing topology, i.e.

find connections between keypoints via optimization and (3) find

geometry of each connection curve via PolyVector Flow.

Our technical innovation is two-fold:

• we introduce the novel PolyVector flow, derived from an

anisotropic curve shortening flow, that aligns the given curve

to the drawing tangents, captured by a frame field, and

• we leverage that flow along with a deep learning–based ma-

chinery and a novel topology extraction algorithm to intro-

duce a line drawing vectorization system, focused on the

robust treatment of endpoints, sharp corners, and junctions.

[Stanko et al. 2020][Noris et al. 2013] [Bessmeltsev et al. 2019] Our result

Fig. 3. Traditional approaches [Noris et al. 2013] suffer from geometrical
and topological artifacts around keypoints: junctions, sharp corners, and
endpoints. Frame field–based approaches [Bessmeltsev and Solomon 2019;
Stanko et al. 2020] resolve directional ambiguities around keypoints, but
not their positions, leading to incorrect topology. Our approach addresses
all of these challenges (right).

Overview. Our system takes as an input a grayscale bitmap line

drawing and produces a set of curves aligned to the drawing (Fig. 2).

We first design and train a deep neural network outputting locations

and type of all keypoints in the image (Sec. 3). We then compute the

frame field, aligned to the drawing, and use it to compute the initial

drawing graph, using previous work [Bessmeltsev and Solomon

2019] (Sec. 4.1). This initial graph captures all the connectivity of

the drawing, but contains additional connections. We use this graph

to find a set of paths between the computed keypoints that cover

the drawing and respect the inferred keypoint types (Sec. 4). Finally,

we create the vectorization aligned with the drawing by deforming

those initial paths via the novel PolyVector Flow (Sec. 5).

2 RELATED WORK
Our work is inspired by the progress in two areas: line drawing vec-

torization and geometric flows. We focus only on the most relevant

works. Vectorization methods for shaded images, which typically

decompose the input bitmap into closed primitives [Jun et al. 2017;

Lecot and Lévy 2006; Orzan et al. 2013; Zhang et al. 2009], as well

as the methods for clip-art image vectorization, which typically

assume images are composed solely of closed flat-colored regions

[Dominici et al. 2020; Hoshyari et al. 2018], are outside our scope.

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

Keypoint-Driven Line Drawing Vectorization via PolyVector Flow • 266:3

Input bitmap Our result[Mo et al. 2021]
(a) (b)

Fig. 4. Typical deep learning–based architectures focus mainly on minimiz-
ing visual differences between their result and the input image, and do not
target reconstructing curve connectivity, often forming vectorizations that
are problematic for editing or downstream applications [Mo et al. 2021]
(their rasterized result with their stroke widths (a), the same result with
fixed stroke widths (b)). In contrast, we aim to reconstruct correct topology
(right).

We target precise vectorization of freeform line drawings with no

or little shading and support both closed and open curves.

Line Drawing Vectorization. Vectorization of bitmap images con-

taining curves is an extensively researched topic. The existing solu-

tions in medical imaging or road map reconstruction use domain-

specific knowledge which cannot be directly transferred onto line

drawings [Chai et al. 2013; Türetken et al. 2013]. Unlike technical

drawings, where often straight lines or a small number of simple

primitives are assumed [Egiazarian et al. 2020; Hilaire and Tombre

2006], freeform line drawings are often composed of complex piece-

wise smooth curves, rendering those specialized methods largely

inapplicable.

Vectorization algorithms for clean line drawings typically rely on

1-skeleton or raw image gradient to extract curve directions, end-

points, junctions, and connectivity [Bo et al. 2016; Donati et al. 2017,

2019; Najgebauer and Scherer 2019; Noris et al. 2013]. Noris et al.

[2013] vectorize clean digital line drawings via a global approach

to topology. Donati et al. [2017; 2019] use Pearson’s Correlation

coefficient to extract curvilinear pixel structures, skeletonize, and

fit Bezier curves. Both 1-skeleton and raw image gradient, however,

are unreliable and lead to geometric and topological artifacts in

the presence of noise. Those artifacts in 1-skeletons can be only

partially addressed via heavy processing or expensive optimization

[Favreau et al. 2016].

Methods for simultaneous vectorization and simplification of

rough overdrawn sketches often extend the traditional pipeline

by first merging the adjacent strokes in the bitmap image, and

only then computing 1-skeleton [Bartolo et al. 2007; Parakkat et al.

2018]. Alternatively, Goes et al. [2011] use an optimal transport

framework, and Chen et al. [2018] take a region-based approach.

Favreau et al. [2016] address the problem of noisy topology of 1-

skeleton by introducing a global topology optimization.

In contrast to these approaches, we target precise vectorization

without simplification. Simplification can be addressed either via

vector-based methods [Liu et al. 2018] or bitmap simplification meth-

ods. The latter filter rough bitmap sketches, producing a simplified

bitmap image visually merging parallel strokes via blurring kernels

[Chen et al. 2013; Kang et al. 2007] or deep learning [Simo-Serra et al.

2018, 2016; Xu et al. 2019]. We view these approaches as comple-

mentary to ours in case simplification is desired; we target precise

vectorization of sketches with no intent to simplify them (Fig. 16).

Recent works have explored using deep learning for vectorization

[Carlier et al. 2020; Das et al. 2021; Egiazarian et al. 2020; Gao

et al. 2019; Guo et al. 2019; Kim et al. 2018; Li et al. 2020; Liu et al.

2017; Lopes et al. 2019; Reddy et al. 2021; Zhou et al. 2019a]. These

approaches either cast vectorization as a segmentation task [Kim

et al. 2018], or predict a fixed number of curves either via direct

vector supervision [Carlier et al. 2020; Lopes et al. 2019] or via a

differentiable rasterizer [Li et al. 2020]. Other approaches improve

on that by designing RNNs to predict splines from images [Gao

et al. 2019; Reddy et al. 2021]. These approaches typically target

vectorization of simple doodles due to the limited complexity of the

available datasets. Mo et al. [2021] use an RNN with a differentiable

rendering to train on raster data only. All these approaches make no

effort to reconstruct correct drawing topology, which is essential for

downstream applications. In contrast, our system vectorizes complex

line drawings with correct topology (Fig. 4 and Supplementary).

We are inspired by the approaches that separate junction detec-

tion and topology reconstruction [Guo et al. 2019; Liu et al. 2017;

Zhou et al. 2019a]. Guo et al. [2019] use a fully convolutional ar-

chitecture to infer junctions and centerlines, and disambiguate con-

nectivity around junctions. Zhou et al. [2019a] detect straight-line

wireframes in photographs. Overall, end-to-end approaches [Das

et al. 2021; Guo et al. 2019], being trained on limited or fully syn-

thetic datasets, struggle to generalize on noisy real pen-and-paper

sketches or even on clean digital drawings with variable stroke

width. In contrast, we only use learning to detect and classify key-

points, a task that, as we demonstrate, generalizes well (Sec. 3).

Addressing the issue of noisy image gradient, some works gen-

erate a smooth tangent direction field and trace its integral curves

[Bao and Fu 2012; Chen et al. 2018, 2015]. We build upon a recent

line of work that extended those via frame fields, assignment of

two directions per pixel, one aligned to the curve tangent [Bess-

meltsev and Solomon 2019; Stanko et al. 2020]. This disambiguates

the directions of X- and T-junctions, since frame field directions

capture the directions of the two intersecting curves. Starting with

a frame field, Bessmeltsev and Solomon [2019] trace multiple in-

tegral curves, group them, form a graph than they then clean up

and convert into the vectorization. Stanko et al. [2020] improves the

tracing mechanism by first computing the 𝑢𝑣-parameterization of

the narrow band, and then extracting the parameterization isolines.

These methods, however, only focus on the problem of ambigu-

ous directions and not positions of the keypoints. Bessmeltsev and

Solomon [2019] extract keypoints using a noisy 1-skeleton, and

Stanko et al. [2020] make topological decisions based on a global

parameterization that depends on a user-defined local scaling mask.

As a result, both methods often produce incorrect connectivity, spu-

rious branches, or smoothed out sharp corners (Fig. 3). In contrast,

we extract keypoint positions and type directly from the drawing

using a deep neural network, and treat the problem of vectorization

as finding connectivity and geometry of curves connecting those

points, aligned to the frame field. Our method shares the frame field

design as well as graph computation with Bessmeltsev and Solomon

[2019], but uses those in a fundamentally different framework. We

demonstrate an in-depth comparison of the results to that work in

Section 6.

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

266:4 • Puhachov et al.

Discretized Geometric Flows. There are several geometric surface

or curve flows that have been utilized in geometry processing. The

most relevant to our setting is that of mean curvature flow, cor-

responding to minimization of surface area or curve length. The

applications have consisted mostly of methods for surface smooth-

ing and fairing [Desbrun et al. 1999; Leng et al. 2013; Taubin 1995]

and/or multi-resolution processing [Guskov et al. 1999; Kobbelt

2000; Kobbelt et al. 1998]. It has also found use in fluid dynamics

[Ishida et al. 2017; Misztal et al. 2012; Thürey et al. 2010; Zhang et al.

2012].

None of the above consider an anisotropic mean curvature flow

that varies throughout the manifold or domain. One formulation of

such an anisotropic mean curvature flow considers gradient flow of

an area/length functional where the area/length element varies with

direction of the surface/curve normal. Several theoretical works an-

alyze numerical schemes and convergence for such flows where the

area/length element is translation-invariant and constant over the

domain [Clarenz et al. 2004; Deckelnick et al. 2005; Dziuk 1999; Dz-

iuk and Elliott 2013]. We follow their general approach in derivation

of the PolyVector Flow, but modify it to allow for a length element

that is not translation-invariant.

The use of an area/length element that varies over the domain

is also considered in Clarenz et al. [2003]. There they detail two

different algorithms that generalize mean curvature flow for feature-

preserving surface fairing. One of their models is of a similar math-

ematical formulation, but our work presents a novel functional tai-

lored specifically to the task at hand. Furthermore, the application

of these ideas to frame field alignment is novel.

In computer vision, a modification of curve shortening flow in-

spired the rise of a successful line of methods for edge detection and

image segmentation, called Active Contours [Caselles et al. 1995;

Kichenassamy et al. 1995]. As shown in Kichenassamy et al. [1995],

active contours can be thought of as a curve shortening flow with

an edge-aware, spatially-varying Riemannian metric. This metric

only scales the standard Riemannian metric, and the length element

does not vary with direction. The barrier term in our model, which

promotes centering of the curves, is an example of this sort of model.

Lastly, let us also mention a few other related flows which have

been used for smoothing and fairing of surfaces: Willmore flow

[Bobenko and Schröder 2005; Clarenz et al. 2004; Crane et al. 2013;

Gruber and Aulisa 2020] and a diffusion flow, related to the bi-

Laplacian [Schneider and Kobbelt 2001].

3 KEYPOINT EXTRACTION
The first stage of our algorithm takes a greyscale bitmap image as

an input and produces a set of real-valued 2D positions of all the

keypoints and their type, i.e., whether they are junctions, curve

endpoints, or sharp corners. In the next stages of the algorithm, the

final vectorization is created by connecting these keypoints using

their inferred type. For junctions in particular, we do not specifically

aim to extract Y-junctions due to their somewhat ambiguous location

in the drawing, only focusing on X-, T-, and high-valence junctions

(Fig. 5). The positions of Y-junctions are resolved later due to the

PolyVector Flow (Sec. 5).

End points

Junction

Sharp
corner

(a) (b) (c) (d) (e) (f)

Fig. 5. Given an input image (a), in the first stage of our pipeline we train
our network to predict four heatmaps: likelihood of any keypoint 𝐻1 (b),
likelihood of an endpoint 𝐻2 (c), likelihood of a junction 𝐻3 (d), and likeli-
hood of a sharp corner 𝐻4 (e). We finally use non-maximum suppression (f)
to extract the locations of junctions (orange), curve endpoints (blue), and
sharp corners (green). We do not specifically target Y-junctions.

We train an anchor-free object detection system, which produces

four heatmaps of the same resolution as the input image (Fig. 5b).

The first heatmap𝐻1 shows likelihood of any keypoint at a location,

while the other three, 𝐻2, 𝐻3, 𝐻4, show likelihood of keypoints of

each of the three types respectively. We then extract positions of

all the keypoints using 𝐻1 via non-maximum suppression with the

minimal distance between peaks of one pixel (Fig. 5c). For each

keypoint, we then extract its type by finding the maximum of the

three type heatmaps at that location. Note that while predicting

the first heatmap may not seem necessary and can be theoretically

replaced by a sum of the other three, we found this setup to be more

robust and to produce fewer redundant predictions.

We base our architecture on a combination of state-of-the-art

systems for object detection: CenterNet [Zhou et al. 2019b], Hour-

glass [Newell et al. 2016], and Feature Pyramid Network [Lin et al.

2017]. We additionally experimented with other keypoint detec-

tion or object detection architectures [Redmon et al. 2016; Xie and

Tu 2017], but found this combination to perform better. We use a

similar architecture that downsamples and upsamples the image at

multiple levels, at each level extracting features and propagating

them using skip connections. In addition to the final four heatmaps

𝐻1, 𝐻2, 𝐻3, 𝐻4, the network predicts two intermediate downscaled

versions (0.25× and 0.5×) of 𝐻1 that we use to facilitate training.

The exact architecture is detailed in Appendix B.

3.1 Training details
Loss Function. Our loss is composed of six terms, each comparing

the four final 𝐻1, . . . , 𝐻4 and two intermediate heatmaps 𝐻5, 𝐻6 to

the ground truth heatmaps �̂�𝑖 , computed via placing Gaussians

(𝜎 = 2) on each annotated ground truth keypoint. Each loss is an

𝐿1-like asymmetric norm that penalizes false negatives more than

false positives:

L =

6∑︁
𝑖=1

𝑤𝑖𝜙 (𝐻𝑖 − �̂�𝑖), (1)

𝜙 (𝑥) =
{
0.6𝑥, if 𝑥 ≥ 0

|𝑥 |, otherwise

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

Keypoint-Driven Line Drawing Vectorization via PolyVector Flow • 266:5

(a) (b) (c) (d)

Junction

Fig. 6. We extract the topology, represented as a set of paths between key-
points, subject to three requirements. The paths should respect keypoint
valence (a), correctly disambiguate junctions (b), and cover the whole draw-
ing (c). Correct vectorization (d).

We use the following weights in our experiments:𝑤1 = 1,𝑤2 =

𝑤3 = 𝑤4 = 0.2,𝑤5 = 0.4,𝑤6 = 0.6.

Training. We train our network in a fully supervised manner on

our dataset that consists of rasterized vector sketches. We use the

Adam optimizer with learning rate 5 ·10−4 and cosine annealing. We

set the rest of parameters to their default PyTorch values. The model

is trained for 18 epochs. We use random rotations, Gaussian noise,

and other standard augmentations to prevent overfitting. We then

fine-tune the model on a smaller dataset for 20 epochs. Details on

both datasets and augmentation are presented in Appendix B. The

images presented in our results and figures, except for the dataset

sample in Fig. 22, were not used in training.

Detection robustness. We evaluate the detector on a separate hand

labeled dataset of 40 real line drawings. The trained model reaches

detection 𝐹1 score of 0.87 and classification accuracy of 0.86 on

the correctly detected keypoints. See Appendix B for more details.

We design the rest of our pipeline to accommodate errors in the

prediction or classification (Sec. 6.4).

4 KEYPOINT-DRIVEN DRAWING TOPOLOGY
In the next step of our algorithm, we infer the topology of the

drawing, finding connections between the extracted keypoints. The

geometry of all those connections will be refined in the final stage

of the algorithm (Sec. 5). We outline the following requirements on

such a set of paths (Fig. 6):

i Keypoint-Driven. Each path connects two keypoints; keypoint
type should be respected.

ii Junction resolution. The paths should correctly traverse junc-

tions.

iii Efficient coverage. Finally, subject to the other requirements,

the set of paths should cover the drawing with minimal re-

dundancy.

We address this problem in several steps. We first compute a

frame field aligned to the drawing, which allows us to disambiguate

directions around junctions (ii). Using this frame field, we form

the initial drawing graph. This graph captures all the connectivity

and details of the drawing, and covers the drawing completely (iii).

We find a subgraph that connects all the keypoints and has the

same coverage as the initial graph. Finally, we use this subgraph to

extract the minimal set of paths between keypoints while keeping

the coverage, thus satisfying all the above requirements.

4.1 Frame Field and Graph Construction
Frame Field Computation. The underlying structure necessary for

both topology extraction (Sec. 4.2, 4.3) and subsequent PolyVector

(a) (b)

Fig. 7. Initial graph construction, using [Bessmeltsev and Solomon 2019].
For each dark pixel of the image (‘narrow band’), we find a frame field (a, in
yellow) aligned with the input drawing. We then trace it (b, in yellow) and
form the initial graph by computing cross-sections of the traced curves and
grouping the points within a cross-section (small pink circles) into a single
graph vertex (larger circles). Graph vertices containing at least one shared
traced curve in their cross-section get connected by an edge. Note that at
T-junctions this forms two disconnected yet overlapping branches (b).

Flow (Sec. 5) is a frame field representing two dominant directions

at each dark pixel of the image. At every point near a stroke the

frame field contains at least one direction that is aligned with a

nearby curve tangent. Next to T- and X-junctions, the frame field

captures both intersecting curve directions (Fig. 7a). This structure

allows us to resolve direction disambiguities around most junctions

and sharp corners.

We use the frame field design of Bessmeltsev and Solomon [2019],

which uses a PolyVector field representation [Diamanti et al. 2015].

Briefly, their variational approach combines three terms: alignment

to the image tangent, smoothness, and a regularizer weakly biasing

the field towards orthogonal frames. This amounts to solving a

small number of linear systems, which we solve via the Conjugate

Gradient method. For performance reasons, we compute the frame

field only within a narrow band – all dark pixels of the image,

determined via an intensity threshold on the input greyscale image

(0.35 ·max(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)). Please refer to the original paper for details

[Bessmeltsev and Solomon 2019].

Graph Construction. Following the construction of Bessmeltsev

and Solomon [2019], we trace the frame field at every dark pixel

and form the graph vertices by locally grouping cross-sections of

traced curves corresponding to the same direction of the frame field

(Fig. 7). We assign the position of each vertex to the centroid of the

cross-section, and add edges between vertices sharing at least one

traced curve. This produces a graph where each vertex is centered

with respect to the drawn stroke. Each vertex is also associated with

a stroke width, computed as half of the diameter of the cross-section.

This graph captures all the connectivity and details of the original

image, but typically contains numerous additional branches (Fig. 7b,

vertical transparent branch) and is suboptimally positioned, e.g.

around Y-junctions (Fig. 9b). We leverage graph’s properties to

extract the correct topology utilizing our computed keypoints.

4.2 Extracting Topology
We look for a set of paths over the graph connecting the predicted

keypoints. To this end, we first identify key vertices, i.e. mapping the

detected keypoints to the graph, then find a subgraph connecting

those vertices and covering the original drawing, and finally convert

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

266:6 • Puhachov et al.

(a) (b) (c) (d) (e)

Fig. 8. Having computed the keypoints (a), we extract the topology in a few
steps. First, we map each keypoint to one or two key vertices (red circles)
(b) and move them to the keypoint locations. We then find Steiner trees,
one for each connected component of the graph, connecting those vertices
(c). Note that in this example the graph has two connected components,
disconnected at the T-junction ((c), red and blue). We then further extend
the Steiner trees forming subgraphs covering the whole drawing (d). Finally,
we convert these subgraphs into a set of paths between the key vertices,
while keeping the coverage (e).

this subgraph into a set of paths, taking into account the type of

each keypoint.

Finding key vertices. To find paths, we need to associate each

keypoint, i.e. a point in image space, with one or two key vertices

on the graph (Fig. 8a). For each keypoint, we find the closest graph

vertex containing the keypoint’s pixel in its cross-section, as defined

in Sec. 4.1.

While normally it is a single vertex, at T- and X-

junctions, where two strokes intersect, the graph

stucture contains two disconnected yet overlapping

branches. In those cases, we then find two key ver-

tices for a keypoint, i.e. one per branch (Fig. 8b, inset).

This construction allows us to vectorize T- and X-

junctions into two overlapping paths that correctly traverse the

junctions while passing through the keypoint. Finally, having found

the key vertices, we move each one to the associated keypoint, thus

trusting its predicted location.

Finding Connecting Subgraphs. Our next step extracts

subgraphs connecting key vertices and covering the draw-

ing, thus leveraging the predicted keypoints to gracefully

discard the topological artifacts of the original graph such

as auxiliary branches, connections, and holes (Fig. 8c).

We observe that our graph consists of multiple connected

components, each corresponding to a single stroke in the drawing

that can possibly split at Y-junctions (Fig. 8d, inset).

We thus find a subgraph connecting key vertices for each such

component. We start by finding a tree of minimum length connect-

ing all the key vertices within a component, also known as Steiner
Tree. While in general the problem of computing Steiner trees is

NP-hard, we use an efficient polynomial-time approximation via

Minimum Spanning Trees [Kou et al. 1981].

Covering the Drawing. For each component, the computed Steiner

tree connects the key vertices, but it may leave parts of the drawing

uncovered since it breaks cycles by definition. We thus need to track

(a) (b)

Fig. 9. Junction resolution: (a) X- and T-junctions, captured by the frame
field, form disconnected components of the graph. Hence, all paths over
this graph resolve those junctions correctly. To disambiguate Y-junctions
(b), which appear as valence-3 vertices, we explicitly prohibit incorrect turns
along the path.

the coverage of the subgraphs and extend it to cover the whole draw-
ing. We build up the subgraph iteratively by successively including

shortest paths between key vertices if they cover at least four new

previously uncovered vertices.

A vertex is covered by the current subgraph if it is inside of a

thickened version of the existing subgraph. For this, we first estimate

for each graph vertex the corresponding stroke width in pixels,

defined as a diameter of the vertex cross-section. To avoid local

noise in the width estimation, we perform a single iteration of

Laplacian smoothing of the widths on the graph via a single linear

solve with 𝜆 = 1 [Desbrun et al. 1999]. Now, the thickened subgraph

is constructed by linearly interpolating width between vertices, and

considering the resulting region.

The shortest path selection is an instance of a constrained shortest
path problem. In our implementation, we use a simple algorithm

by AliAbdi et al. [2019]. We stop when no such path exists. For

robustness, since keypoint detection (Sec. 3) may occasionally miss

a keypoint, we additionally iteratively find and add longest paths

between a key vertex and any other vertex if the path covers at least

four new pixels.

4.3 Converting Subgraphs to Paths
In the last step of the topology extrac-

tion, we convert the subgraphs into

a set of paths satisfying our require-

ments (Sec. 4). For each subgraph, we

start by finding all allowed paths be-

tween the key vertices, i.e. correctly

traversing the junctions. We then use

mixed-integer optimization to select

a minimal subset of those allowed

paths having the same coverage as

the subgraphs while respecting key-

point types.

Enumerating Allowed Paths. For each pair of key vertices within

a connected component of our subgraph, we find all paths not con-

taining any other key vertex, which correctly traverse the junctions

(see inset). The graph construction (Sec. 4.1) facilitates ‘automatic’

correct resolution of X- and T-junctions (Fig. 9a). X- and T-junctions

form non-connected, yet overlapping branches in the graph, hence

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

Keypoint-Driven Line Drawing Vectorization via PolyVector Flow • 266:7

Fig. 10. To test if a path over the graph correctly traverses a Y-junction, we
track the motion over the associated traced curves (background, brown).
Precisely, if the average orientations of the shared traced curve motions
(orange) are pointing in the opposite directions, we reject the path (center);
otherwise, we accept it as allowed.

guaranteeing that all paths over the graph resolve those junctions

correctly (Fig. 7b, 9a). Y-junctions, however, are not disambiguated

by the frame field, and hence form valence-3 vertices in the graph.

For each valence-3 vertex we therefore constrain the paths to only

take the correct turns: i.e. from the ‘stem’ of Y to one of the branches,

but not from one branch to another (Fig. 9b). This disambiguation

allows PolyVector flow (Sec. 5) to correct the suboptimal initial

locations of valence-3 vertices (see Fig. 11, where the flow moves

valence-3 vertex to its correct location in the right corner).

Remembering that each graph vertex was computed via grouping

samples on traced curves with the same root of the frame field, a path

over the graph may be associated with simultaneous ‘sliding’ over

the traced curves (Fig. 10). Thus, to robustly test if a path passing

through a valence-3 vertex makes an allowed turn, we compare

the average orientations of the motion over the traced curves: if

they have a positive dot product, it is a motion between a stem

of Y-junction and a branch, and therefore allowed; otherwise, we

discard this path.

Extracting Final Paths. Finally, we select a minimal subset with

the same pixel coverage as the subgraphs that respects the keypoint
types. We start by associating with an allowed path 𝑝 a binary

variable 𝑒𝑝 ∈ {0, 1}, signifying whether the path is selected (1) or

not (0). Each path starts and ends with a key vertex, denoted as

𝜕𝑝 = {𝑖, 𝑗}.
Keypoint types control key vertex valence in the final path set:

an endpoint should have valence-1, a corner should have valence-2,

and a junction should have valence-3 or higher. Using our binary

variables, we can express the valence of a key vertex 𝑖 in the final

drawing as 𝑣 =
∑
𝑝 |𝑖∈𝜕𝑝 𝑒𝑝 . This translates to a set of linear equality

or inequality constraints 𝐶𝑣𝑎𝑙𝑒𝑛𝑐𝑒 . In practice, however, we replace

all the equalities by inequalities, i.e. 𝑣 ≥ 1, 𝑣 ≥ 2, or 𝑣 ≥ 3 for

endpoints, sharp corners, and junctions correspondingly to account

for possible errors in the prediction of the classifier.

In order to select the subset of paths keeping the same coverage

as the subgraphs, we first compute coverage of each allowed path.

Then for each dark pixel (𝑥,𝑦), we enumerate all the paths cover-

ing it, forming a set 𝑆 (𝑥,𝑦) = {𝑝1, . . . , 𝑝𝑛}. We then add a linear

inequality constraint that the pixel must be covered by at least one

path:

∑
𝑝∈𝑆 (𝑥,𝑦) 𝑒𝑝 ≥ 1. We denote the set of those constraints for

all pixels as 𝐶𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 .

Finally, we would like to select the paths most aligned

with the drawing. To compute that, before performing

this optimization, we align all allowed paths to frame field

via PolyVector Flow (Sec. 5), and measure the energy of

the final curve via Eq. 6a. We denote this value as 𝑐𝑝 .

Bringing this all together, we solve the following

mixed-integer programming problem:

min

𝑒𝑝 ∈{0,1}

∑︁
𝑝

𝑐𝑝𝑒𝑝

s.t. 𝐶𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ,𝐶𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

We explicitly avoid infeasible optimization by adjusting the nec-

essary valences. Precisely, if graph vertex valence is less than the

valence predicted by the classifier, we adjust the prediction to its

valence in the graph.

We solve this optimization problem using Gurobi

solver [Gurobi Optimization 2021]. Note that while it

is an instance of a NP-hard problem, this mixed integer

problem is relatively small. We typically have 100 vari-

ables or fewer corresponding to all allowed paths. In our

experiments it is always solved to optimality.

5 POLYVECTOR FLOW
We use the extracted set of paths over the graph as initial curves,

centered by construction, to create the final vectorization. The key

idea is to align the initial curves to the frame field while keeping

them within the bounds of the drawn strokes. To this end, we formu-

late a novel geometric flow aligning the curve tangent at each point

with one of the directions of the frame field (Fig. 11). The alignment

is modeled as an anisotropic curvature flow, and an additional barrier
term is used to keep the curves within the drawn strokes. This is

the first use of such a flow for alignment to a frame field.

In the sections below, we detail our tailored functional and its 𝐿2
gradient flow. A variational derivative is taken to arrive at the weak

form, and this form is discretized in both time and space with the

Finite Element Method (FEM).

5.1 Anisotropic Curvature Flows
The standard mean curvature flow is given by the parametric evo-

lution equation ¤𝑥 = −𝐻𝜈 where ¤𝑥 is shorthand for
𝜕𝑥
𝜕𝑡 , 𝐻 denotes

mean curvature, and 𝜈 is the unit normal to the hypersurface. In our

setting of 1-dimensional curves in R2, this standard flow becomes

¤𝑥 = −𝜅𝜈 where 𝜅 is just the usual 1D curvature, so we will drop the

‘mean’ and refer to just ‘curvature flows’.

The standard curvature flowmay be viewed as a curve-shortening

flow, because it is also the 𝐿2 gradient flow of the standard length

functional. If we allow this length functional to vary depending

on the direction of the curve tangent, we arrive at an anisotropic
curvature flow. These have been previously studied in the literature

(e.g., [Deckelnick et al. 2005; Dziuk 1999]) and we briefly define

these models below, stating them in the setting of open curves with

fixed endpoints.

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

266:8 • Puhachov et al.

(a) (b) (c)

Fig. 11. The geometric flow we design aligns the initial curves (b) to the drawing tangents while keeping the curves centered (c). By using the frame field
aligned with local tangents (a), our flow robustly refines curves around T-, X-, and Y-junctions.

λ=0.1 λ=10 λ=3 (default)

Fig. 12. Parameter 𝜆 controls smoothness of our result while still keeping
the curves within the bounds of the narrow band.

Fig. 13. Different flows visualized from blue (initial curve) to red (final), run
for 50,000 iterations. Standard curve shortening flow (a) does not respect
the boundary of the given stroke and gradually contracts any path into a
straight line. With our barrier term added (b), curve shortening flow stays
within the bounds of the drawn stroke but deviates from the centerline
and drawn tangents. Our flow (c) aligns the curve to the local tangents
while keeping the curve smooth and within the bounds of the narrow band
(𝜆 = 0.2).

Consider an 𝐿2 gradient flow of an anisotropic length functional:

min

𝑥

∫
Γ
𝛾 (𝜈) 𝑑𝑙,

s.t. 𝑥 (0) = 𝐴, 𝑥 (𝐿) = 𝐵

where 𝑥 (𝜃), 𝜃 ∈ [0, 𝐿] parameterizes the curve Γ, 𝜈 is its pointwise

unit normal, and 𝛾 : R2 → R is an anisotropic length function that

is positive and 1-homogeneous:

(a) Positiveness: 𝛾 (𝜈) > 0, if 𝜈 ≠ 0

(b) Homogeneity of degree 1:

𝛾 (𝜆𝜈) = |𝜆 |𝛾 (𝜈), for all 𝜆 ≠ 0, 𝜈 ≠ 0 (4)

Note that 𝛾 accomodates non-unit arguments so that it may be used

with non-arclength parametrizations. The standard curvature flow

results from the standard length functional 𝛾 (𝜈) = |𝜈 |.
In the following sections, we generalize this model so that it may

smooth our curves and promote alignment to the frame field. In

particular, we consider an anisotropy function𝛾 (𝑥, 𝜈) : R2×R2 → R

that also varies positionally (i.e., in 𝑥) to account for this changing

frame field.

5.2 Our Anisotropy Function
To measure alignment with the frame field and construct an appro-

priate 𝛾 (𝑥, 𝜈), we use the PolyVector field representation [Diamanti

et al. 2015]. Our frame field, described in Sec. 4.1, is represented

as a pair of complex scalar fields 𝑐0 (𝑥), 𝑐2 (𝑥) ∈ C defined over the

dark pixels of the image. At each pixel those scalars define a quartic

polynomial, whose roots ±𝑢,±𝑣 ∈ C, identifying image plane with

a complex plane, are the two dominant directions in the drawing:

𝑓 (𝑥, 𝑧) B 𝑧4 + 𝑐2 (𝑥)𝑧2 + 𝑐0 (𝑥) = (𝑧2 − 𝑢 (𝑥)2) (𝑧2 − 𝑣 (𝑥)2)

In particular, consider a curve 𝑥 (𝜃), 𝜃 ∈ [0, 𝐿] and its normalized

tangent 𝜏 =
𝑥 ′ (𝜃)
∥𝑥 ′ (𝜃) ∥ . The norm |𝑓 (𝑥, 𝜏) | is locally minimized when

𝜏 aligns with one of the frame field directions.

Based on this observation, we may construct the following posi-

tive and 1-homogeneous anisotropy function:

𝛾 (𝑥, 𝜈) B ∥𝜈 ∥
(����𝑓 (

𝑥, 𝑖
𝜈

∥𝜈 ∥

)����2 + 𝑏 (𝑥)) ,
Above, multiplication by 𝑖 is a rotation of the normal to the tangent.

The barrier function 𝑏 (𝑥) keeps the curve inside the bounds of
the drawn strokes while also acting as a smoothness regularizer: it

is nearly zero within the bounds of the drawn strokes, increasing

outside the bounds. We represent it via a sum of Gaussians centered

at the graph vertex locations 𝑝 (𝑣) ∈ R2 for all the vertices 𝑣 in the

path. We set the standard deviation 𝜎 (𝑣) using the per-vertex stroke
width𝑤 (𝑣) (Sec. 4.2) using 3𝜎-rule: 𝜎 (𝑣) = 𝑤 (𝑣)/6.

𝑏 (𝑥) = max

(
1 −

∑︁
𝑣

exp(− ∥𝑥 − 𝑝 (𝑣)∥2

2𝜎 (𝑣)2
), 0

)
+ 𝜆, (5)

where 𝜆 > 0 is a regularizing parameter that pushes the flow towards

the standard curve-shortening flow (Fig. 12, Fig. 13).

5.3 Variational Derivative and Weak Form
Our generalized model considers the 𝐿2 gradient flow of the follow-

ing anisotropic position-varying length functional:

min

𝑥

∫
Γ
𝛾 (𝑥, 𝜈)𝑑𝑙 (6a)

s.t. 𝑥 (0) = 𝐴, 𝑥 (𝐿) = 𝐵. (6b)

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

Keypoint-Driven Line Drawing Vectorization via PolyVector Flow • 266:9

Our arguments below closely follow those in Dziuk [1999], Deck-

elnick et al. [2005] so we adopt their notation, and summarize them

briefly, making it specific to 1D curves embedded in R2. There are
important differences arising due to our position-varying 𝛾 and

the setting of open curves with fixed endpoints, so we are sure to

highlight these as we proceed. We begin with calculation of the vari-

ational derivative of our functional, c.f. Lemma 8.2 in Deckelnick

et al. [2005].

Proposition 5.1. For a normal variation described by 𝜙 : Γ → R
such that 𝑥 (𝜃, 𝑡) = 𝑥 (𝜃, 0)+𝑡𝜙 (𝑥 (𝜃, 0))𝜈 (𝑥 (𝜃, 0)) and𝜙 (𝐴) = 𝜙 (𝐵) =
0, we have:

𝑑

𝑑𝑡

(∫
Γ (𝑡)

𝛾 (𝑥, 𝜈) 𝑑𝑙
)����
𝑡=0

=

∫
Γ
∇Γ · 𝐷𝛾 (𝜈)𝜙 + 𝜕𝛾

𝜕𝜈
𝜙 𝑑𝑙 (7)

where ∇Γ refers to the gradient projected onto Γ, 𝐷𝛾 refers to the
gradient with respect to the normal argument 𝜈 , and 𝜕𝛾

𝜕𝜈 refers to the
partial derivative in the normal direction 𝜈 .

The key difference in our model is the presence of the second

term above, as in the usual setting of anisotropic curvature flows

𝜕𝛾
𝜕𝜈 = 0. This proposition follows from an application of a transport

theorem and integration-by-parts. A more detailed argument is

given in Appendix A.1.

The above proposition shows that the gradient flow is of the form:

¤𝑥 = −
(
∇Γ · 𝐷𝛾 (𝜈) +

𝜕𝛾

𝜕𝜈

)
𝜈.

The weak form that we will discretize results from integrating the

dot product against a vector variation 𝜓 : [0, 𝐿] → R2 for which
𝜓 (0) = 𝜓 (1) = 0. The existence of the second-order derivative in the

first term creates issues for discretization, so another integration-

by-parts results in the following equivalence.

Lemma 5.2. Given a test function𝜓 as described above,∫
Γ (𝑡)

∇Γ · 𝐷𝛾 (𝜈) (𝜈 ·𝜓) 𝑑𝑙 =
∫ 𝐿

0

𝐷𝛾 (𝑥 ′(𝜃)⊥) · (𝜓 ′(𝜃)⊥) 𝑑𝜃 (8)

where (𝑎, 𝑏)⊥ = (−𝑏, 𝑎), and 𝑥 ′(𝜃) = 𝜕𝑥
𝜕𝜃

and 𝜓 ′(𝜃) =
𝜕𝜓

𝜕𝜃
denote

tangents to their respective curves.

A proof sketch for this lemma is given in Appendix A.1. The final

weak form that we will discretize is the following:∫
Γ
¤𝑥 ·𝜓 𝑑𝑙︸ ︷︷ ︸

first term

+
∫ 𝐿

0

𝐷𝛾 (𝑥 ′(𝜃)⊥) · (𝜓 ′(𝜃)⊥) 𝑑𝜃︸ ︷︷ ︸
second term

+
∫
Γ

𝜕𝛾

𝜕𝜈
(𝜈 ·𝜓) 𝑑𝑙︸ ︷︷ ︸

third term

= 0

(9)

5.4 Discretization
Using first-order Finite Element Method (FEM), we discretize our

curve 𝑥 (𝜃, 𝑡) = ∑𝑀
𝑖=0 𝑥𝑖 (𝑡)𝜙𝑖 (𝜃) with hat functions 𝜙𝑖 in the parame-

ter domain 𝜃 . With [0, 𝐿] divided into𝑀 subintervals of length 𝐿/𝑀
with endpoints 𝜃 𝑗 = 𝑗𝐿/𝑀 , these hat functions are linear over the

subintervals and satisfy 𝜙𝑖 (𝜃 𝑗) = 𝛿𝑖 𝑗 . The discretized curve forms a

polyline interpolating the vertices 𝑥𝑖 (𝑡) ∈ R2 which vary in time.

In this setting, for test functions, we consider a basis of discrete

variations𝜓𝑖,𝑘 = 𝜙𝑖 (𝜃)𝑒𝑘 , where 𝑒𝑘 is a basis vector.𝜓𝑖,𝑘 describes

the discrete variation that shifts vertex 𝑖 in the 𝑘th basis direction.

We consider the weak form for each of these 2(𝑀+1) basis variations.
Considering the first term in Eq. 9, we get:

1

6

¤𝑥 𝑗−1𝑞 𝑗 +
1

3

¤𝑥 𝑗 (𝑞 𝑗 + 𝑞 𝑗+1) +
1

6

¤𝑥 𝑗+1𝑞 𝑗+1,

where 𝑞 𝑗 =
𝑥 𝑗 − 𝑥 𝑗−1

. The constants arise from standard integrals

of 1D hat functions.

For the second term of Eq. 9 note that (𝜓 ′
𝑗,𝑘
)⊥ = 𝜙 ′

𝑗
(𝜃)𝑒⊥

𝑘
≠ 0

only on [𝜃 𝑗−1, 𝜃 𝑗+1]:

𝑒𝑘 ·
(
(𝐷𝛾 (𝑥⊥𝑗+1 − 𝑥⊥𝑗))

⊥ − 𝐷𝛾 (𝑥⊥𝑗 − 𝑥⊥𝑗−1))
⊥
)
,

since 𝑎 · 𝑏⊥ = −𝑎⊥ · 𝑏.
Finally, denoting discretized tangents as 𝜏 𝑗 =

𝑥 𝑗−𝑥 𝑗−1
𝑞 𝑗

and normals

as 𝜈 𝑗 = 𝜏⊥
𝑗
, the third term in Eq. 9 becomes

1

2

𝑒𝑘 ·
(
𝜈 𝑗

(
∇𝑥𝛾 𝑗 · 𝑥⊥𝑗 − 𝑥⊥𝑗−1

)
+ 𝜈 𝑗+1

(
∇𝑥𝛾 𝑗+1 · 𝑥⊥𝑗+1 − 𝑥⊥𝑗

))
,

where we put ∇𝑥𝛾 (𝑥, 𝜈) | 𝑗𝑗−1 ≈ ∇𝑥𝛾 (
𝑥 𝑗+𝑥 𝑗−1

2
,
𝑥⊥
𝑗 −𝑥⊥

𝑗−1
|𝑥⊥

𝑗
−𝑥⊥

𝑗−1 |
) def

= ∇𝑥𝛾 𝑗 .

Now let us finalize our discretization. We denote 𝐹 𝑗 = ⟨∇𝑥𝛾 𝑗 , 𝜈 𝑗 ⟩,
and further 𝑔 𝑗 = 𝛾 (𝜈 𝑗), 𝑔′𝑗 = ⟨𝛾 ′(𝜈 𝑗), 𝜏 𝑗 ⟩, and, for convenience,
𝑋 = 𝑥1 − 𝑖𝑥2, 𝑥

⊥ = −𝑖𝑋,𝐺 = 𝑔 + 𝑖𝑔′. Finally, we use forward Euler

integration of the flow using 𝛿 as the time step. After straightforward

calculations, we can write out the final tridiagonal complex linear

system:

𝑋𝑛
𝑗−1 (

𝑖𝐹 𝑗

2

−
𝐺 𝑗

𝑞 𝑗
)+𝑋𝑛

𝑗

(
1

2𝛿
(𝑞 𝑗 + 𝑞 𝑗+1) +

𝐺 𝑗

𝑞 𝑗
+
𝐺 𝑗+1
𝑞 𝑗+1

− 1

2

𝑖𝐹 𝑗 +
1

2

𝑖𝐹 𝑗+1

)
− 𝑋𝑛

𝑗+1 (
𝐺 𝑗+1
𝑞 𝑗+1

+
𝑖𝐹 𝑗+1
2

) = 1

2𝛿
𝑋𝑛−1
𝑗 (𝑞 𝑗+1 + 𝑞 𝑗) . (10)

Eq. 10 is the final discretized version of our PolyVector Flow.

Performing an iteration of the flow amounts to solving this linear

system, which we implement via an LU factorization.

Adaptive Resampling. We observe a known artifact of standard

curve shortening flow: in some cases, our flow may develop zero-

length edges next to long edges. To address that, we adapt the

standard approach of de Goes et al. [2008]: we maintain edge length

to be under one pixel, resampling the curve as needed. Addition-

ally, following Deckelnick et al. [2005], we regularize the length

element computation: 𝑞 𝑗 =

√︃𝑥 𝑗 − 𝑥 𝑗−1
2 + 𝜀, where 𝜀 = 0.2 in our

experiments.

Time Step. We use base time step 𝛿 = 5 · 10−3, which we scale

by the inverse shortest-path distance to the high-valence (i.e. ≥ 3)

vertices on our graph, since we have noted that the geometry of the

initial graph is more reliable far from high-valence vertices. We run

our flow for a fixed number of 1500 iterations.

6 VALIDATION AND RESULTS

6.1 Qualitative Evaluation
We have automatically generated a number of vectorizations for

line drawings of different line styles and levels of noise (Fig. 1, 15,

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

266:10 • Puhachov et al.

Fig. 14. We used benchmark [Yan et al. 2020] to measure mean Chamfer
and Hausdorff distances (lower is better), as well as 𝐹1 score 10% (higher
is better). By these metrics, our results are comparable to previous work
(columns: [Noris et al. 2013], [Favreau et al. 2016], [Parakkat et al. 2018],
[Bessmeltsev and Solomon 2019], [Mo et al. 2021], ours). We note, however,
as indicated by previous work [Mo et al. 2021], that these metrics do not
measure how useful or correct the vectorizations are, instead measuring
how well they cover dark pixels of the input bitmap.

17, 18). We used automatic contrast adjustment in Adobe Photoshop

as a preprocessing step. The drawings include digital clean draw-

ings (‘sheriff, ‘muten’, and ‘dracolion’ in Fig. 15), as well as complex

noisy scanned drawings (‘running dog’ in Fig. 1, ‘dog’, ‘rabbit’, ‘don-

key’, and ‘leaf’ in Fig. 17, ‘elephant’, ‘turkey’, ‘banana tree’, ‘puppy’,

‘kitten’, ‘hippo’ in Fig. 18).

6.2 Comparison to Prior Art
We compare our vectorization system with the recent methods

[Bessmeltsev and Solomon 2019; Mo et al. 2021; Stanko et al. 2020],

as well as older systems [Favreau et al. 2016; Noris et al. 2013] and

Adobe Illustrator for completeness. We ran the methods by Noris

et al. [2013] with the default parameters, and Favreau et al. [2016]

over a set of parameter values
1
. For a fair comparison, even though

Stanko et al. [2020] can potentially accept a user-defined scaling

image, we run it in the automaticmode using a few different constant

values for scale and narrow band size
2
. For all those methods we

used the binaries or code provided by the authors. Finally, we directly

compare with the results of Mo et al. [2021] as presented in their

paper and on their website. We ran our method with the default

parameters on all inputs. We present some of the comparison results

in Fig. 15 and Fig. 17, the rest are presented in the supplementary

materials.

On the clean digital drawings, our method produces results com-

parable to ones of Noris et al. [2013], Bessmeltsev and Solomon

[2019], Stanko et al. [2020]. Even for those, our resolution of zigzags,

in particular, is more robust (see e.g. ’fire’ on Fig. 15). As noted by

the authors, Noris et al. [2013] is unstable under any noise in the

input image and thus suffers from numerous artifacts for scanned

drawings (see Supplementary).

As compared to Bessmeltsev and Solomon [2019], our method has

more robust junction and topology detection (see Fig. 3, 17, and Sup-

plementary). Bessmeltsev and Solomon [2019] use the initial graph

for junction and endpoint positions, leading to spurious branches

1
{maxNumOpenCurves = 0, minLengthOpenCurves=30, minRegionSize=7} and {maxNu-

mOpenCurves = 30, minLengthOpenCurves=5, minRegionSize=3}. 𝜆 = 0.5

2
-n 0.3, 0.5, 0.8 and -s 0.5, 1.0, 2.0

and smoothed out corners. Our PolyVector flow formulation allows

us to be more robust especially around corners and Y-junctions (see

e.g. zigzags on the donkey or rabbit, Y-junction in the dog in Fig. 17).

The method of Stanko et al. [2020] is more targeted towards simul-

taneous simplification and vectorization, and hence tends to simplify

significant features even for non-ambiguous regions (see zooms in

Fig. 17). Our method contains fewer topological artifacts due to

our keypoint-driven topology extraction instead of their parame-

terization, such as spurious or absent connections and erroneous

branches.

We compared to the recent work by Mo et al. [2021] in the sup-

plementary. As demonstrated by Fig. 4, their method does not target

reconstructing correct topology, making it problematic to use for

graphical design, animation, or most downstream applications.

Since our vectorization method targets precise vectorization as

opposed to simplification, we see the graph optimization algorithm

by Favreau et al. [2016] as complementary to ours. For precise vec-

torization, however, the method by [Favreau et al. 2016] tends to

oversimplify the results and deviates from the drawing (see Supple-

mentary).

If simplification is needed for vectorization of rough sketches, our

method can be used in conjunction with raster-based simplification

systems [Simo-Serra et al. 2018, 2016; Xu et al. 2019] as a prepro-

cessing step (Fig. 16). We see this rough drawing simplification task

as separate and not a focus of our current work. Alternatively, one

may use vector-based simplification methods [Liu et al. 2018] on

our results.

6.3 Quantitative Analysis
We used a recent benchmark to quantitatively validate our method

[Yan et al. 2020], and, as suggested by the benchmark, measured the

Chamfer and Hausdorff distances, as well as 𝐹1-score (10%) between

our algorithmic results and the dark pixels in the input bitmaps.

As discussed by previous work [Mo et al. 2021], these distances do

not correspond to how useful, editable, or correct the vectorization

result is, and aremore indicative of howwell the vectorization covers

the input bitmap. In terms of these metrics, however, our method is

comparable with the other state-of-the-art methods (Fig. 14). Note

that to compare to Mo et al. [2021], we use the Chamfer distance

from their paper, and compute Hausdorff distance and F-score using

the trained model provided on their website.

6.4 Robustness, Input and Parameter Sensitivity
Our method is robust to changes in the input bitmap, resolution

(Fig. 19), and input stroke widths (for our inputs, widths range from

1px to 12px) as our keypoint detector is robust under those condi-

tions, and the core of our method, i.e. PolyVector Flow, is variational

in nature. Our method has very few tunable parameters. We demon-

strate the effect of changing the parameter 𝜆 in our PolyVector Flow

formulation in Fig. 12.

While accuracies or our keypoint detection and classification are

high (see Sec. 3.1), both scores can be improved by collecting a larger

dataset of real drawings. However, we designed our algorithm to

gracefully alleviate prediction/classification errors.

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

Keypoint-Driven Line Drawing Vectorization via PolyVector Flow • 266:11

[Noris et al. 2013] [Bessmeltsev et al. 2019] Our result

Fig. 15. On clean digital line drawings, our method produces comparable results to the previous work [Bessmeltsev and Solomon 2019; Noris et al. 2013].

input sketch bitmap simplified
by [SimoSerra2016]

[Bessmeltsev and Solomon 2019]
on the simplified bitmap

Our result on the
simplified bitmap

[Favreau et al. 2016] [Stanko et al. 2020] Our unsimplified
result

Fig. 16. Comparison of our method with alternative approaches on a rough bitmap sketch. Since simplification is not the focus of our method, we preprocess
the input using a bitmap-to-bitmap simplification method [Simo-Serra et al. 2016]

The detector may miss keypoints (false negative), especially at

stroke endings that smoothly fade out (hippo’s neck, see Supplemen-

tary). We use pixel coverage (Sec. 4.2), fixing most of these errors.

The detector may also produce additional points (false positive),

often close to the centerline, resulting in a marginally increased

curve complexity but not decreased quality. Rare incorrect off-center

points might introduce local geometric or topological artifacts (e.g.

dog tail, right, Fig. 17).

We accommodate classification errors by using inequalities in

extracting final paths (Sec. 4.3), retaining pixel coverage, and avoid-

ing infeasible optimization by adjusting the necessary valences

(Sec. 4.2).

In rare cases, for areas already covered by other curves, classi-

fication errors might lead to short missing paths in the final vec-

torization (see Fig. 19, near elephant’s eye). The detector may also

produce additional points (false positive detection), often close to

the centerline, resulting in a marginally increased curve complexity

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

266:12 • Puhachov et al.

input [Bessmeltsev et al. 2019] [Stanko et al. 2020] Our result

Fig. 17. Compared to the previous approaches based on frame fields [Bessmeltsev and Solomon 2019; Stanko et al. 2020], our method more robustly captures
sharp corners and junctions. Input images ‘rabbit’, ‘donkey’, ‘dog’ are from www.easy-drawings-and-sketches.com ©Ivan Huska.

but not decreased quality. Rare incorrect off-center points might

introduce local geometric or topological artifacts (e.g. dog tail, Fig.

17).

6.5 Runtime
On an Intel(R) Core(TM) i9-9900K CPU @3.60 GHz with 128GB

RAM, our unoptimized implementation usually takes around a

minute to vectorize medium-to-high resolution images, and is com-

parable to the other vectorization algorithms (Table 1). The bottle-

neck of our algorithm is currently solving the constrained shortest

path problem (Sec. 4.2). We used the same parameters for all those

images.

Ablation Study. To illustrate the contribution of each stage of our

algorithm, we perform an ablation study (Fig. 20).

6.6 Limitations and Future Work
Similarly to most previous work, our method does not address the

problem of shaded regions (see e.g. nose of the kitten in Fig. 18); we

leave this to future work. We also share the dependency of many

other methods (e.g. [Bessmeltsev and Solomon 2019; Stanko et al.

2020], Adobe Illustrator) on the background-foreground threshold,

which might be problematic for drawings with a very noisy back-

ground.

In future work, it might be also interesting to consider semantic

cues and prior knowledge to make better informed connectivity

decisions (see e.g. blow-up of the eyebrow, Fig. 15).

7 CONCLUSION
We have presented a novel method for automatically vectorizing

bitmap images, based on a novel PolyVector Flow and a deep learning–

based keypoint detection network. As we demonstrate, it reliably

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

Keypoint-Driven Line Drawing Vectorization via PolyVector Flow • 266:13

Fig. 18. A gallery of additional results. Input images from www.easy-drawings-and-sketches.com ©Ivan Huska.

Original image Our result Downscaled (0.5x) image Our result

Fig. 19. Our system is robust to resolution changes. Left image (original)
is 500×753 pixels, the right one is 250×377 pixels. While the quality of the
result degrades with decreasing resolution, the directions and positions of
most keypoints are stable.

and efficiently resolves topological and geometric ambiguities around

sharp corners, junctions, and stroke endpoints.

Our key contribution, PolyVector Flow, can be used as a drop-in

geometry refinement method for other vectorization algorithms, be

adapted to quad-meshing algorithms, or used in medical/satellite

imaging applications, e.g. road network reconstruction.

Table 1. Time performance in seconds, left to right: [Noris et al. 2013],
[Favreau et al. 2016], [Bessmeltsev and Solomon 2019], [Stanko et al. 2020].

Input N13 F16 B19 S20 Ours

Running dog 15 108 18 70 52

Sheriff 14 74 50 120 55

Muten 10 105 28 62 63

Dracolion 12 160 26 110 45

Dog 25 106 83 50 64

Rabbit 17 94 33 60 43

Donkey 24 100 89 33 69

Leaf 10 55 20 96 73

Elephant 23 130 50 52 70

Turkey 25 86 58 504 150

Banana tree 12 108 22 84 160

Puppy 18 110 35 55 52

Kitten 25 100 75 37 68

Hippo 17 75 44 22 44

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

266:14 • Puhachov et al.

(b) (c) (d) (e)(a)

Fig. 20. Ablation study: (a) disabling keypoint extraction (Sec. 3), using only the graph and coverage to infer endpoints and junctions; (b) disabling ’extracting
final paths’ optimization (Sec. 4.2); (c) disabling valence constraints (Sec. 4.2); (d) disabling Polyvector Flow (Sec. 5) leads to both incorrect topology and
geometry; (e) Our result.

Our system can be immediately useful for artists and engineers

alike, robustly creating high-quality tracings even in the presence

of noise.

ACKNOWLEDGMENTS
We would like to thank Dennis Gaitsgory and Gerhard Dziuk for

insightful early discussions. We acknowledge the support of the Nat-

ural Sciences and Engineering Research Council of Canada (NSERC)

under Grant No.: RGPIN-2019-05097 (“Creating Virtual Shapes via

Intuitive Input”) and the Fonds de recherche du Québec - Nature et

technologies (FRQNT) under Grant No.: 2020-NC-270087.

REFERENCES
Amin AliAbdi, Ali Mohades, and Mansoor Davoodi Monfared. 2019. Constrained

shortest path problems in bi-colored graphs: a label-setting approach. GeoInformatica
(12 2019), 1–19. https://doi.org/10.1007/s10707-019-00385-8

Bin Bao and Hongbo Fu. 2012. Vectorizing line drawings with near-constant line width.

In IEEE Int. Conf. on Image Processing. 805–808.
Alexandra Bartolo, Kenneth P. Camilleri, Simon G. Fabri, Jonathan C. Borg, and Philip J.

Farrugia. 2007. Scribbles to Vectors: Preparation of Scribble Drawings for CAD In-

terpretation. Proceedings of the 4th Eurographics Workshop on Sketch-based Interfaces
and Modeling (SBIM ’07) (2007), 123–130. https://doi.org/10.1145/1384429.1384456

Mikhail Bessmeltsev and Justin Solomon. 2019. Vectorization of line drawings via

polyvector fields. ACM Transactions on Graphics 38, 1 (2019). https://doi.org/10.

1145/3202661 arXiv:1801.01922

Pengbo Bo, Gongning Luo, and Kuanquan Wang. 2016. A graph-based method for

fitting planar B-spline curves with intersections. Journal of Computational Design
and Engineering 3, 1 (2016), 14 – 23. https://doi.org/10.1016/j.jcde.2015.05.001

Alexander I. Bobenko and Peter Schröder. 2005. Discrete Willmore Flow. In Proceedings
of the Third Eurographics Symposium on Geometry Processing (Vienna, Austria) (SGP
’05). Eurographics Association, Goslar, DEU, 101–es.

Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. 2020.

DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation.

arXiv:2007.11301 [cs.CV]

V. Caselles, R. Kimmel, and G. Sapiro. 1995. Geodesic active contours. In Proceedings of
IEEE International Conference on Computer Vision. 694–699.

Dengfeng Chai, Wolfgang Förstner, and Florent Lafarge. 2013. Recovering Line-

Networks in Images by Junction-Point Processes. In 2013 IEEE Conference on Com-
puter Vision and Pattern Recognition. 1894–1901.

Jiazhou Chen, Mengqi Du, Xujia Qin, and Yongwei Miao. 2018. An improved topology

extraction approach for vectorization of sketchy line drawings. Visual Computer 34,
12 (2018), 1633–1644. https://doi.org/10.1007/s00371-018-1549-z

Jiazhou Chen, Gaël Guennebaud, Pascal Barla, and Xavier Granier. 2013. Non-Oriented

MLS Gradient Fields. Computer Graphics Forum 32, 8 (2013), 98–109.

JiaZhou Chen, Qi Lei, YongWei Miao, and QunSheng Peng. 2015. Vectorization of line

drawing image based on junction analysis. Science China Information Sciences 58, 7
(2015), 1–14. https://doi.org/10.1007/s11432-014-5246-x

U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, and R. Rusu. 2004. A Finite Element

Method for Surface Restoration with Smooth Boundary Conditions. Comput. Aided
Geom. Des. 21, 5 (May 2004), 427–445. https://doi.org/10.1016/j.cagd.2004.02.004

Ulrich Clarenz, Gerhard Dziuk, andMartin Rumpf. 2003. On generalizedmean curvature

flow in surface processing. In Geometric Analysis and Nonlinear Partial Differential
Equations. Springer.

Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Robust Fairing via Conformal

Curvature Flow. 32, 4, Article 61 (July 2013), 10 pages. https://doi.org/10.1145/

2461912.2461986

Ayan Das, Yongxin Yang, Timothy Hospedales, Tao Xiang, and Yi-Zhe Song. 2021.

Cloud2Curve: Generation and Vectorization of Parametric Sketches. i (2021).

arXiv:2103.15536

Fernando de Goes, Siome Goldenstein, and Luiz Velho. 2008. A simple and flexible

framework to adapt dynamic meshes. Computers & Graphics 32, 2 (2008), 141 – 148.

http://www.sciencedirect.com/science/article/pii/S0097849308000174

Klaus Deckelnick, Gerhard Dziuk, and Charles M. Elliott. 2005. Computation of geo-

metric partial differential equations and mean curvature flow. Acta Numerica 14

(2005), 139–232. https://doi.org/10.1017/S0962492904000224

Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit

Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings
of the 26th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., USA, 317–324. https:

//doi.org/10.1145/311535.311576

Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015.

Integrable PolyVector Fields. ACMTrans. Graph. 34, 4, Article 38 (July 2015), 12 pages.
https://doi.org/10.1145/2766906

Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hoshyari, Leonid

Sigal, and Alla Sheffer. 2020. PolyFit: Perception-aligned Vectorization of Raster

Clip-art via Intermediate Polygonal Fitting. ACM Transaction on Graphics 39, 4
(2020). https://doi.org/10.1145/3386569.3392401

Luca Donati, Simone Cesano, and Andrea Prati. 2017. An Accurate System for Fash-

ion Hand-Drawn Sketches Vectorization. In The IEEE International Conference on
Computer Vision (ICCV). 2280–2286. https://doi.org/10.1109/ICCVW.2017.268

Luca Donati, Simone Cesano, and Andrea Prati. 2019. A complete hand-drawn sketch

vectorization framework. Multimedia Tools and Applications 78, 14 (2019), 19083–
19113. https://doi.org/10.1007/s11042-019-7311-3

Gerhard Dziuk. 1999. Discrete Anisotropic Curve Shortening Flow. SIAM J. Numer.
Anal. 36, 6 (1999), 1808–1830.

Gerhard Dziuk and Charles M. Elliott. 2013. Finite element methods for surface PDEs.

Acta Numerica 22 (2013), 289–396. https://doi.org/10.1017/S0962492913000056

Vage Egiazarian, Oleg Voynov, Alexey Artemov, Denis Volkhonskiy, Aleksandr Safin,

Maria Taktasheva, Denis Zorin, and Evgeny Burnaev. 2020. Deep Vectorization of

Technical Drawings. Lecture Notes in Computer Science (2020), 582–598.
Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2016. Fidelity vs.

Simplicity: a Global Approach to Line Drawing Vectorization. ACM Transactions on
Graphics (SIGGRAPH Conference Proceedings) 35, 4, Article 120 (July 2016), 10 pages.

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

Keypoint-Driven Line Drawing Vectorization via PolyVector Flow • 266:15

https://doi.org/10.1145/2897824.2925946

Jun Gao, Chengcheng Tang, Vignesh Ganapathi-Subramanian, Jiahui Huang, Hao Su,

and Leonidas J. Guibas. 2019. DeepSpline: Data-Driven Reconstruction of Parametric

Curves and Surfaces. CoRR abs/1901.03781 (2019). arXiv:1901.03781

Songwei Ge, Vedanuj Goswami, C. Lawrence Zitnick, and Devi Parikh. 2021. Creative

Sketch Generation. arXiv:2011.10039 [cs.CV]

Fernando de Goes, David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2011. An

Optimal Transport Approach to Robust Reconstruction and Simplification of 2D

Shapes. Computer Graphics Forum 30, 5 (July 2011), 1593–1602. https://doi.org/10.

1111/j.1467-8659.2011.02033.x

Anthony Gruber and Eugenio Aulisa. 2020. Computational P-Willmore Flow with

Conformal Penalty. ACM Trans. Graph. 39, 5, Article 161 (Aug. 2020), 16 pages.

https://doi.org/10.1145/3369387

Yulia Gryaditskaya, Felix Hahnlein, Chenxi Liu, Alla Sheffer, and Adrien Bousseau.

2020. Lifting Freehand Concept Sketches into 3D. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia) 39 (12 2020).

Yi Guo, Zhuming Zhang, Chu Han, Wenbo Hu, Chengze Li, and Tien-Tsin Wong. 2019.

Deep Line Drawing Vectorization via Line Subdivision and Topology Reconstruction.

In Computer Graphics Forum, Vol. 38. Wiley Online Library, 81–90.

LLC Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual. http://www.

gurobi.com

Igor Guskov, Wim Sweldens, and Peter Schröder. 1999. Multiresolution Signal Process-

ing for Meshes. In Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing

Co., USA, 325–334. https://doi.org/10.1145/311535.311577

David Ha and Douglas Eck. 2017. A Neural Representation of Sketch Drawings. ArXiv
e-prints (April 2017). arXiv:1704.03477 [cs.NE]

Xavier Hilaire and Karl Tombre. 2006. Robust and accurate vectorization of line

drawings. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 6 (June
2006), 890–904. https://doi.org/10.1109/TPAMI.2006.127

Shayan Hoshyari, Edoardo Alberto Dominici, Alla Sheffer, Nathan Carr, Duygu Cey-

lan, Zhaowen Wang, and I-Chao Shen. 2018. Perception-Driven Semi-Structured

Boundary Vectorization. ACM Transaction on Graphics 37, 4 (2018). https:

//doi.org/10.1145/3197517.3201312

Sadashige Ishida, Masafumi Yamamoto, Ryoichi Ando, and Toshiya Hachisuka. 2017. A

Hyperbolic Geometric Flow for Evolving Films and Foams. ACM Trans. Graph. 36,
6, Article 199 (Nov. 2017), 11 pages. https://doi.org/10.1145/3130800.3130835

Xie Jun, Winnemöller Holger, Li Wilmot, and Schiller Stephen. 2017. Interactive

Vectorization. In ACM SIGCHI. 6695–6705.
Henry Kang, Seungyong Lee, and Charles K. Chui. 2007. Coherent Line Drawing. In

Proceedings of the 5th International Symposium on Non-photorealistic Animation and
Rendering (San Diego, California) (NPAR ’07). ACM, New York, NY, USA, 43–50.

https://doi.org/10.1145/1274871.1274878

S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi. 1995. Gradient

flows and geometric active contour models. In Proceedings of IEEE International
Conference on Computer Vision. 810–815. https://doi.org/10.1109/ICCV.1995.466855

Byungsoo Kim, Oliver Wang, A. Cengiz Öztireli, and Markus Gross. 2018. Semantic

Segmentation for Line Drawing Vectorization Using Neural Networks. Computer
Graphics Forum (Proc. Eurographics) 37, 2 (2018), 329–338.

Leif Kobbelt. 2000. Discrete fairing and variational subdivision for freeform surface

design. The Visual Computer 16 (2000).
Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. 1998. Inter-

active Multi-Resolution Modeling on Arbitrary Meshes. In Proceedings of the
25th Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH ’98). Association for Computing Machinery, New York, NY, USA, 105–114.

https://doi.org/10.1145/280814.280831

L. Kou, G. Markowsky, and L. Berman. 1981. A Fast Algorithm for Steiner Trees. Acta
Inf. 15, 2 (June 1981), 141–145. https://doi.org/10.1007/BF00288961

Gregory Lecot and Bruno Lévy. 2006. Ardeco: Automatic Region Detection and Con-

version. In Proceedings of the 17th Eurographics Conference on Rendering Techniques
(Nicosia, Cyprus) (EGSR ’06). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 349–360. https://doi.org/10.2312/EGWR/EGSR06/349-360

Juelin Leng, Yongjie Zhang, and Guoliang Xu. 2013. A Novel Geometric Flow Approach

for Quality Improvement of Multi-Component Tetrahedral Meshes. Comput. Aided
Des. 45, 10 (Oct. 2013), 1182–1197. https://doi.org/10.1016/j.cad.2013.05.004

Tzu-Mao Li, Michal Lukáč, Gharbi Michaël, and Jonathan Ragan-Kelley. 2020. Differen-

tiable Vector Graphics Rasterization for Editing and Learning. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 39, 6 (2020), 193:1–193:15.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and

Serge Belongie. 2017. Feature Pyramid Networks for Object Detection.

arXiv:1612.03144 [cs.CV]

H Lipson and M Shpitalni. 1996. Optimization-based reconstruction of a 3D object

from a single freehand line drawing. Computer-Aided Design 28, 8 (1996), 651–663.

https://doi.org/10.1016/0010-4485(95)00081-X

Chenxi Liu, Enrique Rosales, and Alla Sheffer. 2018. StrokeAggregator: consolidating

raw sketches into artist-intended curve drawings. ACM Transactions on Graphics

(TOG) 37, 4 (2018), 97. https://doi.org/10.1145/3197517.3201314

Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Furukawa. 2017. Raster-to-Vector:

Revisiting Floorplan Transformation. In 2017 IEEE International Conference on Com-
puter Vision (ICCV). 2214–2222. https://doi.org/10.1109/ICCV.2017.241

Raphael Gontijo Lopes, David Ha, Douglas Eck, and Jonathon Shlens. 2019. A Learned

Representation for Scalable Vector Graphics. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

M. K. Misztal, K. Erleben, A. Bargteil, J. Fursund, B. Bunch Christensen, J. A. Bærentzen,

and R. Bridson. 2012. Multiphase Flow of Immiscible Fluids on Unstructured Moving

Meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (Lausanne, Switzerland) (SCA ’12). Eurographics Association, Goslar,
DEU, 97–106.

Haoran Mo, Edgar Simo-Serra, Chengying Gao, Changqing Zou, and Ruomei Wang.

2021. General Virtual Sketching Framework for Vector Line Art. ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH 2021) 40, 4 (2021), 51:1–51:14.

Patryk Najgebauer and Rafał Scherer. 2019. Inertia-based Fast Vectorization of Line

Drawings. Computer Graphics Forum (Proc. Pacific Graphics) 38, 7 (2019), 203–213.
Alejandro Newell, Kaiyu Yang, and Jia Deng. 2016. Stacked Hourglass Networks for

Human Pose Estimation, Vol. 9912. 483–499. https://doi.org/10.1007/978-3-319-

46484-8_29

Gioacchino Noris, Alexander Hornung, Robert W. Sumner, Maryann Simmons, and

Markus Gross. 2013. Topology-driven Vectorization of Clean Line Drawings. ACM
Trans. Graph. 32, 1, Article 4 (Feb. 2013), 11 pages. https://doi.org/10.1145/2421636.

2421640

Alexandrina Orzan, Adrien Bousseau, Pascal Barla, Holger Winnemöller, Joëlle Thollot,

and David Salesin. 2013. Diffusion Curves: A Vector Representation for Smooth-

shaded Images. Commun. ACM 56, 7 (July 2013), 101–108. https://doi.org/10.1145/

2483852.2483873

Amal Dev Parakkat, Uday Bondi Pundarikaksha, and Ramanathan Muthuganapathy.

2018. A Delaunay triangulation based approach for cleaning rough sketches. Com-
puters & Graphics 74 (2018), 171 – 181.

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J. Mitra. 2021. Im2Vec:

Synthesizing Vector Graphics without Vector Supervision. arXiv:2102.02798 [cs.CV]

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You Only Look

Once: Unified, Real-Time Object Detection. arXiv:1506.02640 [cs.CV]

Robert Schneider and Leif Kobbelt. 2001. Geometric fairing of irregular meshes for

free-form surface design. Computer Aided Geometric Design 18, 4 (2001), 359 – 379.

https://doi.org/10.1016/S0167-8396(01)00036-X

Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. 2018. Mastering Sketching:

Adversarial Augmentation for Structured Prediction. ACM Transactions on Graphics
(TOG) 37, 1 (2018).

Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, and Hiroshi Ishikawa. 2016. Learn-

ing to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup. ACM
Transactions on Graphics (SIGGRAPH) 35, 4 (2016).

Tibor Stanko, Mikhail Bessmeltsev, David Bommes, and Adrien Bousseau. 2020. Integer-

Grid Sketch Simplification and Vectorization. Computer Graphics Forum (Proceedings
of the Eurographics Symposium on Geometry Processing) 39, 5 (jul 2020), 149–161.
http://www-sop.inria.fr/reves/Basilic/2020/SBBB20

Gabriel Taubin. 1995. A Signal Processing Approach to Fair Surface Design. In Pro-
ceedings of the 22nd Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH ’95). Association for Computing Machinery, New York, NY, USA,

351–358. https://doi.org/10.1145/218380.218473

Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk. 2010. A Multiscale Approach

to Mesh-Based Surface Tension Flows. In ACM SIGGRAPH 2010 Papers (Los Angeles,
California) (SIGGRAPH ’10). Association for Computing Machinery, New York, NY,

USA, Article 48, 10 pages. https://doi.org/10.1145/1833349.1778785

Engin Türetken, Fethallah Benmansour, Bjoern Andres, Hanspeter Pfister, and Pascal

Fua. 2013. Reconstructing Loopy Curvilinear Structures Using Integer Programming.

In 2013 IEEE Conference on Computer Vision and Pattern Recognition. 1822–1829.
https://doi.org/10.1109/CVPR.2013.238

Saining Xie and Zhuowen Tu. 2017. Holistically-Nested Edge Detection. Int. J. Comput.
Vision 125, 1–3 (Dec. 2017), 3–18.

Xuemiao Xu, Minshan Xie, Peiqi Miao, Wei Qu, Wenpeng Xiao, Huaidong Zhang,

Xueting Liu, and Tien-Tsin Wong. 2019. Perceptual-aware Sketch Simplification

Based on Integrated VGG Layers. IEEE Transactions on Visualization and Computer
Graphics (2019).

Chuan Yan, David Vanderhaeghe, and Yotam Gingold. 2020. A Benchmark for Rough

Sketch Cleanup. ACM Transactions on Graphics 39, 6 (Nov. 2020). https://doi.org/10.

1145/3414685.3417784 To be presented at SIGGRAPH Asia 2020.

Song-Hai Zhang, Tao Chen, Yi-Fei Zhang, Shi-Min Hu, and Ralph R. Martin. 2009.

Vectorizing Cartoon Animations. IEEE Transactions on Visualization and Computer
Graphics 15, 4 (July 2009), 618–629. https://doi.org/10.1109/TVCG.2009.9

Yizhong Zhang, Huamin Wang, Shuai Wang, Yiying Tong, and Kun Zhou. 2012. A

Deformable Surface Model for Real-Time Water Drop Animation. IEEE Transactions
on Visualization and Computer Graphics 18, 8 (Aug. 2012), 1281–1289. https://doi.

org/10.1109/TVCG.2011.141

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

266:16 • Puhachov et al.

Xingyi Zhou, DequanWang, and Philipp Krähenbühl. 2019b. Objects as Points. In arXiv
preprint arXiv:1904.07850.

Yichao Zhou, Haozhi Qi, and YiMa. 2019a. End-to-endwireframe parsing. Proceedings of
the IEEE International Conference on Computer Vision 2019-October (2019), 962–971.

https://doi.org/10.1109/ICCV.2019.00105 arXiv:1905.03246

A APPENDIX

A.1 Derivation of the PolyVector Flow
To be self-contained, we summarize the arguments for Proposition

5.1 and Lemma 5.2 in this section. There is a similar (but not iden-

tical) line of reasoning in [Deckelnick et al. 2005], so we refer the

reader to this work for further details, if desired. We will highlight

the differences that arise with our setting of a position-varying

𝛾 and open curves with fixed endpoints, and also provide further

commentary on the arguments as a service to the community.

As done there, we use an evolving level set description of a closed

curve where a time-varying signed distance function 𝑑 (𝑥, 𝑡) : R2 ×
(−𝜖, 𝜖) is used. This tracks an evolving curve with the curve image

described by the zero level set: 𝑥 ([0, 𝐿], 𝑡) = {𝑥 ∈ R2 |𝑑 (𝑥, 𝑡) = 0}.
For our case of open curves, we use these constructions in a tubular

neighborhood of the initial curve 𝑥 (𝜃, 0).
We will make use of integration-by-parts, whichmust be modified

to include boundary terms in our open curve case. We use the

following notation for the gradient operator and partial derivative

operators restricted to Γ: ∇Γ 𝑓 = (D
1
𝑓 ,D

2
𝑓).

Theorem A.1 (Integration-by-parts). Given a curve Γ as above,
and a function 𝑓 that is continuously differentiable in a neighborhood
of Γ: ∫

Γ
D𝑖 𝑓 𝑑𝑙 =

∫
Γ
𝑓 𝜅𝜈𝑖 𝑑𝑙 +

∫
𝜕Γ

𝑓 𝑥 ′𝑖 𝑖 = 1, 2 (11)

Note that the integral over 𝜕Γ is just a signed sum: 𝑓 (𝑥 (𝐿))𝑥 ′
𝑖
(𝐿)−

𝑓 (𝑥 (0))𝑥 ′
𝑖
(0). Thismay be proven easilywith an arclength parametriza-

tion assumption (so that 𝑥 ′′(𝜃) = −𝜅 (𝜃)𝜈 (𝜃)) and an application of

standard integration-by-parts.

We will also use a transport theorem:

Theorem A.2 (Transport Theorem). Given a family of evolving
curves 𝑥 (𝜃, 𝑡), 𝜃 ∈ [0, 𝐿], 𝑡 ∈ [−𝜖, 𝜖] such that 𝑥 (0, 𝑡) = 𝐴, 𝑥 (𝐿, 𝑡) = 𝐵

for all 𝑡 , and a differentiable function 𝑔:

𝑑

𝑑𝑡

∫
Γ (𝑡)

𝑔𝑑𝑙 =

∫
Γ (𝑡)

𝜕𝑔

𝜕𝑡
+ 𝑔𝑉𝜅 + 𝜕𝑔

𝜕𝜈
𝑉 𝑑𝑙, (12)

where 𝑉 is the normal velocity and 𝜅 is the curvature.

The form of this theorem does not differ from that used in [Deck-

elnick et al. 2005], because of the fixed endpoints.

Lastly, we note two properties that are easy to verify and used

repeatedly:

∇Γ 𝑓 · 𝜈 = 0, for any function 𝑓 (13)

𝐷𝛾 (𝜈) · 𝜈 = 𝛾 (𝜈), for𝛾 1-homogeneous and positive (14)

A.1.1 Proof of Prop. 5.1. Recall that we consider a normal variation

of the curve where a function 𝜙 : Γ → R is used to describe the

variation of the curve in the normal direction: 𝑥 (𝜃, 𝑡) = 𝑥 (𝜃, 0) +
𝑡𝜙 (𝑥 (𝜃, 0))𝜈 (𝑥 (𝜃, 0)). For fixed endpoints, we further assume that

𝜙 = 0 at the curve endpoints.

We consider our integrand as a composition with the gradient of

the signed distance function:𝛾 (𝑥, 𝜈) = 𝛾 (𝑥,∇𝑑 (𝑥, 𝑡)). An application
of the Transport Theorem gives us three terms to consider:

𝑑

𝑑𝑡

(∫
Γ (𝑡)

𝛾 (𝑥, 𝜈) 𝑑𝑙
)����
𝑡=0

=

∫
Γ

𝜕𝛾

𝜕𝑡
+ 𝛾𝜙𝜅 + 𝜕𝛾

𝜕𝜈
𝜙 𝑑𝑙 .

For the first term in the integrand:

𝜕𝛾

𝜕𝑡
(·, 0) = 𝐷𝛾 (𝜈) · ∇ 𝜕𝑑

𝜕𝑡
(·, 0) = −𝐷𝛾 (𝜈) · ∇Γ𝜙.

The first equality follows from the chain rule and commuting deriva-

tives. The second follows from noting that
𝜕𝑑
𝜕𝑡 (·, 0) = −𝜙 and

∇ 𝜕𝑑
𝜕𝑡 (·, 0) · 𝜈 = 0 on Γ.
If we use integration-by-parts we may combine and simplify the

integral of the first two terms.∫
Γ
𝛾𝜙𝜅 − (𝐷𝛾 (𝜈) · ∇Γ𝜙) 𝑑𝑙

=

∫
Γ
𝜙𝜅

∑︁
𝑖

(𝐷𝛾 (𝜈)𝑖𝜈𝑖) −
∑︁
𝑖

𝐷𝛾 (𝜈)𝑖D𝑖𝜙 𝑑𝑙

=

∫
Γ

∑︁
𝑖

D𝑖 (𝐷𝛾 (𝜈)𝑖𝜙) −
∑︁
𝑖

𝐷𝛾 (𝜈)𝑖D𝑖𝜙 𝑑𝑙

=

∫
Γ

∑︁
𝑖

D𝑖 (𝐷𝛾 (𝜈)𝑖) 𝜙 =

∫
Γ
∇Γ · 𝐷𝛾 (𝜈)𝜙 𝑑𝑙

The first equality follows from Equation (13). The second follows

from integration-by-parts, noting that boundary terms disappear

as 𝜙 vanishes at endpoints. The third follows from the product rule

for D𝑖 .

A.1.2 Proof of Lemma 5.2. First, we make an argument for Eq.

8.18 of [Deckelnick et al. 2005]. Noting the symmetry condition

D𝑘𝜈𝑙 = D𝑙𝜈𝑘 and the projected derivative equality D𝑘𝑥𝑙 = 𝛿𝑘𝑙 −𝜈𝑘𝜈𝑙 ,
we get the following chain of equalities:

∇Γ · 𝐷𝛾 (𝜈)𝜈𝑙 = 𝜈𝑙

∑︁
𝑘

D𝑘𝐷𝛾 (𝜈)𝑘

=
∑︁
𝑘

D𝑘 (𝐷𝛾 (𝜈)𝑘𝜈𝑙) − 𝐷𝛾 (𝜈)𝑘D𝑙𝜈𝑘

=
∑︁
𝑘

D𝑘 (𝐷𝛾 (𝜈)𝑘𝜈𝑙) − D𝑙 (𝛾 (𝜈))

=
∑︁
𝑘

D𝑘 (𝐷𝛾 (𝜈)𝑘𝜈𝑙) − D𝑘 (𝛾 (𝜈) (𝛿𝑘𝑙 − 𝜈𝑘𝜈𝑙)) − 𝛾 (𝜈)𝜈𝑙D𝑘𝜈𝑘

=
∑︁
𝑘

D𝑘 (𝐷𝛾 (𝜈)𝑘𝜈𝑙) − D𝑘 (𝛾 (𝜈)D𝑘𝑥𝑙) − 𝛾 (𝜈)𝜅𝜈𝑙

The first equality follows from the product rule for D𝑘 and the

symmetry condition. The second follows from the chain rule for D𝑙 .

For the third equality, one expands the second term arising from

the projected derivative equality, using the product rule for D𝑘 , and

find that it cancels with the third term 𝛾 (𝜈)𝜈𝑙D𝑘𝜈𝑘 . Equation (14) is

used throughout.

When we take the dot product of the above against a test function

𝜙 = (𝜙1, 𝜙2) which vanishes at the curve endpoints, we get the

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

Keypoint-Driven Line Drawing Vectorization via PolyVector Flow • 266:17

following equality:∫
Γ (𝑡)

∇Γ · 𝐷𝛾 (𝜈) (𝜈 ·𝜓) 𝑑𝑙

=
∑︁
𝑘,𝑙

∫
Γ (𝑡)

−𝐷𝛾 (𝜈)𝑘𝜈𝑙D𝑘𝜙𝑙 + 𝐷𝛾 (𝜈)𝑘𝜈𝑙𝜅𝜈𝑘𝜙𝑙

+ 𝛾 (𝜈)D𝑘𝑥𝑙D𝑘𝜙𝑙 − 𝛾 (𝜈)𝜅𝜈𝑙𝜙𝑙 𝑑𝑙

=
∑︁
𝑘,𝑙

∫
Γ (𝑡)

−𝐷𝛾 (𝜈)𝑘𝜈𝑙D𝑘𝜙𝑙 + 𝛾 (𝜈)D𝑘𝑥𝑙D𝑘𝜙𝑙 𝑑𝑙

The first equality follows by the product rule for D𝑘 and integration-

by-parts. Again, vanishing of the test function at endpoints, ensures

that boundary terms disappear. The second equality comes about

as the second and third terms cancel by Equation (14).

Finally, let us express these quantities in terms of a parametrized

curves 𝑥 (𝜃, 𝑡) and variations 𝜙 (𝜃), as is done in the derivation of

Eq. 8.23 in [Deckelnick et al. 2005].∫
Γ (𝑡)

∇Γ · 𝐷𝛾 (𝜈) (𝜈 ·𝜓) 𝑑𝑙

=
∑︁
𝑘,𝑙

∫
Γ (𝑡)

−𝐷𝛾 (𝜈)𝑘𝜈𝑙D𝑘𝜙𝑙 + 𝛾 (𝜈)D𝑘𝑥𝑙D𝑘𝜙𝑙 𝑑𝑙

= −
∑︁
𝑘,𝑙

∫
Γ (𝑡)

(𝐷𝛾 (𝜈)𝑘𝜈𝑙 − 𝛾 (𝜈)𝛿𝑘𝑙)D𝑘𝜙𝑙 𝑑𝑙

=

∫
2𝜋

0

(𝐷𝛾 (𝑥 ′(𝜃, 𝑡)⊥) · 𝜙 ′(𝜃)⊥ 𝑑𝜃

The second equality follows by the projected derivative equality and

Equation (13). The third follows from noting that ∇Γ𝜙𝑙 =
𝜙′
𝑙
(𝜃)

|𝑥 ′ (𝜃,𝑡) |𝜏
where 𝜏 is the unit normal and 𝜏 = (𝜏1, 𝜏2) = (−𝜈2, 𝜈1), and expand-

ing the summands in the integrand with Equation (14).

B DETAILS ON KEYPOINT EXTRACTION
Architecture. We use the architecture in Fig. 21. Input image at

training is 1×288×288. As described in Sec. 3, the network produces
6 heatmaps: 4 final and 2 intermediate. We use LeakyReLU as the

activation function.

Validation. We use 𝐹1 score to evaluate the detector performance,

and compute classification accuracy on correctly detected keypoints.

We consider a ground truth point correctly predicted (true positive),

if there is predicted point within 5 pixel distance. Number of false

positives is the difference between all predicted points (of the same

class, if classification) and the number of true positives. Validation

set consists of 40 real line drawings labeled manually.

Dataset. We use 75,000 vector format doodles from [Ha and Eck

2017] and 17,700 from [Ge et al. 2021]. We compute curve intersec-

tion points (junctions), endpoints, and sharp corners (measured by

the angle of 135
◦
). We rasterize each sketch in Adobe Illustrator

using 10 different artistic brushes of different widths, randomly

assigned on a per-stroke basis, at 288x288 resolution. We extend

this dataset by adding manually labeled 250 pencil line drawings,

which helps generalization. Resulting dataset of 927,000 png images

with labels form Dataset-A. We form another dataset Dataset-B for

64

28
8

ResNeXt
96

28
8

ResNet

96
14

4

ResNet

96
72

ResNet

192 192 192 36

ResNet
up

skip

+
9672

ResNet

72

inter

up

skip

+

96
14

4

ResNet

14
4

inter

up

skip

+

96
28

8

ResNet

28
8

inter

1

28
8

ResNeXt

1

28
8

ResNeXt

1

28
8

ResNeXt

28
8

28
8

28
8

Fig. 21. Model architecture. ResNext block has 64 internal channels (1x1
conv, 3x3 padding 1 conv, 1x1 conv) + skip connection + batch normalization.
Downsampling is performed via ResNet followed by 2x2 conv with stride 2.
Upsampling is performed via Pixel Shuffle transforming (𝐶,𝐻,𝑊) tensor
into (𝐶/4, 2 ×𝐻, 2 ×𝑊) , which is followed by conv layer with 3 × 3 kernel
and padding 1, outputting a tensor (𝐶, 2×𝐻, 2×𝑊) . At the lowest resolution
(1/8x), we use 3 ResNet blocks with fixed spatial resolution, but twice as
many channels. After upsampling we first add skip connection tensor of the
same size, and then pass it to the ResNet block obtain a feature tensor with
96 channels. This procedure is repeated 3 times to obtain a feature tensor
of the original spatial size and 96 channels 96x288x288.

Fig. 22. A sample from the training dataset for the keypoint detector.

fine-tuning using 1000 vector drawings from [Ge et al. 2021], which

we manually preprocess to remove shading or fills.

Training procedure and Inference. We start from training onDataset-

A with 80x80 crops from images at different resolutions (96x96, then

128x128 and then 288x288). Each image is normalized to [0, 1], series
of standard image augmentations are applied at random (gaussian

blurring, contrast and brightness, gaussian noise, salt&pepper noise,

random rotation, random crop to size 80x80). Point positions are

transformed to heatmaps and adjusted according to augmentations

performed on corresponding image. We use loss in Eq. 1, only within

the narrow band. We train for 18 epochs, with batch size 60.

Fine-tuning is done on Dataset-B on 80x80 crops from 288x288

images. We use the same data augmentation but different weights

for classification heatmaps: 0.6, 0.6, 1.2 for 𝐻2, 𝐻3, 𝐻4 respectively.

We fine-tune the model for 20 epochs, and batch size 40. For both

stages, we use learning rate 5 · 10−4. At inference we perform con-

trast normalization on the original image and pad it to enable 8x

downsampling.

ACM Trans. Graph., Vol. 40, No. 6, Article 266. Publication date: December 2021.

