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ABSTRACT

Effects of large-eddy breakup devices (LEBU) in a turbulent boundary
layer are investigated using analytical and numerical techniques. The
modifications to the vertical velocity of a turbulent flow by the
large-eddy breakup devices (LEBU) were analyzed using linear
three-dimensional unsteady aerodynamics. A Fourier component of the
input turbulence convected over these devices was considered and the

modified vertical velocity in the far downstream wake was solved. It is
shown that the amplitude of the vertical velocity behind the device is

reduced, the effect increasing with increasing stream and spanwise
wavenumber. Two plates placed far apart in series produce a reduction
that is the square of that for a single plate. The presence of the

ground plane decreases the effectiveness of the LEBU in reducing the
amplitude of the vertical velocity in the far wake.

To study the effect of the wake, interaction of a vortex pair and a
wake which has a velocity defect in the Gaussian form is investigated.
It is shown that the wake reduces the motion of the eddy towards the wall
and spreads the eddy in the streamwise direction. This is observed in
two and three-dimensional cases. Due to the mean shear the vorticity in
the wake accumulates only in the upper part of the wake and forms
concentrated shear layer regions.
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Figures

Fig. 1. Plate configuration for LEBU devices.

Fig. 2a. Normalized turbulence energy production per unit volume in a

typical boundary layer (Klebanoff 1954).

Cumulative turbulence energy production rate in a

typical turbulent boundary layer (Klebanoff 1954).

Distribution of turbulence intensities in a typical
boundary layer (Klebanoff 1954).

Fig. 4. Spectra of a turbulent normal velocity (Klebanoft

turbulent

Fig. 5a. Plot of log S against log R.

Fig. 5b. Plot of log 1/A against log R.

Fig. 6. Interaction of an oblique gust and a plate.

Fig. 7. Interaction of a gust and two plates.

Vortex sheet representation when the distance between the plates
becomes large.

Fig. 9. Amplitude of the function S(k_) versus wavenumber

Fig. 10. Phase plane of the function S(k_).

Fig. 8.

»

Fig. 11. Amplitude of the function S(k_) when the distance between the
plates becomes large.

Fig. 12. Amplitude of the function S(k_,k,) for small k using
integral method.

Fig. 13. Phase plane of the function S(k_,k_) for small Kk, using
integral method.

Fig. l4. Amplitude of the function S(k_,k ) for small k, using
acceleration potential method” y

Fig. 15. Amplitude of the function Sk,,k) for high k.

Fig. 16. Phase plane of the function S(k_,k) for high k,

Fig. 17. Interaction of a gust with a plate and a plane.

Fig. 18. Vortex sheet representation.

Fig. 19. Amplitude of the function S(k .H).



Fig. 20. Amplitude of the circulation given by eq. (135).

Fig. 21. Approximate vortex sheet representation for
the three-dimensional case.

Fig. 22. Amplitude of the function S(k_,k ) using integral method
and quarter chord theory methdd.’

Fig. 23. Amplitude of the function Sk k ,H) for k =0.1.

Fig. 24. Amplitude of the function S(k,,k_,H) for k =0.2.

Fig. 25. Vortex street and vortex pair arrangement at time T=0.0.

Fig. 26. Disturbed vortex system at a later time T.

Fig. 27. Position of the vortex pair against time, r,=0.5, c=2.5.

Fig. 28. Position of the vortex pair against time, r,=1.0, c=2.5.

Fig. 29. Position of the vortex pair against time, r,=2.0, c=2.5.

Fig. 30. Positions of the vortex street and the vortex pair

at time, T=3.0, r,=0.5, c=2.5.

Fig. 31. Positions of the vortex street and the vortex pair

at time, T=4.0, r,=0.5, c=2.5.

Fig. 32. Positions of the vortex street and the vortex pair

at time, T=5.0, r,=0.5, c=2.5.

Fig. 33. Positions of the vortex street and the vortex pair

at time, T=6.0, r,=0.5, c=2.5.

Fig. 34. Positions of the vortex street and the vortex pair

at time, T=6.0, r,=1.0, c=2.5.

Fig. 35. Wake and the equivalent vortex street arrangement used
to determine the core radii.

Fig. 36. Position of the vortex pair with core radii against

time, r,=1.0, c=2.5.

Fig. 37. Positions of the vortex street and the vortex pair with core

radii at time, T=6.0, r,=1.0, c=2.5.

Fig. 38. Cloud located in a grid, with shading showing assignment
of density to grid points for CIC method.

Fig. 39. Initial velocity distribution of the wake and the mean shear.
Grid system used for calculations.



Fig. 40. Different cases considered for the numerical experiment.

Fig. 41. Y-coordinates of the vortex pair versus time,
r,=0.5, c=1.0 (case 1).

Fig. 42.

Fig. 43.

Fig. 44.

Disturbed wake and the path of the vortex pair at time,

T=3.0, r,=0.5, c=1.0 (case 1).

Disturbed wake and the path of the vortex pair at time,

r=6.0, r,=0.5, c=1.0 (case 1).

Disturbed wake and the path of the vortex pair at time,

T=9.0, r,=0.5, c=1.0 (case 1).

Fig. 45. Disturbed wake and the path of the vortex pair at time,

T=12.0, r,=0.5, c=1.0 (case 1).

Fig. 46. Disturbed wake and the path of the vortex pair at time,

T=15.0, r,=0.s, c=1.0 (case 1).

Fig. 47. Disturbed wake and the path of the vortex pair at time,
T=3.0, r,=1.0, c=1.0 (case 1).

Fig. 48. Disturbed wake and the path of the vortex pair at time,

T=6.0, r,=1.0, c=1.0 (case 1).

Fig. 49a.

Fig. 49b.

Y-coordinates of the vortex pair versus

r,=3.0, c=1.0 (case 1).
t me

Disturbed wake and the path of the vortex pair at time,

T=6.0, r,=3.0, c=1.0 (case 1).

Fig. 50. Disturbed wake and the path of the vortex pair at time,

T=15.0, r,=0.5, c=1.0, and with the wall at y=-2.0. (case 2).

Fig. 51. Disturbed wake and the path of the vortex pair at time,

T=6.0, r,=1.0, c=1.0 (case 3).

Fig. 52.

Fig. 53.

Fig. 54.

Fig. 55.

Fig. 56.

Disturbed wake and the path of the vortex pair at time,

T=9.0, r,=1.0, c=1.0 (case 3).

Disturbed wake and the path of the vortex pair (case 5).T=6.0,
r,=o0 .5, ¢=1.0,mean shear=0.5, strength of the wake is zero.

Disturbed wake and the path of the vortex pair (case 5). T=12.0,
r,=0 .5, ¢=1.0, mean shear =0.5, strength of the wake is zero.

Disturbed wake and the path of the vortex pair (case 5). T=18.0,
r,=0.5, c=1.0, mean shear =0.5, strength of the wake is zero.

Y-coordinates of the vortex pair versus time.

r,=0.5, c=1.0, mean shear = 0.5 (case 5).



Fig. 57. Disturbed wake and the path of the vortex pair.
T=3.0, r,=0.5, c=1.0, mean shear =0.5 (case 5).

Fig. 58. Disturbed wake and the path of the vortex pair.
T=6.0, r,=0.5, c=1.0, mean shear =0.5 (case 5).

Fig. 59. Disturbed wake and the path of the vortex pair.
T=9.0, r,=0.5, c=1.0, mean shear =0.5 (case 5).

Fig. 60. Disturbed wake and the path of the vortex pair.
T=12.0, I =0.5, c=1.0, mean shear =0.5 (case 5).2

Streamwise velocity distribution at different sections.

T'=6.0, I,=0. 5, ¢=1.0, mean shear =0.5, wall at y=-2. (case 5).

Streamwise velocity distribution at different sections.

T=9.0, r,=0.5, c=1.0, mean shear =0.5, wall at y=-2. (case 5).

Fig. 61.

Fig. 62.

Fig. 63. Streamwise velocity distribution at different sections.
[=12.0, T' =0.5, ¢c=1.0, mean shear =0. 5, wall at y=-2. (case 5).2

Y-coordinate of the vortex pair versus time,
r,=3.0, c=1.0, mean shear =0.5 (case 5).

Disturbed wake and the path of the vortex pair.
r'=6.0, r,=3.0, c=1.0, mean shear =0.5 (case 5).

Fig. 63a.

Fig. 63b.

Fig. 63c. Disturbed wake and the path of the vortex pair.
I=9.0, r,=3.0, c=1.0, mean shear =0.5, (case 5).

Fig. 64. Disturbed wake and the path of the vortex pair.

T=3.0, r,=0.5, c=1.0, mean shear =0.5 (case 6).

Fig. 65. Disturbed wake and the path of the vortex pair.
T=6.0, I =0.5, c=1.0, mean shear =0.5 (case 6).2

Fig. 66. Disturbed wake and the path of the vortex pair.
T=9.0, r,=0.5, c=1.0, mean shear =0.5 (case 6).

Fig. 67. Disturbed wake and the path of the vortex pair.
T=12.0, r,=0.s, c=1.0, mean shear =0.5 (case 6).

Fig. 68. Disturbed wake and the path of the vortex pair.
T=3.0, r,=2.0, c=1.0, mean shear=0.5 (case 6).

Fig. 69. Disturbed wake and the path of the vortex pair.

T=6.0, r,=2.0, c=1.0, mean shear =0.5 (case 6).

Fig. 69a. Y-coordinate of the vortex pair versus time.
r,=3.0, c=1.0, mean shear =0.5 (case 6).
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Fig. 69b. Disturbed wake and the path of the vortex pair.
T=6.0, I',=3.0, c=1.0, mean shear =0.5 (case 6).2

Fig. 70. Velocity profile and vortex locations for the linear theory.

Fig. 71. Singularity regions in the c-plane.

2
Fig. 72. Eigenvalue diagram for a wake profile U=exp(-18y~)

Wavenumber versus c .

Fig. 73. Wavenumber versus FE

Fig. 74. Wavenumber versus growth rate ac..

Fig. 75. Real part c_ versus imaginary part Cc.

Fig. 76. Comparison between linear theory and CIC method.

Time=1.5, r,=0.s, D=1.0.

Fig. 77. Comparison between linear theory and CIC method.
I'ime=3.0, I',=0.5, D=1.0.2

Fig. 78. Comparison between linear theory and CIC method.

Time=6.0, r,=0. 5, D=1.0.

Fig. 79. Flow model for 3-D linear analysis.

Fig. 80. Upper and lower edges of the wake.
Time=12.0, wake strength=0.0, mean shear=0.0.

Fig. 81.

Fig. 82.

Contour levels of the upper surface n, (x,2z,t).
Time=12.0, wake strength=0.0, mean shéar=0.0.

Upper and lower edges of the wake n, (x,0,t), n.(x,0,t).
I'ime=12.0, wake strength=0.0, mean shear=0.25.

Fig. 83. Contour levels of the upper surface n, (x,2z,t).
Time=12.0, wake strength=0.0, mean shéar=0.25.

Fig. 84. Upper and lower edges of the wake for the 2-D case.
Time=9.0, mean shear=0.0.

Fig. 85. Upper and lower edges of the wake for the 2-D case
Time=12.0, mean shear=0.0.

Fig. 86. Upper and lower edges of the wake n, (x, o,t), n. (x, 0,t)
for the 3-D case. Time=9.0, mean shéar=0.0.

Contour levels of the upper surface n (x,z,t)
Time=9.0, mean shear=0.0.

Fig. 87.

Fig. 88. Upper and lower edges of the wake n (x,0,t), n_(x,0,t)
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for the 3-D case. Time=12.0, mean shear=0.0.

Fig. 89. Contour levels of the upper surface n (x,2z,t).
Time=12.0, mean shear=0.0.

Fig. 90. Upper and lower edges of the wake for the 2-D case.
Time=9.0, mean shear=0.5.

Fig. 91. Upper and lower edges of the wake for 2-D case.
Time=12.0, mean shear=0.0.

Upper and lower edges of the wake n,(x,0,t), n.(x,0,t)
for the 3-D case. Time=9.0, mean shear=0.25.

Fig. 93. Contour levels of the upper surface n (x,z,t).
Time=9.0, mean shear=0.25.

Fig. 92.

Upper and lower edges of the wake n (x,0,t), n(x, o,t)
for the 3-D case. Time=12.0, mean shear=0.25.

Fig. 95. Contour levels of the upper surface n (x,z,t).
[ime=12.0, mean shear=0.25.

Fig. 94.

Fig. 96. Normal velocity distribution near the dipole v(x,y=H,0,t) .
Dipole is above the wake. Time=9.0, mean shear=0.25.

Fig. 97. Normal velocity distribution near the dipole v(x,y=H,0,t).
Dipole is above the wake. Time=12.0, mean shear=0.25.

Fig. 98. Normal velocity distribution near the dipole v(x,y=H,0,t).
Dipole is above the wake. Time=15.0, mean shear=0.25.

Fig. 99. Source strength distribution at the upper surface.
Time=6.0, mean shear=0.25.

Fig.100. Source strength distribution at the upper surface.
Time=9.0, mean shear=0.25.

Fig.10l. Source strength distributions at the upper surface.
Time=12.0, mean shear=0.25.

Fig.l102. Normal velocity distributions near the dipole v(x,y=H,0,t).
Dipole is placed below the wake. Time=9.0, mean shear=0.25.

Fig.103. Normal velocity distribution near the dipole v(x,y=H,0,t).
Dipole is placed below the wake. Time=12.0, mean shear=0.25.
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Chapter 1

Introduction:

Growing energy conciousness has generated interest in developing

techniques for reducing drag forces on aerodynamic bodies. The drag force

appears in three forms: (1) viscous drag (2) form drag, and (3) induced

drag (vortex drag). Viscous drag ranges from 25% of the total drag for

supersonic fighters to 50% for long haul transports and 54% for general

aviation jets. Bushnell (1983) reviews many of the drag reduction concepts

currently available and being considered for practical applications. In

this thesis one of the above techniques known as large-eddy breakup devices

(LEBU) is investigated. This method is presently being investigated in the

laboratories as a feasible method to reduce the skin friction in a

turbulent boundary layer. A LEBU may consist of horizontal and vertical

Plate elements, having various planforms and cross-sectional geometries and

mounted within the turbulent boundary layer to directly interact with the

large-scale motion. A schematic diagram of this device when two plates are

used in tandem is depicted in Fig. 1

The original experimental research on this type of technique to modify

the structure of turbulence was conducted by Yanik and Acharya (1977), who

inserted a 18x18 mesh screen fence within the turbulent boundary layer

across the flow of a low-speed wind tunnel and obtained local skin friction

reductions in excess of 50% over a distance of 100-150 boundary layer

thicknesses downstream of the device. In this approach the drag associated
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with the fence was much higher than the total reduction in the skin

friction; hence no net drag reduction was obtained. In 1979 Hefner,

Weinstein and Bushnell at Nasa Langeley Research Center and Nagib (1979) at

IIT tested LEBU devices with a few horizontal elements and found a 20%

reduction in downstream average skin friction with much lower device drag,

but still no net drag reduction was obtained within a 50 boundary layer

thickness downstream. Corke (1982), testing with two plates in tandem,

obtained a net drag reduction of up to 20% accompanied by a decrease in the

number of burst rate of approximately 18% within 55 boundary layer

thickness. The geometrical configuration used in the experiment is shown

in Fig. 1. Following this there were a series of experiments done using

tandem configuration (Bertelrud and Truong, 1982, Hefner et al. ,1983,

Mangus ,1983, Anders et al. ,1984, Plesniak and Nagib ,1985, Guezennec and

Nagib ,1985, Anders and Watson ,1985). These experiments were primarialy

parametric studies and produced the following results. The average skin

friction reduction behind the devices is about 20% and this reduction

persists for 100-120 boundary layer thickness. A more modest value of 0-20%

net drag reduction could be obtained using tandem configuration. The

intensity of the streamwise velocity component is reduced below the device

height and is increased above the device (Bertelrud et al. ,1982). The

normal velocity component and the bursting frequency are reduced behind the

plate. Recently, Sahlin et al. (1986) directly measured the drag force on

a plate equipped with LEBU devices in a towing tank for a range of Reynolds

numbers based on LEBU length of 25,000-100,000. Their main results show

that there is no net drag reduction for this Reynolds number range and

there was mainly a drag increase. Only for the lowest Reynolds number of

25,000 was a 2% drag reduction obtained.
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Though the results obtained at different laboratories show quantitative

differences, they all agree that the local skin friction is reduced behind

the devices and this reduction persists for long distances downstream of

the LEBU devices. One of the major concerns among the researchers is the

question of whether net drag reduction can be obtained. In this work, it

is attempted to explain, how the skin friction is reduced behind these

devices using theoretical models

A turbulent boundary layer may be divided into four regions: viscous

sublayer (y¥¢s), buffer region (5¢y*&lt;50), logarithmic region (50&lt;y", y&lt;.28)

and wake region (y&gt;.28) Fig. 2. The viscous sublayer, the buffer region,

and the logarithmic region is called the wall region and the wake region is

called the outer region or the large-scale region. Many investigators

using flow visualization techniques and hot-wire anemometer techniques

investigated these two regions in the last two decades. Kline et al.

(1967), Kim et al. (1971), Rao et al. (1971), Wallace et al. (1972),

Willmarth et al. (1972), Lu et al. (1973), Nychas et al. (1974),

Blackwelder et al. (1976), Thomas et al. (1983) and many others

investigated the wall region using flow visualization and conditional

sampling techniques. Willmarth (1975) reviewed the status and extend of

the knowledge of the structure of turbulence in boundary layers. The

picture that emerges from these investigation is as follows. The wall

layer is dominated by intermittent events called bursts and sweeps. These

events happen in stages. In the first stage low-speed fluid appears in the

sublayer as elongated streaks. The width of a streak is about 10-30y"

units and the spacing between the streaks is about 80-100z". This low



15

speed streak is surrounded on either side by two counter rotating vortices.

The rotation of these vortices is such as to lift up the low-speed fluid

away from the wall. In the next stage the low-speed streak migrates slowly

downstream and at the same time slowly lifts away from the wall. After it

travels some distance the streak fluid ejects as a jet into the outer high

speed region. This forms an inflexional profile in the buffer region

5¢y*&lt;50. This inflexional profile becomes unstable, oscillates, and finally

breaks up. Then high speed fluid moves towards the wall from upstream and

sweeps the debris from the burst. This is called the sweep event. The

whole process is called bursting. Most of the turbulence and Reynolds

stress are produced during this bursting. About 70% of the average Reynolds

stress is produced during the ejection-like event and 70% during the

sweep-like event. The remainder is made up by wallward and outward

interactions. During the breakup process high mixing between the low speed

fluid near the wall and the high speed fluid in the outer region takes

place.

Klebanoff (1954), Kovasznay et al. (1970), Antonia (1972), Head et al.

(1981), Chen et al. (1978) and many others investigated the flow properties

and the structures in the outer region of a turbulent boundary layer. Fig.

3 shows the distribution of the statistical properties of the turbulent

velocities in a turbulent boundary layer (Klebanoff 1954). The outer

region consists of a collection of horse-shoe or hair-pin vortices which

are inclined at 45° to the free stream. Collectively this structure has a

very slow rotational motion towards the wall. These horse-shoe vortices

exist to very near the wall and have the dimensions of viscous units.
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At this stage, the interaction between the inner region and the outer

region and the function of the outer region on the bursting process are not

well understood. But there are some speculative answers which are based on

some flow visualization and hot-wire measurements studies. Nychas et al.

(1973) in their investigation observed that a large scale, high speed,

fluid from the outer region moves towards the wall before the ejection

starts. Falco (1983) from his experimental ovservations suggested that the

outer flow brings down the so called "typical eddies" towards the wall

which later initiate the 1ift up process. From the conditional sampling

and visual counting techniques Kim et al. (1971), Rao et al. (1971) and Lu

et al. (1973) determined the bursting frequency and their results showed

that the bursting frequency scaled with the outer variables. But

contradictory to this, Blackwelder and Haritonidis (1983), Mangus (1983)

show that the bursting frequency scaled with the wall variables. Alfredson

et al. (1982) from their experimental results obtained in a channel flow

found that the governing timescale for the wall region to be a mixture (the

geometric mean) of inner and outer scales. From these observations it is

suggestive that the large-scale outer motion has some influence on the

bursting process.

Hence, when the LEBU devices are placed in the outer part of the

turbulent boundary layer, the devices directly interact with the

large-scale motion and modify or alter it. Due to this interaction the

devices interfere with the bursting process and hence can produce a skin

friction reduction downstream. In the following chapters, the effects of

the LEBU devices on the outer part of the boundary layer is determined

using analytical and numerical techniques and from these results possible
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mechanisms for the skin friction reduction are discussed.

At a more basic level there is still no complete structural picture of

the interaction between the plates and the incoming boundary layer eddies

or the mechanism whereby the skin friction is reduced. It has generally

been stated (Hefner et al. ,1983) that the LEBU devices suppress the

large-scales by restricting vertical fluctuations when the large—-scales are

advected over the plate. Munford and Savill (1983) postulated from their

flow visualization studies that the wake which is generated behind the

device acts like a barrier between the upper and lower regions of the

boundary layer and this causes the reduction in the skin friction. But it

is argued, on the other hand by Anders et al. (1985), that the long-lasting

wake is the result of suppressing the large-scale turbulent structures and,

thus the coherent wake is the effect rather than the cause. At this stage

it is not clear which of these, if any, mechanisms is most important for

the skin friction reduction.

We will investigate these two effects which are introduced by these

devices. One is the unsteady aerodynamic effect in which the LEBU

functions as an airfoil, responding to the upwash fluctuations of the

incoming turbulent flow. As the large-eddy in the outer flow is advected

over the LEBU, vortices are shed at the trailing edge. This vorticity

modifies the velocity field behind the device. The other effect is the

wake effect. When the flow is advected over the LEBU a wake is generated

at the trailing edge. This wake interacts with the large-scale motion and

modifies it. In the first part of this report the unsteady aerodynamic

effect is analysed using analytical methods. In the second part the
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effects of the wake are investigated using numerical techniques.

First we will discuss the unsteady aerodynamic effect. For

simplicity, it is assumed that the turbulent fluctuations are "frozen"

(i.e. Taylor's Hypothesis) and advected with a constant velocity. It is

considered that LEBU devices consisting of thin plane horizontal elements

of finite chord located a finite distance above an infinite horizontal

surface. It is assumed that the elements behave as airfoils, with rounded

leading edges and sharp trailing edges at which the Kutta condition is

satisfied. Initially the effects of the ground plane are neglected. Later

the effects of the ground plane are included in the analysis through the

method of images. When the eddy is advected over the plate it imposes an

unsteady upwash on the plate. To balance this upwash, and to satisfy the

Kutta condition at the trailing edge, circulation, the strength of which

varies with time, is formed around the plate. Since the circulation varies

with time, vortices are shed from the trailing edge and are advected

jownstream by the mean flow. They induce a velocity field and hence modify

the eddy velocity field. In chapters 2-6 it is attempted to determine how

these shed vortices from the LEBU devices modify the vertical velocity

component of the eddy as it is advected downstream. Since the turbulent

fluctuations are small in the region of the boundary layers where LEBU's

are placed, the governing equations and the boundary conditions are

linearized. The magnitude of the mean vorticity is small in the outer part

of the boundary layer, and hence, its effect will be neglected in this

preliminary analysis where potential flow theory is used. Within the

framework of linearized theory, when the vertical velocity distribution is

known, the solution can be obtained by Fourier analysis. A Fourier
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component wk, ko exp(iut-ik x+ik y) of the input turbulence is considered
and the vertical velocity in the far wake is solved for in the form

w(kyokylexp(iat-ik x+ik y)S(k,,k_). S(kyr kg) acts as the LEBU transfer
function for the amplitude and phase of the vertical velocity of the eddy.

In chapter (2), advection of a two-dimensional eddy over a single plane

element is considered. This problem is also solved using an approximate

method as a prelude to the study of the effects of the ground plane. Next

the effect of the tandem configuration is determined for the case when the

distance between the plates becomes large. In chapters (3)-(5), advection

of a three-dimensional eddy over a single plane element is considered. In

chapter (3), the problem is formulated in terms of an integral equation and

is solved for the case when the spanwise wavenumber k, becomes small. In

chapter (4) this case is treated in terms of an acceleration potential and

is solved using matched asymptotic expansion for small k,- In chapter (5)

the case when the spanwise wavenumber k, is large is considered. In

chapter (6) the effect of the ground plane is included through the method

of images and is solved for the normal velocity component in the far wake

for the two and three-dimensional cases using approximate theory.

The wavenumbers Ker ¥y are non-dimensionalised by the semi-chord of the

plate, c¢/2. The chord length of the LEBU devices used in the laboratory is

of the order of the boundary layer thickness, § (c=0.885-1.28). The one

dimensional spectral distribution for the longitudinal velocity component

has been measured in a turbulent boundary layer on a flat plate (Fig. 3,

Klebanoff, 1954). From this, an approximate distribution for the

two-dimensional spectrum for the normal velocity component is obtained
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using isotropic relations (Hinze, 1975). It is observed that the energy

1 . 2

containing eddies have the non-dimensional wavenumbers Vv k_ + x’ based

on half the boundary layer thickness, in the range 0.3 to 3.0

The results for all the cases considered show that the LEBU devices

reduce the amplitude of the vertical velocity in the far wake. The

reduction increases with increasing k and k- For a two-dimensional

disturbance it is shown that when two plates are placed far apart, this

reduction is squared. The analysis incorporating the effect of the ground

plane shows a decrease in the effectiveness of the LEBU in reducing the

amplitude of the vertical velocity in the far wake. The effectiveness of

the LEBU devices decreases as they are moved towards the plane.

Next the effect of the wake is considered. In the operating conditions

the Reynolds numbers based on the length of the LEBU devices is 30,000.

For this range of Reynolds number the characteristics of the wake behind

the plate can be summarised as follows, Sato and Kuriki (1958). The

laminar boundary layers which form on the surfaces of the plate merge and

form a laminar wake at the trailing edge. This laminar wake becomes

unstable and the disturbances grow exponentially with downstream distance.

The frequency of oscillation corresponds to the maximum growth rate. In

the next stage, nonlinear effects set in and a Karman vortex street forms.

The dimensions of the vortex street depend on the Reynolds number and are

shown in Fig. 5, Taneda (1957). Further downstream, three-dimensional

disturbances set in and the vortex street breaks-up and forms a turbulent

wake with an approximately Gaussian velocity defect. The length of the

different regions depend on the Reynolds number.
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In chapters 7-9 it is attempted to investigate how this wake interacts

with the outer part of the turbulent boundary layer and what are the

effects of this interaction on the bursting cycle. The wake is simulated

in two ways. First, the wake is simulated by a Karman vortex street and

second with a continuous vorticity distributions with a Gaussian velocity

defect. Munford and Savill (1984), in the interpretation of their flow

visualization studies, is the only paper which made an attempt to

investigate the mechanisms through flow visualization studies, quoted that

the wake behind the device consists of a coherent vortex street which

persists upto 60 boundary layer thickness downstream. Further they

discussed that the counter rotating vortices below the devices lift the

fluid near the wall across the wake and the wake prevents that fluid from

coming towards the wall.

Downstream of the plate this wake interacts with the large-eddies

moving towards the wall and with the ejected fluid coming from the wall.

To study this effect the interaction of a vortex pair with the wake is

considered. The vortex pair can simulate the ejection process or the

wallward movement of the outer fluid towards the wall. The problem is

solved numerically and the motion of the vortex pair and the evolution of

the wake is followed in time. In chapter (7) the interaction of the vortex

pair and the vortex street is considered. In chapter (8) the interaction

of the vortex pair and the continuous wake is solved using the

cloud-in-cell technique. Here, the effect of the mean shear is also

analysed. In chapter (9) the interaction of the vortex pair and the

continuous wake is analysed using linear theory for two-dimensional and



22

three~-dimensional cases.

The results from all the cases considered show that the wake spreads

the large-eddy and slows down its motion towards the wall. Due to the

interaction the wake is disturbed and concentrated vorticity regions are

formed on either side of the wake. When the mean shear is introduced,

there is not much change in the motion of the eddy but the wake deforms

differently. The vortices are formed only above the wake and the

deformation below the wake disappears and the disturbance is confined to

the region above the wake
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Chapter 2

The LEBU devices which are placed in the outer part of the boundary

layer behave as airfoils, with rounded leading edges and sharp trailing

edges at which the Kutta condition is satisfied. When the eddy is advected

over the plate it imposes an unsteady upwash on the plate. To balance this

upwash, and to satisfy the Kutta condition at the trailing edge,

circulation, the strength of which varies with time, is formed around the

plate. Since the circulation varies with time, vortices are shed from the

trailing edge and are advected downstream by the mean flow. They induce a

velocity field and hence modify the eddy field. In this chapter we will

investigate the interaction of a two-dimensional eddy and the LEBU devices.

We assume linear potential theory and consider one Fourier component of the

advecting eddy

2.1 Analysis of a two-dimensional model

A two dimensional thin rectangular plate of chord length 'c' is placed

in the x,y plane and its mid chord is positioned with the y axis, as shown

in Fig. 6. A turbulent gust with a normal velocity component of the form

wk )exp(iwt-ik x) is convected by a uniform stream of velocity U. We

assume invisid, irrotational flow. Frozen convection (ie, Taylor's

hypothesis) is assumed; therefore the wavenumber is

 Zz ANS J



24

and the non-dimensionalised wavenumber is

® Cy"9

The approach we follow is first given by Schwarz (1940) and is

discussed in Bisplinghoff et al. (1955). For the linearized theory the

governing equation for the perturbed potential ¢$ is given by

D 1
&gt;

the pressure coefficient by

~~
—

5 b -2 ¢,/U

The boundary conditions are

1) Tor

b
&gt;

(2) ¢é=&gt;0

~-c/2

= -w(k )

as

xX — c/2 ys

exp(iwt - i vd

~

x)

+0

mA

(3) zero pressure discontinuity across the wake (x 2 c/2, z = 0)

From the boundary condition (1) it is evident that ¢ is antisymmetric
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about z=0. Therefore, a discontinuity in horizontal velocity exists across

the plane z=0. We replace the wing and the wake by a vortex sheet of

strength y(x,t), Fig. 6, where

vix,t) = u(x,+0,t) = u(x,-0,t)

= 2 u(x,+0,t)

7 4 (x,+0,t)

Define the circulation as

Tr (x,t) = I v(x, ,t) dx,

X

To, (x, ,+0,t) dx,

Jence '(x,t) = 2 ¢(x,.+0.,t) (1)

Therefore, the total circulation around the plate

is equal

Cv /

(e/2,t) J
~-c/2

v(x. t)

boy

"(cr2,t) = 2 ¢(c/2.40,t)

dy

|’ ne J

Since the ¢ is antisymmetric about z=0, no pressure jump across the wake

requires

» 9.0 for x 2 c/2 , z=0.
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This gives

$ (x,+0,t) + $,(x,40,t)/U = 0

The solution of

Hh +)

this

JE

equation

d(c/2.+0 -

satisfies the relation

x &lt;/ , (3 J

i.e., the disturbance propagates downstream with the velocity U.

From equations (1),(2) and (3) we obtain

P(x,t) = T(c/2.t - x-¢c/2 )

r

v(x,t) = -T (c/2,t - x-¢/2 )/U (4 J

Since this is a linear problem and the time appears in the boundary

condition as simple harmonic oscillation, all the variables will have the

simple harmonic time dependent.

[(c/2,t) = T(c/2) exp(iwt)

v(x, t) = y(x) exp(iwt)

hen, from eq.(4) we obtain an expression for v(x)

(xX) = —ik T(c/2) exp(ik_) exp(-ik x) for x 2 c/2 (5 ’
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The boundary condition on the plate is written as

(Lwt—aR x)
— wi £y) e x

2K
xt) dx,

 xX —X|
—- C4

~~)
=

de
3K |

TX, 1) dx
ed

  — TL)

|

2

Substituting eq.(5) into this equation we obtain

RX
wig.) © = Sm

 » A

co

— m= (B, [ Bx
T(x) dx, + tk, rC%) o [ o x dx

n - }
xX — 2X, a X == 2

a
»

’

Schwartz (1940) used Sohngens inversion formula (Bisplinghoff et al. 1955)

to solve this integral equation to obtain y(x) . Integrating this

expression for y (x) the circulation around the plate I(c/2) is obtained.

Since we are interested only in the circulation T(c/2) we continue as

follows. Non-dimensionalize the x-variable through division by c/2,

multiply the whole equation by v(l.+ x)/(l.- x), and integrate it from -

to +1. One then obtains
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WwW (8x)

—

|
-1R, x

I + X ec dx =

I — X

t
9 7»

1 |

|
[=

\

r

TCX) d x, d x
A — Xj

I

_ +1 00

— — - rm——— _tkox F

ik, TH) e +x 1oe dx, | dx
2x S | — X x—

de evaluate these integrals in closed form (appendix A) and find that

W (Ra) x] To ( Bx) — LT CR) | = 1
9

TC%)
Cx

- x Bx — ey 2 _ @ _

Ds e (%) 1 e ry H, (Rx) + 4 Ho (Ra)
”% Ry

A

where Joo I are Bessel functions of first kind and $2), ni?) are Hankel

functions of second kind

After simplifying this expression we obtain the known results

. Ba

Le w (Ra) | Fo i 5 e

{ 2) SWH, + 4 Hq |

TC%) —rims mii

rn

(6:J
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Substituting this into eq.(5) we obtain for the strength of the shed

vortices as

i ~ LR. x

Tix = 4 wD T—iT | €

2) 2)
H, + 4H, |

(5_N

Having this, one may determine the velocity field in the far wake.

Consider a vortex sheet of strength y exp(-ik_x) which lies on the

Xy-plane. Outside this vortex sheet the flow is governed by the potential

equation and the solution is given by (Appendix BR )

rz} /z exp(-ik x) exp(-k ~ )/ (2k

The normal velocity component ]

Bn, - i y exp(-ik x) exp(-k_ z ) reJ

Using eq.(7) for y we obtain the induced velocity due to the shed vortices

at z=0 as

AJ a(x) = aln-iml
~ @ @7

Hew Hy |{

 _—

w( Bk.) &amp;
bx

The total velocity in the wake at z=0 is the sum of the induced velocity

and the gust velocity, and is given by
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wo(x,t) = wk ) exp(iwt) exp(-ik x) S(k_)

wh-“re

S( 2.) = to — 24 1 To— iT}
 i——

f (2) (2)

(9

The S(k_) functions as a transfer function and measures the change in

amplitude and phase of the normal velocity in the far wake with respect to

that upstream of the LEBU. Amplitude and phase angle of s(k_) are

calculated and shown in Figs. 9,10. The results show that the amplitude of

S(k_) decreases from 1.0 to 0.2 rapidly when k_ varies from 0.0 to 1.0.

After that the amplitude decreases slowly with increasing K_ and reaches a

value of 0.04 for Kk = 5.0.
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2.2 Analysis using quarter-chord theory

In this section as a prelude to study the effect of the ground plane we

derive an approximate expression for the circulation around the plate and

compare this with the exact solution obtained in the previous section. As

often done in the steady airfoil theory we replace the airfoil as a loaded

line placed at x = -c/4 (quarter chord from leading edge) and satisfy the

vertical boundary condition at x = c¢/4 (3/4 quarter chord from the leading

edge). In the following we refer to this as the 'Quarter chord theory’.

The boundary condition on the plate takes the form

 wW( BR.) e

tH Dy
PA.

a,

-——

2x

r(%) _

4 2A

 mn
 -—

Zou, dx,
L.—- XX
7

Ya

From the previous analysis the shed vorticity y(x) is given by eq. (5).

Substituting this in the above expression and solve for the circulation

we obtain

FC %)
”

Tre

“iare

a
—

a

 0D i.

— ike,
axw( Re) ©

Rok | [3-8 - c. (2)
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Pa
&lt;

si (Re) -

NED

Swf de
€

¢

Ya
}

cof de

Substituting this value for the circulation in the expression for the total

velocity in the far wake at z=0., we obtain

wrhx Y=

W(X) = w(k_) exp(iwt) exp(-ik x) S(k_)

Ray
SC 8.) = 1.0

|vDD +

P_ e

Ee 1 E- 5 (&amp;) ~.C (ED)

The amplitude and phase of S(k_) is calculated and plotted for a range of

k_ values. The results are shown in Figs. 9,10. Comparing it with the

exact linearized theory solutions one sees that the quarter chord theory

solution is quite accurate for small wave numbers K_ &lt; 0.25
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2.3 Analysis for two tandem plates

We now consider the case where two plates are placed in tandem at a

distance Nc/2 in the two-dimensional gust Fig. 7. The shed vortices from

the first plate, covers the wake between the two plates. The shed vortices

from the second plate covers the wake extending from the trailing edge of

the second plate. The strength of these vortices can be determined in

terms of the circulations I'l, and of k and N using the condition that

there is no pressure jump across the wake. To determine the two unknowns

Ty and r, we use the boundary conditions on the plates resulting in two

integral equations in terms of the vorticity distributions.

These integral equations are difficult to solve in closed form. If we

consider the limiting case where the distance between the plates becomes

large the mutual effects between the plates is negligible and we may

consider the plates separately Fig. 8. In this case the reduction in

velocity downstream of the second plate should be the square of that for a

single plate. To estimate the minimum distance between the plates for

which this approximation could be used, we considered a single plate and

evaluated the induced velocity at its 3/4 chord point by its wake

vorticity. Then the length of this wake which is required to obtain +10%

accuracy of this induced velocity is calculated. As we expect, this length

was a function of the wavenumber and decreases with increasing wavenumber.

For k= 0.1,0.25,0.5,1.0,3.0,5.0 the required lengths were

14,7,6,4.5,3.5,3 chord-lengths respectively. The distance between the

plates used in the laboratory is about 8-10 chord-lengths. Threfore,
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except for very small wavenumbers the above approximations can be used to

determine the effect of the tandem plates. We may consider the plates

separately. The strength of the shed vortices from the first plate is

known from the analysis of that plate only and is given by eq. (5)

‘x.t) = -ik ( r,/c/2 ) exp(ik_) exp(-ik_x) exp(iwt)

and is given by

I,
va—

2d &amp;)

 i Ba
fe WCRI]To—i e

(io
cr

 0D
Ca
 wx HY

The shed vortices from the second plate is

/ x bt) = -ik (T,/c/2) exp(i3k /2) exp(-ik_x) exp(iwt)

ik (T,/c/2) exp(ik_/2) exp(-ik_x) exp(iwt) (“©‘)

With the use of these expressions for ¥, and v, the boundary condition on

the plate takes the form

N (

a

Lok, Te
rx &lt;

1 RB. |
Pr N\ &amp;

io ?

|
x B ns

(8) de rR,
x — P 2A &lt;4

2

x

ce

~ cB. 8

€_ de
Yr —2

4

-
— 1 Re §

e
a

-
-

a €
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Lt Bx Ma o
LB,

20

|
_ Rf

e dg
x — 8

This integral equation is similar to the one which appears in the section

2.1. Using Sohngen's inversion formula this equation can be solved to

obtain y(x). Since we are interested only in the circulation r, we

continue as follows: we multiply this equation by v(l+x)/(l-x) and

integrate it from -1 to +1. This gives us the following expression for Lr,

(For evaluation of the integrals see Appendix A)

Ja = _

2x wW Sg

™
r.

. _ LB. L 3B

{Toi} + She Bde T, + e “|
2xWC4

_ LR, IE (2)

ALE oe Yu + 0 Ho L

C2

wh 4

i

Ls

nm | exp(-ik_)/(ik_) + /2 ( H? + HA ) ]

= nm [-exp(-ik )/(ik) + m/2 ( H' + HE) ]

Hence the total normal velocity in the far wake is obtained from
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eqs.(8), (11) as

oT w(x ) exp(-ik_x) exp(iwt)S(k )

vhern

S(k) 1. - mk [ ,/(2nwe/2) exp(i3k_) + L,/(2mwc/2) exp(ik ) ]

With the substitution of I', and r, in this er- rr on from eq.(10) and

2d a (12) this is simplified to

lg

C2.) = J 1. O _ 24
Jo — LT

2) (2)
HH, + LH

~
oo) |

We note that this is equal to the square of the expression eq.(9) which

we obtained for the single plate case. This confirms that the factor by

which the amplitude of the normal velocity is reduced for the case of

tandem plates is equal to the square of that for the single plate case.

The amplitude and phase of s(k_) is plotted in Fig. 11

We now consider the effect of increased chord. The non-dimensional

wavenumber is obtained by multiplying the wavenumber (2n/wavelength) by the

semichord c¢/2. When a wave with a particular wavelength is convected over

longer plate it will have higher non-dimensional wavenumber than that for a

smaller plate. Since the amplitude reduction increases with the increasing

non-dimensional wavenumbers the amplitude reduction for a particular wave

is higher when it is convected over a longer plate than over a smaller one.

lhe results doubling the length of the plate is shown in the Fig. 11:
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enchanced reduction is obtained by doubling the length of the plate but

less than when two plates are used in tandem.The results that the amplitude

reduction increases with the increasing non-dimensional wavenumbers implies

that the amplitude reduction for a particular wave is higher when it is

convected over a longer plate than over a smaller one.
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CHAPTER 3

Analysis of a three-dimensional model using integral method

A turbulent gust with a normal velocity component of the form

wk, ko Jexp(iwt-ik x+ik y) is convected by a uniform stream of velocity U

over a thin rectangular plate as shown in Fig. 6. Frozen convection (i.e.,

Taylor's hypothesis ) is assumed, therefore the wave number in the x

direction is

3SJd

and the non-dimensional wave numbers are

k =k c/2

I k c¢/2

We assume inviscid irrotational flow. For the linearized theory the

governing equation for the perturbed potential is

b
YY b + o__ EM

The pressure coeffizient to first order is given by

a
ee / PQ. /0

The boundary conditions are
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I. $, = -w(k ,k_) exp(iwt-ik x+ik y) for -c/2 $x £ +¢c/2 ; z=% 0

) d + 0 as oo

and

3. pressure is continuous across the wake (x2 c/2 , z=0).

Reissner (1947) derived a formula for the pressure distribution on an

oscillating finite wing. The mechanics of this problem is similar to the

one we consider in this chapter. In the first part we formulate this

problem in terms of an integral equation with a similar procedure as by

Reissner(1947). Graham (1970) derived this integral equation and solved

by means of a Chebyshev expansion of part of the kernel function that

appears in that equation.

From the boundary condition (1) it is evident that ¢ is antisymmetric

about z=0. Therefore there is a discontinuity in streamwise and spanwise

velocity components exists across the plane z=0. We replace the wing and

the wake by a vortex sheet which consists the spanwise component y and

streamwise component § as shown in the Fig.

aoe

é

y(x,y,t) = 2 u(x,y,+0,t)
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§(x,y,t) = 2 v(x,y,+0,t)
¥ | 32)

and u,v are streamwise and spanwise velocity components. Outside this

singularity region flow is irrotational, therefore

i

With this equation and eq.(13) we obtain the relation between y and § in

the form

A ")‘1.

Since this is a linear problem and the time and the spanwise

variations appear in the boundary condition as simple harmonic

varitation, all the dependent variables become products of exp(iwt)

exp(ik_y). Thus the amplitudes are independent of y and t. We write

/(X,¥,t) =U f£f (x) exp(ik_y) exp(iwt)

From eq.(i4) we deduce that § takes tne form

S(x,y,t) =U ik £,(x) exp(ik v) exp(iwt)

2
a7, ig. P, nn

 xX
T(x) = | £,(x) dx

7 jd0)

i JE3D)

(yr
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The pressure differences across the plane z=0 takes the form

a$

A~ Jy (x, yt)dx, -U
 -— CX

YX t)

In the wake pressure difference is zero. Since y(x,t) is zero for x &lt; -c/2

we can replace the lower limit to x = -c/2. We obtain the equation

y(x,,t) dx. + J v(x ,t) = 0 for
Ly

Substituting for y from eq (13) and using

 Ow IX) + ) | 4

When 3 = 1, this relation gives

(1) = -ik_ £,(1)

Different. ~t.ng eq.(l8) we get

E z) = =]K x)

eq. (17)

c/2

ny 1)

G1)4

The solution of this with the condition eq.(19), gives

£, (x) = -ik_ exp(ik_) £,(1)exp(-ik x) for x 2 c/2

£, (x) = exp(ik ) £,(1) exp(-ik x) for x 2 ¢c/2

Hence, the strength of the shed vorticit y. and the trailing vorticity §&amp;YY, y oo
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is given by

Yo = U ik £,(1) exp(ik_) exp(-ik x) exp(ik y) exp(iwt)

5, = U ik, £,(1) exp(ik_) exp(-ik x) exp (ik y) exp(iwt)

We observe that in the wake the vortex lines are parallel to the convecting

gust direction. The total circulation around the plate is defined by

c/7?

and

{y tt) J
-c/92

y(x,,t) dx,

is equal to

CL Lt) = Uc/2 £,(1) exp(ik_y) exp(iwt)

We can derive these expressions for Ye and 8, with a different procedure (

Appendix C). We derive the expressions for the strength of the vortices

eq.(20) in terms of the circulation around the plate £,(1). To evaluate

this circulation we write the boundary condition on the plate. Using the

Biot-Savart law the normal velocity at any point due to the vortex sheet is

W(x,y, 2,t) = — _| TCE4A +) (x—g) + 88.) (872)
, -1

fe— . (umn) 2 d =&lt; dn

In the limit as z + 0 we obtain the imposed upwash on the airfoil surface

by the vortex sheet
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w(x,y,0,t) = — 1 se 1) (x—g)+8(8. 1) (¥-1)
 |= CC dsdy

| fe—gY (s—n1) 172

We substitute for y and § from eqs. (15), (16), (20) and non-dimensionalise

the variables with half the chord length c/2. For simplicity we take y =

0. Then the boundary condition on the plate takes the form

 C 2) | XC ——£8) e .
2 2

{ (x—2) +
Pr N=—-

w( Bx, 2) €
_K

1
x

~")
L

f.(8) 17 ©
£47

 we EMd J — + T
7=—a@

3 3
dn dg

oD

1 ©

. Ta) €

a0

(
Be ® Ry

2 e (x—8)

13,
A dn dg

[ex—gy + 7°
~

@ = +\ =—®

 gb

4

2g. EM e
IY

—a on _i Ra. © L Ry 7
OD e n

dn d¢
) 34bo — 8)+7

£=+I N=—00 ie $+ 1
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We evaluate some of the integrals and modify this equation into a different

form ( Appendix D ). This expression is equivalent to the one which

appears in Graham (1970).

 |
-

VAL
wis Ry

9A
Fo) k | +, «—sl\ sgn (x—g) dg

ry

5 -
—= | 29&gt; Ko] By 1231fds

w—gs

£, (0 I %2 + %, { G. MH oe

1— xX
— LR, GQ —x) _ Rag .

=O { Za + 2, 1 e | 5 Ko R 8% d¢
 9 x

Ct Re £0) Ke|By,Gs)| (&lt;1)
2K

R =
—_— —-2 14 2 © . |

2. + Ry ¢

1

B,
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This integral equation and the relation eq. (17)

£,(x) 4 £,(x) dx
defines the problem completely to determine the vorticity distribution

£,(x) . But it is difficult to obtain a closed form expression in a

general case. Hence we consider a case where k» the non-dimensional wave

number in the y direction, is small and derive a closed form expression for

£,(1) to o(k_) accuracy.

If we assume k is small some of the integrals in eq.(21) can be

simplified using the properties of the Bessel functions (Abramowitz and

Stegun 1975).

a}

Since x-£ £ 2 , for small k_ we have

&lt; J %, x—s1} = z inet
ade Bo Ix—2) Ry 1x8) + o(Ry)

Ko 4 1 x—sl | = — { to3, Ixofl Lol “+ o (Ry Log 2)
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¥
-~

Ry 80K, | Fy x—21| son (x-D dg = 1 2a dg + OCF,onBy)
x xX—

els

Ry IP EAR ENON = 6 (By on By)

Both these results are equivalent to the assumption that the induced

velocity due to the vortices on the plate is equal to the two-dimensional

case value

‘b)

L mp
| LR X

Kol k&amp;, %( d$=

ik
e Ko{RB,2!\ o—

— I

2,
LH

a Re© _

&lt; Ki { B,%f dg

—

For small k_ we simplify this to



I

2,
+, I

of

—

 -—

— —ik E —_—

+4 ks, © {vo ome]— &lt;2

yr

Rx (1-x) _

Ko i *y (1-0 } + aRA ££.eo

[omeMX

[a *fe A$
Pr.

— Rk, &amp; _— —_ — A 2, (1—x)D —

LR, e {rebel ode Ko { Ry (=x)2

NE

Nhen

ne

4 ey J Ci (ke) — Ci {0-0} |

+ S: (£2) |{% 0-2}Si5 [

XJ
-

»

Coe (2)= | Cot dt and St (2) = (

£ —wO

Smt J+
+

Co Bat) = — [+ on (Eee) |
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Substituting these results we obtain the folowing relation for small k

P
x

 _—
L om] A “_

pr &amp; An

sor,

ke
r

(1 — xX)

Ry
2%

K [ &amp;, (1— xf

z Si {% (=F — 4 Ci{k —y

With the simplifications (a) and (b) eq.(21) becomes

i ©

W
« wi

——
——

\

yx

£08 ae
X—

~

£2 CD [3% :fac) {B+ Rl0 K y Re E. — + Rede

_. L

£2 (0) LB, Ln Ry e
-

5 o- Box
~

Bor JELELeh
8,

£0) 3 3 ° . - By _ LB x

re R. [ss { 4, Cr— x) } — 4 Cid ®a (x1 b e e
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From this equation we may obtain the expression for £,(1). To do this we

multiply the equation by v(l+x)/(1-x) and integrate it from -1 to +1

making use of the integrals in Appendix A to give

[ox lara— e | s13. C—x) | — 1 Ci { &amp;, =} |2

b
A + A A %, Fv (ro 4 oaYs( £2 §

Using this results we solve for £,(1) and which becomes

Re _

Wy = — w(ke, By) 4 © [5 Ry — iT (RD

(2)
® I Hy (*&amp;) + 4 Ho (®S

LE
V+ &amp;

(&lt; 2)

where
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A
a,

.
 2 Te—uT og2 + Jira og dia”

T 2) . « 2

HH, + 4 Ho

 {IF}ny
¥
p

+

2 =lL )

-

=)”-

a = k / k_

After the strength of the shed vortices and the trailing vortices are

obtained the velocity field in the far wake may be calculated. Consider a

vortex sheet of strength vy exp(-ik x) explik y) in the spanwise direction (

shed vorticity ) and of strength § exp(-ik x) exp(ik_y) in the streamwise

direction (trailing vorticity ), which is positioned in the xXy-plane.

Outside this vortex sheet the flow is irrotational and the velocity

potential is given by ( Appendix B )

H lz{/z y/(2k ) exp(-ik x) exp(ik y) exp(- v Kk’ + KZ |z])

From this we obtain the induced normal velocity due to the vortex sheet at

7, = 0 which is

= -i y/(2k ) Vv k2 + 2 exp(-ik_x) exp(ik_y) nN

Substituting for y from eq. (20) we obtain



51

-2 -2 . = . .

w. /U = £,(1)/2 / + We, exp(ik_) exp(-ik x) exp(ik y)

The total velocity in the wake at z = 0 is the sum of the induced velocity

and the gust velocity and is given by

wk wilk

w_/U wk « )/U exp(-ik x) exp(ik_y) 5k, k)

S(k kk) = 1. - £,(1) exp(ik) V k2 + K2 /2 4%)

and £,(1) is given by eq.(22). The amplitude and phase of Sk, k_) is

calculated for a range of k and k_ values and is plotted in Figs. 12,13.

The results show that the percentage reduction in amplitude increases with

incresing k and the reduction is more for larger k_. For k_ &gt;&gt; 1. the

results approach the two dimensional value.
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CHAPTER 4

Analysis of the three-dimensional model using acceleration potential method

In Chapter 3 we formulated the three-dimensional problem in terms of an

integral equation and solved it for small k_. In this section we

formulate this problem in terms of an acceleration potential. Ahmadi

(1980) developed an unsteady lifting line theory for an oscillating finite

wing using the acceleration potential. We follow the same procedure and

obtain a closed form expression for the circulation when k_ is small.

The acceleration potential \; 1

b(X,t) = [ p. - p(X,t) | /p

defined as

79 2

-P

where X = (x,y,z), p is pressure, p is fluid density and P_ is the free

stream pressure. For a linearized theory the Euler equations become

1 t= U u = V_

7+ u &lt;r WU

w, + Uw =y_
i“0~)

and the continuity equation

 3 WJ yw2)

It follows that { is governed by the Laplace equation



53

Vox * You * Vy = 0. (Ry.

Boundary conditions are

’

4 ) Fy c/2

AF ~ 1)

[In tarms D1 a

(2) * . v2,2

x &lt; c/2 and z = 10

= -w(k 1
Vv

) exp int - ik x + ik_y)

 rE rom eq (26) we obtain the condition

on Lhe plate.

&gt;  oa NE 0

(2¢0)

EE)A(

g{ 1)

(3) Pressure discontinuity is zero across the wake. Since Vy is

antisymmetric across the wake, this condition gives Yy = 0 for x 2 ¢c/2 ; z =

)

The formal solution of this boundary value problem is

J A  ££ “t) = — \

LRP EX r 2 (+) sp (ge 2)dg1

( “x.2)

]

Ni a . wg J

1 y DN,
PF 3)
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Ap(E,n) =p [ ¥(x,y,0+) - ¥(x,y,0-) ]
{
£

Cee

.

4)

snd

L -—

LO
 7)~~

2 Cy—aY ~{ (x—8) +

In the following sections , using matched asymptotic expansions , we solve

for y when k_ is small . Let us assume

) 1/k \ this is proportional to the wave length in the

spanwise direction. )

o(l)

~
— = width of the plate

O(e) ta

Define

A = 1/( k_ c/2)

1 / “%

0(1/¢)
(5)hd

These A and b are similar to aspect ratio and span length in a finite wing.

Now consider the outer solution and the inner solutions of the problem.
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OUTER SOLUTION

[n the outer region distances from the plate is of the order of b ( =

0(a%) ). Then we expand l/R in Taylor series for small £ [ (-c/2 £€ &lt;c/2)

= 0(1/A) ] and obtain

5
i

— 2

2 2

— ga [0 g 3 =) o(§’Bx (4) + 21 ax? (= rots) 67

where

Ry = V = + {pty J= + 2’

Jey?
Ld

2

Yq =Vy =n

3

WZ 3Dfie
a

Substituting this expansion in the eq.(33) we obtain an outer solution for

 valid in the outer region



6

0

 vw (X,t) ~ —

|
20

 a

2) E dn
3

+t A =

0

mC) 3x Z dq
3 2 7)

red
—

I

wr 2q (1) 3z{ 3 — pte |
7

2 2 7
&gt; “+ Yea

dq + {©)a

 ry

whe Tx

c/2
(n) = J A

yn p(&amp;,n) dg 0(l/4)

1 1)
2/2

J
cel?

Ap(E,n) E dg 0(1/a%)

1(n)
c/2

J

pe)
Ap(E,n) £2 dE 01/43)

(tc +
i

‘Ah 9D)

(4 2

Here 1(n) represents the sectional lift. m(n), q(n), etc. represents the

higher order moments of the loading about the mid-chord. The order of

magnitude of these terms are also shown next to the expressions,

When r becomes small ( of the order of the chord length ) the
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outer solution ceases to apply. This region corresponds to the inner

region. To analyze this part we magnify the variables

Define the inner variables as

 Xx =AXx

 Zz = A z

 vy =vy

r =Ar

wad

X =r cosb

7 = tv sin6

[n the inner variables the plate is positioned

at -c/2 $x &lt; ¢c/2; z = 0 where c¢c = A c = 0(1).

Later for the purpose of matching, we need the inner expansion of

this outer expansion. We substitute for the outer variables r,x,z in terms

of the inner variables r,X,z and A and expand for small (l1/A). We

obtain the inner expansion of the outer solution

4iJ
3.

~~ J | A R(Y) Sm©jy == +- 4A

3

¥ Sum © | 5,av &gt;

i
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L(Y dog (Y=) 8gn (Y=) dq + (1+ 2 Log 24. Leo | O(A2)
3

i - A mY) Sma® 1 m (Y) Sm + o( Am) §
2K P 4

A
3 "

Jd | A 2(Y) Sm38 — A q(¥) SmO-Sm38 | o(i')
QAP =3 2

(' 1) fl

[NNER SOLUTION

driting the governing eq.(28) and the boundary conditions in terms of

“he inner variables we obtain

Pw or
%

+ Wao
&gt;&gt;

1 Wo 1./a% =o

b J on the plate

ly Jy in the wake.
(4 +)

We expand the inner solution in an asymptotic series of the form

~~ Uy + al logA ot + Al wa + (higher order terms). (4.6)
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Substituting this expansion in the governing equations (45) and collecting

the terms with the same order we obtain a series of simplified

two-dimensional problems for ¥

)

i i i i
For Wo » ¥) » ¥, , Vj

&amp; ry

ptee +
Fo

J -
- 0

| )

&gt; &gt;

on the plate

the wake

 |}

in 47)

i i i
Vir RR * Vyr5z oT Voigy

b, ar
= 0

b 9

on

in

the plate

the wake
tht2)

We note that in all these problems (1) ,(2) etc. the conditions at

infinity is not defined. Therefore the solutions are not unique and leads

to many eigensolutions. One of those eigensolutions is the classical

Sear's solution. Later we see that this is the only eigensolution

important to us.

When a two dimensional gust of the form w_(y) exp(iwt - ik x) is
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convected over an infinite plate the governing equation and the boundary

conditions are

rr -

 a ) Yoo tv Vo 0 Cr 7)

(2) w(X,y,+0,t) = -w_ (¥) exp(iwt-ik x/A) on the plate. And this

codition is equivalent to

‘3

4)

{ J

 VY = )

v=»0

on the plate

in the wake

at infinity

(5¢ y

Che solution of this problem is

Nh 2 TE

02 ee = Real £(E,y) ]

E(E,y) = -iU w_(y) B(k)) (A - 1)

5¢ ir No . I .

=i J (kD) + [ J Ir ) - i J (k_) ] ck)

~( } = H (k_) / | HY(EK) +i HO (K_) ]

(=1)

{  5 )

LsCD

(oc »)ff

Theodorsen function
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AN 5% |
Fog|

(55)

£E=x+]jz

IL 2/79

We do the analysis assuming k_=0(1/A) and later improve it to the case

when ¥ O(1)

»
-,x = (- ) Jdu 2 A

wa
a w Cc

Li 2

BR. = 3.

CV) (5¢ D

(5:7

He expand P(k ) for small k and obtain

PK N
= 1. + [ iv log(yv/2) - mv/2 ] al

, -1 -2
iv A "logA + O(A “logA)

Therefore for small k_, vo takes the form

‘GeJ

a. : Co-1 0 -1 LL
bears = Uw (y) [ 1.+(iv log{yv/2) - mv/2 ) A" -iv A logA Im(A) +

fen7)
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i 1 : es gad

When wo (7) = Wik, XK) sxpLik, YY, Voears satisfies the boundary condition

on the plate eq.(29). We separate out this solution because this

simplifies our analysis later. We denote this as boo

For small K

1 $ i -1 i -2

Yap = ¥op,0 * Yop, A oA + Wyn5AT 4 -—-

vk  a

-

{EeD

1

bop. 0 =U w Im(A)

1

bop. 1 = ~iv J w tm? A)

boo = [ iv log(yv/2) -nv/2 ] Uw Im(A).
1 0)CE!

For later calculations we need the 1,5), the two dimensional lift

function. This is equal to

+tc/2
J Ap, (E,y) df

—c/92 2D
y)

y

 7]
+1

( ¢/2A ) p /
i

Vp (E) dE

From eq.(51), substituting for Yoo we obtain



f 3

Lyp(y) = 2m p ( c/2 ) Uw E(k)

’,

1Ea 3D

[f we expand this for small k, we find

¥ 2A -

A492

J

J aT iv A

RY;

u

log(yv/2) - mv/2 ) A”!

oOgA + —=-
-

A

C3)3

Define

Fp = Lift /( 2mp c/2A)

— +

a” (&lt;u)I 4

The inner solution consists only of the eigensolutions. oo is the

two-dimensional solution. We consider this as the primary solution and the

other eigensolutions as a three-dimensional correction. Hence we write the

inner solution as



6d

1 1

bo Von1 * Fo Years fo Vy t 8g Wy + mmm

w +Se

1

loga | Yop, 2 * * Youre + £ ¥, + 29

Jr
2D, 3 + Fy Veoars + -

$v. +4 2, Al
/

+ 0( A™% log.

sears = Im (A)

V, + ,———-

(= 5)

(6 )

and A is given by eq. (55 )

bys V,,----are other possible eigensolutions

and Fy» £4 By» ———-=- are arbitary constants.

i .
i i &gt; etc. as one term and willFor convenience we combine Mop Fg Veears )

separate them in a later stage. Define

Fy

T

3 , = F

I

UU w

iv U v4

+ [ iv log(yv/2) - mv/2 uw (67)

Then the inner solution becomes

Fy Veears + fq IL 2, U



AB

- 1 -_—

AT Logh [Fy by pg + Ep by + Bp Wy Hmmm

L

3fA

Fo Vssare +

/
1 “£ A )

F
9 Uv \ OJ

’

=
-

1)

For matching purposes we need the outer expansion of the inner solution.

This is obtained by substituting for the inner variables r,x,z in terms

of the outer variables r,x,z and expanding the solution for small (1l/A).

From eq.(43), (55) and (66) we obtain the outer expansion of the Sears

solution.

C 26
Cp Swim © _ ) ( “4 ) Sun :P yp A = lH — —

Sear A

3

(3a) 222 + 0040)A +3

( -9)fa §

After obtaining the inner expansion of the outer solution eq. (44) and the

outer expansion of the inner solution eq.(69) we apply the matching

principle and determine 1, m, q in terms of R. F, 7, The asymptotic

matching principle reads: (Van Dyke. 1964)

m-term inner expansion ( n-term outer expansion ) = n-term outer expansion
 —_— TE PENEr Peer : iin, i .

( m-term inner expansion )
—
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(@ 1 - term outer expansion from eq. (99)

_ L2(1) z dr

xP | TeT + Yo I

Expanded in inner variables, from eq. (104)

20

{A200 Sm6 4
2XP

 TY Sw 6 1% Z(1) Log (y-1)890(r-1)7v3a

J

(1 + 2 fog 2A) 20) | EK

1 - term inner expansion from eq. (125)

-, Weears + Fs Po + 9 J,

xpanded in outer variables, from eg. (126)

o ~ Sun 2© —-— + | 7 ) Sw 302 ls ie

A 4 3 A ned ~) A 3
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Matching these two expressions, we obtain

’
L)

E [Ss Smo  _
A +

’

2XP

-
tn
i

ped Jo »
od &gt;

8(Y) = Fo  axp (%)
A

! 2(vY) Sm 6&amp;

(1 30)

2 = term outer expansion from eq. (99)

y.

I _2 dq +
4 7p (ay l%

J

m7) 3 XZ dq
%2 vd ! )

wi

1 - term inner expansion of 2 - term outer expansion from eq. (104)

3xPp
A 2(Y) Sm 0

—

2%p
-

m(Y) A Sim 28

1 - term inner expansion from eq. (125)

E. W sean
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2 - term outer expansion of 1 - term inner expansion, from eq. (126)

Ea [2 Sm ©
A A

&lt;

—_ Fo Cs Swi 268
2 A Lt

Matching these two terms we obtain

fF

ny

J

J  -—atin

2 xp %)A

xp [%\RB
A

(131)

i “

JJ

2 - term outer expansion from eq. (99)

20

0 | 2(2) dq4 FP [+ - v2 4
-

J

—~

m(1) Ixz dq
5

[++ vr |

2 - term inner expansion of 2 - term outer expansion from eq. (104)

a 2

| Sa SmOAL— A m(y) Swmo8
AAP A = =2

|
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2 - term inner expansion from eq. (125)

C. Yq for de A loq A —

2OA

~1

we A Fs Ysecoro

2 term outer expansion of 2 - term inner expansion from eq. (126)

c, 2) Sun 0A 0g

od

— | Cs Sm 28 !
A tog A (24) Sm BO EF, + aq sp Sm6 F.A + a) ~~

Matching these two expressions we obtain

(YY) = 2%p (2) ne + A Rog A F, + AF L (132)
2]

M 7) = Tp [SR
A

If we do the next order matching, we will obtain the higher

order expressions for 1. m and 1
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Eq.(72) gives the expression for the sectional lift 1(y) to order A”? Now

we separate Fo» F, ¥, into the two-dimensional contribution and

eigensolution contribution as explained earlier eq.(67). We obtain for the

| gh

L(y) =2mp | Uw + F, ] (c/2a )

L211 -UWw RY 5 ( c/2A) A”! logA

Lr I Jw(iv log(yv/2) - mv/2 y +7. 1 ( &amp;/28 ) a”!

} o(A © logA)
7.i, [a )

Substituting this results in the expression for outer expansion eq. (39) we

obtain the outer solution in terms of Fos Fo F,. After determine the

inner solution and outer solution in terms of Fy» F., F, we form the

composite solution y© to o(a™h) accuracy

bE = + EY
 OD

1,
WL  = Yh

(1)
i i

Vo~ Yop. + Fs Ve mars

4
odie i

logA [ Yop. 2 + F, Veears ]

C 3)¥,



5

4

3’ 2 ]

Using eq. (60), without loosing the accuracy we write this as

“21 r | F :a t F. A logA + F. A“ + ¥
2 1 sears

‘75F )

where J is given by eq.(51)

£92) q€ = outer solution ro
-1

order A accuracy

-

=.

 8
4 XP AE

L()
- TIT
[24 (yey se a LA

dn (75)~

Ee@

3)
oi \ -1

bh = common solution to order A accuracy

4

2 &lt;p
20Y) =z (+71)

 ”~
Tr A"

L(y) =F, 2np c/2A (79)

This composite solution is uniformly valid for the whole region. The

expression for this y© consists the arbitrary constants Fy» Fry F,. To

determine these constants we use the condition that he has to satisfy the

velocity boundary condition on the plate.
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Cc ’ 0

w (x,y,0) = “wk ,k ) exp(-ik_x+ik y)  2)7 .

where w= is the normal velocity corresponding to the composite acceleration

potential ye. To obtain the velocity from the acceleration potential we

have to solve the Euler equations, eq. (26).

a) v

Since this is a linear problem, and the time and the spanwise variations

appear in the boundary condition as simple harmonic variation, all the

dependent variables become proportional to exp(iwt) exp (ik y) with

amplitudes that are independent of v and t. We write

(X,y,z,t) = w(x,z) exp(iwt) exp(ik y)

1 (7) = 1 exp(ik y)

m(y) = m exp(ik vy) etc.

Then w(x,z) satisfies che D.E.

iG) AF  Wu

The solution of this equation is

X

w(x,z) = 1/U exp(-ik_x) { ¥, exp(ik £) dE
vv

‘Bc5)
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where the integration is along a line parallel to the x axis. If we

substitute Vb, for ¢ in eq.(l40) and take the limit z + 0 we obtain w (x,0).

} ¢ i 0 oi i 0 oi ¢ aad
We write w =w + w =~ w , wherew , w, w are the velocities

corresponding to yr, vo, yor. In the next step we evaluate these

velocities

“a) EVALUATION OF w'

“rom ar, Ls J)

Le bon
-1 -1

+ (F, + PF, A “logA + F, A ) ¥oars

The vertical velocity due to  wv
RATS

Xx
i = = iL -1 -1 wm. Lp

Vooars (Xr 2)= 1/U exp(-ik _x/A ) ( Fy + A “logA F + A F,) Bl Veoars’z exp (ik E) dE

(1)
We have to evaluate this integral at z=0. Since V , has a

sears’ z

non-integrable singularity at the leading edge we transform this into an

integrable form. From eq. (55)

A

-

|

X+4Z—%4
X +4Z+4%

]
SR———

(Re .

J

a

A =2 + Veoars



 hb

Since A is an analytic function of (x+jz) from Cauchy - Riemann relation

we have

5, . - Yesare'S g a )

and, when z=0, we obtain

3
v

x —C4
x + C4

|
|

—

7

forix\|&gt; ¢/2

forix|&lt; c/2  4)

Substituting eq.(83) in eq. (81), integrating by parts and use the results

from eq.(84) we obtain

1 . - . -1 -1 2 . 2

Yoears(¥:0) = in/(2U) k_ exp(-ikx)[ Fy + F, A "logA + F, A” ] ( HY + 1 Hy)

5)1

The velocity due to Vor is the gust velocity. Hence the boundary

condition eq.(79) becomes

wi ¢,) Xp (-ik x) = vr

t/ (20) bk exp(-jk x) [ F + Pa logA F. + A” F, |] ( H + i H. )

L Lim | wo (x,2) - wolix,z) 1 exp (-1i 1) o.2)
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where
X

wo (x,z) = 1/0 [ ¥°, exp(ik €) dg a)

21.d

. X z

wol(x,z) = 1/U | ©, exp(ik_£) dg i“1D

From eq.(86) we observe (w° wt ) is independent of x. Therefore, for

. o oi
convenience we evaluate w and w at x=0.

‘b) EVALUATION OF =

Substituting for
1

in eq.(88) from eq.(77) and (78) we obtain

t
CK

+) { EA 2
i) A DZ

ze d ¢
2 2

£ a #

Rf
—e—
—

od

(31)

In the limit z + 0 this becomes (Appendix E )

1k /11 ‘ ( c/2A ) [ y + log I 7 Z) + m/2 i] (ec))



76

(c) EVALUATION OF w°

Substituting for v° in eq.(87) from eq.(76) and eq.(78) and simplifying we

obtain

IN =)

sm. -—

— — 2

Fo 4 | co Ry dn 2 |
J A 9x

1 RQ.

=

| + +
 yy 1

d ¢ ( *)[5

Substitution of the integrals from Appendix F gives

‘UU { c/2A 1 ; 02 py 9g.7)

where

i,

”.9

2

eo tq { — 2 * ay A

Ceo £11 cl K, (RT) — 2 Re Ka Cad | dg

we
”

LY

0X l

ow By1 | 3d | 7 (Re) ie Lo (2) |Z

ET, (Ra) — La (Re) | £2 \ dq
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Ng wa L = bdocw By] - —  7)

When z + 0 we obtain (Appendix G )

a}

&gt;§

———
— A fo |v + An Re vAnze |

“4

7

 a

0
nd | cos Ry 1 Ki (AV) dn

£L

20

 mn x

~ls

Al

ro l

ma
sis

£

£
-r

x con Ry 1 | IL, (Rx) — LL, (hed | dn
n

(9 =)

Combination with the expression for wo, eq.(94 ) and wot, eq. (93) yields

Al —_—— \AS

oY,
—
aime Fo (2) Red on Ry rio — Zi

uO A 2 Rx
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£
mt

3x

 wv .“

| 9 K, (B42) dnRy (Ry)Ceo

i)
¢

-

0
 Nn

4 ReX cn Ry =. (Ret) — Le) dg | @5)
7 5

We evaluate these integrals in closed form ( Appendix H ) and reduce this

equation to the simplified form

fy - 1, ~ 2A I (73)£

vhe re

- = i kl Jira oq
2

\ +4 1+Q
———— —AP———————————————

«kJ [ied 1h
a

(97)

After deriving the expression for (w® - wot ), from eq.(86) we obtain a

relation involving Fo F, and F,

2 -3 n/ (20) © | F + F at toga + wah] (ED 4 HD) (33)
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= F,/U c/2A T

Using the relation

Pp! Rx) ——
—

.

4 T, + (Fo—aT) MH
2 2

H, +4 He

IH +d He | Ra——
A

A 5

( - 2)Ty

we may rewrite eq.(98) in the form

£ + AT? logA t+ 4 pT F,|=F, ( c/2A) T p(k.)

From this relation we determinate the constants F.. F,, F.. For small k
: 2 %

(10)

from eq. (58)

Using

2! ”
. y = 1.0 + OCA

L

logA)

this result from eq. (100) we deduce that

Fo J

vow

- =A \L

F,/A = F c/2A T “ 1)

From eq. (67)
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Fo = Uw

(-a)J

= quasi steady lift /( 2mp c/2 )

After determine these constants Fi Fy 3 F, the composite solution is known
-1 . . .

to OCA 7) accuracy. We can modify the above results without loosing the

accuracy as follows.

Comparing eq.(63) and eq.(73) we note that without loosing the

loss ofaccuracy eq. (73) may be written as

{

}

i

21

H

TC ”
A , 2A

2p c/2A A”! logA

2p ¢/2A A° (103)

Therefore, in eq.(78), instead of Fy we substitute Foo ( eq.(64) ), and the

function P(k_) is left without expansion for small k . If we assumed k_

O(l) we would have obtained these expressions.

dence we obtain the new expression for F,/A from eq. (100).

oy
Y

JA
1

c/2A T P

Uw P(k ) ¢/2A T P(k ) Gog)

Substituting these results in eq.(75) we obtain the expression for inner
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solution

bp Uw P(k_) Im(A)

_} N PK) c/2A T P(k_)

WJ N [| 1.+c/2A T P(k) ] P(k_) Im(A)

From this expression we observe that the
¥

inner solution is the Sear s

(los)

solution with an amplitude of the form

‘Ay | 1.+c/2A 7 P A

When a two dimensional gust w exp(iwt - ik x) is convected over a plate

(cs)

the circulation is ( eq.6

r i.

ny
3

—
a

» @ (2)
J = \ + 4 Heo

LT 2

\
(107)

When LA (1 - ¢)
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t. Cn) = r — =

UJ &lt;4

21

——

_ RB,

Ey (\—e) I %- =a e

Lg og

~ 0 @ 2)
v, + + Ho L

]

('-9)§

where

e = - c/2A T P(k)

Substituting for T from eq.(97) and for P(k_) from eq.(99) we find

&gt;
- p / 0 + Ji+ al

— ————————————

-
g __I+ a’

3 5S=
—

{2) (2)
4, + &amp;L Hg |

2 [fe =] b1

(109)

(110)

where

a

Kk

"4

rk

Eq. (22) gives the expression for £,(1) which we obtained using the integral



93

method. Comparing eq.(23) and eq.(l10) we see that the expressions are the

same for small k_.

Since for small €

em

—
l— ¢ + o(e&amp;¥)

—

we derive the same expression for the circulation £,(1) using the both

methods to O(1l/A) accuracy. We obtain the velocity field in the far wake

as explained in Chapter 3 and is given hv

ww!Ww. IU = w(k k )/U exp(-ik x) exp(ik v) S(k k

whe fre.

= [-2 | 2
S(k_,k_) =1.0 - £,(1) exp (ik_) k + k /2

(171)

(112)

and £,(1) is given by eq.(108). The amplitude and phase of Sk, k_) is

calculated for a range of k, and k values and is plotted in Fig. 14.

The results show that for small k &lt; 0.2 both method give the same curves.

When k, becomes larger, and for small k &lt; 0.2, they deviate from one

another. This is because when k becomes large the difference between the

two expressions, which is of order KZ, becomes large
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CHAPTER 5

Analysis of a three-dimensional model for high spanwise wavenumbers

[fn Chapter 3 we formulated the three-dimensional problem in terms of

integral equations and obtained a closed form expression for the normal

velocity in the far wake, for the case when the spanwise wave number k, is

small. In Chapter 4 we formulated this problem in terms of the

acceleration potential and analysed using asymptotic matching principle for

small K,- In this Chapter we derive an expression for the normal velocity

in the far wake for the case when the spanwise wavenumber, ko» is high.

For this case an approximate closed form expression for the pressure

distribution on the plate is derived in Amiet (1976). The solution

procedure is based on the work by Schwartzchild (1902) and Landahl (1958).

We use the results derived in Amiet (1976) in the calculations.

We assume the flow is incompressible and irrotational. For linearized

theory the governing equation and the boundary conditions are

b
-

h(x

db =on T ¢,

JY. Z) = 0

J

for ~» &lt;x&lt;0

¢
Z

CL"
ER

A 2)

(vi)

b
ry

= —-w(} Zz ) exp(iwt) exp(-ik x) exp (ik y) for 0 XZ x £2, z=0

{. 2)I

and
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b, + U ¢. =0 for 2 $&lt; x§ ew z=20
© a)1

The spatial coordinates are non-dimensionalised with the semi-chord c¢/2 and

the axis is placed at the leading edge. We observe from these equations

that ¢ is antisymmetric about the x axis and takes the form

b(x,y,2z) = ¢(x,2) exp(ik_y) exp(iwt). 7)+f

We solve this problem for z 2 0. Substituting the expression eq.(117) into

eq.(113-116) we obtain

b
Ty

b(.

b
&gt;

3
7

-K
/

 bd = 0

)) = 0 FOr -o $&lt; x U

 ul AYD. -q ~~) for 0&lt;x&lt;2, z=0

(i 28)

(19&gt;

Cn)

and

d + ik ¢ = 0 for 2 &lt;x&lt;= \
Vd 2  1D

An approximate solution of this equation is, from Amiet (1976)

b =  od {(x.0) + fa,
Bh

r x,0) (22)

are



6

~L £._ x

d (x,0) =

Sia
 Oo ef[Fx

a?

~B,
dD (xo) = —w _e ’

2 x

[7 (Ry+ Ry)

N -28 2,
dege

[242 Ie
-

and r = 2 - t « x &amp; 2

 &gt; a ~ Tre

A =  XK + ik
 xX

v k - ik
bd

 yw “ay &amp;&gt;) (123)

X

r
+ Sh (+1) LB= e “le

a

C4)-

(1:5)

This solution satisfies the boundary condition on the plate eq.(120) and

the downstream boundary condition eq.(121). But the third boundary

condition is not satisfied by this solution. Comparing with the numerical

solutions of Graham (1970) it is noted that for k &gt;1.0 the accuracy of

this solution is of the order of a few parts in 103, and reasonable

accuracy is obtained for k_ as small as 0.25. Landahl (1958) has shown
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that this iterative scheme converges uniformly for all k but many terms

are needed to obtain good approximate solution for small k_.

The circula* 191nN around the plate is equal to

rn J
i 2 2 ,0) (24)

Je define

~~

/ (U c/2 ) = w/U £,(1)

Substituting for 52 0) from eq.(122-125) in eq.(126) we obtain (Appendix I

g.

£, (0) =
.

-t er Jap
JE,5

wi are

C

— a4

@

R - ay
eo 4 Ke (2 %,) c — C L (121)

xx
)

JoAA
Ja—

h - gp

eg ente [Ag d £
Ex

(128)

and K, is the modified Bessel function of zero order.
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When we derive these expressions we fixed the axis at the trailing edge.

In the previous chapters the axis were fixed at the mid-chord. If we move

the axis to the mid-chord there will be phase change equal to WK

Multiplying the eq.(127) by exp(ik)we obtain the new expression for

£.(1)

3 9) &amp;
i) =  &lt;2 €

y B.
 nto— ef TH

2 . 2,[=

2B,
2.) e. Ke (2 Ry)

Ee anf
te =
[x A

_ cl (129)

The total normal velocity in the far wake is derived in Chapter 3 and is

given by eq. (24) as

Wn/U = w/U exp(-ik x) exp (ik y) S(k_,k_) (120)

ind

J = ],~ £,(1) exp(ik_) v k2 + i /2 (y 31)

The amplitude and the phase of Sky k) is calculated for a range of k_

and Ry values and are plotted in Figs. 15, 16. As mentioned earlier this

solution gives reasonable accurate results for k &gt;0.25 and gives better
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accuracy for larger k (31.0). The results show that the amplitude of

S(k,k_) is very small for high spanwise wavenumbers. The amplitude

decreases with increasing k, and k_. For k =1.0 it decreases from 0.07

to 0.025 when k increases from 0.0 to 4.0. For k larger than 2.0 the

amplitude decreases to values less than 0.01.
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CHAPTER 6

Analysis including ground plane

In the previous analysis we neglected the effect of the horizontal

ground plane. In this chapter we will include its effect (Fig. 17). In

addition to the boundary condition on the plate we also have to satisfy the

boundary condition on the plane. We satisfy this condition by considering

the mirror image of the plate on the horizontal plane. The present

configuration is shown in Fig. 18. The boundary condition on the upper

plate takes the form

 Y

N

re

i

2) p—
eet
-—

Q

T
|

|
~,

3 (x— 2)

| =e)+W

»»

dg—
9xx—@

[
dg + A

 xX

!

Xy (x—g)

{—+ RK

Td
x -

d¢

C132)

Using the condition that there cannot be any pressure discontinuity across

the wake we can solve for the vorticity distribution Yy- This expression

was derived in Chapter 2 and is given by eq. (5)

¥, = ——

Nal. fu.

» kh

k (1) Soc p (+2) Cech (— ¢ Bux) (1:3)
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”~

T, d¢
 Fy

Substituting for Yo and non-dimensionalising using c/2 as reference length

we find from eq.(132)

i

~

L RB.

A Ra ( x S—

Af ‘

NX

|
|

Ld de —

ox — @ 2X | wy (c—¢) 2 dg[e—g5enlVex—e|

0 si 0
—B. ¢ _ ®

| e dg — (2)
§ — x 2x Sq )

Ba §

© €-= dg

J(g—=)"+ h }
EDS

We have to solve this integral equation to estimate the circulation TI.

Since it is difficult to solve it in closed form we use the "Quarter chord

theory' to obtain an approximate expression for the circulation I'. After

some simplifications we obtain

r~ %

2xwW4

7k a

A
&gt;
.

|Ic,.= 12%. e

k “4
D

} h| ah?

[ I + IT,
3

 wf dg — 2 Smf dg

(135)

(136)

Rx
5
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_ FoR
I, = — +k ce J e Ex CM) +

[

*

1 _—
P= B Jone i]

H 5 %, Tne £0

&amp;..h
€ (po (137)

(0)35.

and

Ed (M) =
X

8 dz (139)
7

After obtaining the expression for the circulation we can calculate induced

normal velocity in the far wake. There is induced velocity contributions

from both the lower and the upper wake vortices given by (Appendix B)

Wn ) hho
k

pr

“n e (14-0)

CR x — %..h

Non)Remo.
 -— le i Ta

J
(el &gt; (14:0)

Substituting for Ys from eq.(133) and adding the induced velocity and the

gust velocity we obtain the total normal velocity in the far wake as
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— 4)twt SIT.Rou 3
L

e)(RaWwW\W (42)

whe

S(%e,H) = 1.©

_ Ra »

— x, © &amp; I iTm N{io_ e |
2xwW$4

(143)

The amplitude and the phase of S(k_,H) is calculated for a range of

k and H values and is plotted in Fig.19. It is seen that the reduction

in the amplitude is reduced by the inclusion of the plate. For H=2.0 and

k_=0.5 the reduction in the amplitude is reduced by a factor of 1.5 of

compared to the value without the surface. This factor is about the same

for the lower wavenumbers. The other point observed is that when the

height H becomes smaller this factor increases. For the purpose of

understanding these results further we calculated the circulation and the

shed vortices from eq.(133), (135). The amplitude of the circulation is

shown in Fig. 20. We find that the amplitude of the circulation and the

shed vortices in this case are larger than those without the ground plane.

This leads to higher induced velocity from the upper and lower shed

vortices. Since the shed vortices from the lower plate induce the velocity

in the upper wake in the opposite direction to the above we effectively

obtain a decrease in the reduction of the amplitude.
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In the previous section we considered the interaction of the

two-dimensional gust with the plate and the surface. In this part we

2axtend this to the three-dimensional gust. Due to variations in the

y-direction in addition to the shed vortices there is also trailing

vortices. The strength of these and of the trailing vortices are derived

in Chapter 3 (eq. 20) in terms of the circulation. As we did in the

two-dimensional case we consider the mirror image of the plate on the

horizontal surface and solve for the circulation using the 'Quarter chord

theory'. After this approximation the equivalent vortex sheet

representation for the upper plate is shown in Fig.l10. For the lower plate

we have the same figure with the vortices in the opposite direction. Using

the Biot-Savart law the normal velocity due to these vortex sheets is

determined at the 3/4 chord point. Satisfying the boundary condition at

that point we derive the expression for the circulation (see Appendix J).

After determine the circulation we calculate the induced normal velocity in

the far wake and adding the gust velocity to this we obtain the total

normal velocity in the far wake and is given by

ng

Wo = AAT
-

v1 -

JEN ZH) = 1.0 —

) Ry

7.5

Lw£

S (Ra Ry. H)

LR
+. a) e 10 - e

(4 4)

- JRE hg

(45)

and £_,(1) is the circulation around the plate and is given by eq. (J13).



35

In Figs.22-24 we have plotted the amplitude of S(k,,k ,H) for

different kk and H values. In Fig.22 we compare the 'Quarter chord

theory' results (without the surface ie H==) with that obtained using the

integral equation method eq.(24). As mentioned before, the 'Quarter chord

theory' approximation is valid for small wavenumbers k less than 0.3.

Fig.23, 24 show the amplitude for k =0.1 and 0.2, and it is seen that

except for small k _&lt;0.1 there is not much difference from the conclusion

made for the two-dimensional case
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CHAPTER 7

In this chapter the interaction of a vortex street and a vortex pair

is considered. The vortex street simulates the wake behind the LEBU

devices. The vortex pair models the ejection process or the wallward

movement of the outer fluid towards the wall. In the absence of the vortex

street the vortex pair moves with constant induced velocity. When the wake

is introduced the vortex pair and the vortex street interact and the motion

of the vortex pair is altered. In this section we will determine, how the

motion of the vortex pair is altered and, how the wake is modified due to

the interaction. We employed the two-dimensional model to gain some

insight into the effects and the mechanism. The initial arrangement of the

vortex system is shown in Fig. 25. First an approximate estimate is made

for the magnitudes of the variables A,B,a,l, and Lr, where A,B are the

longitudinal and lateral spacing of the vortex street, Tr, is the strength

of the vortex street, 'a' is the distance between the vortex pair and r, is

the strength of the vortex pair. The primary length and velocity scales

involved in the problem is length of the plate 'c', the boundary layer

thickness § and the free stream velocity U. In most of the LEBU

applications tested in the laboratories the length of the plate is equal to

the boundary layer thickness c¢c = §

For B/A the Karman's theoretical stability condition ratio 0.28 is

assumed. The velocity of the vortex street relative to the free stream is

given by

T,/24A tanh nmB/A = v, U (1 35)

From experimental results F, is approximately 0.08, Taneda (1958). Let
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A = G§/N (138)

where N is the factor which determined the longitudinal spacing of the

vortex street and it is a function of the Reynolds number. The variation

of N with the Reynolds number is shown in Fig. 5, Taneda(l958). For the

Reynolds number 30,000, N is approximately 8

In the absence of the vortex street the vortex pair moves downward

with the velocity r,/(2ma) and it carries with it an oval shape of fluid.

The axis of the oval are 2.09a and 1.73a . The magnitude of a is

determined by simulating the oval shape with a large-eddy of scale §.

Hence

a 4 F, 0 O37)

where F, takes a value of 1/4. To determine the strength of the pair, the

velocity of the vortex pair r,/(2mna) is equated to the normal turbulent

velocity in the outer part of the boundary laver.

r,/(2mna) =F, U
(133)

where Fa. measures the normal turbulent velocity in the outer part of the

boundary layer and is in the order of 0.02 - 0.04, Fig. 3. From eqs.

(135)-(138) we obtain

a/A nN "
»~

(039)

nd

r, / T, = 1 (Fy /F)) NF, tanh (nB/A)
{40d

Substituting for F.,F,,F, and N the values which are evaluated, it is

nbtained

and

a/A

,/T, is in the range 1.0 to 2.0.

(141)
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In the calculations the variables are non-dimensionalised with length A,

velocity T,/(2ma) and time A/(T,/(2ma)) and the variables are 'a' and r,

are varied in the above range. The initial and the distorted vortex

systems are shown in Figs. 25, 26. Here, the axis are fixed to the vortex

street and hence there is a free stream velocity in the x-direction with

magnitude U which is equal to

The

U = r, /2A tanh nB/A

coordinates of the vortices in the undisturbed vortex street are

(143)

 = (L-j) A

7 0.0 for the lower row (144)
and

X. = (L-j) A + A/2

y = B for the upper row (14.5)
th . . .

Here L vortex on the lower row locates at the origin and 'j' varies from

-= to +=. If we denote the coordinates of a vortex at a time t as (x.,y.)
i’’i

and the induced velocities on the vortex by other vortices as u.,v. then

the motion of the vortex is governed by

dx, = UW

d+
-

and

dy. = V.

d+
(146)

Each row in the vortex street consists of an infinite number of vortices in

either direction. It is reasonable to assume that far away from the vortex

pair the influence of the vortex pair on the vortex street is negligible

and the vortices will be stationary. Thus we can consider only the middle

part of of the vortex street, between the sections LL' and RR', Fig. 25
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and assume that the vortices outside this region are stationary. ML is the

number of the vortex which is at the left boundary and MR is the vortex at

the right boundary. The induced velocity on a vortex which is inside the

region is composed of three parts-

1) Uniform free stream velocity given by eq. (143)

(2) Due to the vortices which are to the left of LL' and right of RR'. The

induced velocity due to this part can be obtained by substracting the part

due to the vortices inside the domain from the known solution for a vortex

row. The velocity field due to the lower row vortices are ( Lamb, 1932)

 4

J —
—

0
2A

[I

J A

ASuvih 273
EE———

temh 2XY _ Coo 2AX
AN

aX
Sun “2

coh 22Y — Ce 2RX
A A

C47)

The induced velocity at a point (x,y) due to a point vortex which acts in

the counterclockwise direction located at (x,,54) is

A ety —
Ea

A — 2
—— D)+ ( Yo JY0)2XX —G)

N IX — Xo

2A - 2

(Cc—ax0) + (Y—Yo)

(14:9)
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Hence the induced velocity on a vortex which is located at a point (x.,5.)

due to the lower row vortices which lie outside the domain is

A,=—Nh
2A

Sunh 27 RR ¥ L

A n&gt; |
ax J=MLcoh ax, em AKXe (x= + y.

nN

2A

Sum 2A Xe
A

coh2
A

eam A

Jd com 2X Xu

MR
nos eT
OX 4d=mML 4(a3,+Ya

C149)

Here x, is the coordinate of the lower row vortices given by eq. (144).

Similarly, due to the upper row vortices are

2X (No— 8)

2A

Ay =

coh 2K ( Yi—B) ep 28 (3a 8)

Sun 2A (Xa— A4)
ANy, = — TN

2 A

coh ax (Ye—8) _ em aR (Xe 5)

MR

ne 22%
2X 4.Mm &lt;2 2

d=Mb rx, a,\ + (Ye —8)

I  .
arn 4=2ML 2 a

whe

 1 E¢ 2)
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Here Xs is the coordinate of the upper row vortices given by eq. (144).

When these equations are used to evaluate the velocities, in some

instances, the vortex XY, locates near one of the vortices on the rows.

Though u,v are finite, the expressions in the right hand side of eqgs.

(149), (150) become singular individually. To alleviate this problem, the

expressions in eq.(l149) and eq.(150) are expanded for small distance X,Y:

and the singularity is removed.

Consider the lower vortex row which is located on the x axis, Fig. 25. The

induced velocity due to this row on a point X.,¥. is given by eq.(l47). If

the point X.Y; locates near the origin, vortex L, the induced velocity by

the row can be expanded for small XY, and becomes

¥

AK
-_
-—

1

nV
2A 2 2

xX, + YY.

x,Nn
22X "0

- no C,
2 A

_ +5cc,
2 A

(: =)

where

-— -—
: —

— }

2
J sme + TY (ew ;I wie — oe )

2 3
__ 8wme + 2X

+) 34
(swe oe Ce©)
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~ —
— 3

4 t,a
od &amp;

wn © Co 6+ cen ©)
al oo

2

— 4 (Sule — cde)

414

O(
~ £

3

——— 2x .2 (sume — se )
3

3
Coo 6 —

A

coo 6 +

3
LIV

3\ 4

( Sue © oe cos ©)

4.2 + Coe) _ aw4 Sm co ©8 —{a ( Sum i (sie - tO S {
DC
—

iD.
J.

J ) (153)
and

X = 2mx, = r cos ©

Y = 2ny, = r sin 9.

 Ye nox
Singular terms ~ ——= 0 2 and —— To;2 are the induced

2X x? + NN aR Xo + Na

velocities on the vortex (x,y) due to the vortex L. Hence when the

contribution from the vortex L is substracted, this singularity will be

removed and the eq.(149) takes the form

A, =
MR Yo

my Cc, + _Nn &gt; more ere,
2 A 2 AX d=mM~L (x, — 20) + Yi
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MR .

v, = hc, =D &gt; _ Fu CI
© 2X = ML 2 ¢

2A 3 (ram Yor ye (54)

),' means that the vortex L is excluded in the summation. Similarly

eq.(150) for the upper row vortices can be modified.

(3) Induced velocity due to the vortices inside the domain. This includes

vortex pair, upper and the lower vortex rows. This is given by

V, =

a.

Xo 2 22A &gt; No (x, — Xo) + ( Ye—Yo)

 rr———

nS ame
ax Xe, ¢ 2

© {x, wom Xo) + (Ye—Yo)

(155)

The above procedure can simply be summarized as follows. Determine the

velocity at a vortex X,Y, using the expression for the unperturbed vortex

street and then add the difference due to the perturbation. After the

induced velocities u,,v. are determined the new positions of the vortices

are calculated using Euler scheme

x. (t+At) = x, (t) + At . u,

y. (t+At) = y(t) + At Lv, (156)

where At is the time step. A program was written to solve this

numerically. About 25-50 vortices on either side of the vortex pair were

considered in the middle region of the vortex street. A time step of 0.01
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was used in the calculations. All the conservations laws such as linear

momentum, angular momentum and energy were calculated to check the

numerical calculations. The linear momentum and energy were conserved to

0.1% accuracy. Motion of the vortex pairs and the distortion of the vortex

street are followed in time.

The results are shown in Figs. 27-37. Figs. 27,28,29 show the motion

of the vortex pair for different strength of the vortex pair r,/T, =

0.5,1.0 and 2.0 respectively. The distance between the vortices is a =

2.5. X-axis represents the time and the Y-axis represents the Y-coordinate

of the vortex pair. Curve 'Q' is the path which the pairs would have taken

in the absence of the vortex street. 'L' and 'R' are the paths taken by

the left vortex and the right vortex respectively due to the presence of

the vortex street. It is seen from the results shown that when the

strength of the vortex pair is small 0.5, 1.0 the vortex pair bounces back

from the vortex street. When the strength of the vortex pair is 2.0, the

vortex pair goes through the vortex street

The turbulent intensity of the normal velocity component in the inner

part of the boundary layer is about two times larger than that in the outer

part of the boundary layer (at y=0.25, v'=0.04U_ and at y=0.8%, v'=0.02U_).

The vortex strength r,/r =1.0 approximately represents the eddy with the

normal velocity v'=0.014U_. During the ejection process the ejected fluid

moves away from the wall with the velocity which is about two, three times

larger than that the outer fluid. Hence it will move across the wake and

will reach the outer region. Since the outer fluid moves with low

velocity, it will be blocked by the wake vortices. When the length of the
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plate is increased the longitudinal distance between the vortices and the

strength of the vortices increase. Therefore the vortex street behind a

longer plate will block more effectively than a shorter plate. The

experimental results show that when the length of the plate is increased

the local skin friction reduction is increased (Anders et al., 1985).

Figs. 30-33 show the position of the vortices in the vortex street and

the vortex pair at different instants of time. Figs. 30-33 show the

results for the case Lr, = 0.5 and ¢ = 2.5. It is seen that the clockwise

vortex in the pair interacts with the vortices in the lower row of the

vortex street which are in the anticlockwise direction and bounces back

from the wake. Similarly the anticlockwise vortex is kept above the wake

by the upper row clockwise vortices Figs. 31,32. Due to the highly

unstable character of the vortex street and due to the vortex pairing, the

vortex street becomes very distorted (Fig. 33) and the calculations cannot

be continued for longer times. In some cases, a vortex in the vortex pair

and a vortex in the vortex street pair and move away from the wake due to

the large induced velocities Figs. 28 and 34. To alleviate this problem

different core radii were introduced for the vortex pair and the vortex

street. The magnitudes of the radii are determined through energy

considerations of the system.

A wake profile as shown in Fig. 35a is represented by an equivalent

vortex street as shown in Fig. 35b. It is assumed that the vortices have

circular cross sections and constant vorticity. The kinetic energy

associated with one pair of vortices S) and S, is equivalent to the kinetic

energy in the equivalent wake length and is given by
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Kinetic energy = p (r2/8n&gt; ) 34.73 (157)

Consider a vortex system as shown in Fig. 35c which consists of two

circular vortices with constant vorticity. The core radius is r, and half

the distance between the vortices is R. The kinetic energy associated with

that system is given by ( Lamb 1940)

. ‘ 2 3
Kinetic energy = p (I'“/8n”) F (m1)-tt

wk=-. A

(2) | | 2 (x,9)% (xv) Log Je—xS +(3-4) {d= dy d= dsTe
je.

(159)

The variables x,y are non-dimensionalised with R and the integration is

over the circular vortex sections 5, and S, . &amp; is the strength of the

vorticity in the circular regions. Equating eq.(157) and eq.(158) the core

radius r can be determined. The above integral was numerically evaluated

and for F = 34.73, r /R takes the value 0.55. Substituting for R, one

obtains r, = 0.154. Since the length scales in the vortex pair is about

twice the scale in the vortex street the core radius of the vortex pair is

taken as 0.3. After the sizes of the core radii are approximately

determined the program was modified to include the effect of the core

radius. The induced tangential velocity by a vortex which has a core

radius r, and circulation T' is given by

= &lt;Va (T/2mr ) (r/c) for r Sr
= T/921tr for rzr

oC

(12)

The case Lr, = 1.0 is run again with this modification and the results are

shown in Figs. 36, 37. It is seen that due to the different core radii for

the vortex pair and the vortex streets, the vortex pairing is removed and
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the results show that the vortex pairs bounces back from the wake.

A large-eddy is a localised three-dimensional region with distributed

vorticity over the region. In the above model we simulated the large-eddy

with a vortex-pair. The results show that the strong interaction between

the clockwise vortex and the vortex street occurs after the clockwise

vortex moves inside the region between the upper and the lower vortex rows.

During the interaction the clockwise vortex interacts with the vortices

close to it and bounces back to above the wake region. From the above

results we infer that some part of the large-eddy will be pulled inside the

region between the lower and the upper vortices. In the point vortex model

the clockwise vortex bounces back to above the wake. In the distributed

vorticity case the results may be different. It would be an interesting

study to investigate the above model replacing the vortex pair with a

distributed vorticity model. It is felt that the part of the eddy which

moves inside the wake region will be kept inside the wake. We can extend

this model to three-dimensional case. For that we have to replace the

point vortices with vortex filaments. The large-eddy can be simulated by a

vortex ring. As discussed previously it is felt that depending on the

relative strengths of the wake and the eddy, some part of the eddy will be

pulled inside the wake and will be kept inside the wake region
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Chapter 8

In chapter 7 the interaction of a vortex street and a vortex pair is

studied. The vortex street simulates the wake behind the plate. Munford

and Savill (1983) flow visualization experiments, which show that the wake

behind the LEBU devices consists of a coherent vortex street, were done at

a low Reynolds number of 10,000 based on chord length of the plate. The

length of the vortex street region decreases with increasing Reynolds

number and at higher Reynolds number the wake behind the plate becomes

turbulent at a shorter distance downstream of the plate. Therefore in this

chapter we will consider the interaction of a continuous wake and a vortex

pair. The turbulent wake behind a plate has the velocity defect

approximately in the Gaussian form. The vortex pair simulates the ejection

process or the wallward movement of the outer fluid towards the wall. In

the absence of the wake the vortex pair will move with the constant induced

velocity. When the wake is included the vortex pair and the wake interact

and the motion of the vortex pair is altered. In this chapter we will

determine, how the motion of the vortex pair is altered and, how the wake

is modified due to the interaction. We employed the two-dimensional model

to gain some insight into the effects and the mechanisms. The problem is

solved using cloud-in-cell (CIC) method. There are basically two methods

to solve the incompressible two-dimensional fluid flow problems. One is

the stream function vorticity equation method, Roache (1975), and the

second is the vortex method. In the first method the stream function is

solved from the Poisson equation and then the vorticity equation is solved

to obtain the new values of the vorticity at the Eulerian points. This

procedure is continued till desired time is reached or steady state
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convergence is reached. When there are only concentrated vorticity regions

imbedded in an otherwise irrotational fluid this method becomes unstable

(Fromm and Harlow, 1963) and it is very convenient to use the vortex method

[Leonard (1980)

Vortex method simulates flows with concentrated voricity regions. By

the theorems of Helmholtz and Kelvin it is known that the inviscid motion

of the vorticity in these regions is given by the local fluid velocity

which in turn is determined kinematically from the vorticity field. Thus

in this method, the vorticity region is discretized into parcels of

vorticity and this discretization is tracked in a Lagrangian reference

frame. Leonard (1980) reviews the vortex methods and discusses the

advantages and the disadvantages of the different vortex methods. The

simplest method among them is the point vortex method. In this method the

vorticity region is discretized into a finite number of point vortices.

The induced velocity at a vortex by the remaining vortices is calculated by

Biot-Savart formulae. After the induced velocities at all the vortices

have been evaluated, the positions of the vortices are integrated in time.

; . . 2 ;

For N point vortices the above procedure requires O(N") operations to

compute all the required velocities. When the number of point vortices

becomes large the computing time increases enormusly. One method which is

used to decrease the computing time is cloud-in-cell (CIC) method. This

method is widely used in Plasma dynamics Birdsell et al. (1969), and is

recently used in fluid dynamics, Christianson (1973) ,Baker (1979). This

method is described below and later this technique is applied to the wake

problem.
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A given vortex, say at (x,y) with circulation Lo» resides within a

certain mesh cell, as depicted in Fig. 38. In the CIC method the vortex

coordinate (x,y) is taken to be at the centre of the vorticity cloud of

finite extent. Using a cloud the same size as a grid cell, Ax by Ay, the

vorticity is distributed over the region as shown in Fig. 38. The strength

of the vorticity is given by “, = I /AxAy. In the next step this vorticity

in this cloud is distributed to the spatial grid points. This is done by

drawing a cell the same size as grid cell at the grid point and the common

cloud to this cell and the vorticity cloud is assigned to that grid. For

example, in the above case, the vorticity in the area shaded ( ) is

assigned to grid point (i,j); that shaded ( ), to (i+l,j); that

) to (i,j+1). This can

be written as

w(i,j) =a, , Ww
i,i n

ot i , wp-

Cd

A
1+1,3

a, .

i+1,i+1

 i. 9+]

(Ax - x) (Ay - y.)/ AxAy

Av J
-

)/ AXAy

*xXAv

(Ax ~ 3K ) Ya / AxAvy

and (x,y ) is taken as the distance of the point vortex from the spatial
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grid point (i,j). For a large number of clouds, the vorticity at (i,j) is

obtained by summing over the clouds as

(1 J ) ), a
n i,j]

w
 Tm

After all the vorticity has been distributed among the mesh points Poisson

equation for the stream function, {y, is solved with appropriate boundary

conditions

1) i
yr

With the stream function in hand, velocities at the mesh points can be

calculated, for example, by central differences

es]
J 1 = CVs a TY )/2Ay

Vv.
1 1 - Vy, i- ( Viel, i-1,1 )/2Ax.

To determine the velocity of the vortex 'n' bilinear interpolation (area

weighting) can be used.

Ad , + + + ."1,371, 2141, 141, Biel, +1%+1, +1 ai i+1%, 541

After determine the velocities of all the vortices the vortex positions are

moved forward in time by the formulae

t (c+At) = x (t) + u At
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y, (t+At) = y, (£) + v_At.

This concludes the description of the CIC method.

This method conserves total vorticity and the linear momentum, but the

angular momentum is not conserved. The distribution of vorticity to the

mesh and the bilinear interpolation to obtain the vortex velocities are

subject to error. Due to this error small scale fluctuations are produced

on a scale compared to the grid size. Christianson (1973) applied this

method to few interesting cases, formation of Karman vortex street,

Kelvin-Helmholtz instability and evolution of two finite area regions of

vorticity in proximity, and reported good results. Baker (1979) applied

this method to the roll-up of vortex sheet and obtained results which

compared well with other numerical results. It is demonstrated in those

calculations that the large-scale features are very well resolved by this

method and is independent of grid size. One proposal to improve the

numerics of CIC method has been put forth by Hockney et al. (1974). In the

following, CIC method is applied to study the interaction of the continuous

wake and the vortex pair. Using this method large-scale distortions of the

wake and the motions of the vortex pairs are investigated

The wake behind a plate has a Gaussian form and is given by

J = - exp ( -18y

where y is the transverse coordinate Fig. 39. The vorticity distribution
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in the wake is given by

2) 36y exp( _18y°2 )

The width of the wake which is defined as the distance between the points

where the velocities are 0.01 is taken as one unit. The velocity at the

centre of the wake is one unit. The wake behind the LEBU devices when they

are used in tandem is measured by Bertelrud et al. (1982) and Mangus

(1983). The measurements show that at 108 ( 8 = boundary layer thickness )

downstream the wake velocity is 0.20, ( u, = free stream velocity ) and

width of the wake is 0.35 and at 256 downstream they are 0.10, and 0.48

respectively. If the distance between the vortex pairs is taken as §/4,

and the eddy velocity as 0.027, then the strength of the vortex pair TL, ==

0.0380,. Non-dimensionalising the variables by the wake velocity and by

the width of the wake the strength of the vortex r, becomes 0.5 - 1.0. To

study the mean shear a constant mean shear profile U=wy is added to the

wake profile, Fig. 39. The mean shear in the outer part of the boundary

layer is du/dy = 0.2u,/s. The non-dimensionalised value for w based on the

wake velocity and the width of the wake is in the range of 0.25- 1.0.

For the numerical calculations a rectangular grid as shown in Fig. 39

is used. The vorticity above the lines y = 0.5 is assumed zero. This

implies that the wake vorticity is assumed to concentrate within this

region -0.5&lt;y&lt;0.5. In the next step every grid cell is divided into

several small cells and the vorticity in those small cells are replaced by

point vortices located at the centre of the small cells. This way the

continuous vorticity in the wake is simulated by equivalent point vortices.
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The upper boundary BC ( Fig. 39) and the lower boundary AD are placed far

away from the vortex system and are assumed to be streamlines. If the

stream function at the lower boundary is taken as zero the stream function

at the upper boundary takes the value

- a

J exp(-18y°) dy

 i =7

Iwo types of boundary conditions are tried at the left boundary AB and at

the right boundary DC. One is that the disturbances are zero at those

boundaries and the flow crosses those boundaries undisturbed and the second

type is that the flow conditions are periodic at both boundaries. Both

type of boundary conditions produce the same results. This we expect also

because the interaction between the wake vorticity and the vortex pair is a

localised effect and the boundary effect is small. To study the effect of

the wall the lower boundary AD is moved closer to the wake accordingly.

Poisson equation is solved using Fast Poisson Solver routine. We used

the code which was developed at National Center for Atmospheric Research

(1975). The numerical procedure can be explained as follows:

(1). using the CIC method solve for the induced velocities on the point

vortices in the wake and on the vortex pair by the point vortices in the

wal- Ff &gt;
-

(2) add the induced velocity by the vortex pair on the vortices
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(3) add the mean shear velocity

4) move the vortices to the new positions.

The procedure is continued till desired time is required. To study the

effect of the eddies coming from below and above the wake, the effect of

the wall and the effect of the mean shear, the following cases as shown in

Fig. 40 are considered. Except cases (1) and (4) in all other cases (2),

(3), (5) and (6) wall is placed at a height y=-2.0.

The following parameters are used in the numerical calculations Ax=0.1,

Ay=0.05, M=257 and N=129 where Ax, Ay are grid sizes and M, N are the

number of nodal points in the X, Y directions. For discretization every

mesh cell is divided into 4 small cells. The results are shown in Figs.

41-69b. In these figures deformation of the wake and the position of the

vortex pairs are shown at different instants of time. Figs. 41-49 show the

results for the case (1). In this case a vortex pair with the strength rT,

= 0.5 and the distance between the pairs ¢ = 1.0 is placed at a height

H=1.5 above the centre of the wake. Fig. 41 shows the motion of the right

and the left vortices in the vortex pair with time and also shown is the

path taken by the vortices in the absence of the wake. It is seen that due

to the interaction with the wake the vortices move slowly towards the wake.

In Figs. 42-46 the distortion of the wake and the paths taken by the vortex

pair are depicted. The wake region which is plotted is the part of the

wake which was initially in the region -0.5&lt;y&lt;0.5. There are two

observations that have to be made. One is what changes take place in the
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wake and the other is the motion of the vortex pairs. It is seen that the

distance between the vortices in the vortex pair increases with time. This

means that due to the interaction the vortices move slowly and spreads in

the streamwise direction. It is very interesting to observe the changes

that take place in the wake. The disturbance introduced by the vortices

grows with time and at the same time is swept by the mean wake velocity to

the left side. Concentrated vorticity regions are formed on the upper and

lower part of the wake. It is observed in Fig. 46 that when the

anticlockwise vortex in the vortex pair moves close to the wake it lifts

the fluid in the upper part of the wake. If the calculation is continued

the vorticity in this lifted fluid which is in the clockwise direction

moves the anticlockwise vortex away from the wake and therefore we

terminated the calculations at this time. Figs. 47, 48 show the results

for the case r,=1.0 and c=1.0. Fig. 49a and Fig. 49b show the results for

the case r,=3.0 and c=1.0. It is seen that when the strength of the vortex

increases it moves as undisturbed until it moves very close to the wake.

Fig. 49a and Fig. 49b show that when L,=3 .0 the vortex pairs go through the

wake. Another observation is that in the initial stages when the strength

of the vortex is doubled the displacement of the wake also doubled. This

can be noted in Figs. 42, 47. Fig. 50 depicts the results for the case

(2). This is same as the case (1) but with a wall which is placed below

the wake at y=-2.0. There was no difference on the motion of the vortex

pair. Fig. 50 shows the distortion of the wake and the path of the

vortices at the non-dimensional time T=15.0. It is seen that due to the

presence of the wall the growth in the lower part of the wake is

suppressed. Figs. 51, 52 show the results for the case (3). This case is

same as case (2) but in this case vortices are moving up from the region
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between the wake and the wall. The results are similar to the case (1) in

that the vortices move with reduced velocities and the streamwise distance

between the vortices increases with time

Next we will discuss the effect of mean shear. This case models the

boundary layer problem better than the case without the mean shear. Case

(4) and case (5) did not show any substantial differences and we present

the results for the case (5). This is same as case (2) with the addition

of a constant mean shear profile to the wake profile. The results are

shown in Figs. 53-63 for the case r, = 0.5, c=1.0, mean shear = 0.5 and the

wall is placed at y=-2.0. The vortices were initially located at y=1.5.

Since there is a mean shear the vortices are advected to the right by the

shear. Figs. 53-55 show the results for the case without the wake i.e.,

the strength of the wake is zero. In this case, if the wall is away from

the vortices, then the vortices move on parabolas

Fig. 56 shows the motion of the vortices with time with the wake. It

is seen that as in previous cases the vortices move slowly due to the

interaction with the wake. Figs. 57-60 show the distortion of the wake and

the positions of the vortex pair. It is observed that the distance between

the vortices increases with time. In this case we obtain somewhat

different picture about the distortion of the wake. As in the previous

cases the disturbances introduced by the vortex pair grows in time. But

the important difference is that the disturbances in the lower part of the

wake disappeared and concentrated vorticity regions are formed only in the

upper part of the wake. In Figs. 61-63 we plotted the streamwise velocity

distributions at different x locations. The solid lines show the modified
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velocity distribution and the dotted lines show the undisturbed velocity

distributions. It is very interesting to observe how a shear layer is

developing in the upper part of the wake. In Fig. 63 this shear layer

appears in region 12.0&lt;x&lt;15.0. Figs. 63a-63c show the results for the case

r,=3.0, c=1.0 and mean shear =0.5 and the wall is placed at y=-2.0. It is

seen from Fig. 63a that the vortices go through the wake in this case.

Fig. 63b and 63c show the distortion of the wake. It is seen that due to

the large strength of the vortices the wake is distorted violently.

From above results we make the following general conclusions about the

changes occur above the wake. The eddy which moves from above the wake

towards the wall due to the interaction with the wake moves with reduced

vertical velocity and spreads in the streamwise direction. When the

strength of the vortex r,=0.5, the distance between the vortices is doubled

after the non-dimensional time interval T=12.0 and the vertical distance

which is travelled is reduced by about 40% from the undisturbed value. When

[,=3.0 the vortices go through the wake. It is observed for the case

r,=0.5 that the disturbances introduced by the eddy in the wake grows with

time and forms shear layers above the wake. The region below the wake is

not much affected by the interaction. For r,=3.0, the wake is distorted

violently and it spreads to lower and upper regions.

The vertical velocity of the eddy corresponding to the case r,=0.5 and

c=1.0 is 0.5U /2m (U_ is the center line velocity of the wake). Hence when

the wake velocity u is 0.20,, the vertical velocity of the eddy is

0.016w,. The turbulent intensity of the vertical at y=0.85 is 0.020,

Therefore we can conclude from the above results that the wake behind the
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LEBU devices reduces the motion of the outer part of the fluid towards the

wall.

Next we will consider the results for the case (6) in which the

vortices move from the region between the wake and the wall. Figs. 64-69

depicts the results of the distortion of the wake. The vortices are

advected by the mean shear to the left. Figs. 64-67 show the results for

the case r, = 0.5, c=1.0 and mean shear 0.5. The vortices were initially

located at the height y=-1.5. It is seen that the vortices move

differently than when they move from above the wake. The vortices are

tilted towards the wall when they move away from the wall. The reason is

due to the interaction the counter rotating vortex in the left is induced

with a larger vertical velocity than the clockwise vortex in the right.

Hence the vortices move with different vertical velocities and due to the

mean shear they are tilted towards the wall. Figs. 68-69 show the results

for the case r,=2.0. Since the strength of the vortex is large it moves

undisturbed until it moves very close to the wake Fig. 68. When it moves

closer to the wake it strongly interacts with the wake and disturbes the

whole outer region, Fig. 69. Fig. 69a, 69b show the results for the case

r,=3.0. It is observed that the vortices move across the wake and reach

the outer region of the wake

We did several calculations with smaller grid sizes and smaller time

steps to see the influence of the grid size and time steps. There were no

significance differences observed in the distortion of the wake or in the

motion of the vortex pairs. One difficulty we encountered is that when the

point vortices move close to the wake they induce large velocities on the
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wake fluid. Due to this the wake fluid lifts away from the wake and wraps

around the point vortices. This is observed in Figs. 46, 48, 52, 60, 63b

and 63c. An alternative may be to simulate the large-eddy with continuous

vorticity distributions instead of point vortices.
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Chapter 3

In this chapter we analyze the interaction of the vortex pair and the

continuous wake using linear theory. In the next section we will extend

this analysis to study the three-dimensional effects. The problem is

solved as an initial value problem using Fourier and Laplace transforms.

This can be considered as a hydrodynamic stability problem. Case (1960)

discusses the stability of inviscid plane couette flow as an initial value

problem. Since it involved large amount of work and it gives the same

stability criteria it is not widely attempted. The flow field considered

for the analysis is shown in Fig. 70. A wake which has the velocity defect

in the Gaussian form U=-exp(-18y2) is flowing parallel to the x-axis. Two

point vortices of strength -I and +I are located at the points (0.0,H) and

(D,H) respectively. Taking the Fourier and Laplace transforms to the

linearized Euler equations we obtain

2 — 2 _ 2

dv —~ AV = V du =
dy jee dy? So K 4% _ en

tR(c-1) dy*
QD

This is the familiar Rayleigh equation with source term. The source term

is introduced by the vortex pair. Here v(k,y,c) is the Fourier and

Laplace transforms of the perturbation velocity in the y-direction

v(x,y,t). vy(k,y) is the Fourier transform of the initial perturbation

velocity in the y-direction Vo(X,y)=v(x,y,t=0.0). k and c are the Fourier

and Laplace transform variables which are defined as:

Fourier transform
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b(B,t) =

0

 —~ Bx| d(x.t) e dx

x3

Fourier

a
h-

inverse transform

oo
4

[X bt) = Lo
 9 x |

i” cRFhe e | db
J

Laplace transform

x0
n

4 (Bg) = |
~ — St

$(k,t) e dt

€9)

Laplace inverse transform .
RQ L100

—- St
| dR se dsS(R.1) = —

and
” ~—

s=-ck

The boundary conditions are

Av + | RIV =

dy
O

= 0| | Vdv_
dy

The vorticity £ is defined as

J -
to

Vo _ BUY,

dx oy

when vy »@ «

when POD

The Fourier transform of this gives
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" RA ~r

5. = 2S \ d Vo — 2 Vo |
LR dy*

In the problem we analyse two point vortices initialy located at (0.0,H)

and (D,H). Therefore we have

£9 = - TI 8§(x)8(y-H) + T 8§(x-D)8(y-H)

and the Fourier transform of this yields

fo =T (ee XP 1.0) s(y-H).

Substituting this relation in the eq.(161) we get

2 3 2 L £ C

0 Sm V ————— —

(162)

This equation is solved using Green's function technique. Let ¢,(y,k,c)

and ¢,(y,k,c) be two independent solutions of the homogeneous equation of

eq.(162). We can select 9, and ¢, as

$,(0,k,e) = 1; ¢' (0,k,c) = 0

$,(0,k,c) = 0; $',(0,k,c) = 1.

Hence 21 will give a symmetric solution and ¢, will give an antisymmetric

solution. Define

Po (Y,RR,0)=d,(v.20) b, (—0, ®,c) —|R) Bed |

L(Y, BY 4 (mo. 2)-1 RL (mou 0) |

a (v, R.0) = bw b,)] fre Red) + 1B) da (re, zed
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_ $b, (4. %,0)] b (+0, B.D + |B) &amp; (+e, zo}

(1 83)

The solution of eq.(162) can be obtained using classical Green's function

method ( See Appendix K). We obtain

 Vv (VY oD) — ——

nm

~L®0

yn {e iol GNA eH)
 Cc — Ur)

re

G(Y,®, cH) —J

» 3

Ww, (H, £,0) Wi (VY. R, c)

b (+00, 8,0) +101 b, (roo Rf 4 driol de|
a

N &lt; HH

JY, (vy, B,c) WY, (H, R,¢)

o! o (+o, 0) + 181 &amp;, (roo,8,ed]{ ba (rood +18) ouf

4 . H

Applying the Laplace inverse transformation to the above equations we get

—a0+LQ

—L®D —tkterif | fe — 1] Pau, RPL R De de
5 -— a MgtTo.NN

C= UCR 4! rood « 181,1]dycoon+101dpCaood]
1 3

V(y. 2. t) = - |
0d

for y&lt;H
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—-0 +1 Q . “Bite

 pad. Dk EFL no OnEdede
excl 2 (c— ued §) rd +1 $13 4. (+0) +\R\ PD, (+

a F

for v&gt;H.

Integration has to be taken in the lower half plane if k is positive and in

the upper half plane if k is negative. Singular points of the equation are

introduced from different part of the integrand. The zeros of

(¢', (#=,k,c)+ké,(+=,k,c)) and (¢',(+=,k,c)+kd, (+=,k,c)) introduce poles in
the integrand. These poles give rise to the exponential behaviour. These

are the symmetric and the antisymmetric normal modes which we would have

obtained if we had done the normal mode analysis. The other singulaities

are due to c-U(H)=0, b, (H,k,c) and Vb, (y,k,c). The singularity c-U(H)=0

gives rise to an oscillating solution if U(H) is other than zero and gives

a time independent solution if U(H) is zero. When we integrate in the k

space the oscillating solution will decay as 1/t and the time independent

solution will give a solution which is only function of Xx and y. The

components ¥, (H,k,c) and b,(y,k,c) will have logarithmic singularities and

the inverse transform will decay as 1/t, Case (1960).

The singularity regions in the c-plane are shown in Fig. 71.

(¢') (+=,k,c)+k¢, (+=,k,c)) and (¢',(+=,k,c)+ké, (+=,k,c)) are equal to zero

along the lines RST and PQR respectively. These give the symmetric and

antisymmetric growing modes solutions. Points 1 and 2 are eigenvalues for

a particular wavenumber k. The conjugate solutions are shown in the upper

half plane. Point R corresponds to the inflection point. Point 5

represents the singularity c=U(H) and the singularities associated with

$v, (H,k,c) and b,(y,k,c) lie on the line PRT. In the following calculations

we will first calculate the contributions from the exponentially growing
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solutions and will then compare them with the numerical results which we

obtained in the previous chapter. Next we will include the contribution

from all the terms in the calculations.

The eigenvalues for the wake profile U = exp(-18y2) is shown in the

Figs. 72-75. Here Rr and c, are the real and imaginary parts of the

eigenvalue and a is the wavenumber. The velocities at the edges of the

wake y=+0.5 are obtained from eq.(163) using residue integral method.

v(y=0.5,k,t) = Ry + Ry

vlIYé

v(y=-0.5,k,t) = R, - R,
(163)

—tRD —- Rt Cg
RQ, = Mt e —1.0 Wa (H,&amp;, 0g) Ww. Cy, &amp;, Cg) e

2 ——————— EE— al —

Co UID Tl Geood +1014, (rood) diglemainigean]
2 C= Co

— Bg. &lt;«® &lt; BRB,

R, ond — 4 ’
CoR e —-\. 0 Pa CH,q CH) (W,B,Cq) (YR, CQ) e "

— !{ &amp;b, (+0) + | R) , (+00) py : |Cc UCH $ | d_{ 4, cod +1814, (0)
C=C

~% &lt; R&lt;E,, (\ es)
and Cg» c, are the eigenvalues for the symmetric and antisymmetric modes

and kos and Koa are the wavenumbers correspond to the neutral solutions in
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the symmetrical antisymmetrical modes. For the Gaussian wake profile of

2
the form exp(-18.y7), kyg = 8.1439 and kya = 4.7432.

After determine the velocities at the edges of the wake using the

Kinematic conditions we can determine the evolution of the wake with time.

The kinematic boundary condition at the edges of the wake is

OL, u2l
3t 3X

Here n is the displacement of the edge of the wake in the y-direction U is

the wake velocity at the edge of the wake and v is the normal velocity.

Taking the Fourier transform of this equation we gat

|  Vv
LR U—=c

Substituting for v from eq.(164) and (165) we obtain the expressions for

the upper and the lower edges of the wake.

1 wubber -

—- | ] R, + | Ras

LB U—cCg LP LJ— Cp

R1 R, oo ke
Lower = LR U—Cgq LR U— Cn

(166)

Taking the Fourier inverse transform of these expressions we obtain the

solution for n and n . The results are shown in Figs. 76-78 for
upper lower

the case I'=0.5, H=1.5 and D=1.0.. From the stability diagram Figs. 72-75

we note that the wavelength corresponds to the maximum growth rate is about

1.6. It is observed that the deformed wake also has the length scale in
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that order. Also shown in the Figs. 76-78 are the solutions obtained using

the cloud-in-cell method. It is observed that below the vortex pair the

results from the linear theory considering only exponentially solution

differ by a small amount from the numerical calculation results. The

reason is that, as mentioned previously, since U(H) is approximately zero

in this case, c-U(H)=0 singularity introduces a time independent velocity

field. This will give rise to an algebraically growing solution for Tupper

and Mower" The physical reason is that since the mean velocity U(H) at

the vortex locations is zero the vortices are stationary and induce a

steady velocity field. Some part of this velocity field is associated with

the c-U(H)=0 singularity solution and produces an algebraically growing

solution Nnpes and "ower

Next we will calculate the contribution from all the terms. For that

we have to take Laplace inverse transform integration in the c-plane to

include all the singularities. We considered the contour 'C' » as shown in

Fig. 71, and evaluated the Laplace inverse transform integration along this

contour. The results are shown in Figs. 76-78. At time T=1.5 we obtain

the same results as the CIC results. When the time increases the

difference between the two solutions increases.

From the linear theory results we check the numerical calculations and

further we observed that the larger part of the solution is contributed by

the exponentially growing solution. The algebraically growing solution is

significant directly below the vortex pairs. Even at larger times, T=6.0,

the linear theory solution compares quite well with the numerical

calculations.
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Three-dimensional theory

In the previous chapters we investigated the response of a wake to

two-dimensional disturbances. A large-eddy is a localised

three-dimensional region with distributed vorticity over the region. The

interaction of the large-eddy and the wake behind the LEBU devices is a

three-dimensional phenomena. Therefore in this section we will investigate

the interaction of a wake and a three-dimensional eddy. Specifically we

try to determine the response of the wake to a three-dimensional

disturbance and the modification to the motion of the eddy due to the

interaction. Since the nonlinear calculations of three-dimensional

rotational flow is much more difficult, we will do a linear analysis.

Since it is not possible to find the dispersion relation for a continuous

mean profile in closed form, in the analysis we replace the continuous wake

by linear profile for which dispersion relation can be found in closed

form. In two-dimensions we simulated the eddy by a vortex pair. The

extension of this structure in three-dimension will be a vortex ring.

Since the Fourier transform of the velocity field induced by the vortex

ring is not easy to evaluate we consider a three-dimensional dipole instead

of a vortex ring to simulate a three-dimensional eddy. The effects of the

dipole and the vortex ring on the wake are qualitatively same in the

initial stages of the interaction. To study the effect of the mean shear

we add a constant mean shear profile to the wake profile. Therefore we

have the model problem as shown in Fig. 79, to be analysed. For the

analysis we consider the frame of reference where the dipole is at rest.

The mean velocity profile is given by

JU(y) = w(y-H) 1
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U(y) = -U (h-y )/h + w(y-H) 0 &lt;y&lt;nh.

A dipole of strength pu is located at a height H on the Y-axis. The normal

velocity field induced by this dipole is

2 2 7: -Ix + 2 + (y-u3 17 rE

2

3(Y—H)

[xs 224 (y=)? 1%Vg=
LA

ot

Two-dimensional Fourier transform pair is defined by

1 1

T (Rx, ,.,Y.t) = | | L(x, Z,Y_,_t) €
a RE

3 dx dz

—.

-

x —

0  ~~

F(x, 2,Y,t) =
1 ~ LR, % 1 RyZ

£ (Rx, Rg, Yt) e e dR. dR|

(2x)?
[

- opm Be

I'he Fourier transform of the velocity field Va is given by

7

here o2 = 1,

u/2 ao

/
k

 y¥ -H)

Hence the Fourier transforms of the induced velocities by the dipole at the

interfaces a.b.c are
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_ -a(H-h)
70a = M/2 ae

“oh u/2 J
~H

Voce u/2 OQ ~~
-a(H+h) | (67)

Taking the Fourier transforms of the linearized Euler equations, we obtain

1 a,

 ~~ ld A AL 3 w + 3
2y

-OO (i' 3)

3X
= + Cy) + %. Wu + Vv du

AN
= — tkap ( 7)

3V + JIY-5 UY) Ry V { 3b
Tay

(170)

37
A7 + Ue LR x

~

i
a 8

(71)

oo ~r ~S
Here u, v and w are the Fourier transforms of the perturbations u, v and w.

Combining eqs. (169) and (171) we get

2 (Uetky + Set) «+ Dey) eB] Ra Trek, &amp; \ + RTdu
Y

3
(21 22)Pp

.

i “FE  D)
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Equations (168), (170) and (172) provide the equivalent two-dimensional

equations of motion in the rotated frame of reference. This we expect from

Squire's equivalent theorem. Eliminating u,v and p from the above equatins

we obtain

Q ~

2-1 2at By?

2 ny RP ~Cll a ue ake {3 CTL
oy?

 Cc

Zz
vhere a ER + KZ,

~~ J
Let us define

iy X?&lt;4- Me

(173)

where vy is the induced velocity field by the dipole given by eq.(l67).

Hence v represents the disturbance due to the presence of the wake.

Eq.(172) becomes

2_ 2_ 2 2 _

&gt; [5 _ WT] + usta] vl co5t ay*2 ci
(74)

Laplace transform pair is defined by

F(R.2. ,Y,. 8) =
Da

_ —st

(Bx, Ro ,YE) e dt
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+t?

$( Bx, £2 RED = i

8KA

S+
£ (Rx, Bz2.v,8) e ds

J

LOD

Laplace transform of eq.(l174) yields

2.

2Y — ov
[FIV

—

-~

pt
(75)

Taking Laplace transform of the eq.(172) we obtain an expression for

pressure. Changing the variables s=-cik, we get

px (U—c) BY
ay

I + LB,Vdu + U(Y) 3Vo _ Vo du
AY c DY cay

(4.+22)b (1 76)

Kinematic boundary condition at an interface takes the form

Cora——
3 Lu 9!

or3t

where n is the displacement of the interface in the y direction, U is the

mean velocity at the interface and v is the normal velocity at the

interface. Taking the Laplace and Fourier transforms of this equation

yields

1 LB, (U—e) = Vv — Vo
ceRx

(177)
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Next we apply these equations (175), (175) and (177) at the interfaces

a,b,c (Fig. 79) and obtain three simultaneous equations for the

displacement of the interfaces n Ny and N. (See Appendix L for detail ).

Taf (wer-nyre) x + (w(H=h)+C) xeeth ah + (win-ny+c) 1 (ck)

Ly

 ——

ss (W(H=-RY+C) (wH+c+u) x cemoch xh L (t ®x)

IH 1)
(178)

la I- (WH=+c+u)(WCH=-h)+C) X cmach xh laa)

Lo 2 (WH cru) x ett xh — 2
 &lt;2

(WH+C+ ud La Rx)

Te i- (WH=+C+u) (w(H+h) +2) X coach xh
A

- 0 (73)

1, ! — (W(H+h) +) (WH +Cc+U) x coach oth | (cB)

A

« 2

PRNCICTINTS X coth Xh + (wCH+h)+C) £

(W(H+h) + oY { B.) =O (x0)

rom these three simultaneous equation we can solve for Nn,» Ny and n,-

 nN /A
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«nd

n, = A_/A

whzs~2

A = ¢C

3

| 3 3 2 2 3 2

(wH+e) x (1+ cath xh) + (WH+2) x u (1+ ceth xh)

La 2 2

wre) | Yue Gt eth xh) — MU (1+ coth xh) 3
2

AJhe (1+ cot h) i
2

[4% (Ud coth wh — 2) + Who C+ooth ch (2 — bee) | |
(eh)

Aa= Hox J/ e a (wH+ex Lu) Keoth oh Ll oneyae)
2 b

X (1+ Cothoch) +4)- (WH+c+L) (WeH+h) +e) *comaek oth |

Ay,= pee
2 2

ar

— « (H=h) 2 2

e (wn—ny+c) (whsce+ 0) conch « h

To determine n, and n_ first we take the Laplace inverse transform and then
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take the Fourier inverse transform. The singularities of n, and n, are

determined by A = 0. This is the dispersion relation for the linear wake

profile considered. One root of this equation is ¢c = 0 and the other three

roots are the roots of a cubic polynomial. This can be determined in

closed form ( Abramowitz and Stegun 1970). A can be written as

~he -- a

 eo A

A DY {l+coth EL. ( n + a

X= WH+ C

 QA

NN. =

ol

A

«(1+ coth xh)

2

{+ Ux (1+coth th) _u (1+ csthoth)LR

a. &lt;4 &lt;2 2

— who (1+ csth xh) {

y

J ~
il RE

( | + cath  xX 8 uoh ( uJ oo coth x h Mo2) —+

wih
_.

I'd

IR (1 eth oh) (- - ae) |

Tet
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- 4
1 a, / 3 a, / 3

-

S
2

L/6
J

(a a, = 3a) - a, / 27

2.1/2 1/3
i,

r - (q° + *
” 1/2 1/3

then the roots are

Cg + &lt;
pp J)-a,/3

| /2 (e +s,) -a,/3 +iv'3/2 (s, - S,)

T . 1/2 (s +s,) -a,/3 -1v/3/2 ( - "

When the mean shear w=0, we can obtain the roots in the simple form

~
— 3

C,-LJ
Sh (1+ esthh) — X +

Foden soma)—Huweth oh) :al RyiL (V+ cathoc hh) (1 — ohcothoch)

! a cath on)
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. g oh (1+ coth oh) — &amp; —
3 = -_

) mn

fist G+cothoth) — | = 1 o"(1+cotta h) (1—ah ceth oh)

(1+ ctl oh)

There is a cut off wavenumber beyond which the imaginary part of the roots

are zero. For the case w=0 this wavenumber is 1.77. After we calculate

the roots of the equation, we do the Laplace inverse transformation using

residue integral method. Fourier inverse transformation is done employing

Fast Fourier Transform (FFT) routines. When we apply the FFT routines the

infinite integral in the wavenumber space is curtailed to a finite

integral. Integration range was increased to larger range to verify that

the aliasing effect did not affect the results. In the calculations the

variables are non-dimensionalised by

[Length

Velocity

Tr  rit ty

- 0

1

1) rr UJ

Mean shear - U/h

The results are shown in Figs. 80-103. These results are for the case H =
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3.0. For plotting we consider the frame of reference where mean shear

profile is zero at the centre. Hence the dipole is advected by the mean

shear velocity at its location. We calculated and plotted n,(x,2z,t) and

n.(x,2z,t) at different instants of time. We made two plots (1) n, (x,0,t)

and n.(x,0,t) which are the wake heights at the centre and (2) constant

height contours in (x,z) plane. To study the effects of the wake and the

mean shear we consider the following cases.

(1) without the wake and without the mean shear

(2) without the wake and with the mean shear

(3) with the wake and without the mean shear

(4) with the wake and with the mean shear

Case (1). without the wake and without the mean shear

The results are shown in Figs. 80 and 81. For this case n, = Voa-t and nN.

Vet where Voa and Voe are the induced velocities by the dipole on the

interfaces 'a' and 'e

Case (2). without the wake and with the mean shear

The results are shown in Figs. 82 and 83. This is different from case (1).

Because the dipole is advected by the mean flow the growth rate is not

linear with time but the disturbed wake region extends in the streamwise

direction. In both cases (1) and (2) the disturbed normal velocity v is

ZA ~
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Case (3). with the wake and without the mean shear

Figs. 84 and 85 show the two-dimensional calculations, i.e., we place a

two-dimensional dipole above the wake. Figs. 86-89 show the

three-dimensional results. Due to the unstable character of the wake

profile the disturbances grow exponentially with time and the disturbances

are advected by the wake velocity. As expected the growth rate is smaller

in three-dimensions than in two~-dimensions. In two-dimensional numerical

calculations we observed that the wake disturbances grow with time and form

concentrated vorticity regions in the upper and lower part of the wake.

Hence in the three-dimensional calculations we may expect that the initial

disturbances grow with time and form concentrated vorticity regions in the

upper and lower part of the wake. The disturbed wake region has a

triangular shape in the xz- plane and this triangle increases in size with

time.

Case (4). with the wake and with the mean shear

Figs. 90 and 91 show the two-dimensional results. Figs. 92-95 show the

three-dimensional results. The important observation is that the growth in

the lower part of the wake is reduced by the mean shear. The growth in the

upper part of the wake is not much altered. This was also observed in the

previous two-dimensional calculations. Hence we may say that the

disturbances will grow with time and eventually form concentrated vorticity

regions in the upper part of the wake. Due to the mean shear the disturbed

wake region in the xz plane is elongated in the spanwise direction.
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When there is a symmetric mean velocity profile any disturbance can be

separated into symmetric and antisymmetric parts. The symmetric part has a

larger growth rate than the antisymmetric part. Hence when there is no

mean shear the disturbances in the lower and in the upper parts of the wake

are similar. When there is mean shear the mean velocity profile is no

longer symmetric and the magnitude of the vorticity is reduced in the lower

part of the wake. Hence the growth rate of the wake also may be reduced in

the lower part.

Next we will determine how the vertical motion of the dipole is

affected by the interaction. The vertical velocity on the plane y=H is

given by (Appendix L )

(Rx,By,YH,Cc)=—pu
-
eg

(H=h) (Hh)
[re =e

2 C LB

5

1. aka (WH=h)xC){

As we did previously by taking Laplace inverse transform and Fourier

inverse transform of this expression we can obtain the normal velocity

field v(x,z,H,t) at y=H plane. When there is no wake for linear theory

the disturbed velocity field v is zero. Figs. 96-98 show the disturbed

velocity distribution v(x,z=0,y=H,t) at different times. The results are

for the case (4) i.e., with the wake and with the mean shear. The

non-dimensional mean shear w=0.25. The interesting observation is that

there is always an upward velocity field is induced around the dipole

region. This means that downward motion of the eddy is reduced by the
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4 «ke.

To investigate this observation further, let us consider the kinematic

ooundary condition at the interface 4

31a
Dt +

3 la = Vv
Dx

i. Voa

where V0a is the normal velocity field due to the dipole, v is the

disturbed normal velocity field and U=-w(H-h) the mean velocity at the

interface 'a'. Hence

J iy
o— Yoa —-+ 3Ta |, u 97a

a+ SR
—

 Rl

(131)

The normal velocity field v is governed by the Laplace equation vey = 0.

Therfore we can think of the solution v as that due to the sources located

at the interface a with the strength distribution given by eq.(18l). There

are three contributions to the source strength, “Voa’ which give the image

solution, fa and U Sa . We calculated 21a and VY 3a
2t da ot 3X

at different times along the centre line z=0 and plotted the results in

Figs. 99-101. Initially at t=0, 31a = Yoa and Ma =0 . The
RS

results show that there are two separate regions where Ra and U 97a
2t 3x

are large in magnitusde. The region in the left is the part where the

large distortion in the wake occurs. The region in the right is directly

below the dipole, where 2a ~ O and WU 31a, has a
At NC

negative value. Since the dipole is advected by the mean shear the induced

velocity field due to the distorted wake region will be small and the

normal velocity near the dipole is mainly induced by the source strength
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below the dipole which is approximately ( — Voa + u

this source strength ( — Voa + J 9 Ta ) is positive in this
AoC

Ma
3% ). Since

region there is always an upward motion induced near the dipole.

Next we will determine the motion near the dipole when it is placed

below the wake. The non-dimensional mean shear w is 0.25 and the dipole is

placed at y=-3.0. The results are shown in Figs. 102, 103 at time T=9.0

and T=12.0. It is seen that near the dipole there is an antisymmetric

normal velocity distribution is induced. To the left side of the dipole a

positive velocity is induced and to the right side a negative velocity is

induced. Hence when an eddy is moving towards the wake from below the wake

the region in the left side travels with larger vertical velocity than the

right side and due to the mean shear the eddy will be tilted in the

clockwise direction towards the wall. We also made these observations in

the two-dimensional numerical calculations, Figs. 65, 66
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Chapter 10

Conclusion and Discussion

In summary, the effects of LEBU devices in a turbulent boundary layer

are investigated using analytical and numerical techniques. The

modifications to the vertical velocity of a turbulent flow by the LEBU

devices are analyzed using linear, three-dimensional unsteady aerodynamics.

To study the effects of the wake, the interaction of a vortex pair and a

wake which has a Gaussian velocity defect is investigated using numerical

techniques.

As far as the unsteady aerodynamics effects are concerned, in all the

cases considered, the results show that when a Fourier component of an eddy

is advected over the LEBU devices, the shed vortices from these devices

reduce the amplitude of the vertical velocity behind the device to varying

degrees depending on the wavenumbers k, and Ke This reduction increases

with increasing wavenumbers k and k,- However it should be noted that

only the modification of low wavenumber disturbances will have a

substantial effect throughout the entire boundary layer. Modification to

higher wavenumber fluctuations will be confined to the wake of the devices.

The two-dimensional results show that the amplitude is reduced as the

wavenumber LN increases. From the three-dimensional results we note that

the amplitude is further reduced with increasing spanwise variations. This

indicates that the LEBU devices are more effective at modifying vertical
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velocities for a 3-D disturbance than for a 2-D one.

When the eddy is advected over two plates which are far apart, the

reduction in amplitude is squared. In a recent experiment (Guezennec and

Nagib 1985) it was observed that in the tandem configuration immediately

downstream of the first plate, the vertical velocity fluctuations are

reduced, and after the second plate the vertical component is further

reduced. This reduction of the vertical component is in qualitative

agreement with our results. If we assume, in accordance with what was also

postulated by others (Hefner et al. (1979), Corke (1983), Anders et al.

(1984)) as the probable mechanism, that the reduction in the amplitude of

the vertical velocity is the basic cause for the apparent reduction in the

skin friction downstream of the LEBU devices, the above results show that

the two plates which are used in tandem are more effective in reducing the

drag than a single plate. We note that the only configuration which

produced net drag reduction in experiments (Corke, 1985, Anders et al.

1984) so far, has this arrangement

The analysis considering the effect of the ground plane shows that this

decreases the effectiveness of the LEBU devices in reducing the amplitude

of the vertical velocity in the wake. This effect increases when the LEBU

devices are moved towards the plane. It is appropriate to mention here of

the experimental results of Anders et al. (1984). When the LEBU devices

which were used in tandem at 108, spacing were tested at the heights 0.38,

0.586 and 0.85 they obtained 0.0, 5.0 and 7.0 percent net drag reduction,

respectively.
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At this stage we cannot establish that this apparent reduction in the

amplitude of the vertical velocity is the cause for the measured skin

friction reduction downstream of the LEBU devices. It was observed in the

experiments (Nychas et al.,1973) that high speed fluid from the outer flow

moves towards the wall region before the ejection starts. It was suggested

by Falco (1983) that the outer flow brings down the so called "typical

eddies" towards the wall which later initiate the lift up process. Our

results suggest that when the LEBU devices are introduced the shed vortices

from the device reduce the level of vertical velocity fluctuations

downstream of the devices and thus inhibit this large-scale wallward

movement from occuring and prevent some fraction of the turbulent

production. Therefore a corresponding reduction in the skin friction is

obtained.

The wake which forms behind the LEBU devices interacts with the eddies

in the outer part of the boundary layer and alters the motion of these

eddies. During this interaction the motion in the wake is also modified.

During the ejection process the low speed fluid which ejects from the wall

interacts with the high speed outer fluid and forms large-eddies in the

inner part of the boundary layer. This large eddy grows in size and moves

towards the outer part of the boundary layer (Nychas et al., 1973).

Downstream, the large-eddies which formed during these bursting events in

the upstream region, form large-scale motions which have a very slow

rotational motion towards the wall (Head and Bandyopadhyay 1981). It is

observed that the dye which is placed near the wall reaches the outer

region of the boundary layer and the dye which is placed near the outer

region is found near the wall region. Even though these observations do
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not explain how the large-scale outer motion influences the bursting or the

formation of low speed streaks and liftup, it is agreed that the

large-scale outer motion towards the wall has some influence on the

surst-sweep events. Falco (1983, 1984) from his series of experiments

suggested that, during the bursting process, vortex rings are generated in

the wall region and the vortex rings move away from the wall due to self

induced velocities. These vortex scale wiyh the displacement thickness and

are called "typical eddies". After these eddies reach the outer part of

the boundary layer they are brought back towards the wall by the

large-scale outer fluid which has the motion towards the wall. Later these

vortex rings influence the next bursting process. This way the burst-sweep

cycle is closed. With this assesment in background we will interpret our

results.

In chapter 8 we investigated the two-dimensional, nonlinear interaction

of the wake which has a Gaussian velocity defect with a vortex pair. The

vortex pair simulates the large-eddy which moves towards the wall or away

from the wall. We solved to determine two effects, one how the motion of

the vortex pair is modified due to the presence of the wake and two, how

rhe wake is modified due to the interaction. To study the influence of the

mean shear, we included a constant mean shear profile in the analysis.

First we will discuss the changes that occur when the eddy moves from

above the wake towards the wall. As expected, the effects depend on the

relative strengths of the eddy and the wake. If the wake strength is weak

or the eddy moves with large velocity, the presence of the wake will not

influence the eddy motion and the eddy will cross the wake. Otherwise our
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results show that due to the interaction with the wake the eddy moves with

reduced velocity. This result was obtained with and without the mean shear

present. In the calculations we observed that the distance between the

vortices, in the vortex pair, increases in the streamwise direction.

In chapter (9) we considered the two-dimensional and three-dimensional

case and solved it using linear theory. The results show that near the

eddy there is always a vertical velocity induced in the direction opposite

to the motion of the eddy. Further we noted in the linear theory that, the

solution for the vertical velocity consists of two separate parts. One

governs the flow field near the disturbed wake and the other governs the

flow field near the eddy. Due to the mean shear these two solutions split

and move away from each other in time. The solution near the dipole

opposes the motion of the eddy towards the wall.

As far as the motion of the wake is concerned the wake responds

differently with and without the mean shear. When there is no mean shear

the disturbances introduced by the eddy grow with time and at the same time

they are advected to the left by the mean wake velocity. As expected,

growth of the wake is observed in the lower and in the upper part of the

wake. When the mean shear is included the growth of the wake in the lower

part of the wake disappeared and concentrated vorticity regions are formed

only in the upper part of the wake. It is noted from the velocity

listributuions that these concentrated vorticity regions are shear layers

with large velocity gradients.

When there is a symmetric mean velocity profile any disturbance in
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linear theory can be separated into symmetric and antisymmetric parts. The

symmetric part has a larger growth rate than the antisymmetric part.

Hence, when there is no mean shear the disturbances in the lower and in the

upper part of the wake are similar. When there is mean shear the mean

velocity profile is no longer symmetric and the magnitude of the vorticity

is reduced in the lower part of the wake. Hence the growth of the lower

part of the wake is reduced in the lower part.

Next we will discuss the results when the eddy moves from below the

wake. The normal turbulence intensity in the inner part of the boundary

layer is about 3-4 times larger than that in the outer part of the boundary

layer. The eddy moving from below the wake has a larger velocity than that

coming from above the wake. When the eddy with large velocity moves from

below the wake it moves as undisturbed and when it moves across the wake it

strongly interacts with the wake and disturbs the whole outer region. When

the strength of the eddy is small, the motion of the eddy is modified

differently than when it moves from above the wake. We will discuss the

results with the mean shear. When the vortex pair interacts with the wake

the vortex in the left side is induced with the positive vertical velocity

and the vortex in the right side is induced with a negative vertical

velocity. Therefore the left part moves with the larger velocity than the

right one and due to the mean shear the vortex pair is rotated in the

clockwise direction towards the wall. This was observed in the two and

three-dimensional cases.

The overall picture that comes out of this study is as follows. The

eddy which moves away from the wall due to its larger vertical velocity
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will strongly interact with the wake and will reach the outer region of the

boundary layer. It has generally been stated that the eddies which reach

the outer region collectively form a large-scale motion towards the wall.

Since this motion is weak in magnitude the wake inhibits the motion of the

eddy towards the wall. Due to the interaction the vorticity in the wake

accumulates in the upper part of the wake and forms concentrated shear

layer regions.

At this stage we are not able to explain the direct consequences of

these modifications in the wall region. But from the previous discussion

we infer that since the motion of the outer fluid towards the wall is

reduced some reduction in the skin friction is expected. The results of

Bertelrud and Truong (1982), Guezennec and Nagib (1985) show that the

turbulence intensity in the streamwise direction increases above the wake.

This may be due to the formation of shear layers above the wake during the

interaction as predicted by the analysis.

From this investigation the following recommendations are suggested for

future study

(1) We investigated the unsteady aerodynamic effect and the blockage effect

of the wake in the outer part of a turbulent boundary layer. In the

future, one needs to investigate how these modifications affect the flow

conditions in the wall region. The experiments should include surveys with

multiple sensor rakes oriented in the transverse direction located close to

the wall in order to study the instantaneous velocity profiles during the

bursting event in regular and manipulated boundary layers. With this
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velocity measurements and the flow visualization studies near the wall

region, we can infer the effect of the LEBU devices in the wall region.

These experiments will also provide clues about the interactions between

the outer region and the wall region in a turbulent boundary layer. One

should also modify the above experiments in order to differentiate the

unsteady effect from the wake effect in the wall region.

(2) One has to do an experiment to verify the results obtained in this

report. It would be interesting to investigate experimentally the

interaction of the wake with a vortex pair or a vortex ring with and

without the mean shear.

(3) In the unsteady aerodynamic analysis we considered only one Fourier

component. It is recommended to study how an eddy with known vertical

velocity distribution is modified downstream when it is advected over the

plate. To obtain the results one has to take the Fourier transform of the

known vertical velocity distribution, multiply the Fourier components by

the transfer function S(k ,k_) and then take the Fourier inverse transform.
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APPENDIX B

Consider a vortex sheet with spanwise vorticity of strength

rexp(-ik x)exp(ik,y) (shed vorticity ) and with streamwise

vorticity of strength Sexp(=ik x)exp(ik y) ( trailing

vorticity ), which is positioned in the xy-plane.

&gt;

sf
3 3 3

OQutside this vortex sheet the flow is governed by the

potential equation .

ny + $ryy + $s,5 = 0

Assume a solution of the form

H

$ = £(z) exp(-ik x) exp(ik y)
hence f(z) satisfies the 0.D.E.

(21)

"- - 2 2 -

f(z) ( ke + ks ) f(z) = 0

lhe solution of this equation is

F(z) = A exp( Vk2 + &lt;2 z) + B exp(- Vke + &lt;2 z)

Applying the boundary condition when [2] +=. 6 &gt; 0 we have

f(z) = A exp(- /k2 + &lt;3 z) for z20

f(z) = B exp(+ /k2 + k2 z) for z SO

7. eo
Ae 3)



woTo -

ip

Across the vortex sheet streamwise velocity is discontinuous

u(x,y,+0)- u(x,y,-0) = exp(-1k x) exp(ik y)

Since u(x,y,+0) = - u(x,y,-0) we obtain

be (x,¥,+0) = Y/2 exp (-ik x) exp(ik y)

“rom this relation and eq.(B1) and (B2) we determine A, B and is

given by

A = 1 v/(2k )
Ne

B =—-1 Y/(2k_)
Y

Jsing these values for A and B we obtain the expression for ¢

= - - 2 2Llel72 ¥/ (2k) exp(-ikyx) exp(ikyy) exp(- vk2 + ky 12D
H

If we let Ky = 0 we will obtain the results for the

two-dimensional case.
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APPENDIX C
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The circulation around the path from A to B is

&amp; ( ‘f t) ']
EY

. dr

Ve.dr/

A

4

¢(x,y,+0,t) - 4(x,y,-0,t)

Since ¢(x,y,+0,t) = ¢(x,v,-0,t)

r(x,y,t) = 2 ¢(x,y,+o0,.t)

Nhen x = ¢/2

"(e/2,y,t) = circulation around the plate
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From eq. (67)

r(e/2,y,t) = Uc/2 £501) exp(iwt) exp (ik y)

b(c/2,y,+0,t)
xSe 1)

No pressure jump across the wake condition gives

¢(x,y,+0,t) = ¢(c/2,y,+0,t = x-c/2)

“rom eq.(C1) &amp; (C2) we get

{Fe
 42)

¢(x,y,+0,t) = U/2 c/2 £,01 ) exp(ik ) exp (-1ik x) exp (ik y) exp(iwt)

From this relation we derive the expression for the vorticity

Y and §.
W 7

of 2 ¢,,(x,y,+0,t)

-iU Ke £,(1) exp(ik) exp(-1ik x) exp(ik_y) exp(iwt)
So = 2 ¢,,(x,y,+0,t)

Sa - 1 J k, £,(1) exp(ik)exp(-ik x) exp(i ¥ y) exp(iwt)
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If we change the variables in the last two expressions (c) , (d)
1

vith = ¢—1 , we obtain

b)

2 =]

- wy
a

0

e cLB(3-0)ds zak,»
i - iB g ot[65% 15, (enol.

7- caf
¢

»

wf
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e
“
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Substituting these results in the eq.(70) we obtain
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Wwe modify this equation to another form

“
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3
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J
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A
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9 =

|&amp;7 + NE
gp

bi

: 2 a =

1% ~ i kg, 5.5 + &amp;,
y

Nith the substitution of these results into eq. (D1) it

takes the form

—

_ _- (Ry X
w (Ry, By) e

= ——.
sma Ry
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Evaluation of these integrals
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APPENDIX G
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Consider the second integral
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APPENDIX L
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APPENDIX J

Strength of the trailing and the shed vortices in the upper plate

wake (Fig.10) is given by eq.(65 &amp; 56)

A_f,(1)exp(ik lexp(-ik x)exp(ik y)exp(iwt)

&gt;o» 1k, Ufo (1 Jexp (ik, Jexp(-ik x)exp(ik,y)expiiut)
(1)

“rom Biot-Savart law, the induced normal velocity due to this

vortex sheet at the 3/4 chord point is

NCNn) a ) i

LX

- Ry 7

- 3

1+ 2+q 1%
—
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—_ LB 2 ® - LR 7

(EB AMe [ ee | (+—%—_ —— dgdyg
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_. &lt;0 ©

— (Ra

{Re |
 a A

_i Re. 2 Ry 7
o dg df

J {ED SL
+ lyJ£=-
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Evaluating the n integrals and simplifying it we obtain
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When z = 0, we obtain the induced velocity due to the upper plate

and is given by
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Substituting for z = h and changing the sign we obtain the

induced velocity due to the lower plate and is given by
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Zquating the total induced velocity to the negative of the gust

velocity we obtain an expression for F_(1),

y
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 Ww oe
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eat £.00 RI + fa) r2
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2

Bb) = wm _2%E€
Un RI — R2
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All the integrals involed in R1 &amp; R2 are evaluated numerically.
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APPENDIX K

In this section we will derive the solution of the eq.(l68), using Green's

function method.

&lt; __
avo _ #
dy?

\/

— 2

- Vv dy. g(v-n)
u—¢ d~*

Let G(y,k,c,H) be the solution of this equation, hence

G (y,k,c,H) = Ay +B v,

6" (y,k,c,H) =Cy, +0D v,

for y&lt;H

for y&gt;H.

The bound-~ry conditions are

8 ) roa k G = 0; yv + - =

G! k G=2=0:v++=

CY)=.

C  KK -=)

(2) G'(y=H,k,c.H) = G (y=H,k,c,H)

ic)

d_ Chen) | — d Gove)
Av dv

y= uw \

N= HH

= \

Applying these boundary conditions to eq.(K2) and using the definition for

¥; and Vv, from eq.(169), we get
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Yi CR) Wy, CRY — Wa (WD W, CH)

R Ww, CH)
C4)

Yi CH) Wy (HY) — Wa cr)Ww)CH)

Substituting for ¥, (H) and Vb, (H) from eq.(169) gives

 UY 7
{ A) Ws (MH) — Ya(H) Ww, (H )

J (me 1 2) diced) (BG + 12) 8D)

(8 roy + (Ald rad) (64 Go —121 da God)|

) ?, (WH) $b, CW — oN CH) $, o&gt; |

Noting that the Wronskian of the ac (Kl) is inde-endent of Vv, we have

by (H) 6," (H) = ¢ '(H) ¢_(H) = 1

C5)

From eqs. (K3-K6) we obtain
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Appendix J

From eq.(181) we get the following equations for the velocity field v.

Rer on 4)

V = A e

(1)“4

Region (2)

y «Be I, c etd, (La)

Region (3)

; =D eg tay (3)

Region (4)

y = Fr J rtay (Ly)

Kinematic boundary condition eq. (183) yields

at surface

1,

1

ik (w(h-H)-c) = A gk - Va./cik,
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l =
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at surface 'b!'

at surface
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Applying eq.(182) to the pressure boundary conditions at the interfaces we

x ar
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at surface 'b'

— x (wh — u—c ) (—x8 + C * ) + t Rx (8+¢) CE Fw)

(—u-wn) ob — Top— Vob (ew)Cc h ©
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Substituting for A,B,C,D,E,F from the eqs. (L5-L8) we obtain three

Simultaneous equations for Nn, Ny and [=
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In region (1)

'y A  ao

Substituting for A from eq.(L5) we obtain

 JY = 0

~ N-h) — A (H=h) 5

| 2 x e + Ta tka (wenn) +e)
cL-B


