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ABSTRACT

Effects of large-eddy breakup devices (LEBU) in a turbulent boundary
layer are investigated using analytical and numerical techniques. The
modifications to the vertical velocity of a turbulent flow by the
large-eddy breakup devices (LEBU) were analyzed using linear
three-dimensional unsteady aerodynamics. A Fourier component of the
input turbulence convected over these devices was considered and the
modified vertical velocity in the far downstream wake was solved. It is
shown that the amplitude of the vertical velocity behind the device is
reduced, the effect increasing with increasing stream and spanwise
wavenumber. Two plates placed far apart in series produce a reduction
that is the square of that for a single plate. The presence of the
ground plane decreases the effectiveness of the LEBU in reducing the
amplitude of the vertical velocity in the far wake.

To study the effect of the wake, interaction of a vortex pair and a
wake which has a velocity defect in the Gaussian form is investigated.
It is shown that the wake reduces the motion of the eddy towards the wall
and spreads the eddy in the streamwise direction. This is observed in
two and three-dimensional cases. Due to the mean shear the vorticity in
the wake accumulates only in the upper part of the wake and forms
concentrated shear layer regions.
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Fig. 1. Plate configuration for LEBU devices.

Fig. 2a. Normalized turbulence energy production per unit volume in a
typical boundary layer (Klebanoff 1954).

Fig. 2b. Cumulative turbulence energy production rate in a
typical turbulent boundary layer (Klebanoff 1954).

Fig. 3. Distribution of turbulence intensities in a typical turbulent
boundary layer (Klebanoff 1954).
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Fig. 20. Amplitude of the circulation given by eq.(135).
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the three-dimensional case.
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Fig. 23. Amplitude of the function S(Ex,ky,H) for EY
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Chapter 1

Introduction:

Growing energy conciousness has generated interest in developing
techniques for reducing drag forces on aerodynamic bodies. The drag force
appears in three forms: (1) viscous drag (2) form drag, and (3) induced
drag (vortex drag). Viscous drag ranges from 25% of the total drag for
supersonic fighters to 50% for long haul transports and 54% for general
aviation jets. Bushnell (1983) reviews many of the drag reduction concepts
currently available and being considered for practical applications. In
this thesis one of the above techniques known as large-eddy breakup devices
(LEBU) is investigated. This method is presently being investigated in the
laboratories as a feasible method to reduce the skin friction in a
turbulent boundary layer. A LEBU may consist of horizontal and vertical
plate elements, having various planforms and cross-sectional geometries and
mounted within the turbulent boundary layer to directly interact with the
large-scale motion. A schematic diagram of this device when two plates are

used in tandem is depicted in Fig. 1.

The original experimental research on this type of technique to modify
the structure of turbulence was conducted by Yanik and Acharya (1977), who
inserted a 18x18 mesh screen fence within the turbulent boundary layer
across the flow of a low-speed wind tunnel and obtained local skin friction
reductions in excess of 50% over a distance of 100-150 boundary layer

thicknesses downstream of the device. In this approach the drag associated
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with the fence was much higher than the total reduction in the skin
friction; hence no net drag reduction was obtained. 1In 1979 Hefner,
Weinstein and Bushnell at Nasa Langeley Research Center and Nagib (1979) at
IIT tested LEBU devices with a few horizontal elements and found a 20%
reduction in downstream average skin friction with much lower device drag,
but still no net drag reduction was obtained within a 50 boundary layer
thickness downstream. Corke (1982), testing with two plates in tandem,
obtained a net drag reduction of up to 20% accompanied by a decrease in the
number of burst rate of approximately 18% within 55 boundary layer
thickness. The geometrical configuration used in the experiment is shown
in Fig. 1. Following this there were a series of experiments done using
tandem configuration (Bertelrud and Truong, 1982, Hefner et al. ,1983,
Mangus ,1983, Anders et al. ,1984, Plesniak and Nagib ,1985, Guezennec and
Nagib ,1985, Anders and Watson ,1985). These experiments were primarialy
parametric studies and produced the following results. The average skin
fri;tion reduction behind the devices is about 20% and this reduction
persists for 100-120 boundary layer thickness. A more modest value of 0-20%
net drag reduction could be obtained using tandem configuration. The
intensity of the streamwise velocity component is reduced below the device
height and is increased above the device (Bertelrud et al. ,1982). The
normal velocity component and the bursting frequency are reduced behind the
plate. Recently, Sahlin et al. (1986) directly measured the drag force on
a plate equipped with LEBU devices in a towing tank for a range of Reynolds
numbers based on LEBU length of 25,000-100,000. Their main results show
that there is no net drag reduction for this Reynolds number range and
there was mainly a drag increase. Only for the lowest Reynolds number of

25,000 was a 2% drag reduction obtained.
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Though the results obtained at different laboratories show quantitative
differences, they all agree that the local skin friction is reduced behind
the devices and this reduction persists for long distances downstream of
the LEBU devices. One of the major concerns among the researchers is the
question of whether net drag reduction can be obtained. In this work, it
is attempted to explain, how the skin friction is reduced behind these
devices using theoretical models.

A turbulent boundary layer may be divided into four regions: wviscous
sublayer (y+<5), buffer region (5<y+<50), logarithmic region (50<y+, y<.28)
and wake region (y>.28) Fig. 2. The viscous sublayer, the buffer region,
and the logarithmic region is called the wall region and the wake region is
called the outer region or the large-scale region. Many investigators
using flow visualization techniques and hot-wire anemometer techniques
investigated these two regions in the last two decades. Kline et al.
(1967), Kim et al. (1971), Rao et al. (1971), Wallace et al. (1972),
Willmarth et al. (1972), Lu et al. (1973), Nychas et al. (1974),
Blackwelder et al. (1976), Thomas et al. (1983) and many others
investigated the wall region using flow visualization and conditional
sampling techniques. Willmarth (1975) reviewed the status and extend of
the knowledge of the structure of turbulence in boundary layers. The
picture that emerges from these investigation is as follows. The wall
layer is dominated by intermittent events called bursts and sweeps. These
events happen in stages. 1In the first stage low-speed fluid appears in the
sublayer as elongated streaks. The width of a streak is about 10—30y+

units and the spacing between the streaks is about 80-100z°. This low
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speed streak is surrounded on either side by two counter rotating vortices.
The rotation of these vortices is such as to lift up the low-speed fluid
away from the wall. 1In the next stage the low-speed streak migrates slowly
downstream and at the same time slowly lifts away from the wall. After it
travels some distance the streak fluid ejects as a jet into the outer high
speed region. This forms an inflexional profile in the buffer region
5<y+<50. This inflexional profile becomes unstable, oscillates, and finally
breaks up. Then high speed fluid moves towards the wall from upstream and
sweeps the debris from the burst. This is called the sweep event. The
whole process is called bursting. Most of the turbulence and Reynolds
stress are produced during this bursting. About 70% of the average Reynolds
stress is produced during the ejection-like event and 70% during the
sweep-like event. The remainder is made up by wallward and outward
interactions. During the breakup process high mixing between the low speed
fluid near the wall and the high speed fluid in the outer region takes

place.

Klebanoff (1954), Kovasznay et al. (1970), Antonia (1972), Head et al.
(1981), Chen et al. (1978) and many others investigated the flow properties
and the structures in the outer region of a turbulent boundary layer. Fig.
3 shows the distribution of the statistical properties of the turbulent
velocities in a turbulent boundary layer (Klebanoff ,1954). The outer
region consists of a collection of horse-shoe or hair-pin vortices which
are inclined at &50 to the free stream. Collectively this structure has a
very slow rotational motion towards the wall. These horse-shoe vortices

exist to very near the wall and have the dimensions of viscous units.
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At this stage, the interaction between the inner region and the outer
region and the function of the outer region on the bursting process are not
well understood. But there are some speculative answers which are based on
some flow visualization and hot-wire measurements studies. Nychas et al.
(1973) in their investigation observed that a large scale, high speed,
fluid from the outer region moves towards the wall before the ejection
starts. Falco (1983) from his experimental ovservations suggested that the
outer flow brings down the.so called "typical eddies" towards the wall
which later initiate the l1ift up process. From the conditional sampling
and visual counting techniques Kim et al. (1971), Rao et al. (1971) and Lu
et al. (1973) determined the bursting frequency and their results showed
that the bursting frequency scaled with the outer variables. But
contradictory to this, Blackwelder and Haritonidis (1983), Mangus (1983)
show that the bursting frequency scaled with the wall variables. Alfredson
et al. (1982) from their experimental results obtained in a channel flow
found that the governing timescale for the wall region to be a mixture (the
geometric mean) of inner and outer scales. From these observations it is
suggestive that the large-scale outer motion has some influence on the

bursting process.

Hence, when the LEBU devices are placed in the outer part of the
turbulent boundary layer, the devices directly interact with the
large-scale motion and modify or alter it. Due to this interaction the
devices interfere with the bursting process and hence can produce a skin
friction reduction downstream. In the following chapters, the effects of
the LEBU devices on the outer part of the boundary layer is determined

using analytical and numerical techniques and from these results possible
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mechanisms for the skin friction reduction are discussed.

At a more basic level there is still no complete structural picture of
the interaction between the plates and the incoming boundary layer eddies
or the mechanism whereby the skin friction is reduced. It has generally
been stated (Hefner et al. ,1983) that the LEBU devices suppress the
large-scales by restricting vertical fluctuations when the large-scales are
advected over the plate. Munford and Savill (1983) postulated from their
flow visualization studies that the wake which is generated behind the
device acts like a barrier between the upper and lower regions of the
boundary layer and this causes the reduction in the skin friction. But it
is argued, on the other hand by Anders et al. (1985), that the long-lasting
wake is the result of suppressing the large-scale turbulent structures and,
thus the coherent wake is the effect rather than the cause. At this stage
it is not clear which of these, if any, mechanisms is most important for

the skin friction reduction.

We will investigate these two effects which are introduced by these
devices. One is the unsteady aerodynamic effect in which the LEBU
functions as an airfoil, responding to the upwash fluctuations of the
incoming turbulent flow. As the large-eddy in the outer flow is advected
over the LEBU, vortices are shed at the trailing edge. This vorticity
modifies the velocity field behind the device. The other effect is the
wake effect. When the flow is advected over the LEBU a wake is generated
at the trailing edge. This wake interacts with the large-scale motion and
modifies it. 1In the first part of this report the unsteady aerodynamic

effect is analysed using analytical methods. 1In the second part the
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effects of the wake are investigated using numerical techniques.

First we will discuss the unsteady aerodynamic effect. For
simplicity, it is assumed that the turbulent fluctuations are "frozen"
(i.e. Taylor's Hypothesis) and advected with a constant velocity. It is
considered that LEBU devices consisting of thin plane horizontal elements
of finite chord located a finite distance above an infinite horizontal
surface. It is assumed that the elements behave as airfoils, with rounded
leading edges and sharp trailing edges at which the Kutta condition is
satisfied. Initially the effects of the ground plane are neglected. Later
the effects of the ground plane are included in the analysis through the
method of images. When the eddy is advected over the plate it imposes an
unsteady upwash on the plate. To balance this upwash, and to satisfy the
Kutta condition at the trailing edge, circulation, the strength of which
varies with time, is formed around the plate. Since the circulation varies
with time, vortices are shed from the trailing edge and are advected
downstream by the mean flow. They induce a velocity field and hence modify
the eddy velocity field. In chapters 2-6 it is attempted to determine how
these shed vortices from the LEBU devices modify the vertical velocity
component of the eddy as it is advected downstream. Since the turbulent
fluctuations are small in the region of the boundary layers where LEBU's
are placed, the governing equations and the boundary conditions are
linearized. The magnitude of the mean vorticity is small in the outer part
of the boundary layer, and hence, its effect will be neglected in this
preliminary analysis where potential flow theory is used. Within the
framework of linearized theory, when the vertical velocity distribution is

known, the solution can be obtained by Fourier analysis. A Fourier
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component w(kx,ky)exp(iwt-ikxx+ikyy) of the input turbulence is considered
and the vertical velocity in the far wake is solved for in the form
w(kx,ky)exp(iwt—ikxx+ikyy)s(kx,ky). S(kx’ky) acts as the LEBU transfer

function for the amplitude and phase of the vertical velocity of the eddy.

In chapter (2), advection of a two-dimensional eddy over a single plane
element is considered. This problem is also solved using an approximate
method as a prelude to the study of the effects of the ground plane. Next
the effect of the tandem configuration is determined for the case when the
distance between the plates becomes large. In chapters (3)-(5), advection
of a three-dimensional eddy over a single plane element is considered. In
chapter (3), the problem is formulated in terms of an integral equation and
is solved for the case when the spanwise wavenumber ky becomes small. 1In
chapter (4) this case is treated in terms of an acceleration potential and
is solved using matched asymptotic expansion for small ky' In chapter (5)
the case when the spanwise wavenumber ky is large is considered. 1In
chapter (6) the effect of the ground plane is included through the method
of images and is solved for the normal velocity component in the far wake

for the two and three-dimensional cases using approximate theory.

The wavenumbers kx,ky are non-dimensionalised by the semi-chord of the
plate, ¢/2. The chord length of the LEBU devices used in the laboratory is
of the order of the boundary layer thickness, § (c=0.88-1.28). The one
dimensional spectral distribution for the longitudinal velocity component
has been measured in a turbulent boundary layer on a flat plate (Fig. 3,
Klebanoff, 1954). From this, an approximate distribution for the

two-dimensional spectrum for the normal velocity component is obtained
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using isotropic relations (Hinze, 1975). It is observed that the energy

2 2
containing eddies have the non-dimensional wavenumbers v kx + ky based

on half the boundary layer thickness, in the range 0.3 to 3.0.

The results for all the cases considered show that the LEBU devices
reduce the amplitude of the vertical velocity in the far wake. The
reduction increases with increasing kx and ky' For a two-dimensional
disturbance it is shown that when two plates are placed far apart, this
reduction is squared. The analysis incorporating the effect of the ground
Plane shows a decrease in the effectiveness of the LEBU in reducing the
amplitude of the vertical velocity in the far wake. The effectiveness of

the LEBU devices decreases as they are moved towards the plane.

Next the effect of the wake is considered. 1In the operating conditions
the Reynolds numbers based on the length of the LEBU devices is 30,000.
For this range of Reynolds number the characteristics of the wake behind
the plate can be summarised as follows, Sato and Kuriki (1958). The
laminar boundary layers which form on the surfaces of the plate merge and
form a laminar wake at the trailing edge. This laminar wake becomes
unstable and the disturbances grow exponentially with downstream distance.
The frequency of oscillation corresponds to the maximum growth rate. In
the next stage, nonlinear effects set in and a Karman vortex street forms.
The dimensions of the vortex street depend on the Reynolds number and are
shown in Fig. 5, Taneda (1957). Further downstream, three-dimensional
disturbances set in and the vortex street breaks-up and forms a turbulent
wake with an approximately Gaussian velocity defect. The length of the

different regions depend on the Reynolds number.
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In chapters 7-9 it is attempted to investigate how this wake interacts
with the outer part of the turbulent boundary layer and what are the
effects of this interaction on the bursting cycle. The wake is simulated
in two ways. First, the wake is simulated by a Karman vortex street and
second with a continuous vorticity distributions with a Gaussian velocity
defect. Munford and Savill (1984), in the interpretation of their flow
visualization studies, is the only paper which made an attempt to
investigate the mechanisms through flow visualization studies, quoted that
the wake behind the device consists of a coherent vortex street which
persists upto 60 boundary layer thickness downstream. Further they
discussed that the counter rotating vortices below the devices 1ift the
fluid near the wall across the wake and the wake prevents that fluid from

coming towards the wall.

Downstream of the plate this wake interacts with the large-eddies
moving towards the wall and with the ejected fluid coming from the wall.
To study this effect the interaction of a vortex pair with the wake is
considered. The vortex pair can simulate the ejection process or the
wallward movement of the outer fluid towards the wall. The problem is
solved numerically and the motion of the vortex pair and the evolution of
the wake is followed in time. 1In chapter (7) the interaction of the vortex
pair and the vortex street is considered. 1In chapter (8) the interaction
of the vortex pair and the continuous wake is solved using the
cloud-in-cell technique. Here, the effect of the mean shear is also
analysed. 1In chapter (9) the interaction of the vortex pair and the

continuous wake is analysed using linear theory for two-dimensional and
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three~-dimensional cases.

The results from all the cases considered show that the wake spreads
the large-eddy and slows down its motion towards the wall. Due to the
interaction the wake is disturbed and concentrated vorticity regions are
formed on either side of the wake. When the mean shear is introduced,
there is not much change in the motion of the eddy but the wake deforms
differently. The vortices are formed only above the wake and the
deformation below the wake disappears and the disturbance is confined to

the region above the wake.
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Chapter 2

The LEBU devices which are placed in the outer part of the boundary
layer behave as airfoils, with rounded leading edges and sharp trailing
edges at which the Kutta condition is satisfied. When the eddy is advected
over the plate it imposes an unsteady upwash on the plate. To balance this
upwash, and to satisfy the Kutta condition at the trailing edge,
circulation, the strength of which varies with time, is formed around the
plate. Since the circulation varies with time, vortices are shed from the
trailing edge and are advected downstream by the mean flow. They induce a
velocity field and hence modify the eddy field. In this chapter we will
investigate the interaction of a two-dimensional eddy and the LEBU devices.
We assume linear potential theory and consider one Fourier component of the

advecting eddy.

2.1 Analysis of a two-dimensional model

A two dimensional thin rectangular plate of chord length 'c' is placed
in the x,y plane and its mid chord is positioned with the y axis, as shown
in Fig. 6. A turbulent gust with a normal velocity component of the form
w(kx)exp(iwt-ikxx) is convected by a uniform stream of velocity U. We
assume invisid, irrotational flow. Frozen convection (ie, Taylor's

hypothesis) is assumed; therefore the wavenumber is

k = /U
x



24

and the non-dimensionalised wavenumber is

The approach we follow is first given by Schwarz (1940) and is
discussed in Bisplinghoff et al. (1955). For the linearized theory the

governing equation for the perturbed potential ¢ is given by

the pressure coefficient by
cp = -2 ¢x -2 ¢t/U
The boundary conditions are
(1) For -c/2 $x<Sc/2 ; z =10
¢z = —w(kx) exp(iwt - 1kxx)
(2) ¢ =+ 0 as x2 + y2 +
and

(3) =zero pressure discontinuity across the wake (x 2 c/2, z =0)

From the boundary condition (1) it is evident that ¢ is antisymmetric
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about z=0. Therefore, a discontinuity in horizontal velocity exists across
the plane z=0. We replace the wing and the wake by a vortex sheet of

strength y(x,t), Fig. 6, where

Y(X,t) = u(xy"'ont) - u(x)—oit)
= 2 u(x,+0,t)

= 2 ¢x(x,+0,t)

Define the circulation as
X
L (x,t) = [ y(xl,t) dx

-

1

X
=2 _£¢x(xl,+0,t) dx,

Hence F(x,t) = 2 ¢(x,+0,t) (1)

Therefore, the total circulation around the plate

c/2
r(e/2,t) = I y(xl,t) dx,
-c/2
is equal to
I(c/2,t) =2 ¢(c/2,+0,t) CD)

Since the ¢ is antisymmetric about z=0, no pressure jump across the wake

requires

c_ = 0.0 for x 2 ¢/2 , z=0.
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This gives
¢x(x,+0,t) + ¢t(x,+0,t)/U =0
The solution of this equation satisfies the relation
¢(x,+0,t) = $(c/2,+40,t - x-c/2 ) (3)
i.e., the disturbance propagates downstream with the velocity U.
From equations (1),(2) and (3) we obtain
P(x,t) = I'(c/2,t - x-c/2 )
and
y(x,t) = —Ft(c/2,t - x-c¢/2 )/U 4>
Since this is a linear problem and the time appears in the boundary

condition as simple harmonic oscillation, all the variables will have the

simple harmonic time dependent.

I'(e/2,t) = I(c/2) exp(iwt)

y(x,t) = y(x) exp(iwt)
Then, from eq.(4) we obtain an expression for ;(x)

y(x) = —ikx T(c/2) exp(iﬁx) exp(—ikxx) for x 2 ¢/2 (5
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The boundary condition on the plate is written as

%

(&w‘t-*‘&:."—)
_ S(x,t) d=
—w( k) € = T = — ‘
2K o — X,
-%
oo
_ (%, ) dax,
PN o 2
%

Substituting eq.(5) into this equation we obtain

co

%
_.Lﬁk X —
= e T B[ .=
— w(k) € T ] T e 0 R T, e - dx,
S

X — X, 93 X — Ay

S

Schwartz (1940) used Sohngens inversion formula (Bisplinghoff et al. 1955)
to solve this integral equation to obtain y(x). Integrating this
expression for y(x) the circulation around the plate T(c/2) is obtained.
Since we are interested only in the circulation f(c/2) we continue as
follows. Non-dimensionalize the x-variable through division by c/2,
multiply the whole equation by Y(l.+ x)/(1.- x), and integrate it from -1

to +1. One then obtains
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+1 +1
+1
—L‘&x ‘+x —
W (Rx) I+x e ) dx = 1_ —_— E_(i'_?_ dxi | dx

| — x 2K | — X A — X,

-1 & | -]
_ +1| o0
_ - U _ 1R
- A % r‘(95) e J b¥ e dx, d)(

ax %4 I =X 2 — Xy

We evaluate these integrals in closed form (appendix A) and find that

wc—&x)x{:roc@x)—imia) . (%)
A =R
P
— L.i; g — LR @ _ o _
—ikee T ) L e 4 L x| H (R * A H (RD
C 2 = 2 a
72 LRy

where JO’ J1 are Bessel functions of first kind and Héz), Hiz) are Hankel

functions of second kind.

After simplifying this expression we obtain the known results

_ s T —L:E;ar.
(%) - - AWC‘M{T““‘ } : (63

s - @ RCA!
/.’2 A%.Z{Hl"-AHd}
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Substituting this into eq.(5) we obtain for the strength of the shed

vortices as

_L‘Ea_x

FT(xD = 4 W('&-“){T""Lm} < ()
&) 23
{ H, + 4 H, -}

Having this, one may determine the velocity field in the far wake.

Consider a vortex sheet of strength y exp(-ikxx) which lies on the
xy-plane. Outside this vortex sheet the flow is governed by the potential

equation and the solution is given by(Appendix B )
b =i ylz]|/z exp(-lkxx) exp(—kx z )/(2kx)
The normal velocity component is

¢, = -i y exp(—ikxx) exp(—kx z ) (8>

Using eq.(7) for y we obtain the induced velocity due to the shed vortices

at z=0 as

. — LR x
Wiyt # = 2+ {To——x".ﬂ} w(ks) €

@ @@
H, + 4 Hg

The total velocity in the wake at z=0 is the sum of the induced velocity

and the gust velocity, and is given by
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wT(x,t) = w(kx) exp(iwt) exp(—ikxx) S(Ex)

where

S(®D) = o — .zi{'fo—i:rl} @)

2 (&)
{ H \ -+ 4 HO

The S(Ex) functions as a transfer function and measures the change in
amplitude and phase of the normal velocity in the far wake with respect to
that upstream of the LEBU. Amplitude and phase angle of S(Ex) are
calculated and shown in Figs. 9,10. The results show that the amplitude of
S(Ex) decreases from 1.0 to 0.2 rapidly when Ex varies from 0.0 to 1.0.
After that the amplitude decreases slowly with increasing Ex and reaches a

value of 0.04 for Ex = 5.0.
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2.2 Analysis using quarter-chord theory

In this section as a prelude to study the effect of the ground plane we
derive an approximate expression for the circulation around the plate and
compare this with the exact solution obtained in the previous section. As
often done in the steady airfoil theory we replace the airfoil as a loaded
line placed at x = -c/4 (quarter chord from leading edge) and satisfy the
vertical boundary condition at x = c/4 (3/4 quarter chord from the leading
edge). 1In the following we refer to this as the 'Quarter chord theory'.

The boundary condition on the plate takes the form

R A .
— W(k.) € I & D T 4x,

%

From the previous analysis the shed vorticity y(x) is given by eq.(5).
Substituting this in the above expression and solve for the circulation ¥
we obtain

“L%A
axw(Re) €

where
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- R
a(R) - - | 5

1]

Substituting this value for the circulation in the expression for the total

velocity in the far wake at z=0, we obtain

wT(x) = w(kx) exp(iwt) exp(-ikxx) S(Ex)
where

1Ry
== ®. €
E;('ﬁzj) = 1.0 —_ ™

Lo + & eL :—_{ [-f"" A (E-:‘-)‘XFLC‘@;’-‘)}

The amplitude and phase of S(Ex) is calculated and plotted for a range of

kx values. The results are shown in Figs. 9,10. Comparing it with the

exact linearized theory solutions one sees that the quarter chord theory

solution is quite accurate for small wave numbers Ex < 0.25.



33

2.3 Analysis for two tandem plates

We now consider the case where two plates are placed in tandem at a
distance Nc/2 in the two-dimensional gust Fig. 7. The shed vortices from
the first plate, covers the wake between the two plates. The shed vortices
from the second plate covers the wake extending from the trailing edge of
the second plate. The strength of these vortices can be determined in
terms of the circulations rl,rz and of kx and N using the condition that
there is no pressure jump across the wake. To determine the two unknowns

Fl and F2 we use the boundary conditions on the plates resulting in two

integral equations in terms of the vorticity distributions.

These integral equations are difficult to solve in closed form. If we
consider the limiting case where the distance between the plates becomes
large the mutual effects between the plates is negligible and we may
consider the plates separately Fig. 8. 1In this case the reduction in
velocity downstream of the second plate should be the square of that for a
single plate. To estimate the minimum distance between the plates for
which this approximation could be used, we considered a single plate and
evaluated the induced velocity at its 3/4 chord point by its wake
vorticity. Then the length of this wake which is required to obtain +10%
accuracy of this induced velocity is calculated. As we expect, this length
was a function of the wavenumber and decreases with increasing wavenumber.
For kx =0.1,0.25,0.5,1.0,3.0,5.0 the required lengths were
14,7,6,4.5,3.5,3 chord-lengths respectively. The distance between the

plates used in the laboratory is about 8-10 chord-lengths. Threfore,
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except for very small wavenumbers the above approximations can be used to
determine the effect of the tandem plates. We may consider the plates
separately. The strength of the shed vortices from the first plate is

known from the analysis of that plate only and is given by eq.(5)
yl(x,t) = —:Lkx ( Pl/c/2 ) exp(lkx) exp(-lkxx) exp(iwt)

and Fl is given by eq.(6)

-
4 W(R {:ro-x:r.} &
K - — =) (1o
c
A praee 2 <
L‘&x {H| -+ & Ho}
The shed vortices from the second plate is
yz(x,t) = —iEx (Pl/c/2) exp(iBEx/2) exp(—ikxx) exp(iwt)
- iEx (lec/Z) exp(iEXIZ) exp(—ikxx) exp(iwt) ('l)

With the use of these expressions for yl and Yo the boundary condition on

the plate takes the form
-1

-Tk-a_ —-L_&a.g

—L’&_-,_:L — L

w(«Ex) e = — 1 14k, I e € de
2% % -
— o0
+1 o
_ La‘_E:. e-_'.‘&,‘:f d
+ 1 ¥($) d 3 — e m e - b3
ax 2% <4 x— %
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This Integral equation is similar to the one which appears in the section
2.1. Using Sohngen's inversion formula this equation can be solved to

obtain y(x). Since we are interested only in the circulation Pz we

continue as follows: we multiply this equation by v(l+x)/(l-x) and

integrate it from -1 to +l. This gives us the following expression for F2:

(For evaluation of the integrals see Appendix A)

- . L%x {a‘ﬁx
x{%—;m}+ : *&*{e I, + ¢ :L}

E = 2xw Sy
c
Jx'u)xs
2 _ LRy &) =)
;ga 1B, e H, =+ ¢ Ho :S
a2
where

Il =T [ exp(—iEx)/(iix) + /2 ( Hf + Hg ) ]
I, =m [—exp(—iiéx)/(iix) + /2 ( Hi + Hé ) ]

Hence the total normal velocity in the far wake is obtained from
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egs.(8), (1ll1) as

Vi = w(kx) exp(—ikxx) exp(iwt)S(kx)

S(k_) = 1. - ﬂEx [ Tl/(2ﬂwc/2) exp(i3ix) + P2/(2ﬂwc/2) exp(iﬁx) ]

With the substitution of Pl and P2 in this expression from eq.(10) and

eq.(1l2) this is simplified to

- kT
a1 Jo — A

S(_‘E;.B = L@ — 2> (2)

Hy + L H,

We note that this is equal to the square of the expression eq.(9) which
we obtained for the single plate case. This confirms that the factor by
which the amplitude of the normal velocity is reduced for the case of
tandem plates is equal to the square of that for the single plate case.

The amplitude and phase of S(Ex) is plotted in Fig. 11.

We now consider the effect of increased chord. The non-dimensional
wavenumber is obtained by multiplying the wavenumber (2n/wavelength) by the
semichord ¢/2. When a wave with a particular wavelength is convected over
longer plate it will have higher non-dimensional wavenumber than that for a
smaller plate. Since the amplitude reduction increases with the increasing
non-dimensional wavenumbers the amplitude reduction for a particular wave
is higher when it is convected over a longer plate than over a smaller one.

The results doubling the length of the plate is shown in the Fig. 11:
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enchanced reduction is obtained by doubling the length of the plate but
less than when two plates are used in tandem.The results that the amplitude
reduction increases with the increasing non-dimensional wavenumbers implies
that the amplitude reduction for a particular wave is higher when it is

convected over a longer plate than over a smaller one.
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CHAPTER 3
Analysis of a three-dimensional model using integral method
A turbulent gust with a normal velocity component of the form
w(kx,ky)exp(imt—ikxx+ikyy) is convected by a uniform stream of velocity U
over a thin rectangular plate as shown in Fig. 6. Frozen convection (i.e.,

Taylor's hypothesis ) is assumed, therefore the wave number in the x

direction is
k = /U
b's

and the non-dimensional wave numbers are

b
I
=

c/2

=1
I
=

c/2

We assume inviscid irrotational flow. For the linearized theory the

governing equation for the perturbed potential is

The pressure coefficient to first order is given by

cp = -2 ¢x -2 ¢t/U

The boundary conditions are
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1. ¢, = -w(kx,ky) exp(iwt—ikxx+ikyy) for -¢/2 £ x £ +c/2 ; z=% 0

2. ¢ » 0 as x2 + yz + @
and
3. pressure is continuous across the wake ( x2 c/2 , 2 =0 ).

Reissner (1947) derived a formula for the pressure distribution on an
oscillating finite wing. The mechanics of this problem is similar to the
one we consider in this chapter. 1In the first part we formulate this
problem in terms of an integral equation with a similar procedure as by
Reissner(1947). Graham (1970) derived this integral equation and solved
by means of a Chebyshev expansion of part of the kernel function that

appears in that equation.

From the boundary condition (1) it is evident that ¢ is antisymmetric
about z=0. Therefore there is a discontinuity in streamwise and spanwise
velocity components exists across the plane z=0. We replace the wing and
the wake by a vortex sheet which consists the spanwise component y and

streamwise component § as shown in the Fig. 6.
Here

Y(x’Y)t) =2 u(x:Ys"'O:t)
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(13

§(x,y,t) = 2 v(x,y,+0,t)

and u,v are streamwise and spanwise velocity components. Outside this

singularity region flow is irrotational, therefore

With this equation and eq.(13) we obtain the relation between y and § in

the form

)

Since this is a linear problem and the time and the spanwise
variations appear in the boundary condition as simple harmonic
varitation, all the dependent variables become products of exp(iwt)

exp(ikyy). Thus the amplitudes are independent of y and t. We write

(5

y(x,y,t) = U fl(x) exp(ikyy) exp(iwt)

From eq.(14) we deduce that 5§ takes the form

(16)

§(x,y,t) =U iEy fz(x) exp(ikyy) exp(iwt)

where

x a2
fz(x) = _{ fl(x) dx
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The pressure differences across the plane z=0 takes the form

x
Acp = - c{y(xl,t)dxl - U y(x,t)

In the wake pressure difference is zero. Since y(x,t) is zero for x < -c/2

we can replace the lower limit to x = -c/2. We obtain the equation
X
/I y(x;,t) dx, + U y(x,t) = 0 for x 2 c/2
-c/2

Substituting for y from eq.(l5) and using eq.(17)

s (2
1kx fz(x) + fl(x) =0
When x = 1, this relation gives
" 4T D)
fl(l) 1kx 52(1)

Differentiating eq.(18) we get
' L
f l(x) 1kx fl(X)
The solution of this with the condition eq.(19), gives

fl(x) = —iix exp(iﬁx) fz(l)exp(-ikxx) for x 2 ¢/2

fz(x) = exp(iEx) fz(l) exp(—ikxx) for x 2 c¢/2

Hence, the strength of the shed vorticity Yy and the trailing vorticity Bw
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is given by

Vo & & U iﬁx f2(l) exp(iEx) exp(—ikxx) exp(ikyy) exp(int)
Sw = U iiy fz(l) exp(iix) exp(—ikxx) exp(ikyy) exp(iwt)
We observe that in the wake the vortex lines are parallel to the convecting
gust direction. The total circulation around the plate is defined by
c/2

T(y,t) = [ y(x;,t) dx

-c/2 :

and is equal to
T'(y,t) = Uc/2 fz(l) exp(ikyy) exp(iwt)

We can derive these expressions for yw and Sw with a different procedure (
Appendix C). We derive the expressions for the strength of the vortices
eq.(20) in terms of the circulation around the plate fz(l). To evaluate
this circulation we write the boundary condition on the plate. Using the

Biot-Savart law the normal velocity at any point due to the vortex sheet is

- §(8.7.%) (¥y=1)
W(x, 4, 2,t) = — | r( & t) (x—¢) +8C i dg

2 < 2 3/-!.
{E—g) + (y—1) + 2 S

In the limit as z + 0 we obtain the imposed upwash on the airfoil surface

by the vortex sheet



43

- -

w(x,y, 0,t) = —1_ 08 ) (x— @) + 8(E. 1) (¥—1) dgd

{@C-—@)l + C‘-‘J“"lf %'3/-‘-‘-

We substitute for y and § from egs. (15), (16), (20) and non-dimensionalise

the variables with half the chord length ¢/2. For simplicity we take y =

0. Then the boundary condition on the plate takes the form
_ ! r L‘-E tz‘
~ LB x £( e ’ (x—g) |
“\U('&x,'&g) e = — 1 Cl@ i
A 2 2 3/-2
{(x—-f) + 7 }
f:—-\ 'l="m
41 + 0 L‘E-sq_
.5 i% (f) ?. €
+ 4Ry 3, d dg
<
wh {@c—- ) + T § )
'f'-""l f(:-ﬂ'-\
- = = _L:E-z,,*g LBy
e L‘ﬁ; e e (x"”g)
—_— 2 2 %
4 [e—+ 7§
g=+1 N=»—®
= 0 ® -—L-Eg_g ."E-H IZ
. ‘{-‘&3 e e '-L
+ iR HEOe dn dg
2 B4
4K {_Q?"' f) N 7? E
£=+I {L"""w
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We evaluate some of the integrals and modify this equation into a different

form ( Appendix D ). This expression is equivalent to the one which

appears in Graham (1970).

-
LB, x — _
-w e = — Ry | £(2) K‘{—&aix-—gl}sar‘t(&—f)dg
arn
+1
s _
—_ 1%2_ £ (D ‘<o‘{ 4k3 \u;—-?\ } A“g
2%
-1
5 ‘L'Ea ""Lg&x
-*:F:O){*Ei“'%s}&e =
. \—X
- L‘&x CI—X) _l‘gaf .
s B0 LR &j} e e ko § B, 2} d¢
ax
— L R £.0 Ko %y (_1-—><)} (2D
2K
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This integral equation and the relation eq.(17)
X

fz(x) =_{ fl(x) dx
defines the problem completely to determine the vorticity distribution
fl(x). But it is difficult to obtain a closed form expression in a
general case. Hence we consider a case where Ey’ the non-dimensional wave
number in the y direction, is small and derive a closed form expression for
f2(1) to O(Ey) accuracy.

If we assume ky is small some of the integrals in eq.(21) can be

simplified using the properties of the Bessel functions (Abramowitz and

Stegun 1975).

(a)

Since x-£ £ 2 , for small Ey we have

+ %3 \x-——ﬂ\ A E" \x-—-—-?\

o2

s |
it ’ﬁ"‘x—_?\} %, |x—¢|
Y

Ko % \x—?|}

+o(R

- =2 T
3 {&3‘2 —Fz,l:—fl +—r} + 0 (Ry oy *33

2
Y

)
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\ +1\
i Y F(2) T Y
R\ 20 K ] F 11| san - ds =1 A2 s +O(T, 2 &y)
2K

-\

+1
% X Re e Ry)
Ry | ke{ Ay [x—sl [ Rdde = 0 (R ARy

2x

Both these results are equivalent to the assumption that the induced

velocity due to the vortices on the plate is equal to the two-dimensional

case value.

(b)

For small Ey we simplify this to



where
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— -.L:ExE —
= 4+ 4i4kx © {v—y%-&gs},
-2

|—X

_ -uL:Ex (1=x _ _
+ 1k, € Ko{'&a (t—x)} + 4k J

€

2

— —-l:ExE — i -J.‘-ﬁ-,t(
= +%, e {T+£nﬁ_ﬁ_J,+4ﬁxe
caE | R - ci{%o—x)}}

+ R, {SL{Ex(a—x)} ~ Si(%_xe)}

cg
Ce(2)= J.J.—Z dt  and Sulz) =

—'-‘-ERF
e ;{?
g

1—xD _

Ko { &y (-

Smt J+

x>}
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Substituting these results we obtain the folowing relation for small k

—2
R

T

_ ik (0= _
= A‘E:x. € KO{‘&B Cl_x)}

. :gx{ Si{F (—OF — 1 Ci{k ct-x)&}

With the simplifications (a) and (b) eq.(2l) becomes

+

+

_&E:x.x +
] 2R Xx— %

2

2 % Y

s — y

£, {-&3-&-—&,} {z.z"—* *Je —
=

_ - —2 -Li& -iiL -
&,‘.‘.m&e o

Ry

£ 0 .L:Ex Ln e &

2R

ax

= y ) :Ez G— ) e e
£ Ex{Si{‘&,Ci-ﬂ—X)}—AC;{ x}}

—

2

&

l'Ex -—L%XX
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From this equation we may obtain the expression for fz(l). To do this we
multiply the equation by v(l+x)/(1-x) and integrate it from -1 to +1

making use of the integrals in Appendix A to give

JSE; C'—‘x) _ _
e S {F =] — i G R Q—ﬂ}}
-1
B 3
s K wmA B &,{Y,(a‘,) +¢Y.,(ﬁ,3}
2

Using this results we solve for fz(l) and which becomes

B
%, & 2D — 4 T (R
£L,0) = - W(ke, &y) 4 © {Tac‘kx) A }

) _ @ R > I 1+ €
- xRy { H, (&) + i Ho (’&")}

(22)

where



50

[ 2
2
2 Jo—aT ’QDS%" +Ji+a kg HVITQ

~ u) . (€)) Qa
H, +« Ho

+ JLZ_,{,/\-!—QQ—-\}} (23)
2

and

After the strength of the shed vortices and the trailing vortices are
obtained the velocity field in the far wake may be calculated. Consider a
vortex sheet of strength y exp(-ikxx) exp(ikyy) in the spanwise direction (
shed vorticity ) and of strength § exp(—ikxx) exp(ikyy) in the streamwise
direction (trailing vorticity ), which is positioned in the xy-plane.
Outside this vortex sheet the flow is irrotational and the velocity

potential is given by ( Appendix B )
¢ = ilz|/z y/(2k_) exp(-ik_x) exp(ik_y) exp(- v k2 + kzlzl)
X x y x y
From this we obtain the induced normal velocity due to the vortex sheet at
z = 0 which is
w, = -i y/(2k ) ﬁz + Ez exp(-ik_x) exp(ik y)
in X X y x y

Substituting for y from eq.(20) we obtain
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win/U = - fz(l)lz J/Ei + E; exp(iEx) exp(—ikxx) exp(ikyy)

The total velocity in the wake at z = 0 is the sum of the induced velocity
and the gust velocity and is given by

WT/U = w(kx,ky)/U exp(—lkxx) exp(lkyy) S(kx'ky)

where

=2

S(kx,k - +

) =1. - fz(l) exp(iix) E; /2 (24)

y
and fz(l) is given by eq.(22). The amplitude and phase of S(Ex’Ey) is
calculated for a range of Ex and EY values and is plotted in Figs. 12,13,
The results show that the percentage reduction in amplitude increases with
incresing ix and the reduction is more for larger Ey' For Ex >> 1. the

results approach the two dimensional value.
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CHAPTER 4
Analysis of the three-dimensional model using acceleration potential method

In Chapter 3 we formulated the three-dimensional problem in terms of an
integral equation and solved it for small Ey' In this section we
formulate this problem in terms of an acceleration potential. Ahmadi
(1980) developed an unsteady lifting line theory for an oscillating finite
wing using the acceleration potential. We follow the same procedure and

obtain a closed form expression for the circulation when ky is small.
The acceleration potential { is defined as

¥X,t) = [ p_ - p(X,t) ] /p @5

"
where X = (x,y,z), p is pressure, p is fluid density and p_ is the free

stream pressure. For a linearized theory the Euler equations become

t x b 4
v, * U L wy
wt + U Wx = wz (36)

and the continuity equation

@7

u + v +w =0.
y

It follows that | is governed by the Laplace equation
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@9
=0
Yoo ® \Pyy i .
Boundary conditions are
(1) for -¢/2 £ x £ ¢/2 and z = 10
(29
w(x,y,+0) = —w(kx,ky) exp(iet - 1kxx + 1kyy)
In terms of Yy from eq.(26) we obtain the condition
(o>
wz =0 on the plate.
(2) x2 + y2 + 22 + = Yy =0 (3\)

(3) Pressure discontinuity is zero across the wake. Since Y is
antisymmetric across the wake, this condition gives ¢ = 0 for x 2 ¢/2 ; z =

0. (32>

The formal solution of this boundary value problem is

o0 * G4

— _ 2 (L.\ &p(e 17)dg
Wwx,t) = ks dn %—5(93 P )

- —
* % (23

where
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Ap(E,n) = p [ W(x,y,0+) - ¥(x,y,0-) ] (34)

and

R - I.o (35)
2 2 2 )
{(x—g) + (y—1Y + Z }

In the following sections , using matched asymptotic expansions , we solve

for Y when Ey is small . Let us assume

b = 1/ky ( this is proportional to the wave length in the
spanwise direction. )
= 0(1)
¢ = width of the plate

= 0(g) b
Define

A= 1/( ky c/2)
=1/ k
y

These A and b are similar to aspect ratio and span length in a finite wing.

Now consider the outer solution and the inner solutions of the problem.
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OUTER SOLUTION

In the outer region distances from the plate is of the order of b ( =
O(Ao) ). Then we expand 1/R in Taylor series for small £ [ (-e/2 €€ < c/2)

= 0(1/47) ] and obtain

i

o R ()AL () reud e

R Re 8x 21 ax?

where

0
sl P g o
0
and
2 2 2
r =X + 2
Yo=Y - n (38>

Substituting this expansion in the eq.(33) we obtain an outer solution for

Y valid in the outer region
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oo oo
° . 2D % M) 3x Z
p LB, R == = b g L ), 4 - 32%‘*?
4% P {1'41-“{:}.2 —['r-b-Yo}
—- 00 -_— OO0
o
— 2 2 <
4 2 (V) 32{2—4x + Yo T Ye—— (39)
2 Q 7/-1
1 { *5 + ~Yo }
<0
where
c/2
1) = J ap(E,n) de 0(1/a) ¢e)
-c/2
c/2
m(n) = - J Ap(E,n) € dE 0(1/a%) G
-c/2
c/2 9 3
q(n) = I Ap(E,n) E° dE 0(1/4) 42D
-c/2

Here 1(n) represents the sectional 1ift. m(n), q(n), etc. represents the
higher order moments of the loading about the mid-chord. The order of

magnitude of these terms are also shown next to the expressions.

When r becomes small ( of the order of the chord length ) the
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outer solution ceases to apply. This region corresponds to the inner
region. To analyze this part we magnify the variables

Define the inner variables as

and

X = r cosé

sin®

NI
[l
L2}

In the inner variables the plate is positioned

at -¢/2 £ x ¢ 5/2; z = 0 where ¢ = A ¢ = o(l).

Later for the purpose of matching, we need the inner expansion of
this outer expansion. We substitute for the outer variables r,x,z in terms
of the inner variables r,x,z and A and expand for small (1/A). We

obtain the inner expansion of the outer solution

8

; 3
(Po"' e ] A R(Y) SmO L 1 F Sm6 2_3
2% P F 4A oY



) -3
L) Log (¥Y=12)8gn (v—=2ddq + (1 + 2 Log _%_—_ﬁ) ,E(Y)]+ O(A2)
F

o K Al m (Y) Sm 26 4+ m (¥) swma2e ~+ OC,&"zm) }
2xP =2

+ 1 {AS Q(Y) Sm 36 ._-__A_\_ Q”OD SmBO— S 386 . O(_A_«‘ 2)}
-'LWP 7’:3 -‘_-;:-

INNER SOLUTION

Writing the governing eq.(28) and the boundary conditions in terms of

the inner variables we obtain

‘pi}-{- + \I’EE + ‘«pyy l./A =0
Y- = 0 on the plate
Y =0 in the wake.

)

We expand the inner solution in an asymptotic series of the form

P~ \p; + a7% 1oga \pi + 471

\.I:Zi + (higher order terms). (4-6)
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Substituting this expansion in the governing equations (45) and collecting
the terms with the same order we obtain a series of simplified

two-dimensional problems for w:.

(1)

A i
Vgt Vg =0
i
" s - 0 on the plate
v =20 in the wake (#-7)
(2)
i i i
Worgs * Virgg = - wo’yy
wi =0 on th lat
4:—2- e piate
Y =0 in the wake (48)

We note that in all these problems (1) ,(2) etc. the conditions at
infinity is not defined. Therefore the solutions are not unique and leads
to many eigensolutions. One of those eigensolutions is the classical
Sear's solution. Later we see that this is the only eigensolution

important to us.

When a two dimensional gust of the form wg(y) exp(int - ikxx) is
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convected over an infinite plate the governing equation and the boundary

conditions are

(1) Yoo + Y =0 (4-9)

(2) w(X,y,+0,t) = -wg(y) exp(iwt—ikxi/A) on the plate. And this

codition is equivalent to

Yo = 0 on the plate (5
(3) Y = 0 in the wake
(4) Y + 0 at infinity

The solution of this problem is

v = Real[ f(E,y) ] (51)

sears

where

_ _ (52)
£(€,y) = -jU wg(y) B(k ) (A - 1)
Bk = i 3,(k) + [ Jolk) - 13 (k) ] k) (53
C(k ) = H2(k,) / [ BA(R.) + 1 HE(R) ] (54
X 1" x 1" x 0" "x

Theodorsen function



%
A - f- % (55)
g + 4

We do the analysis assuming §x=0(1/A) and later improve it to the case

when kx = 0(1)

2 - w T\ 1
*. (Tf T‘> A
[
y = w T . o0) ©e
2
s 0 &7)
’&xz & - A

We expand P(Ex) for small Ex and obtain

B(k) = 1. + [ iv log(yv/2) - mv/2 ] a”t
(58>

- iv A_llogA + O(A_zlogA)

Therefore for small k_, ¢1 takes the form
x’ 'sears

$i

. -1 . -1 L
anars ™ U wg(y) [ l.+(iv log(yv/2) - ©v/2 ) A iv A "logA Im(A) +

5
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i

satisfies the boundary condition
sears

When wg(y) = w(kx,ky) exp(lkyy), ]
on the plate eq.(29). We separate out this solution because this

simplifies our analysis later. We denote this as ¢;D'
For small k
X

i1 i -1 i = god
Yop = V¥ap,0 * ¥op,1 A TlogA + dop 5 AT 4 - (

where
4 =T Im(A)
¥2p,0 w Im
Vi Civ U w In(a)
2D, 1 iv w Im

i )
¢;D,2 = [ iv log(yv/2) -mv/2 ] U w Im(A). (6 >

For later calculations we need the 12D(y), the two dimensional 1lift
function. This is equal to

+c/2
1,p(y) = J bp,(E,y) dE
-c/2

+1 .
=2 (c/2a)p [ , (E) dE
=l

From eq.(51), substituting for ¢;D, we obtain
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. _ (62>
12D(Y) =2np (c/2 ) Uw P(kx)

If we expand this for small Ex we find

1Lyp(y) = 2mp (c/2a) [ Uw

+ U w ( iv log(yv/2) - mv/2 ) A_l

(e3)

- Uwiv A~ logA + —-——- ]
Define
FZD = 1lift /( 2np c/2A )
= U wB(k) (e4)

s r . . + 1 s
The inner solution consists only of the eigensolutions. ¢2D is the
two-dimensional solution. We consider this as the primary solution and the
other eigensolutions as a three-dimensional correction. Hence we write the

inner solution as
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i L ol i aE i o B B e
Voo ¥op 1t Fo Veears tEp ¥yt 8p ¥, ¢
+ A-l logA [ wi + F Y £V, + g, Y, + ————m
g 2D, 2 1 "sears 1 71 1 71
+ a7t [ q;i + F, # F. W ¥ g Yo £ e
2D,3 2 Tsears 2 "1 20 T2
= (65)
+ 0( A ° logA )
here

¥ = Im (A) (ee)

sears

and A is given by eq.(55 )

¢l’ wz,—-——are other possible eigensolutions
and FO’ fO' go, ---=- are arbitary constants.
For convenience we combine (sz,l + F0 wsears ) etc. as one term and will

separate them in a later stage. Define

F =F1—1QUw

(87)

F, = F, + [ iv log(yv/2) - nv/2 ] U w

Then the inner solution becomes

i =
U

+
sears
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_1 - _
v A logh [ Fyw o+ £ b+ g) by 4o

=] -
t A [ F2 wsears * f2 lp1 * gy ¢2 *
5 (e9)
+ 0(A logA)
For matching purposes we need the outer expansion of the inner solution.
This is obtained by substituting for the inner variables r,X,z in terms
of the outer variables r,x,z and expanding the solution for small (1/A).
From eq.(43), (55) and (66) we obtain the outer expansion of the Sears
solution.
2
52 Thp | Sme _1_‘(%) Sy 29
\.P ~ 3 = 2
¥ A +
seam A
3
-4 69)
= Sin 36 ) ¢
& 3 A) . + O(A
2 A .f.‘a

After obtaining the inner expansion of the outer solution eq.(44) and the
outer expansion of the inner solution eq.(69) we apply the matching
principle and determine 1, m, q in terms of FO’ Fl’ ?2. The asymptotic

matching principle reads: (Van Dyke, 1964)

m-term inner expansion ( n-term outer expansion ) = n-term outer expansion

( m-term inner expansion )
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@ 1 - term outer expansion from eq. (99)

4+xP {Tq+ Y:}%

Expanded in inner variables, from eq. (104)

8

3
i { AR(Y) SmE 4+ 1 F smo [_a , | TV oy (y-1) 830 (=D
4 A

2XpP * Y

+ (I + 2 Aoy %) «E“(Y) ]

1 - term inner expansion from eq. (125)

E; Ysears i + ¥ -

Expanded in outer variables, from eq. (126)

3 3
£ [ S\ Sme _ F [ % Smad 5}_,) Sm 30 L ____
A T 2 A 73 2 \A v3
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Matching these two expressions, we obtain

I~ 4 Smo  _ | A €(Y) SwmO

A T 2XP G
:Fo = Qo = -e----- = O
2(Y) = Fo- axp 2) (1 30)
A

®

2 - term outer expansion from eq. (99)

o oo
| 2(7) dfl + m(7) 3Ixz d,z
4 xp {1—4_‘,\(6‘3}% { 1_4+Y-?. 5/4
~ 00 -0

1 - term inner expansion of 2 - term outer expansion from eq. (104)

{ A £(Y) Sm0O - mey) ge Sm 26
o ¥ 2 %P %=

1 - term inner expansion from eq. (125)

E; '7USecu-o
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2 - term outer expansion of 1 - term inner expansion, from eq. (126)

E (EA Sm 6 Swm 26

A A

Matching these two terms we obtain

€(Y) = 2 7P (EA) Fo
A

<

m () xP (f/_) R (=0
A

1]

©

2 - term outer expansion from eq. (99)

2]
| g7 m(1) 3xz dq
4 7P {4 Yo}-s/‘ {'f'-i- Yc, /:’
- o0

2 - term inner expansion of 2 - term outer expansion from eq. (104)

- 2
l €| SmOAL — A m(y) Sm28
2xp A ¥ +°
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2 - term inner expansion from eq. (125)

Fo LIUS ea

-1
+ A lgA F Ysenn

.
+ A F.: LPSQ-DA'O

2 - term outer expansion of 2 - term inner expansion from eq. (126)

2
Eo ?;_/! S O - Eﬁ_ Sm 268
A T < A =
- - — - — T
+ A flogA[C4) sm6 F + f'[%%\ sm6 E
' A I A T
Matching these two expressions we obtain
= i - — -1
$i%) = sy (4) [R+ Seoga®v £r, } (132
A :
)
m(Y) = xP (C/Z Fe
A

If we do the next order matching, we will obtain the higher

order expres

sions for 1, m and q.
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-2
Eq.(72) gives the expression for the sectional 1ift 1(y) to order A °. Now

we separate FO, fl’ ?2 into the two-dimensional contribution and
eigensolution contribution as explained earlier eq.(67). We obtain for the

lift

W(y) =2mp [ Uw+F ] (c/2a)

1

+2mp [-U w iv + F. ] ( ©/2A ) A" logA

1

+2mp [ U w ( iv log(yv/2) - mv/2 ) +F2 ] ( c/24 ) A_l

(73)

+ O(A_2 logA)

Substituting this results in the expression for outer expansion eq.(39) we

obtain the outer solution in terms of FO’ Fl’ F2. After determine the

F,. we form the

inner solution and outer solution in terms of FO' Fl’ 2

composite solution wc to O(A-l) accuracy.

) ) (74)
\pc - \Pl + ‘po _\DOl

where

i i
() v~ ¢2D,1 * 5 wsears

]

~1 i
il logA [ ¢2D,2 * F1 Ipsears
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]

-1 i
+ A [ ¢2D,3 * F2 ‘psears

Using eq.(60), without loosing the accuracy we write this as
U] \pi+[F + F A—llogA+F A_l}‘f

2D 0 1 2 sears
where \I);D is given by eq.(51).

(2) \po = outer solution to order A_l accuracy

0
o
\P . ) =) £cn CL"L
4XP  2Z 2 2 214
{x + (Y—7) + &
—oa
(3) ¢°i = common solution to order A“1 accuracy
& LYY _E
LP 2AP x4z
and

10(}') = FO 2mp  c/2A

This composite solution is uniformly valid for the whole region.

expression for this \pc consists the arbitrary constants FO’ Fl’

(75)

(76)

(77)

(78)

The

To

determine these constants we use the condition that \PC has to satisfy the

velocity boundary condition on the plate,
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9

wc(x,y,o) = —w(kx,ky) exp(—ikxx+ikyy)

where w_ is the normal velocity corresponding to the composite acceleration
potential ¢C. To obtain the velocity from the acceleration potential we

have to solve the Euler equations, eq.(26).

Since this is a linear problem, and the time and the spanwise variations
appear in the boundary condition as simple harmonic variation, all the
dependent variables become proportional to exp(iwt) exp(ikyy) with

amplitudes that are independent of y and t. We write

w(x,y,z,t) = w(x,z) exp(iwt) exp(ikyy)

1(y) =1 exv(ikyy)

]

m(y) m exp(ikyy) etc.
Then w(x,z) satisfies the D.E.
iww+ U wx = ¢Z

The solution of this equation is

x
w(x,z) = 1/U exp(—ikxx) f Y,z exp(ikxE) dE (80)
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where the integration is along a line parallel to the x axis. If we
c
substitute wc for ¢ in eq.(l140) and take the limit z + O we obtain w (x,0).
We write wc = w1 + wo - w°1, where wl, wo, w01 are the velocities
. i o oi
corresponding to ¥, ¥, y . In the next step we evaluate these

velocities.
(a) EVALUATION OF w'

From eq.(75)

i i -1 -1

Yo o= sz + (F0 + F1 A “logA + F2 A ) Ysears'

The vertical velocity due to ¢ is
sears

i = 5 % 1 x = =

wsears(x’z)= 1/u exp(-lkxx/A y f F, + A "loghA F, + A FZ) _i Veoars'z exp(lkxﬁ) d€
€D
We have to evaluate this integral at z=0. Since ' ,_ has a
sears’z

non-integrable singularity at the leading edge we transform this into an

integrable form. From eq.(55)

_ = . (82)

/\ =3 + VY

sears
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Since A is an analytic function of (x+jz) from Cauchy - Riemann relation

we have

®3)

and, when z=0, we obtain

X — S4
4) = ~ forix|> c/2
X + S4
2 o for|x|< c/2 I

Substituting eq.(83) in eq.(81), integrating by parts and use the results

from eq.(84) we obtain

i
sears

(x,0) = in/(2U) Ex exp(—ikxx) [ F0 + F A_llogA + F A_1

2 .2
1 2 ] ( H1 + i H

0 )

®5)

The velocity due to ¢;D is the gust velocity. Hence the boundary

condition eq.(79) becomes

-w(kx,ky)/e{p(-ikxx) --/wi(
1

. = . -1 - 2 o a2
+ in/(2U) kx exp(—;kxx) [ Fo + A 7 loga F1 + A F2 ] ¢ Hl + i H0 )

+ lim [ wo(x,z) - wOi(x,z) ] exp (-ikxx) (8b)
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where
X
7
wo(x,z) = 1/0 [ Yo,z exp(ikxﬁ) dg (Q )
and
. X . 5
wol(x,z) = 1/U | Y01,Z exp(ik £) dE (88

From eq.(86) we observe (wo -t ) is independent of x. Therefore, for

. o oi
convenlence we evaluate w and w at x=0.

(b) EVALUATION OF w°*

Substituting for ¢°1 in eq.(88) from eq.(77) and (78) we obtain

LR, g
W = 1 R % o= z e d ¢ (89

2 2
F + Z

In the limit z + 0 this becomes (Appendix E )

vl . ikx/U FO (c/280 ) [y + log (kxz) + /2 i ] G?OD
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(e) EVALUATION OF w°

Substituting for ¢° in eq.(87) from eq.(76) and eq.(78) and simplifying we

obtain
oo
e o]
" L‘%:.f
o E T e can
w = — Fo A C"-"Ea‘ld'la_z .dg
(| A oz 2 2%
{-r-;-'l
) (]
Substitution of the integrals from Appendix F gives
- - 92
w® = FO/U (c/2a ) [ Wl wo? w3 4 w4 ] (2D

where

ol
W =

o3

o
2
I + *+ *. % d
i\w-&aq{—féﬁ‘_ . } 2
o

o
cm&ﬂ{ N %.i"ﬁ ka('&a"b}dfl
o
o
s e Ry 7 { ARa [:‘(&,n) — L, (&;)] z
¥
;

2 2
+ zs:[x;(ikn)—— L—a(‘&x*)] e 2 } dq
2

_r-z
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wo! - Cmﬁa‘l{ Lz& }di 2

o]

When z + 0 we obtain (Appendix G )

WOl = 4’&,{‘0’-&-%%}. +/&r\i‘+‘}
o©
WO-‘L _ J&x_ Ccm'&aq. K\C‘&g'l) ol"]_ _ A
- €
=
=
o0
o _ Lk E oo Ry 1 {I. (k=) — L, (‘&:'D‘Hr dn
4 ¢
o
wou B (94)

Combination with the expression for wo, eq.(94 ) and w°1, eq.(93) yields

A
wo—-—wo = Fo \{L&u{aﬁm‘&s +t-o—2§-i}

-'l‘&:x-
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+ & com By q Ko (By ) dy — o
7 £
&
=¢)
+ 4R X E’_Q_il{I.(%;z)—L.(hﬂ}d'z @s)
o

We evaluate these integrals in closed form ( Appendix H ) and reduce this

equation to the simplified form

[e] oi

v - Wt = F /U c/oa T (ae)

where

<
(a1
To- ik | Jivd ey LI % By

Qa
3 (a7)
-z &,{J":—-ﬂ‘%

After deriving the expression for (wo ~ W ), from eq.(86) we obtain a

relation involving FO’ Fl and F2

wo - W - -i /2 k [ F, + F, a~! logA + F, a ] ¢ Hf + i Hg ) @9)
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= FO/U c/2A T
Using the relation

2

p(‘—ﬁ.m) 40+ (R”QT‘) s S

Il

-
b%f + 3 He

\

ﬂ—a-’g—{Hﬁ"'éH:S&x

we may rewrite eq.(98) in the form

[ Fy * Al loga . 4 At

1 B, ] = fo (c/2A) T (k)

From this relation we determinate the constants F

iR S T

from eq.(58)

(k) = 1.0 + 0(a™} 10ga)

Using this result from eq.(100) we deduce that

and

F2/A = FO c/2A T

From eq.(67)

(29>

(100)

For small k
X

(o)
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(102)

= quasi steady lift /( 2mp c/2 )

After determine these constants Fo ,FI 5 F2 the composite solution is known
to O(A-l) accuracy. We can modify the above results without loosing the

accuracy as follows.

Comparing eq.(63) and eq.(73) we note that without loosing the

loss ofaccuracy eq.(73) may be written as

1(y) = 12D + FO 2np c/2A

+ F, 2np c/24 A—l logh

+ F, 2mp C/24 Al (o3

Therefore, in eq.(78), instead of FO we substitute F2D ( eq.(64) ), and the

function P(Ex) is left without expansion for small Ex' If we assumed kx

= 0(1) we would have obtained these expressions.
Hence we obtain the new expression for FZIA from eq.(100).
Fz/A = FZD c/2A T P(kx)
Gog)

=Uw P(kx) c/2A T P(kx)

Substituting these results in eq.(75) we obtain the expression for inner
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solution

T B P(Ex) Im(A)

+ Uw B(k) c/2A T B(k))
=Uw/[ 1. +c/2AT P(Ex) ] B(k ) Im(a) (os)

1
From this expression we observe that the inner solution is the Sear s

solution with an amplitude of the form

W, [ 1. + c/2a T P(Ex) ] (oe)
When a two dimensional gust wg exp(iwt - ikxx) is convected over a plate
the circulation is ( eq.6 )

_ Ra
Foo. L,.wg{To—-iT'} e (107)

—

€4
2 o @ 2)
L R { H, + t Ho -S

When wg =w (1 - €)
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_...l%x
—= W \—-—8){'3‘—-—»?-3-1} e
N N v °
(1o®)
U %
_ @ )
L'ﬁx{Ht + 4 Ho }
where
e=—E/2ATP(Ex) (109)

Substituting for T from eq.(97) and for P(Ex) from eq.(99) we find

\ ey 2 + Ji+a' Leg e

E = 2
) (2) ) ) &
H, + L Hp
vy ix [Jixad =) ar
o2
where
a =k /k
v Tx
=k /k
vy Tx

Eq.(22) gives the expression for f2(1) which we obtained using the integral
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method. Comparing eq.(23) and eq.(l10) we see that the expressions are the

same for small Ey

Since for small ¢

) l— ¢ + o(eY)

1+ &

we derive the same expression for the circulation fz(l) using the both
methods to O(1/A) accuracy. We obtain the velocity field in the far wake

as explained in Chapter 3 and is given by
w /U = w(k_,k )/U exp(-ik_x) exp(ik y) S(k ,k ) C‘7‘)
T X'y X y x' Ty

where
= o . / -2 _2 (112)
S(kx,ky) = 1.0 - f2(1> exp(lkx) kx + ky /2

and fz(l) is given by eq.(108). The amplitude and phase of S(Ex,Ey) is
calculated for a range of Ex and Ey values and is plotted in Fig. l4.

The results show that for small Ey < 0.2 both method give the same curves.
When EY becomes larger, and for small Ex < 0.2, they deviate from one
another. This is because when Ey becomes large the difference between the

two exXpressions, which is of order Ei, becomes large.
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CHAPTER 5
Analysis of a three-dimensional model for high spanwise wavenumbers

In Chapter 3 we formulated the three-dimensional problem in terms of
integral equations and obtained a closed form expression for the normal
velocity in the far wake, for the case when the spanwise wave number ky is
small. In Chapter 4 we formulated this problem in terms of the
acceleration potential and analysed using asymptotic matching principle for
small ky. In this Chapter we derive an expression for the normal velocity
in the far wake for the case when the spanwise wavenumber, ky’ is high.

For this case an approximate closed form expression for the pressure
distribution on the plate is derived in Amiet (1976). The solution
procedure is based on the work by Schwartzchild (1902) and Landahl (1958).

We use the results derived in Amiet (1976) in the calculations.

We assume the flow is incompressible and irrotational. For linearized

theory the governing equation and the boundary conditions are

[ + ¢ + ¢ =0 (”3)

d(x,y,z) = 0 for ~= $x <0

(i)

= - i —ile ‘1 < < =
¢z w(kx’ky) exp(iwt) exp( 1kxx) exp(lkyy) for 0 £ x £ 2, z=0

Qrs)

and
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¢, +U $ =0 for?2 Sx<$=2=0 (11 e)

t
The spatial coordinates are non-dimensionalised with the semi-chord c¢/2 and
the axis is placed at the leading edge. We observe from these equations
that ¢ is antisymmetric about the x axis and takes the form

G17)

b(x,y,2) = ¢(x,2) exp(iiyy) exp(iwt).

We solve this problem for z 2 0. Substituting the expression eq.(117) into

eq.(113-116) we obtain

by * by K & = 0 (18

$(%x,0) = 0 for -=<x<0 (19>

, = -wexp(-ik x) for 0<x<2,z=0 (120)
and

¢x+ifcx¢=o for 2<$x <= Lrsid

An approximate solution of this equation is, from Amiet (1976)

¢ =2, (x,0) +3,(x,0) (22)

where
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_Lﬁgi
$ (x,0) = W e of JFx x>0 (123)
2+ Ry
& X
B x _ai'ﬁg — B, (241D Bt
étx,o)=ﬂ_w_, e dg e T e e dt
2 = T
\/KCEQ"'ti.;j f24 [3 F
o — QO
Crey)
and r = 2 -t ; x £ 2
Here
A=k + ik
y X
po= 1_<y - ik (125)

This solution satisfies the boundary condition on the plate eq.(120) and
the downstream boundary condition eq.(l121). But the third boundary
condition is not satisfied by this solution. Comparing with the numerical
solutions of Graham (1970) it is noted that for Ey>l.0 the accuracy of
this solution is of the order of a few parts in 103, and reasonable

accuracy is obtained for Ey as small as o0.25. Landahl (1958) has shown
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that this iterative scheme converges uniformly for all Ey’ but many terms

are needed to obtain good approximate solution for small Ey.
The circulation around the plate is equal to

r =2 ¢(2,0) (126
We define

r /(Uc/2 ) =w/U fz(l)

Substituting for ¢(2,0) from eq.(122-125) in eq.(126) we obtain (Appendix I

—aiﬂa
foy = _2E€ e [ap
&R |
B _ 2 %,
2 e“ eaﬂ 1 Ke(2ky)e —C (1)

where

-gp
C = e efe [Ag de (122

[.2+f

o]

and KO is the modified Bessel function of zero order.
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When we derive these expressions we fixed the axis at the trailing edge.
In the previous chapters the axis were fixed at the mid-chord. If we move
the axis to the mid-chord there will be phase change equal to Ex'
Multiplying the eq.(127) by exp(iﬁx) we obtain the new expression for

£,(1)

_ LB,
0 = 2 € erf [ap

ﬁ: + E:

_L.E. 1R,
_ae Y Kke(eBRD)e  — € (29

= {a=

The total normal velocity in the far wake is derived in Chapter 3 and is

given by eq. (24) as
wT/U = w/U exp(-ikxx) exp(ikyy) S(kx,ky) (1z0)
and

S =1.- £,(1) exp(il_cx) v 12}2: . E; /2 (v 31

The amplitude and the phase of S(Ex,ﬁy) is calculated for a range of Ex
and ky values and are plotted in Figs. 15, 16. As mentioned earlier this

solution gives reasonable accurate results for Ey>0.25 and gives better
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accuracy for larger Ey()l.O). The results show that the amplitude of
S(ix,ﬁy) is very small for high spanwise wavenumbers. The amplitude
decreases with increasing Ey and Ex' For Ey=l.0 it decreases from 0.07

to 0.025 when Ex increases from 0.0 to 4.0. For Ey larger than 2.0 the

amplitude decreases to values less than 0.01.
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CHAPTER 6

Analysis including ground plane

In the previous analysis we neglected the effect of the horizontal
ground plane. In this chapter we will include its effect (Fig. 17). 1In
addition to the boundary condition on the plate we also have to satisfy the
boundary condition on the plane. We satisfy this condition by considering
the mirror image of the plate on the horizontal plane. The present
configuration is shown in Fig. 18. The boundary condition on the upper

plate takes the form

% ¢ oo
— xR X
~- w(®) € = — Tiodjg — 2 de
22X x— 2 "
-4 %

5
o o, cl—f) d_g & i LX) (.’L-—-—-f) A?
2 X a K]

{ o)+ W}

(132 )
-¢<, %

Using the condition that there cannot be any pressure discontinuity across
the wake we can solve for the vorticity distribution y2. This expression

was derived in Chapter 2 and is given by eq.(5)

.3’2 = [—

) eb (+ R emp (- cAan) Crse)

where
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X%
= T dg

~%

Substituting for Yy and non-dimensionalising using c¢/2 as reference length

we find from eq.(132)

+1 W

- L-E;DC
W e = \ KJ dg -

l‘ﬁx_ —-L'aa.? —l‘&u

L Ra ( ,\'_'c/) € & ds - ‘-‘Eu(u_ = G-=) g
2A 72 2 {
- "+ h1

(134)

We have to solve this integral equation to estimate the circulation T.
Since it is difficult to solve it in closed form we use the 'Quarter chord
theory' to obtain an approximate expression for the circulation L. After

some simplifications we obtain

-_.L-‘E%

- . e C\ss)
QKW% { I"I4 + I' + T, )S
I+ h?
where
LR 134)
z _ & o8 de — i Se® a4 C
T, = 4R € e £
%. R
e 2
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_ L_‘gﬁ _'a:“‘ﬂ ’Tk-w.l’l
T, = - sheoe { e E:(M) + @ Ed( MO (137)

Ha = =% {h+§~g (139)

and

8

—z
Ev (M) = %_ dz (139)

/-L

After obtaining the expression for the circulation we can calculate induced
normal velocity in the far wake. There is induced velocity contributions

from both the lower and the upper wake vortices given by (Appendix B)

-._-L‘&ag_x )
w - - & "By e (4o
M‘)uppe« 2
—L%ax —%H.h
Oy

Substituting for Yq from eq.(133) and adding the induced velocity and the

gust velocity we obtain the total normal velocity in the far wake as
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Wy = WwW(R) e o g(_—Tg,__,H) (v4-2)

where

L
S(R«.H) = 1o — x%, e r .o — e
2xw G4

The amplitude and the phase of S(EX,H) is calculated for a range of
Ex and H values and is plotted in Fig.19. It is seen that the reduction
in the amplitude is reduced by the inclusion of the plate. For H=2.0 and
ﬁx=0.5 the reduction in the amplitude is reduced by a factor of 1.5 of
compared to the value without the surface. This factor is about the same
for the lower wavenumbers. The other point observed is that when the
height H becomes smaller this factor increases. For the purpose of
understanding these results further we calculated the circulation and the
shed vortices from eq.(l133), (135). The amplitude of the circulation is
shown in Fig. 20. We find that the amplitude of the circulation and the
shed vortices in this case are larger than those without the ground plane.
This leads to higher induced velocity from the upper and lower shed
vortices. Since the shed vortices from the lower plate induce the velocity
in the upper wake in the opposite direction to the above we effectively

obtain a decrease in the reduction of the amplitude.
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In the previous section we considered the interaction of the
two-dimensional gust with the plate and the surface. 1In this part we
extend this to the three-dimensional gust. Due to variations in the
y-direction in addition to the shed vortices there is also trailing
vortices. The strength of these and of the trailing vortices are derived
in Chapter 3 (eqg. 20) in terms of the circulation. As we did in the
two-dimensional case we consider the mirror image of the plate on the
horizontal surface and solve for the circulation using the 'Quarter chord
theory'. After this approximation the equivalent vortex sheet
representation for the upper plate is shown in Fig.l0. For the lower plate
we have the same figure with the vortices in the opposite direction. Using
the Biot-Savart law the normal velocity due to these vortex sheets is
determined at the 3/4 chord point. Satisfying the boundary condition at
that point we derive the expression for the circulation (see Appendix J).
After determine the circulation we calculate the induced normal velocity in
the far wake and adding the gust velocity to this we obtain the total

normal velocity in the far wake and is given by

—L&,‘x k’&s& twt - —_
W, = W e e e S ('&a-)’%s 3 HI) <E+l+)

where

I —a
—a - L:Eu - '&:4"&3 H

<2
S(Bx, By H) = 1o —J R+ Ry £V {n.o— e
4

and fz(l) is the circulation around the plate and is given by eq.(J13).
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In Figs.22-24 we have plotted the amplitude of S(Ex,iy,H) for
different Ex’iy and H values. In Fig.22 we compare the 'Quarter chord
theory' results (without the surface ie H==) with that obtained using the
integral equation method eq.(24). As mentioned before, the 'Quarter chord
theory' approximation is valid for small wavenumbers Ex less than 0.3.
Fig.23, 24 show the amplitude for Ey=o.1 and 0.2, and it is seen that
except for small §x<0.l there is not much difference from the conclusion

made for the two-dimensional case.



96

CHAPTER 7

In this chapter the interaction of a vortex street and a vortex pair
is considered. The vortex street simulates the wake behind the LEBU
devices. The vortex pair models the ejection process or the wallward
movement of the outer fluid towards the wall. In the absence of the vortex
street the vortex pair moves with constant induced velocity. When the wake
is introduced the vortex pair and the vortex street interact and the motion
of the vortex pair is altered. In this section we will determine, how the
motion of the vortex pair is altered and, how the wake is modified due to
the interaction. We employed the two-dimensional model to gain some
insight into the effects and the mechanism. The initial arrangement of the
vortex system is shown in Fig. 25. First an approximate estimate is made
for the magnitudes of the variables A,B,a,I‘1 and r2 where A,B are the
longitudinal and lateral spacing of the vortex street, rl is the strength
of the vortex street, 'a' is the distance between the vortex pair and P2 is
the strength of the vortex pair. The pPrimary length and velocity scales
involved in the problem is length of the plate 'c', the boundary layer
thickness § and the free stream velocity U. In most of the LEBU

applications tested in the laboratories the length of the plate is equal to

the boundary layer thickness ¢ = §.

For B/A the Karman's theoretical stability condition ratio 0.28 is
assumed. The velocity of the vortex street relative to the free stream is
given by

T,/2A tanh nB/A = F, U (1 35)

From experimental results F1 is approximately 0.08, Taneda (1958). Let
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A = 8/N 1)
where N is the factor which determined the longitudinal spacing of the
vortex street and it is a function of the Reynolds number. The variation
of N with the Reynolds number is shown in Fig. 5, Taneda(l1958). For the

Reynolds number 30,000, N is approximately 8.

In the absence of the vortex street the vortex pair moves downward
with the velocity Pz/(Zna) and it carries with it an oval shape of fluid.
The axis of the oval are 2.09a and 1.73a . The magnitude of a is
determined by simulating the oval shape with a large-eddy of scale §.

Hence

a=F26 037)

where F2 takes a value of 1/4. To determine the strength of the pair, the

velocity of the vortex pair P2/(2na) is equated to the normal turbulent

velocity in the outer part of the boundary layer.

(132)
FZ/(2na) = F3 U

where F3 measures the normal turbulent velocity in the outer part of the

boundary layer and is in the order of 0.02 - 0.04, Fig. 3. From egs.

(135)-(138) we obtain

| 2
a/A =NF 459
2
and
(40>

r2 / T =m (F3/Fl) NF, tanh (nB/A)
Substituting for Fl'FZ’FS and N the values which are evaluated, it is
obtained

a/A = 2 (141)

and PZIFI is in the range 1.0 to 2.0.
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In the calculations the variables are non-dimensionalised with length A,
velocity Fll(2na) and time A/(rl/(Zﬂa)) and the variables are 'a' and Pz
are varied in the above range. The initial and the distorted vortex
systems are shown in Figs. 25, 26. Here, the axis are fixed to the vortex
street and hence there is a free stream velocity in the x-direction with
magnitude U which is equal to

U =T, /2A tanh nB/A (143)

The coordinates of the vortices in the undisturbed vortex street are

Ky = (L-3) A

yj = 0.0 for the lower row ('4‘*)
and

X; = (L=3) A+ A/2

YJ- =B for the upper row (4.5

th i s p .
Here L vortex on the lower row locates at the origin and 'j' varies from
== to +=. If we denote the coordinates of a vortex at a time t as (xi,yi)
and the induced velocities on the vortex by other vortices as ui,vi then

the motion of the vortex is governed by

and

(14-6)

A¥e .oy
dt
Each row in the vortex street consists of an infinite number of vortices in
either direction. It is reasonable to assume that far away from the vortex
pair the influence of the vortex pair on the vortex street is negligible
and the vortices will be stationary. Thus we can consider only the middle

part of of the vortex street, between the sections LL' and RR', Fig. 25 ,
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and assume that the vortices outside this region are stationary. ML is the
number of the vortex which is at the left boundary and MR is the vortex at
the right boundary. The induced velocity on a vortex which is inside the

region is composed of three parts:

(1) Uniform free stream velocity given by eq.(143)

(2) Due to the vortices which are to the left of LL' and right of RR'. The
induced velocity due to this part can be obtained by substracting the part
due to the vortices inside the domain from the known solution for a vortex

row. The velocity field due to the lower row vortices are ( Lamb, 1932)

axy
U = — 0 Sunih Y
2 A
tesh 2AY . Cod 2AX
A A
ar
v = &H S R i
2 A L4
h 2%Y e 27X
(S A Y

The induced velocity at a point (x,y) due to a point vortex which acts in

the counterclockwise direction located at (xo,yo) is
. -
g o= = ks
2 2
#R (x—25) + (Y—=Yo)
v o= o= e COu9d

&s

Ge— o3 + (Y—Yo)
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Hence the induced velocity on a vortex which is located at a point (xi,yi)

due to the lower row vortices which lie outside the domain is

MR Y,
Sunh AN r
W, = — __.r' A + - ~ &
2A 2% F=MS o, Yoy,
cemh AV _ e 2A Xy
A A
MR
D, ——
g o B Sun 2R ns L=
= 7 e 2 T 2R g=mu
2A - < 2
h 2X W e X X4 @‘—%) *
Co 3 - A
Cg9)
Here xj is the coordinate of the lower row vortices given by eq.(l44).
Similarly, due to the upper row vortices are
.'zx(m-—e) MR _
u, = n Sumh — _ 0 y.—8
2 A ax a:ML — N — 2
- QK(\JL—B) _ m‘zxc_x‘__ 555 @-4. 3(-3)-\-(.34. 8)
S S e
A A
MR
g ax (Xo—A4) n S Ao — Y
T n '
e ax as a2 ..-B\
2A (=g )+ (Yo -8

coh ax(_\J..—-B) e 3R (xa—A4)

A A (150)
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Here xj is the coordinate of the upper row vortices given by eq.(l44).
When these equations are used to evaluate the velocities, in some
instances, the vortex xi,yi locates near one of the vortices on the rows.
Though u,v are finite, the expressions in the right hand side of eqgs.
(149), (150) become singular individually. To alleviate this problem, the
expressions in eq.(l49) and eq.(150) are expanded for small distance XY,

and the singularity is removed.

Consider the lower vortex row which is located on the x axis, Fig. 25. The
induced velocity due to this row on a point XYy is given by eq.(147). 1If
the point xi,yi locates near the origin, vortex L, the induced velocity by

the row can be expanded for small xi,yi and becomes

PV T S T
ar 2 2 2A
o, + Y
Y, = r-I x4 < L5 CJ (lSIB
ax 2 2 2 A
3(_,_—&-34_
where

C, = — Y swme + 2Y (sule-— Qmae)

3\ 41
3 3 2
— XY swme + 2Y  (Swe— cse)
51 31 4!
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2 & 2 2 A\e> 5 L 2
+ Y 2 (S 6 — S B Co B+ c . (sulo - Qabéat)
& | 41 4
5 5
+ O(x ,Y
2 2
C. = — X oo — 2X Csme—-we)
a = s
31 4.1
3 2 3 2 2 t)
+ X & o+ XX (Sme—-to o
51 3\ 4\
L4 2 52
2 2
x_?f 2 (_Sujfi— Svae c5>E)4—C£D‘52) N (5aun«9 - 06 .}
* V4
e\ 4 0 410
Ly 5
+ o(x ,vy ) (153D

and

X = 2ﬂxi =r cos 6

Y = 2ﬂyi = r sin 6.

_ T Yo 1 x,
Singular terms _ —_— snd ife bhe infuwsed
¢ B N am a2yl

velocities on the vortex (xi,yi) due to the vortex L. Hence when the
contribution from the vortex L is substracted, this singularity will be

removed and the eq.(l49) takes the form
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MR
I ! X, — X4
v g Mo B — 0. F

@4. —t 3‘-3)-?'+ b -L-,-

%' means that the vortex L is excluded in the summation. Similarly

eq.(150) for the upper row vortices can be modified.

(3) Induced velocity due to the vortices inside the domain. This includes

vortex pair, upper and the lower vortex rows. This is given by

Ye— Yo
W, - — O = -

a 2
ax  Xo, Mo (x, oy 4+ (Ye—Vo)

& = M. = - \ Skt
A - 2
ax = S IS (¢, — X&) + C‘;j&—-\do)

The above procedure can simply be summarized as follows. Determine the
velocity at a vortex xi,yi using the expression for the unperturbed vortex
street and then add the difference due to the perturbation. After the

induced velocities u.,v, are determined the new positions of the vortices

are calculated using Euler scheme.

xi(t+At) = xi(t) + At . u,

156)
yi(t+At) = yi(t) + At . vy (‘

where At is the time step. A program was written to solve this
numerically. About 25-50 vortices on either side of the vortex pair were

considered in the middle region of the vortex street. A time step of 0.01
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was used in the calculations. All the conservations laws such as linear
momentum, angular momentum and energy were calculated to check the
numerical calculations. The linear momentum and energy were conserved to
0.1% accuracy. Motion of the vortex pairs and the distortion of the vortex

street are followed in time.

The results are shown in Figs. 27-37. Figs. 27,28,29 show the motion
of the vortex pair for different strength of the vortex pair lerl =
0.5,1.0 and 2.0 respectively. The distance between the vortices is a =
2.5. X-axis represents the time and the Y-axis represents the Y-coordinate
of the vortex pair. Curve 'Q' is the path which the pairs would have taken
in the absence of the vortex street. 'L' and 'R' are the paths taken by
the left vortex and the right vortex respectively due to the presence of
the vortex street. It is seen from the results shown that when the
strength of the vortex pair is small 0.5, 1.0 the vortex pair bounces back
from the vortex street. When the strength of the vortex pair is 2.0, the

vortex pair goes through the vortex street.

The turbulent intensity of the normal velocity component in the inner
part of the boundary layer is about two times larger than that in the outer
part of the boundary layer (at y=0.25, v'=0.04U_ and at y=0.88, v'=0.02U0 ).
The vortex strength P2/Pl-1.0 approximately represents the eddy with the
normal velocity v‘=0.014U°. During the ejection process the ejected fluid
moves away from the wall with the velocity which is about two, three times
larger than that the outer fluid. Hence it will move across the wake and
will reach the outer region. Since the outer fluid moves with low

velocity, it will be blocked by the wake vortices. When the length of the



105

plate is increased the longitudinal distance between the vortices and the
strength of the vortices increase. Therefore the vortex street behind a
longer plate will block more effectively than a shorter plate. The

experimental results show that when the length of the plate is increased

the local skin friction reduction is increased (Anders et al., 1985).

Figs. 30-33 show the position of the vortices in the vortex street and
the vortex pair at different instants of time. Figs. 30-33 show the
results for the case Pz = 0.5 and ¢ = 2.5. It is seen that the clockwise
vortéx in the pair interacts with the vortices in the lower row of the
vortex street which are in the anticlockwise direction and bounces back
from the wake. Similarly the anticlockwise vortex is kept above the wake
by the upper row clockwise vortices Figs. 31,32. Due to the highly
unstable character of the vortex street and due to the vortex pairing, the
vortex street becomes very distorted (Fig. 33) and the calculations cannot
be continued for longer times. In some cases, a vortex in the vortex pair
and a vortex in the vortex street pair and move away from the wake due to
the large induced velocities Figs. 28 and 34. To alleviate this problem
different core radii were introduced for the vortex pair and the vortex

street. The magnitudes of the radii are determined through energy

considerations of the system.

A wake profile as shown in Fig. 35a is represented by an equivalent
vortex street as shown in Fig. 35b. It is assumed that the vortices have
circular cross sections and constant vorticity. The kinetic energy
associated with one pair of vortices S1 and 52 is equivalent to the kinetic

energy in the equivalent wake length and is given by
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Kinetic energy = p (rf/an3 ) 34.73 (157
Consider a vortex system as shown in Fig. 35c which consists of two
circular vortices with constant vorticity. The core radius is rc and half
the distance between the vortices is R. The kinetic energy associated with
that system is given by ( Lamb 1940)
(158)

Kinetic energy = p (P2/8n3) F

where

" AT dedyds dy
=R (—R—S g (x,9) 8 (x,¥) ‘998{@*“)"'@‘3>Sd § o= e
o

059D

The variables x,y are non-dimensionalised with R and the integration is
over the circular vortex sections Sl and 52. £ is the strength of the
vorticity in the circular regions. Equating eq.(157) and eq.(158) the core
radius rc can be determined. The above integral was numerically evaluated
and for F = 34.73, rC/R takes the value 0.55. Substituting for R, one
obtains rc = 0.154. Since the length scales in the vortex pair is about
twice the scale in the vortex street the core radius of the vortex pair is
taken as 0.3. After the sizes of the core radii are approximately
determined the program was modified to include the effect of the core

radius. The induced tangential velocity by a vortex which has a core

radius r, and circulation T is given by

[ F4N

Ve = (F/Zﬂrc) (r/rc) for r r

G (166D
= I'/2nr for P2 r..
The case P2 = 1.0 is run again with this modification and the results are

shown in Figs. 36, 37. It is seen that due to the different core radii for

the vortex pair and the vortex streets, the vortex pairing is removed and
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the results show that the vortex pairs bounces back from the wake.

A large-eddy is a localised three-dimensional region with distributed
vorticity over the region. In the above model we simulated the large-eddy
with a vortex-pair. The results show that the strong interaction between
the clockwise vortex and the vortex street occurs after the clockwise
vortex moves inside the region between the upper and the lower vortex rows.
During the interaction the clockwise vortex interacts with the vortices
close to it and bounces back to above the wake region. From the above
results we infer that some part of the large-eddy will be pulled inside the
region between the lower and the upper vortices. In the point vortex model
the clockwise vortex bounces back to above the wake. In the distributed
vorticity case the results may be different. It would be an interesting
study to investigate the above model replacing the vortex pair with a
distributed vorticity model. It is felt that the part of the eddy which
moves inside the wake region will be kept inside the wake. We can extend
this model to three-dimensional case. For that we have to replace the
point vortices with vortex filaments. The large-eddy can be simulated by a
vortex ring. As discussed previously it is felt that depending on the
relative strengths of the wake and the eddy, some part of the eddy will be

pulled inside the wake and will be kept inside the wake region.
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Chapter 8

In chapter 7 the interaction of a vortex street and a vortex pair is
studied. The vortex street simulates the wake behind the plate. Munford
and Savill (1983) flow visualization experiments, which show that the wake
behind the LEBU devices consists of a coherent vortex street, were done at
a low Reynolds number of 10,000 based on chord length of the plate. The
length of the vortex street region decreases with increasing Reynolds
number and at higher Reynolds number the wake behind the plate becomes
turbulent at a shorter distance downstream of the plate. Therefore in this
chapter we will consider the interaction of a continuous wake and a vortex
pair. The turbulent wake behind a plate has the velocity defect
approximately in the Gaussian form. The vortex pair simulates the ejection
process or the wallward movement of the outer fluid towards the wall. In
the absence of the wake the vortex pair will move with the constant induced
velocity. When the wake is included the vortex pair and the wake interact
and the motion of the vortex pair is altered. In this chapter we will
determine, how the motion of the vortex pair is altered and, how the wake
is modified due to the interaction. We employed the two-dimensional model
to gain some insight into the effects and the mechanisms. The problem is
solved using cloud-in-cell (CIC) method. There are basically two methods
to solve the incompressible two-dimensional fluid flow problems. One is
the stream function vorticity equation method, Roache (1975), and the
second is the vortex method. In the first method the stream function is
solved from the Poisson equation and then the vorticity equation is solved
to obtain the new values of the vorticity at the Eulerian points. This

procedure is continued till desired time is reached or steady state
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convergence is reached. When there are only concentrated vorticity regions
imbedded in an otherwise irrotational fluid this method becomes unstable
(Fromm and Harlow, 1963) and it is very convenient to use the vortex method

Leonard (1980).

Vortex method simulates flows with concentrated voricity regions. By
the theorems of Helmholtz and Kelvin it is known that the inviscid motion
of the vorticity in these regions is given by the local fluid velocity
which in turn is determined kinematically from the vorticity field. Thus
in this method, the vorticity region is discretized into parcels of
vorticity and this discretization is tracked in a Lagrangian reference
frame. Leonard (1980) reviews the vortex methods and discusses the
advantages and the disadvantages of the different vortex methods. The
simplest method among them is the point vortex method. In this method the
vorticity region is discretized into a finite number of point vortices.

The induced velocity at a vortex by the remaining vortices is calculated by
Biot-Savart formulae. After the induced velocities at all the vortices
have been evaluated, the positions of the vortices are integrated in time.
For N point vortices the above procedure requires O(Nz) operations to
compute all the required velocities. When the number of point vortices
becomes large the computing time increases enormusly. One method which is
used to decrease the computing time is cloud-in-cell (CIC) method. This
method is widely used in Plasma dynamics Birdsell et al. (1969), and is
recently used in fluid dynamics, Christianson (1973) ,Baker (1979). This
method is described below and later this technique is applied to the wake

problem.
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A given vortex, say at (xn,yn) with circulation rn, resides within a
certain mesh cell, as depicted in Fig. 38. In the CIC method the vortex
coordinate (xn,yn) is taken to be at the centre of the vorticity cloud of
finite extent. Using a cloud the same size as a grid cell, Ax by Ay, the
vorticity is distributed over the region as shown in Fig. 38. The strength
of the vorticity is given by o - Pn/AxAy. In the next step this vorticity
in this cloud is distributed to the spatial grid points. This is done by
drawing a cell the same size as grid cell at the grid point and the common

cloud to this cell and the vorticity cloud is assigned to that grid. For

example, in the above case, the vorticity in the area shaded ( ) is
assigned to grid point (i,j); that shaded ( ), to (i+l,j); that
shaded ( ) to (i+l,j+1); that shaded ( ) to (i,j+1). This can

be written as

w(i,j) = ai,j @

where
ai,j = (Ax - xn) (ay - yn)/ AxAy
ai+1,j = X ( Ay - 7, Y/ AxAy

ai+1,j+1 T / AxAy

ai,j+1 (Ax-xn) ¥ / AxAy

and (xn,yn) is taken as the distance of the point vortex from the spatial
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grid point (i,j). For a large number of clouds, the vorticity at (i,j) is

obtained by summing over the clouds as

w(i,j) = Zn a].”j @ .
After all the vorticity has been distributed among the mesh points Poisson
equation for the stream function, {, is solved with appropriate boundary

conditions

XX Yy

With the stream function in hand, velocities at the mesh points can be

calculated, for example, by central differences

u, . = (¢

i,] 1,541 7 ¥i,5-1 Y2y

v, . == (¥,

i,] 141, ] )/2Ax.

- ¢i'1)j

To determine the velocity of the vortex 'n' bilinear interpolation (area

weighting) can be used.

n T %8,1%,0 T faen, 1%, Y fael, 1%, 541t 81,1+1%, 541"

After determine the velocities of all the vortices the vortex positions are

moved forward in time by the formulae

xn(t+At) = xn(t) + unAt
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yn(t+At) = yn(t) + vnﬁt.

This concludes the description of the CIC method.

This method conserves total vorticity and the linear momentum, but the
angular momentum is not conserved. The distribution of vorticity to the
mesh and the bilinear interpolation to obtain the vortex velocities are
subject to error. Due to this error small scale fluctuations are produced
on a scale compared to the grid size. Christianson (1973) applied this
method to few interesting cases, formation of Karman vortex street,
Kelvin-Helmholtz instability and evolution of two finite area regions of
vorticity in proximity, and reported good results. Baker (1979) applied
this method to the roll-up of vortex sheet and obtained results which
compared well with other numerical results. It is demonstrated in those
calculations that the large-scale features are very well resolved by this
method and is independent of grid size. One proposal to improve the
numerics of CIC method has been put forth by Hockney et al. (1974). In the
following, CIC method is applied to study the interaction of the continuous
wake and the vortex pair. Using this method large-scale distortions of the

wake and the motions of the vortex pairs are investigated.
The wake behind a plate has a Gaussian form and is given by
2

U=-exp ( -18y" )

where y is the transverse coordinate Fig. 39. The vorticity distribution
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in the wake is given by

w = - 36y exp( -18y2 )

The width of the wake which is defined as the distance between the points
where the velocities are 0.0l is taken as one unit. The velocity at the
centre of the wake is one unit. The wake behind the LEBU devices when they
are used in tandem is measured by Bertelrud et al. (1982) and Mangus
(1983). The measurements show that at 10§ ( 8 = boundary layer thickness )
downstream the wake velocity is 0.2U1 ( Ul = free stream velocity ) and
width of the wake is 0.35 and at 255 downstream they are 0.1U1 and 0.46
respectively. If the distance between the vortex pairs is taken as §/4,
and the eddy velocity as 0.02Ul then the strength of the vortex pair T', =

2

0.038Ul. Non-dimensionalising the variables by the wake velocity and by

the width of the wake the strength of the vortex r2 becomes 0.5 - 1.0. To
study the mean shear a constant mean shear profile U=wy is added to the
wake profile, Fig. 39. The mean shear in the outer part of the boundary

layer is du/dy = 0.2U1/B. The non-dimensionalised value for w based on the

wake velocity and the width of the wake is in the range of 0.25- 1.0.

For the numerical calculations a rectangular grid as shown in Fig. 39
is used. The vorticity above the lines y = £0.5 is assumed zero. This
implies that the wake vorticity is assumed to concentrate within this
region -0.5¢y<0.5. 1In the next step every grid cell is divided into
several small cells and the vorticity in those small cells are replaced by
point vortices located at the centre of the small cells. This way the

continuous vorticity in the wake is simulated by equivalent point vortices.
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The upper boundary BC ( Fig. 39) and the lower boundary AD are placed far
away from the vortex system and are assumed to be streamlines. If the
stream function at the lower boundary is taken as zero the stream function
at the upper boundary takes the value

v o= - exv(-18y2) dy

—

= ~-0.4177

Two types of boundary conditions are tried at the left boundary AB and at
the right boundary DC. One is that the disturbances are zero at those
boundaries and the flow crosses those boundaries undisturbed and the second
type is that the flow conditions are periodic at both boundaries. Both
type of boundary conditions produce the same results. This we expect also
because the interaction between the wake vorticity and the vortex pair is a
localised effect and the boundary effect is small. To study the effect of

the wall the lower boundary AD is moved closer to the wake accordingly.

Poisson equation is solved using Fast Poisson Solver routine. We used
the code which was developed at National Center for Atmospheric Research

(1975). The numerical procedure can be explained as follows:

(1l). using the CIC method solve for the induced velocities on the point
vortices in the wake and on the vortex pair by the point vortices in the

wake

(2) add the induced velocity by the vortex pair on the vortices
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(3) add the mean shear velocity

(4) move the vortices to the new positions.

The procedure is continued till desired time is required. To study the
effect of the eddies coming from below and above the wake, the effect of
the wall and the effect of the mean shear, the following cases as shown in
Fig. 40 are considered. Except cases (1) and (4) in all other cases (2),

(3), (5) and (6) wall is placed at a height y=-2.0.

The following parameters are used in the numerical calculations Ax=0.1,
Ay=0.05, M=257 and N=129 where Ax, Ay are grid sizes and M, N are the
number of nodal points in the X, Y directions. For discretization every
mesh cell is divided into 4 small cells. The results are shown in Figs.
41-69b. In these figures deformation of the wake and the position of the
vortex pairs are shown at different instants of time. Figs. 41-49 show the
results for the case (1). In this case a vortex pair with the strength I‘2
= 0.5 and the distance between the pairs ¢ = 1.0 is placed at a height
H=1.5 above the centre of the wake. Fig. 41 shows the motion of the right
and the left vortices in the vortex pair with time and also shown is the
path taken by the vortices in the absence of the wake. It is seen that due
to the interaction with the wake the vortices move slowly towards the wake.
In Figs. 42-46 the distortion of the wake and the paths taken by the vortex
pair are depicted. The wake region which is plotted is the part of the
wake which was initially in the region -0.5<{y<0.5. There are two

observations that have to be made. One is what changes take place in the
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wake and the other is the motion of the vortex pairs. It is seen that the
distance between the vortices in the vortex pair increases with time. This
means that due to the interaction the vortices move slowly and spreads in
the streamwise direction. It is very interesting to observe the changes
that take place in the wake. The disturbance introduced by the vortices
grows with time and at the same time is swept by the mean wake velocity to
the left side. Concentrated vorticity regions are formed on the upper and
lower part of the wake. It is observed in Fig. 46 that when the
anticlockwise vortex in the vortex pair moves close to the wake it lifts
the fluid in the upper part of the wake. If the calculation is continued
the vorticity in this lifted fluid which is in the clockwise direction
moves the anticlockwise vortex away from the wake and therefore we
terminated the calculations at this time. Figs. 47, 48 show the results
for the case I,=1.0 and c=1.0. Fig. 49a and Fig. 49b show the results for

2
the case I' =3.0 and c=1.0. It is seen that when the strength of the vortex

2
increases it moves as undisturbed until it moves very close to the wake.
Fig. 49a and Fig. 49b show that when F2=3.0 the vortex pairs go through the
wake. Another observation is that in the initial stages when the strength
of the vortex is doubled the displacement of the wake also doubled. This
can be noted in Figs. 42, 47. Fig. 50 depicts the results for the case
(2). This is same as the case (1) but with a wall which is placed below
the wake at y=-2.0. There was no difference on the motion of the vortex
pair. Fig. 50 shows the distortion of the wake and the path of the
vortices at the non-dimensional time T=15.0. It is seen that due to the
presence of the wall the growth in the lower part of the wake is

suppressed. Figs. 51, 52 show the results for the case (3). This case is

same as case (2) but in this case vortices are moving up from the region
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between the wake and the wall. The results are similar to the case (1) in
that the vortices move with reduced velocities and the streamwise distance

between the vortices increases with time.

Next we will discuss the effect of mean shear. This case models the
boundary layer problem better than the case without the mean shear. Case
(4) and case (5) did not show any substantial differences and we present
the results for the case (5). This is same as case (2) with the addition
of a constant mean shear profile to the wake profile. The results are
shown in Figs. 53-63 for the case PZ = 0.5, c=1.0, mean shear = 0.5 and the
wall is placed at y=-2.0. The vortices were initially located at y=1.5.
Since there is a mean shear the vortices are advected to the right by the
shear. Figs. 53-55 show the results for the case without the wake i.e.,

the strength of the wake is zero. In this case, if the wall is away from

the vortices, then the vortices move on parabolas.

Fig. 56 shows the motion of the vortices with time with the wake. It
is seen that as in previous cases the vortices move slowly due to the
interaction with the wake. Figs. 57-60 show the distortion of the wake and
the positions of the vortex pair. It is observed that the distance between
the vortices increases with time. 1In this case we obtain somewhat
different picture about the distortion of the wake. As in the previous
cases the disturbances introduced by the vortex pair grows in time. But
the important difference is that the disturbances in the lower part of the
wake disappeared and concentrated vorticity regions are formed only in the
upper part of the wake. 1In Figs. 61-63 we plotted the streamwise velocity

distributions at different x locations. The solid lines show the modified
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velocity distribution and the dotted lines show the undisturbed velocity
distributions. It is very interesting to observe how a shear layer is
developing in the upper part of the wake. 1In Fig. 63 this shear layer
appears in region 12.0<x<15.0. Figs. 63a-63c show the results for the case
P2=3.0, c=1.0 and mean shear =0.5 and the wall is placed at y=-2.0. It is
seen from Fig. 63a that the vortices go through the wake in this case.

Fig. 63b and 63c show the distortion of the wake. It is seen that due to

the large strength of the vortices the wake is distorted vioclently.

From above results we make the following general conclusions about the
changes occur above the wake. The eddy which moves from above the wake
towards the wall due to the interaction with the wake moves with reduced
vertical velocity and spreads in the streamwise direction. When the
strength of the vortex F2=0.5, the distance between the vortices is doubled
after the non-dimensional time interval T=12.0 and the vertical distance
which is travelled is reduced by about 40% from the undisturbed value. When
r2=3.0 the vortices go through the wake. It is observed for the case
r2=0.5 that the disturbances introduced by the eddy in the wake grows with
time and forms shear layers above the wake. The region below the wake is
not much affected by the interaction. For I'.=3.0, the wake is distorted

2

violently and it spreads to lower and upper regions.

The vertical velocity of the eddy corresponding to the case P2=0.5 and
c=1.0 is O.SUmIZn (Um is the center line velocity of the wake). Hence when
the wake velocity Um is 0.2Ul, the vertical velocity of the eddy is
0.016U1. The turbulent intensity of the vertical at y=0.86 is 0.02U1.

Therefore we can conclude from the above results that the wake behind the
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LEBU devices reduces the motion of the outer part of the fluid towards the

wall.

Next we will consider the results for the case (6) in which the
vortices move from the region between the wake and the wall. Figs. 64-69
depicts the results of the distortion of the wake. The vortices are
advected by the mean shear to the left. Figs. 64-67 show the results for
the case rz = 0.5, c=1.0 and mean shear 0.5. The vortices were initially
located at the height y=-1.5. It is seen that the vortices move
differently than when they move from above the wake. The vortices are
tilted towards the wall when they move away from the wall. The reason is
due to the interaction the counter rotating vortex in the left is induced
with a larger vertical velocity than the clockwise vortex in the right.
Hence the vortices move with different vertical velocities and due to the
mean shear they are tilted towards the wall. Figs. 68-69 show the results
for the case F2-2.0. Since the strength of the vortex is large it moves
undisturbed until it moves very close to the wake Fig. 68. When it moves
closer to the wake it strongly interacts with the wake and disturbes the
whole outer region, Fig. 69. Fig. 69a, 69b show the results for the case

P2-3.0. It is observed that the vortices move across the wake and reach

the outer region of the wake.

We did several calculations with smaller grid sizes and smaller time
steps to see the influence of the grid size and time steps. There were no
significance differences observed in the distortion of the wake or in the
motion of the vortex pairs. One difficulty we encountered is that when the

point vortices move close to the wake they induce large velocities on the
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wake fluid. Due to this the wake fluid 1ifts away from the wake and wraps

around the point vortices. This is observed in Figs. 46, 48, 52, 60, 63b

and 63c. An alternative may be to simulate the large-eddy with continuous

vorticity distributions instead of point vortices.
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Chapter 9

In this chapter we analyze the interaction of the vortex pair and the
continuous wake using linear theory. In the next section we will extend
this analysis to study the three-dimensional effects. The problem is
solved as an initial value problem using Fourier and Laplace transforms.
This can be considered as a hydrodynamic stability problem. Case (1960)
discusses the stability of inviscid plane couette flow as an initial value
problem. Since it involved large amount of work and it gives the same
stability criteria it is not widely attempted. The flow field considered
for the analysis is shown in Fig. 70. A wake which has the velocity defect
in the Gaussian form U=-exp(—18y2) is flowing parallel to the x-axis. Two
point vortices of strength -T and +I are located at the points (0.0,H) and
(D,H) respectively. Taking the Fourier and Laplace transforms to the

linearized Euler equations we obtain

: 2 2 Dy 2
dvV _ vV - v du _ _ 1 d Vo _ &Y,
dy* U—c dy* cB(e-u) L dy?

(Ae1)

This is the familiar Rayleigh equation with source term. The source term
is introduced by the vortex pair. Here ;(k,y,c) is the Fourier and
Laplace transforms of the perturbation velocity in the y-direction
v(x,y,t). vc(k,y) is the Fourier transform of the initial perturbation
velocity in the y-direction vo(x,y)-v(x,y,t=0.0). k and c¢ are the Fourier

and Laplace transform variables which are defined as:

Fourier transform
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-~ —l%:ﬂ.

(;)(‘ﬁ)-t) = b(x,t) e dx

- 0

Fourier inverse transform

(e o]

- cRx
_ d
Pt = L | §hee £

Laplace transform

N — st
$(R,sd = FCht) e dt

- 0
Laplace inverse transform ;
Q4100
_ S-t:d
~ g sHe S
TR = s PR
2ARL

a-—taw
and s=-cik.

The boundary conditions are

%:T.q-l‘ﬁ\\l:c} when y =+ =
dv _ | |V =0 when y + e,

|

o
=

The vorticity EO is defined as

? = OVe _ B,
°e B 3y

The Fourier transform of this gives
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e QA L
2 = \ Vo — 4+ Vo
° LR dy*

In the problem we analyse two point vortices initialy located at (0.0,H)
and (D,H). Therefore we have

Eo = - T 8(x)8(y-H) + T 8§(x-D)&(y-H)
and the Fourier transform of this yields

ol ikD

Eg =T (e " - 1.0 ) s(y-H).

Substituting this relation in the eq.(l161) we get

-.RD
Cfvo £V — ¥V C_ii"_ D ek —\.o} (¥ —H)
dy? U—c dy' c—\u

(182)

This equation is solved using Green's function technique. Let ¢1(y,k,c)
and ¢2(y,k,c) be two independent solutions of the homogeneous equation of

eq.(162). We can select ¢1 and ¢2 as

¢l(0’k)c) l; ¢'l(0,k,c) =0

$,(0,k,c) = 0;  ¢',(0,k,c) = 1.

Hence ¢1 will give a symmetric solution and ¢2 will give an antisymmetric

solution. Define

P B = bR B (- o) 1R dm, D

(A e ko) - LRI G G e |

Wa (V. £.,c) = CP.(::,&,Q){ CP; (+o. R,c) + | &) $s (+o0, ﬁ,c)}
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- b ()] ¢ (+0, 8.+ | B b, (+o, &,c>}
(69)

The solution of eq.(l62) can be obtained using classical Green's function

method ( See Appendix K). We obtain

5 r {E—Lﬁb_u.o.&, G (YR, c.H)
vy, R ed = = C — (KD

where

L (R, B, Wi (Y, R,C)
G(Y,® c H) ¥

.2{ ¢ (+0,%,0) +1®1, (m,ﬁ,c)}{qg C+ad + | £ 4>_,}

3<H

Yo (¥, B, ¢ (H, R, D

i

;{cp,' Crao, B, + [R1 &, o, B, { oy Creod +R) af

Y >H

Applying the Laplace inverse transformation to the above equations we get
—o+4LQ

L —tRte
VY, &, t) = — | F‘Aﬁ'i le *o 1] g R I WLR e do
ax4L '

C — UCH) {4’: (+ao)+|‘ﬁ|¢'|}{ b, (+a0) + | R ¢a(+oo)}

B+tLQ

for y<H



125
—@+ta & ,_t%_tc d
T(y B+)=-_) [+ e"tﬁo_\] Yo (¥, R, ) ¥ (H. .c) e &
PP axi 2 (C—UCH)){¢:C+uo)+|'ﬂ.|¢|}{d‘>; (+°0)+\%\4>4(+°°)}

o+ta for y>H.

Integration has to be taken in the lower half plane if k is positive and in
the upper half plane if k is negative. Singular points of the equation are
introduced from different part of the integrand. The zeros of
(¢'l(+=,k,c)+k¢1(+w,k,c)) and (¢'2(+m,k,c)+k¢2(+w,k,c)) introduce poles in
the integrand. These poles give rise to the exponential behaviour. These
are the symmetric and the antisymmetric normal modes which we would have
obtained if we had done the normal mode analysis. The other singulaities
are due to c-U(H)=0, ¢1(H,k,c) and ¢2(y,k,c). The singularity c-U(H)=0
gives rise to an oscillating solution if U(H) is other than zero and gives
a time independent solution if U(H) is zero. When we integrate in the k
space the oscillating solution will decay as 1/t and the time independent
solution will give a solution which is only function of x and y. The
components wl(H,k,c) and ¢2(y,k,c) will have logarithmic singularities and

the inverse transform will decay as 1/t, Case (1960).

The singularity regions in the c-plane are shown in Fig. 71.
(¢'1(+°,k,c)+k¢l(+ﬂ,k,c)) and (¢'2(+=,k,c)+k¢2(+W,k,c)) are equal to zero
along the lines RST and PQR respectively. These give the symmetric and
antisymmetric growing modes solutions. Points 1 and 2 are eigenvalues for
a particular wavenumber k. The conjugate solutions are shown in the upper
half plane. Point R corresponds to the inflection point. ©Point 5
represents the singularity c=U(H) and the singularities associated with
wl(H,k,c) and wz(y,k,c) lie on the line PRT. 1In the following calculations

we will first calculate the contributions from the exponentially growing
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solutions and will then compare them with the numerical results which we
obtained in the previous chapter. Next we will include the contribution

from all the terms in the calculations.

The eigenvalues for the wake profile U = exp(—lByz) is shown in the
Figs. 72-75. Here cr and c; are the real and imaginary parts of the
eigenvalue and a is the wavenumber. The velocities at the edges of the

wake y=10.5 are obtained from eq.(163) using residue integral method.

v(y=0.5,k,t) = Rl + R2

v(y=-0.5,k,t) = R, - R

1~ %2 (63D

where
- ‘&D —L'&'i‘.' CS
Q1= I e} eL —1.0 WG(H;%,Cg)lV'(SJ%JCS) e
2
Co— LW {4’; (+d+\ R\ &, (-n-W)} éi—c:{ﬁhf““)"“ﬁ\‘i’-(*w)}
C=C.$ Cc= C‘S
“”&OS <R <:'%os
2+ C
—+®D =t A
R.z - ) eL —1.0 Ya (H,%,Cn) Y Cjag'acn) &
! Ca- UCH){¢:c+m)+\ﬁ\¢.(+oo)} 4 { oo riaideadl
o=y C=Cqy

<
—%a < R<E, () e
and Cg» c, are the eigenvalues for the symmetric and antisymmetric modes

and kOS and kOA are the wavenumbers correspond to the neutral solutions in
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the symmetrical antisymmetrical modes.

= 8.1439 and k

2
the form exp(-18.y7), kOS 0A

For the Gaussian wake profile of

= 4.7432.

After determine the velocities at the edges of the wake using the

kinematic conditions we can determine the evolution of the wake with time.

The kinematic boundary condition at the edges

Here n is the displacement of the edge of the
the wake velocity at the edge of the wake and

Taking the Fourier transform of this equation

F,_‘ | ]
L€ U—=c

H

Substituting for v from eq.(l64) and (165) we

the upper and the lower edges of the wake.

of the wake is

wake in the y-direction U is
v is the normal velocity.

we get

obtain the expressions for

q"-*#be« = A al L. s
LR U—cg LR LU— Cq
7 _ | R, _ Ra (1686
B LR U—Cgqg LR Liees g

Taking the Fourier inverse transform of these

solution for nu

Pper it N ower”

the case I'=0.5, H=1.5 and D=1.0..

expressions we obtain the

The results are shown in Figs. 76-78 for

From the stability diagram Figs. 72-75

we note that the wavelength corresponds to the maximum growth rate is about

1.6.

It is observed that the deformed wake also has the length scale in
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that order. Also shown in the Figs. 76-78 are the solutions obtained using
the cloud-in-cell method. It is observed that below the vortex pair the
results from the linear theory considering only exponentially solution
differ by a small amount from the numerical calculation results. The
reason is that, as mentioned previously, since U(H) is approximately zero
in this case, c-U(H)=0 singularity introduces a time independent velocity
field. This will give rise to an algebraically growing solution for n

upper

and R The physical reason is that since the mean velocity U(H) at
the vortex locations is zero the vortices are stationary and induce a
steady velocity field. Some part of this velocity field is associated with
the c-U(H)=0 singularity solution and produces an algebraically growing
solution nupper and nlower'

Next we will calculate the contribution from all the terms. For that
we have to take Laplace inverse transform integration in the c-plane to
include all the singularities. We considered the contour 'C', as shown in
Fig. 71, and evaluated the Laplace inverse transform integration along this
contour. The results are shown in Figs. 76-78. At time T=1.5 we obtain

the same results as the CIC results. When the time increases the

difference between the two solutions increases.

From the linear theory results we check the numerical calculations and
further we observed that the larger part of the solution is contributed by
the exponentially growing solution. The algebraically growing solution is
significant directly below the vortex pairs. Even at larger times, T=6.0,
the linear theory solution compares quite well with the numerical

calculations.
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Three-dimensional theory

In the previous chapters we investigated the response of a wake to
two-dimensional disturbances. A large-eddy is a localised
three-dimensional region with distributed vorticity over the region. The
interaction of the large-eddy and the wake behind the LEBU devices is a
three-dimensional phenomena. Therefore in this section we will investigate
the interaction of a wake and a three-dimensional eddy. Specifically we
try to determine the response of the wake to a three-dimensional
disturbance and the modification to the motion of the eddy due to the
interaction. Since the nonlinear calculations of three-dimensional
rotational flow is much more difficult, we will do a linear analysis.

Since it is not possible to find the dispersion relation for a continuous
mean profile in closed form, in the analysis we replace the continuous wake
by linear profile for which dispersion relation can be found in closed
form. 1In two-dimensions we simulated the eddy by a vortex pair. The
extension of this structure in three-dimension will be a vortex ring.
Since the Fourier transform of the velocity field induced by the vortex
ring is not easy to evaluate we consider a three-dimensional dipole instead
of a vortex ring to simulate a three-dimensional eddy. The effects of the
dipole and the vortex ring on the wake are qualitatively same in the
initial stages of the interaction. To study the effect of the mean shear
we add a constant mean shear profile to the wake profile. Therefore we
have the model problem as shown in Fig. 79, to be analysed. For the
analysis we consider the frame of reference where the dipole is at rest.
The mean velocity profile is given by

U(y) = w(y-H) y >h
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U(y) = -U (h- y )/h + w(y-H) 0 <y < h.

A dipole of strength p is located at a height H on the Y-axis. The normal

velocity field induced by this dipole is

M | R 3(y=—w)

Vo = 3 W x 2 2 _u\2 )
° 7 47 Jos & Cv—Hf}/‘z 47 [ E = }

Two-dimensional Fourier transform pair is defined by

<o o0
L Rax -L4iziﬁ
?(&;,&;,Lt)r- i f(x,Z, ¥, t) € e Aw dm
-® @
Qo «©
-~ LR LR, Z
T, 2, %% = 1 F(Rx, Rz, Y.t € e df.dB,
(ax)?
-0 -3

The Fourier transform of the velocity field v_ is given by

0

~s
v

o -a(y-H)
0= H/2 ae "

here az = k2 + k7.,
b 4

Hence the Fourier transforms of the induced velocities by the dipole at the

interfaces a,b,c are
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-a(H-h
3%3 = - u/2 ae a(H-h)
~ -aH
Vop = W2 ae
~ -a(H+h)

Vg = = H/2 ae

(67)

Taking the Fourier transforms of the linearized Euler equations, we obtain

L‘&x.t( “+ L‘&z w + Eﬂz =0
2y
aa. -+ ULY) A—%x {I + U @_ = — _‘_.. ‘L&:&r};
£ ay P
_@_ + U(\() &'&3.‘\7 = — _L_ i‘?_
3 P Y
D o+ UOD kg w = -1 4 b
ot P

(168)

(163>

(170D

71

s ~
Here u, v and w are the Fourier transforms of the perturbations u, v and w.

Combining eqgs.(169) and (171) we get

B (Waihe + TaBy) + Uev)Ba] tRa W aek, o)
ot

. _1@_(‘&;4-*5.;)}3

+ LB, ¥ du

dy

(172
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Equations (168), (170) and (172) provide the equivalent two-dimensional
equations of motion in the rotated frame of reference. This we expect from
Squire's equivalent theorem. Eliminating u,v and p from the above equatins

we obtain

~ iy 2> |7
2 aav_m’qg +U(\r)x%z{ava_,o¢ V}:o (173)

where a2 = ki + k;. Let us define

where Yo is the induced velocity field by the dipole given by eq.(167).
Hence v represents the disturbance due to the presence of the wake.

Eq.(172) becomes

2 22— 2_
d AV _ D(:V} 4+ UeY) +Ra 2_!4 — o(v} = O Qi7u)
ot ay* 3Y

Laplace transform pair is defined by

= st

g(%l_,%i! JYJS) = Ec{a;&z )Y1t> e'“. dt
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A+t
S+t
?(%x;%z)\f)-t): .\_. ?C‘Ql) ﬁzJYJS)e Cl.S
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Laplace transform of eq.(l74) yields

2 -
Y _ &« ¥ =o0 (el
ay*

Taking Laplace transform of the eq.(l72) we obtain an expression for

pressure. Changing the variables s=-cik, we get

il Ct—oy B¥ 4 1B, § du 4+ ulY) 3Vo _ YV, QU
) 3y dvy c Y e ay

=0 (R +Rz)P (1 76)
P

Kinematic boundary condition at an interface takes the form

—

3t I9x

where n is the displacement of the interface in the y direction, U is the
mean velocity at the interface and v is the normal velocity at the
interface. Taking the Laplace and Fourier transforms of this equation
yields

’\}’o (l 7 '7)

QL'Q::_

1 LBy (U—ed = ¥V —
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Next we apply these equations (175), (175) and (177) at the interfaces

a,b,c (Fig. 79) and obtain three simultaneous equations for the

displacement of the interfaces NNy and . (See Appendix L for detail ).

2 2
%q{(WCH—M**C)iN + (WiH=-h)+C) xeoth xh + (w(H-—h)+c)-‘f\— }Q%l)
4 {b {—- (wer=h)+e) (WH+c+U) « conch D(h's_ Q%:x.)e

— L (H—h)
- weH-h)+ C M :x.z e (178)

£

7 2
o [ G 2 (o oot €) w cmaih L 83

2 2
+ ?ib {-2 (WH+C+U) Xeath ch — 2 (wn+c+u)%&@%m)
+ ?[c {m(_WH+C‘.+u)Cw(H+h3+C)v{cmoﬂo(h‘ﬁ =0 (79)
Eb { - (W(H+h)+ C) (WH+C+\J) oK md\_o(h} Cx_ﬁ:_)

+ %c{:(w(H+h3+Cf X coth xXh + Cw(H+h)+c)-%-

2
+ (-W(H+h)+c)¢°(§C.L 6.) =o© (180]

From these three simultaneous equation we can solve for n , nb and n .
a c

n, - Aa/A
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and

n, = AC/A

where

3 3 2 2 3 2
A = ¢ {(um-»c) X (1+ Ce-t&cxh) + (WH+) « U (14 catth oh)

a 2
+ (WH+e) [ ._';’_.Utx G+t et oh) — U (h+coth xhh) —U_:.
h‘
_.\».}2\-\'20<2 v+ cebkoth)l]

2
3 [_:3_ (Lot coth wh — TL\'—) +whe C(+coh by (- U«)J }

G =1)
3 — o (H=h)
Aag = :‘; e {-‘L[(wH+c+u)°ﬁw—U~«h -“T“@cn-m)-uc)

% (1 + Cothoch) +%_]_ (WH+c+L) (wcm-h)-rc)o(cmdfo(hg

2 — & (H=-h)
Ay = [t e CW(H-h)+C) (wH+Q+U)0Zacmcaf—fo<h

To determine n, and N. first we take the Laplace inverse transform and then



136

take the Fourier inverse transform. The singularities of n, and n, are
determined by A = 0. This is the dispersion relation for the linear wake
profile considered. One root of this equation is ¢ = 0 and the other three
roots are the roots of a cubic polynomial. This can be determined in
closed form ( Abramowitz and Stegun 1970). A can be written as

2

A =c d3 (l+coth ah)2 ( x3 +a, X +a, x+ a

2 1 0 )

where

A

WH + C

2 2
U Ux (1+ceth «h) —-l"a- (i+ w\ﬂ.o{h)
Q, = T h

) 2
x (1+ cethh)

—

2
i — wal:o('z (14 ceth xh) }

h:
Q. = l Hi(uawﬂah—ﬁ_) +
o W2 h

2
% (1+ csth h)

ufh"’of(wm.«h) (& - U«)g

Let
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2
q=a /3 - a, /3

3
r=1/6 (ala - 3a0) - a, / 27

2

2.1/2 1/3
r’)

/7]
]

{r+(q3+

2,1/2 1/3
r

[r—(q3+ )

0
il

then the roots are

k]
n

(s)+s))-a,/3

»
"

- 1/2 (Sl+52) -a2/3 +iv3/2 (s1 - sz)
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1l

= 112 (sl+52) —a2/3 -iv3/2 (Sl—sz)

When the mean shear w=0, we can obtain the roots in the simple form

¢, = U

P 2 2 2
ok (1 et - o {uQAu&«h)—q}—ud(HcdhﬂﬂO—qhwmﬂo

.2¢><.2 (1 + coth xh)
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o h (1+ coth kh) — % — j{&!hC'+ %ﬂ»“h)—d}z—udz(wwﬂmh\ (1—ah cothah)

D)
o
n

2 o h (1+ sthooh)

There is a cut off wavenumber beyond which the imaginary part of the roots
are zero. For the case w=0 this wavenumber is 1.77. After we calculate
the roots of the equation, we do the Laplace inverse transformation using
residue integral method. Fourier inverse transformation is done employing
Fast Fourier Transform (FFT) routines. When we apply the FFT routines the
infinite integral in the wavenumber space is curtailed to a finite
integral. Integration range was increased to larger range to verify that
the aliasing effect did not affect the results. In the calculations the

variables are non-dimensionalised by

Length - h
Velocity - U
Time - h/U

Mean shear - U/h

The results are shown in Figs. 80-103. These results are for the case H =
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3.0. For plotting we consider the frame of reference where mean shear
profile is zero at the centre. Hence the dipole is advected by the mean
shear velocity at its location. We calculated and plotted na(x,z,t) and
nc(x,z,t) at different instants of time. We made two plots (1) na(x,O,t)
and nc(x,O,t) which are the wake heights at the centre and (2) constant
height contours in (xX,z) plane. To study the effects of the wake and the

mean shear we consider the following cases.

(1) without the wake and without the mean shear
(2) without the wake and with the mean shear
(3) with the wake and without the mean shear

(4) with the wake and with the mean shear

Case (1). without the wake and without the mean shear

The results are shown in Figs. 80 and 8l1. For this case n, = voa.t and N

= voc.t where vOa and Voo are the induced velocities by the dipole on the

interfaces 'a' and 'ec'.

Case (2). without the wake and with the mean shear

The results are shown in Figs. 82 and 83. This is different from case (1).
Because the dipole is advected by the mean flow the growth rate is not

linear with time but the disturbed wake region extends in the streamwise
direction. 1In both cases (1) and (2) the disturbed normal velocity v is

Zero.
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Case (3). with the wake and without the mean shear

Figs. 84 and 85 show the two-dimensional calculations, i.e., we place a
two-dimensional dipole above the wake. Figs. 86-89 show the
three-dimensional results. Due to the unstable character of the wake
profile the disturbances grow exponentially with time and the disturbances
are advected by the wake velocity. As expected the growth rate is smaller
in three-dimensions than in two-dimensions. In two-dimensional numerical
calculations we observed that the wake disturbances grow with time and form
concentrated vorticity regions in the upper and lower part of the wake.
Hence in the three-dimensional calculations we may expect that the initial
disturbances grow with time and form concentrated vorticity regions in the
upper and lower part of the wake. The disturbed wake region has a
triangular shape in the xz- plane and this triangle increases in size with

time.

Case (4). with the wake and with the mean shear

Figs. 90 and 91 show the two-dimensional results. Figs. 92-95 show the
three-dimensional results. The important observation is that the growth in
the lower part of the wake is reduced by the mean shear. The growth in the
upper part of the wake is not much altered. This was also observed in the
previous two-dimensional calculations. Hence we may say that the
disturbances will grow with time and eventually form concentrated vorticity
regions in the upper part of the wake. Due to the mean shear the disturbed

wake region in the xz plane is elongated in the spanwise direction.
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When there is a symmetric mean velocity profile any disturbance can be
separated into symmetric and antisymmetric parts. The symmetric part has a
larger growth rate than the antisymmetric part. Hence when there is no
mean shear the disturbances in the lower and in the upper parts of the wake
are similar. When there is mean shear the mean velocity profile is no
longer symmetric and the magnitude of the vorticity is reduced in the lower
part of the wake. Hence the growth rate of the wake also may be reduced in

the lower part.

Next we will determine how the vertical motion of the dipole is
affected by the interaction. The vertical velocity on the plane y=H is

given by (Appendix L )

- x (H—=h) - CH-h)
V(&m.,’?az,:i:H,c)z - e {_1:_ %X e
cLRa

s T ah (wormmaed

As we did previously by taking Laplace inverse transform and Fourier
inverse transform of this expression we can obtain the normal velocity
field ;(x,z,H,t) at y=H plane. When there is no wake for linear theory
the disturbed velocity field v is zero. Figs. 96-98 show the disturbed
velocity distribution 5(x,z=0,y=H,t) at different times. The results are
for the case (4) i.e., with the wake and with the mean shear. The
non-dimensional mean shear w=0.25. The interesting observation is that
there is always an upward velocity field is induced around the dipole

region. This means that downward motion of the eddy is reduced by the
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wake.

To investigate this observation further, let us consider the kinematic

boundary condition at the interface 'a’'.

’arlq + U CXY! = v + VOQ
Dt B

where Voa is the normal velocity field due to the dipole, v is the

disturbed normal velocity field and U=-w(H-h) the mean velocity at the

interface 'a'. Hence
g - (181)
J = — Yea + 278 , U3l ¢
a-t Do

The normal velocity field v is governed by the Laplace equation VZG = 0.
Therfore we can think of the solution v as that due to the sources located
at the interface a with the strength distribution given by eq.(181). There

are three contributions to the source strength, -Voa, which give the image

solution, B'lq and U E_‘T._a . We calculated 'a_"lq_ and U B_Q_e_
2t da a2t CE3
at different times along the centre line z=0 and plotted the results in
. o D 1a v =0
Figs. 99-101. Initially at t=0, = Yoaq and MTa = . The
g Bt
results show that there are two separate regions where ?a and U 97a
Bt dx

are large in magnitusde. The region in the left is the part where the

large distortion in the wake occurs. The region in the right is directly
?_@9_ ~ 0 ana u 2fa has a
%S CES

negative value. Since the dipole is advected by the mean shear the induced

below the dipole, where

velocity field due to the distorted wake region will be small and the

normal velocity near the dipole is mainly induced by the source strength
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AMaq
below the dipole which is approximately ( — Voa + L 3x ). Since
this source strength ( — Vpq + U Eiiﬂ_ ) is positive in this

da
region there is always an upward motion induced near the dipole.

Next we will determine the motion near the dipole when it is placed
below the wake. The non-dimensional mean shear w is 0.25 and the dipole is
placed at y=-3.0. The results are shown in Figs. 102, 103 at time T=9.0
and T=12.0. It is seen that near the dipole there is an antisymmetric
normal velocity distribution is induced. To the left side of the dipole a
positive velocity is induced and to the right side a negative velocity is
induced. Hence when an eddy is moving towards the wake from below the wake
the region in the left side travels with larger vertical velocity than the
right side and due to the mean shear the eddy will be tilted in the
clockwise direction towards the wall. We also made these observations in

the two-dimensional numerical calculations, Figs. 65, 66.
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Chapter 10

Conclusion and Discussion

In summary, the effects of LEBU devices in a turbulent boundary layer
are investigated using analytical and numerical techniques. The
modifications to the vertical velocity of a turbulent flow by the LEBU
devices are analyzed using linear, three-dimensional unsteady aerodynamics.
To study the effects of the wake, the interaction of a vortex pair and a
wake which has a Gaussian velocity defect is investigated using numerical

techniques.

As far as the unsteady aerodynamics effects are concerned, in all the
cases considered, the results show that when a Fourier component of an eddy
is advected over the LEBU devices, the shed vortices from these devices
reduce the amplitude of the vertical velocity behind the device to varying
degrees depending on the wavenumbers kx and ky' This reduction increases
with increasing wavenumbers kx and ky' However it should be noted that
only the modification of low wavenumber disturbances will have a
substantial effect throughout the entire boundary layer. Modification to

higher wavenumber fluctuations will be confined to the wake of the devices.

The two-dimensional results show that the amplitude is reduced as the
wavenumber kx increases. From the three-dimensional results we note that
the amplitude is further reduced with increasing spanwise variations. This

indicates that the LEBU devices are more effective at modifying vertical
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velocities for a 3-D disturbance than for a 2-D one.

When the eddy is advected over two plates which are far apart, the
reduction in amplitude is squared. In a recent experiment (Guezennec and
Nagib 1985) it was observed that in the tandem configuration immediately
downstream of the first plate, the vertical velocity fluctuations are
reduced, and after the second plate the vertical component is further
reduced. This reduction of the vertical component is in qualitative
agreement with our results. If we assume, in accordance with what was also
postulated by others (Hefner et al. (1979), Corke (1983), Anders et al.
(1984)) as the probable mechanism, that the reduction in the amplitude of
the vertical velocity is the basic cause for the apparent reduction in the
skin friction downstream of the LEBU devices, the above results show that
the two plates which are used in tandem are more effective in reducing the
drag than a single plate. We note that the only configuration which
produced net drag reduction in experiments (Corke, 1985, Anders et al.

1984) so far, has this arrangement.

The analysis considering the effect of the ground plane shows that this
decreases the effectiveness of the LEBU devices in reducing the amplitude
of the vertical velocity in the wake. This effect increases when the LEBU
devices are moved towards the plane. It is appropriate to mention here of
the experimental results of Anders et al. (1984). When the LEBU devices
which were used in tandem at 108, spacing were tested at the heights 0.38§,
0.56 and 0.885 they obtained 0.0, 5.0 and 7.0 percent net drag reduction,

respectively.
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At this stage we cannot establish that this apparent reduction in the
amplitude of the vertical velocity is the cause for the measured skin
friction reduction downstream of the LEBU devices. It was observed in the
experiments (Nychas et al.,1973) that high speed fluid from the outer flow
moves towards the wall region before the ejection starts. It was suggested
by Falco (1983) that the outer flow brings down the so called "typical
eddies" towards the wall which later initiate the 1lift up process. Our
results suggest that when the LEBU devices are introduced the shed vortices
from the device reduce the level of vertical velocity fluctuations
downstream of the devices and thus inhibit this large-scale wallward
movement from occuring and prevent some fraction of the turbulent
production. Therefore a corresponding reduction in the skin friction is

obtained.

The wake which forms behind the LEBU devices interacts with the eddies
in the outer part of the boundary layer and alters the motion of these
eddies. During this interaction the motion in the wake is also modified.
During the ejection process the low speed fluid which ejects from the wall
interacts with the high speed outer fluid and forms large-eddies in the
inner part of the boundary layer. This large eddy grows in size and moves
towards the outer part of the boundary layer (Nychas et al., 1973).
Downstream, the large-eddies which formed during these bursting events in
the upstream region, form large-scale motions which have a very slow
rotational motion towards the wall (Head and Bandyopadhyay 1981). It is
observed that the dye which is placed near the wall reaches the outer
region of the boundary layer and the dye which is placed near the outer

region is found near the wall region. Even though these observations do
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not explain how the large-scale outer motion influences the bursting or the
formation of low speed streaks and liftup, it is agreed that the
large-scale outer motion towards the wall has some influence on the
burst-sweep events. Falco (1983, 1984) from his series of experiments
suggested that, during the bursting process, vortex rings are generated in
the wall region and the vortex rings move away from the wall due to self
induced velocities. These vortex scale wiyh the displacement thickness and
are called "typical eddies". After these eddies reach the outer part of
the boundary layer they are brought back towards the wall by the
large-scale outer fluid which has the motion towards the wall. Later these
vortex rings influence the next bursting process. This way the burst-sweep
cycle is closed. With this assesment in background we will interpret our

results.

In chapter 8 we investigated the two-dimensional, nonlinear interaction
of the wake which has a Gaussian velocity defect with a vortex pair. The
vortex pair simulates the large-eddy which moves towards the wall or away
from the wall. We solved to determine two effects; one how the motion of
the vortex pair is modified due to the presence of the wake and two, how
the wake is modified due to the interaction. To study the influence of the

mean shear, we included a constant mean shear profile in the analysis.

First we will discuss the changes that occur when the eddy moves from
above the wake towards the wall. As expected, the effects depend on the
relative strengths of the eddy and the wake. If the wake strength is weak
or the eddy moves with large velocity, the presence of the wake will not

influence the eddy motion and the eddy will cross the wake. Otherwise our
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results show that due to the interaction with the wake the eddy moves with
reduced velocity. This result was obtained with and without the mean shear
present. In the calculations we observed that the distance between the

vortices, in the vortex pair, increases in the streamwise direction.

In chapter (9) we considered the two-dimensional and three-dimensional
case and solved it using linear theory. The results show that near the
eddy there is always a vertical velocity induced in the direction opposite
to the motion of the eddy. Further we noted in the linear theory that, the
solution for the vertical velocity consists of two separate parts. One
governs the flow field near the disturbed wake and the other governs the
flow field near the eddy. Due to the mean shear these two solutions split
and move away from each other in time. The solution near the dipole

opposes the motion of the eddy towards the wall.

As far as the motion of the wake is concerned the wake responds
differently with and without the mean shear. When there is no mean shear
the disturbances introduced by the eddy grow with time and at the same time
they are advected to the left by the mean wake velocity. As expected,
growth of the wake is observed in the lower and in the upper part of the
wake. When the mean shear is included the growth of the wake in the lower
part of the wake disappeared and concentrated vorticity regions are formed
only in the upper part of the wake. It is noted from the velocity
distributuions that these concentrated vorticity regions are shear layers

with large velocity gradients.

When there is a symmetric mean velocity profile any disturbance in
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linear theory can be separated into symmetric and antisymmetric parts. The
symmetric part has a larger growth rate than the antisymmetric part.

Hence, when there is no mean shear the disturbances in the lower and in the
upper part of the wake are similar. When there is mean shear the mean
velocity profile is no longer symmetric and the magnitude of the vorticity
is reduced in the lower part of the wake. Hence the growth of the lower

part of the wake is reduced in the lower part.

Next we will discuss the results when the eddy moves from below the
wake. The normal turbulence intensity in the inner part of the boundary
layer is about 3-4 times larger than that in the outer part of the boundary
layer. The eddy moving from below the wake has a larger velocity than that
coming from above the wake. When the eddy with large velocity moves from
below the wake it moves as undisturbed and when it moves across the wake it
strongly interacts with the wake and disturbs the whole outer region. When
the strength of the eddy is small, the motion of the eddy is modified
differently than when it moves from above the wake. We will discuss the
results with the mean shear. When the vortex pair interacts with the wake
the vortex in the left side is induced with the positive vertical velocity
and the vortex in the right side is induced with a negative vertical
velocity. Therefore the left part moves with the larger velocity than the
right one and due to the mean shear the vortex pair is rotated in the
clockwise direction towards the wall. This was observed in the two and

three-dimensional cases.

The overall picture that comes out of this study is as follows. The

eddy which moves away from the wall due to its larger vertical velocity
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will strongly interact with the wake and will reach the outer region of the
boundary layer. It has generally been stated that the eddies which reach
the outer region collectively form a large-scale motion towards the wall.
Since this motion is weak in magnitude the wake inhibits the motion of the
eddy towards the wall. Due to the interaction the vorticity in the wake
accumulates in the upper part of the wake and forms concentrated shear

layer regions.

At this stage we are not able to explain the direct consequences of
these modifications in the wall region. But from the previous discussion
we infer that since the motion of the outer fluid towards the wall is
reduced some reduction in the skin friction is expected. The results of
Bertelrud and Truong (1982), Guezennec and Nagib (1985) show that the
turbulence intensity in the streamwise direction increases above the wake.
This may be due to the formation of shear layers above the wake during the

interaction as predicted by the analysis.

From this investigation the following recommendations are suggested for

future study.

(1) We investigated the unsteady aerodynamic effect and the blockage effect
of the wake in the outer part of a turbulent boundary laye;. In the
future, one needs to investigate how these modifications affect the flow
conditions in the wall region. The experiments should include surveys with
multiple sensor rakes oriented in the transverse direction located close to
the wall in order to study the instantaneous velocity profiles during the

bursting event in regular and manipulated boundary layers. With this
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velocity measurements and the flow visualization studies near the wall
region, we can infer the effect of the LEBU devices in the wall region.
These experiments will also provide clues about the interactions between
the outer region and the wall region in a turbulent boundary layer. One
should also modify the above experiments in order to differentiate the

unsteady effect from the wake effect in the wall region.

(2) One has to do an experiment to verify the results obtained in this
report. It would be interesting to investigate experimentally the
interaction of the wake with a vortex pair or a vortex ring with and

without the mean shear.

(3) In the unsteady aerodynamic analysis we considered only one Fourier
component. It is recommended to study how an eddy with known vertical
velocity distribution is modified downstream when it is advected over the
plate. To obtain the results one has to take the Fourier transform of the
known vertical velocity distribution, multiply the Fourier components by

the transfer function S(kx,ky) and then take the Fourier inverse transform.
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APPENDIX B

Consider a vortex sheet with spanwise vorticity of strength

YexD(‘ikxx)exp(ikyy) (shed vorticity ) and with streamwise
vorticity of strength Gexp(‘ikxx)exp(ikyy) ( trailing

vorticity ), which is positioned in the xy-plane.

1= £Y

A\,
.
]
L
AN
A\

b 4

x

Outside this vortex sheet the flow is governed by the
potential equation .
¢lxx + ¢.yy + ¢.zz = 0
Assume a solution of the form
¢ = f(z2) exp(-ikxx) exp(ikyy) (Bl)
hence f(z) satisfies the 0.D.E.
" - 2 2 -
£ (z) ( kx + ky ) £f(z) =0
The solution of this equation is
£(z) = A exp( vk2 + k2 ) + B exp(~ /K2 + k2 3z)
X y X y
Applying the boundary condition when |z2] * =, ¢ *+ 0 we have
£(z) = A exp(- vk2 + K2 , for z2 0
x T ¥y 2 (82)

f(z) = B exp(+ /ki + k$ z) for z 50



-2.2;

Across the vortex sheet streamwise velocity is discontinuous
u(x,y,+0)- u(x,y,-0) =Y exp(-1k x) exp(ik,y)
Since u(x,y,+0) = - u(x,y,-0) we obtain
¢.x(x,y,+0) = Y¥/2 exp(-ikxx) exp(ikyy)
From this relation and eq.(B1) and (B2) we determine A, B and is
given by
A= 1Y/(2k )
X
B ==1 v/(2k_)
X
Using these values for A and B we obtain the expression for ¢

¢ = i,Z’/Z Y/(2kx) exp(-—j_kxx) exp(ikyy) exp(- /ki + kyzr ’zp

If we let ky = 0 we will obtain the results for the

two-dimensional case.



22

APPENDIX C

e —— Ty - X

- % ’f‘:gi”A $.

The circulation around the path from A to B is

B
r(x,y,t) =/ 4 . dn

= ¢(x,y,+0,t) - ¢(x,y,-0,t)
Since ¢(x,y,+0,t) = ¢(x,y,-0,t)
r(x,y,t) = 2 ¢(x,y,+0,t)
When x = ¢/2

r(e/2,y,t) = circulation around the plate



From eq.(67)
= i i
r(e/2,y,t) = Ue/2 f2(1) exp(iwt) exp( kyy) (CI)

= 2 ¢(c/2,y,+0,t)

No pressure jump across the wake condition gives

¢(anv+Ort) - ¢(C/2.y,+0.t - x-c/2) (CJ)

From eq.(C1) & (C2) we get -
¢(x,y,+0,t) = U/2 /2 f2(1) exp(ikx) exp(-ikxx) exp(ikyy) exp(iwt)
From this relation we derive the expression for the vorticity
Yw and 6w
Yw =2 ¢,x(x,y,+0.t)
= "1 Uk £,(1) explik,) exp(-1k_x) ekp(ikyy) exp(iwt)
6, =2 ¢,y(x.y.+0,t)

=-{U ky f2(1) exp(ikx) exp(-ikxx) exp(ikyy) exp(iwt)

<30
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If we change the variables in the last two expressions (e} 5 (d)

with ?.z $—1 , we obtain
00 _ o
- - E,‘f — . - ‘-'&: -L“g,‘ ‘ - |
2 A ’&_,J’ eL Ko{—ﬁﬂ (f-—x)} dg =ik e fe gKa{ﬂg(f—x'ﬂ)}c
f=l .}l=o

[} =

~ [ —128 ._ _ -k [ L Bg
...2'33\[ e K.{'ﬁy(f—x)} d3 :—-".%3 e J‘et K.{-Es(_f“‘)('{-l)} dg

=1 §=o

Substituting these results in the eq.(70) we obtain

+1
&, x

_ i L
—w(ﬁh&g) e

= - &y | £ (4) K.{EBIX-—?'} sgn (x—~2) d¢
U X

+1
_.e —
—f"‘fﬁ(f) Ko{zkylx—gl} de
g
o PRt _ ,
- i'ﬁx &3 "F.g(‘) J e Kl{‘&g ($'+‘—x)} df
Ax

3': o
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We modify this equation to another form

1]
L‘"“‘“"ﬁ
‘Di
A
X
“n
N
o
%
|
“
(*\
o
+
|
x
L\
L_.r-ﬁs
o
‘m-

L‘—&-x -'l-‘&xx ‘-Ex C'—x) O*X) E g
= Qe e - € fe " Ka{»k_.,g}dg
where =
co P
~t8, _
Q = Je Ko {Ryg}dsg -
0

and it is given by
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— i Beg B[P+ B
Q {?%; £ se + + ?4

With the substitution of these results into eq.(D1) it

takes the form
+ |

= _- LRy X — =
- w(k« Ry) € = - Ry Jf.(f) K.{‘&a |x—s)} sgn (x—¢) d¢
ax
(|
-1
" |
- Ry J 3 (8) Ko {&3 Jx—-f’l} dg
LxX
2 x —-'--Elx
- ) {'E;-fi%\} A e e
L‘& (1=x) (l—x)“&
+:°;(t) {& + R, } Je' * Ko{Ry 8} dg
(0]

- ifi-ﬁ(g KQ{EQO—x)}
vy
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APPENDIX E
2 R 8
e -
Evaluation of - d? when Z o
oF 2 <
£+ 2
-0
fa) o =
1hg a8 .
ze dg = 4 |_¢€ de __g__ de,
¥ -r-£='z 2 g, +4%, £—42
- og O [a]
?u - ‘ﬂx z fl = w?

Consider these integrals seperately

0o
“d g:
=3 = € dg,
f|+ézl
0
let
t = g(&+42) = -2z + 48,
— 2% +4 <0
- Z, ~t
Th = e £ dt
g
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~Z, +q 0

- Z, —%
I, = - e £ dt -
- t
3 2, Zi
-z,
We can write this integral as
Z 0
- %, —+ - —t
2L, - - e L d& + € dt + | & dt [ -1
az,l k : + .ZI
= Nau i
z=
—Z ¥4 4
4
r.\ 3 - X
~ 2y Z,

The second integral is

oo
~-4%
I. = dg,
¥ —42
o
Z +3o0
& -t
= e L2 _ dt
+



Z +4oo
2 ~%
T2 = @ £ dt - 1
— t Z,
Z,
Qo
Zz, -+
= £ dt S
+ Z,
Z,
z
T
-
~
~
L AN
1 \
\
zl
Qo
o, J
& "*I e Cl't
2L = ~(e'+re )| T
3z,
zll
Z,
-..2' -+
- £ dt
+

3g
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When Z e
o
~t
e 4t = — Y + An Z,
+
2‘l
= - {Y+ ‘&“'&af}
Z
-t
_._e.__, dt —_ 0
t
Z,
-t
£ dt — =79
£
‘f,
Therefore when Z—w= O
St _ 2L, . v o obn R X +14}
9 2 3z
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APPENDIX F
> { : i FE -
| 3
2% (?z-ﬁ-;)/& (5 +-|-)A (-3.'2+T")A
e E - s
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) by = j~___“°&‘f dg —35Ji"f:§_?ds
2 PR/ 2 a2 2
{?M . {g -1 ) [#4+]
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{? Lt 1% {f - J_/.z

Evaluation of these integrals

e

< (xzx) = T3 (z) J cen xt

b o+ L
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1 = Ko ()



J S Bt i
2 213
{i‘ + T J-

24

= & Ky (’kxT)
-
2
= Jﬁ'x K.a (&HT)
3+

]

- K By {I, (BT — L L*kx"f)]»
2z

3 |



a2

Qo
S R, T
. dt = —-=x %,
f{tﬁ#}% T {I'H"ﬂ L'(&J)}
O
-+ ’kx
-r

L -3 — LQ + '2 %x.r - -3
3x xR, T
co
? 3
Sim &xg dg = X &x . L&KT) - La (‘er) - :EL A .-E’E.
e T =
o



oL

j

~4f.8
e d £ = ‘&x K, (—&AT) - 2_'3 ‘&: Ka (&xT)
{1_-1 & ?:. }}.’a e 1‘4

+ g A &_J. {11 (‘kxT) - L'(’er)}' -
2 ¥

3 2
+4n A { T, (Aer) — L.,uw)}
n
3 3
- 4 Z A 4+ 4Z A

-k
.f‘

~ 3



-?t,.[',

APPENDIX G
) o
WO' S e Jg&, e £ cl7 +g'ﬁ,(i.‘4j e By 17 41
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When Z —= O this integral has a singularity at 7= 0

Therefore we divide this integral into two parts

o)
{ {aq = [ 34« I Ja
o o ' £
where I >> & >> Z. Consider the first integral

e
3 @AY Kk (£eT) ‘ d
= 2 271 % r{ - -7_34-.:—:'z t
{'1 +2 J .

N |
4 3
£ &
212 | @Al K (Aar) ~ 2 J_L__ dq -
2 272
. 1'z+z" 0 {Y *z}
~ A+ =
3 3 =
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Consider the second integral

Q0 o
x o Ry K (#,7T) dq  ~ £ f e Ry K (£ 7) dn
1
g £

o o
/k:zz J co Ry 7 Ky (Aer) d'l ~ ﬁ:; J e Ryl Ka(£.1) Ar[

{’1"’“34} £ v

€

Adding these two integrals we obtain

Wo.z 4, f e Ry Ki( Be ) drz - A
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<0
W03 ) , ’kx‘f- J uo*yq {I,(Ak,'r)— L..(&l-r-)_}.d?
< *
o
Cco
2 2
; %s ™) - L, T d
+3‘k,‘z-_:;fmf¢'l {I;(ﬁ,) Uk,.)}’(
o
For small arguments
T(t) — L (&) ~ _1.:2_
To(t) — La(e) ~ ;ti
8
hence
I‘(&XT) - L'(%KT) ~ Ii('ka.)_‘ Ll(’kx\()
T Y
Ta (£x7) — La(AT) ~ Tal(£¥) - La(R.v)
T 2 F]

T Y
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W = - 4 8. 2 o> Ry 1 dq
1 ¥
o
o 2
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APPENDIX H

@ Consider the function

[ - 4, f ceo By 7 Ki(£,.7) dg -
7 &
)
Let
T cokyl Ki(Re7) dy
1
'3
(=]
= o an Kl(‘l) d,z
7
&R,
a = Ry
R x
dT - Sm. ag Kol('l) dq .
d a
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(2.o]
[0 4]
= Ko (1) 5w na - ° f = Al Kel) &
E"ﬁx E‘%X

i - a. X l
< Jt+ a®
Integrating

I - — _3_‘_ I +a° + const.

(¢ =]

when a = O I = KiC) d’Z '
A
£ £,
(@ o]
I = & - ZJi+d + LD dy
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APPENDIX L

co Co

- 24

- 12 &,
T e b de o v e
o (Jave 7 (g+2)

o] (@)

Using the result

Je de

erfec [ap dp

~ga
2A e
e Je dg = {{_ — J2 Te e fclag
(¢ + ) '
we obtain
co - 00
_23%3 —-/"’-?
= { d g e d_? — e
[x A J2+¢ JE [2+8
o 0
With the following result
— m T
_29 By 24, - 2Ry t
dg e de = e e dt
[2+¢ JE J £y
i
we obtain
2By _
= | e Ko C-l‘&g) - C
x A
oo
Wwhere

J2+8§

Yy
C = J- e GVf§C~fi?; d-g :
o
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APPENDIX J

Strength of the trailing and the shed vortices in the upper plate

wake (Fig.10) is given by eq.(65 & 66)

Yw = —fixumfz(i)exp(iix}exp(—ikxx)exp(ikyy)exp(imt)

(=)

| 5 @ iE}Ume(I)exp(f?;)exp(—ikxx)exp(ikyy)exp(imt)

From Biot-Savart law, the induced normal velocity due to this

vortex sheet at the 3/4 chord point is

wl4.2) = — 1 £ e dn

4 X 24
.[H- z'z-n-rf} *

- Q@ o0 ‘t" ‘%

i P jc(.)g:_:L * e %S el i L—~g)
+ x vYa - &gd?
4K {;(& "g) ‘+,2 +_£ .}/ﬁ
rz:—m
w A Reg Ry
_ ( RBa 4

+ iBfme e dg dq

4 X

{(_,—5) +'z+z} (72)
ikl

o
2

Evaluating the n integrals and simplifying it we obtain
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—Rr® 25| e Ko{ yJE+ g §dt
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- ik L0 K {E [} T3
ax

When z = 0, we obtain the induced velocity due to the upper plate

and is given by

-2 A3FE sl =z
W'N)UpPER — — 'J:-‘!(O {I + < '&3 e El + ‘k'. = E-2
uco
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Win)ypper = — £,0) R) (z5)
U o AT
where
o o)
kz + RS
(o]
o0
Bt
E2 = J e Ko { B ,t}dt b,
L
2
w —
L'Ea.t
EZ3 = e Ko { Ryt ] dt (T8)

Substituting for z = h and changing the sign we obtain the

induced velocity due to the lower plate and is given by

L —_ Lizp
Win) owsr = 0 { ‘ +($,,_z+ g e ﬁpl — R e T F2
U ax 4+ kY
R
2 )
+ R e T F3 4 R Re{R JLP. 4 } } (=a)
Win)ower = £ ra (=10
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where

e LBt _
FI. = Je Ko { By Jt'+h' | dt

-2 :ﬁ-¢ x

_.h,J&z * Ry

= x 1 e — i | s Kt Ko [ B, Je4n | dt
<

2R
o
1
Eﬁ __ng;t
F2 = Je e WENT }dt
0]
I —
Lihft _— 2 2
= e Ko § Ry /t+h}dt @)
o

Equating the total induced velocity to the negative of the gust

velocity we obtain an expression for f2(1),

ik
w 2
- = @& = —%5W R+ HOW Rra2 CTI-Z)
Uoo QX x
hence
_ ok
2
oyl
) = w 2% € (= 13)
U RI — R2

All the integrals involed in R1 & R2 are evaluated numerically.
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APPENDIX K

In this section we will derive the solution of the eq.(l68), using Green's

function method.

-dj—v _ ‘&4 _\7 _ _\; d"u - 8(\"_ H) CK\)
Ciya u—¢ d\fd

Let G(y,k,c,H) be the solution of this equation, hence

G (y,k,c,H) = A ¥, + By, for y<H

¢ (y,k,c,H) = C ¥, +D ¥, for yH.
(<2

The boundary conditions are

(1) G - KG=0; 3+ -

G' + kG=0; 5y +=
+ -
(2) G (Y-Hik’c)H) = G (Y'Hskacvﬁ)

(3)

d G (v 2, e.n) - d G (v, a.e)) =

dvy dvy
S=H U-.'H

Applying these boundary conditions to eq.(K2) and using the definition for

¢1 and ¢2 from eq.(169), we get



B=C=0
A - Wy CH) sy
Wi CH) s CHY — Ya (R Y, CHD
l LVI(;H)
8 = (<)

Wi CHY Wa' CH) — Ya () Y, CH)
Substituting for ¢1(H) and ¢2(H) from eq.(169) gives
| \ )
W, (HD W;CH) _ Wat”)l¥|CH

= { (dp:(_—co)—- | &) c’p‘(—ao)) (¢;(+w) + | &\ ¢a(+°°)B

(e R d ) (O -1kl G o)) |

ENOEROEI N 400 |

Noting that the Wronskian of the eq.(Kl) is independent of ¥,

(k5)

we have
¢1(H) ¢2'(H) - ¢l'(H) ¢2(H) = ],

From eqs. (K3-K6) we obtain
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G(Y, R, cH) = _ Wa (H) W, ()

(e v |21 ) (Pl rd + 1R da ()

N <+

Wa () Yi(Rr)

I

2 (@ @)+ 121§ @) (d G o) + 1R PaG))

Yy >H.
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Appendix J

From eq.(181l) we get the following equations for the velocity field v.

Region (1)

TeAeY (™))
Region (2)

veaBe ™, c e+ay. 0—-0
Region (3)

v o= D e-qy + E e+ay- (}.3)
Region (4)

veFe%, @-4)

Kinematic boundary condition eq. (183) yields

at surface 'a'

ah

n, ikx (w(h-H)-c) = A e - voa/clkx.

. -ah +ah :
n, ik, (w(h-H)-c) =B e +Ce - voa/czkx.
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at surface 'b'

ikx (-wH-U-c) =B + C - VOb/cikx.
Ny ikx (-wH-U-¢) =D + E - va/cikx.

at surface 'c!'

n ikx (w(-h-H)-c)= D e+ch + E e-cth - vocfcikx

4 -ah
n 1kx (w(-h-H)-c)= F e - voc/cikx.

From the above equations we determine A,B,C,D,E,F.

-~ &Xh ~ ~
Ae = - QQ{C-I'W(_H-—P\\}L‘&;-G- _\ic_a_c_;_ (\_5-5
Cl'ﬂ:.
B a - L%,,_{ Tp (WHrc+u)e - Ta (W(H-h)+ 0.)3- + Vop & —Voy_
xh —a!
xh — xh CiRe {2 ~e
e — e :
(Le
~ -~aoh -~ o~ ~oth -~
e = 1R ‘[ Ty (WH+U+c) e - Ta (c+w(H_h3ﬁ = Vopb & = Voq
xh —ok
X h - «h C‘-‘&z{e - e
e - e

(®))



b2

o~ —xh ~ —xh
D = L'&x{‘zb(WH-FC-PU) e - (Lc CWCH‘\'h)'Q'Q)} - Vob e —_ VOC.
& h — Xh Ctﬁ‘ﬁeuh‘e—“h}
e — &
(L9
E = _ L/&x{'lb CWH+Q+U)Q k™ CWCH+h)+C)S+Vobe — Voge
e - e
L a)
Fe " . Voo = — Mo {w(Heny+el tha
C bk (Lio)

Applying eq.(182) to the pressure boundary conditions at the interfaces we

get

at surface 'a'

o h -
..J.&-._CWCH-h)—Q){-O(Aeuh} + LR Ae(x W+ w(;-n‘) ’:\;._-,Q

- oth
_ 9:"_“. W o= — L Rax Cw(h_u)-—c>c—0&59 -+ CD(EO‘H>
c

LR Ceguh-J-Qe )C_,,,w).,.w____Ch H)avm —VOG (U +
+ x
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at surface 'b'

— B (mwH— U—c) (~xB +C %) + B (B+C) (& +w)

o (__U—wh) BVob  — Vop L_U_+w>-_-
s 9y c h

- 1R (_wH- u—c) C—o(D-t— Ex)
3\7°b ,..,.‘\}’cb L__U_...W>
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at surface '¢!
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Substituting for A,B,C,D,E,F from the eqs. (L5-L8) we obtain three

simultaneous equations for n,.ng and n_.
c
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In region (1)

v = A e—ay‘
Substituting for A from eq.(L5) we obtain
— & (y=-+r) — K (H=h)
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