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Abstract
Most ordinary objects - cats, humans, mountains, ships, tables, etc. - have indetermi-
nate mereological boundaries. If the theory of mereology is meant to include ordinary
objects at all, we need it to have some space for mereological indeterminacy. In this
paper, we present a novel degree-theoretic semantics - Boolean semantics - and argue
that it is the best degree-theoretic semantics for modeling mereological indetermi-
nacy, for three main reasons: (a) it allows for incomparable degrees of parthood, (b) it
enforces classical logic, and (c) it is compatible with all the axioms of classical mere-
ology. Using Boolean semantics, we will also investigate the connection between
vagueness in parthood and vagueness in existence/identity. We show that, contrary to
what many have argued, the connection takes neither the form of entailment nor the
form of exclusion.

Keywords Boolean-valued semantics ¨ Mereology ¨ Indeterminacy

1 Introduction

When we look around and inspect the ordinary objects around us, we will find that
many ordinary objects lack a precise mereological boundary, or at least they appear
to do so. Many ordinary objects are such that in certain natural situations, we can find
things that are neither definitely part of it nor definitely not part of it. Here are some
typical examples:

Example One Consider Tibbles the cat. Suppose Tibbles has a whisker, call it W,
that has loosened up and is about to fall off. Is W part of Tibbles?

Example Two Consider Mount Kilimanjaro, the tallest mountain in Africa. Sup-
pose there is a tree, call it T, that is located somewhere at the boundary of
Kilimanjaro - say, somewhere in between Mweka Camp and Materuni Waterfall.
Is T part of Kilimanjaro?
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Example Three Consider Tim, an ordinary human being. Suppose there is a cell,
call it C, in Tim’s epidermis that has lost its nucleus and is about to be shed from
the surface of Tim’s skin. Is C part of Tim?

Example Four Consider Theseus the ship. Suppose there is an iron nail, call it N,
that is in the process of being hammered into Theseus by a repairer. Is N part of
Theseus?

There are countless other examples of this type, involving ordinary objects of
almost all kinds, including animals, humans, artifacts, geographical areas, plants,
buildings, and so on. If we describe the cases and ask the common man ques-
tions of the form “is W/T/C/N part of Tibbles/Kilimanjaro/Tim/Theseus?”, the
answer we would most likely get would be a hesitant “sort of/more or less/to
some extent”. These answers, I believe, are natural and intuitive. They indicate that
an all-encompassing theory of the relation of parthood should have the ability to
accommodate indeterminacy.

In this paper I will present a novel degree-theoretic semantic framework that is
able to handle mereological indeterminacy with ease. The semantic framework I am
about to introduce is called Boolean-valued semantics, whose key feature is that
degrees of truths form a Boolean ordering. I will argue that Boolean-valued semantics
is the best degree-theoretic semantics for the language of mereology. In particular,
I will argue that it trumps the well-known alternative - fuzzy-valued semantics, for
three main reasons: (a) it allows for incomparable degrees of parthood, (b) it enforces
classical logic, and (c) it is compatible with all the axioms of classical mereology.
Moreover, I will explore, under the framework of Boolean semantics, the connection
between vagueness in parthood and vagueness in existence/identity. I will show that,
contrary to what many have argued, vagueness in parthood entails neither vagueness
in existence nor vagueness in identity, although being compatible with both.

What I won’t do in this paper, nevertheless, is to develop a full-fledged philosoph-
ical theory of mereological vagueness that has a decisive answer to every relevant
question. The main goal of this paper is to construct a superior semantic framework
for indeterminacy of parthood, and I believe that it should never be the job of a
formal framework to take a stand on deeper philosophical questions like “What is
the nature of mereological indeterminacy?”. An ideal semantic framework should be
neutral as to which philosophical viewpoints one further upholds. In the final section
of this paper, I will illustrate the neutrality and flexibility of Boolean semantics by
sketching out two different philosophical theories of mereological vagueness, one
coming from applying Boolean semantics to the view that mereological vagueness is
linguistic, and the other coming from applying Boolean semantics to the view that
mereological vagueness is ontic. Another issue that I won’t discuss in this paper is
higher-order vagueness. In this chapter, I will adopt (without arguing) a McGee-style
position that the issue of higher-order vagueness lies in the interpretation of the meta-
language.1 And since the the purpose of this chapter is to build a semantics, that is,
an interpretation framework of the object language - the language of mereology, the

1See [17] and [19] in favor of arguments for this viewpoint and replies to objects.
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issue of higher-order vagueness, on our assumption, lies outside of the scope of our
discussion.

The plan of this paper goes as follows. I will start in Section Two by arguing that
facing mereological vagueness, a natural, and good place to start is to adopt a degree-
theoretic semantics. In Section Three, I will present in details Boolean semantics,
which is a degree-theoretic semantics whose key feature is that truth degrees form
a Boolean structure. I will explain how Boolean semantics can be applied to cases
of mereological indeterminacy. In Section Four, I will argue that Boolean semantics
is the better degree-theoretic semantics for handling mereological indeterminacy, in
comparison to the alternative. The goal of Section Five is to investigate a special kind
of Boolean models for the language of mereology that are of particular interest - the
atomic Boolean models. Via these models I will also discuss the connection between
mereological vagueness on the one hand and vagueness in existence and identity on
the other hand. Finally, in section Six, we end this paper with a discussion on the
nature of mereological vagueness. In particular, we show that Boolean mereology
is neutral to what is the nature of mereological vagueness, and one can construct
different theories of mereological vagueness by combining Boolean semantics with
different views on the nature of mereological vagueness.

2 Many Degrees: A Natural Start

The language of mereology, depending on one’s taste, is a first-order or second-order
language whose only non-logical symbol is the binary relation symbol of parthood,
À. The classical semantics, for either first-order or second-order logic, has as its
value range the two-valued Boolean algebra t0, 1u. The classical semantics, there-
fore, leaves little if not no room for mereological indeterminacy, as, for example, W

is either part of Tibbles to the degree 0, meaning that it is not part of Tibbles, or it is
part of Tibbles to the degree 1, meaning that it is part of Tibbles. In order to accom-
modate mereological indeterminacy, therefore, we at least need revision of some kind
to the classical semantics.2

A natural and straightforward move is to enlarge the range of truth degrees. If
“yes” corresponds to the degree 1 and “no” corresponds to the degree 0, then we
might want some intermediate degree between 0 and 1 to correspond to the common
man’s hesitant “sort of”, when responding to the question “is W part of Tibbles”. If
we have decided to add more degree of parthood, then, there seems to be no harm
but only benefits if we add more than just one. Consider the case of Tibbles. It is

2Although most people think that at least some change to classical semantics is needed for handling
mereological indeterminacy, there are also exceptions. For epistemicists like Williamson [29], sentences
like “W is part of Tibbles” do indeed have a definite truth value, and it is just impossible for us humans to
know the truth values of these sentences. Mereological vagueness is explained, on this view, as a kind of
ignorance that we cannot possibly overcome. Most people find this view highly counter-intuitive. Under
this view, there will have to be basic mereological facts about ordinary objects in the world that are simply
epistemically inaccessible to us, no matter how our cognitive abilities improve. It seems to me to be a
heavy philosophical burden to postulate these unreachable facts about the mereological relations among
ordinary objects.
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certainly possible that there is a different whisker, call it W1, that has also loosened
up and is about to fall off. But we can imagine that W1 is looser than W, and also has
a stronger inclination to fall off. In this case, then, it seems quite intuitive to say that
the extent to which W1 is part of Tibbles is lower than the extent to which W is part
of Tibbles. If we want to transform these “extent talks” to “degrees talks”, we will
then want to have multiple intermediate degrees that are comparable to each other,
so that we can assign a lower intermediate degree to “W’ is part of Tibbles” and a
higher one to “W is part of Tibbles”.

Let us call a semantic framework “degree-theoretic” if it allows for multiple
degrees of truth in addition to the extreme ones. The semantic framework that I am
about to develop, Boolean semantics, is a degree-theoretic one. There are, I believe,
a number of advantages using a degree-theoretic semantics on cases of mereological
indeterminacy. First, under a degree-theoretic framework, the changes that need to be
made to the classical semantics are quite unsubstantial and procedural. All we need
to do is to replace the classical value range t0, 1u with a value range of a larger size.
The core idea behind the classical semantics story stays unchanged, including, for
example, that constants in the language are interpreted by objects in the domain, that
truth values are assigned to the atomic formulas by an assignment function that comes
with the model, that complex formulas have their values calculated from the values
of simpler formulas using certain algebraic operations, and so on.3 What we end up
with is a natural generalization of the classical semantics theory, rather than a radical
deviation. Second, a degree-theoretic semantics offers at least some level of expla-
nation of what mereological indeterminacy is. Under a degree-theoretic framework,
cases of mereological indeterminacy are cases of intermediate parthood degrees, that
is, cases where some object is part of another to an intermediate degree between 0
and 1. The phenomenon of indeterminacy is explained in terms of non-extreme truth
degrees. Of course, this does not answer all the questions we care about concerning
mereological indeterminacy, such as, for example, “What is the nature of mereo-
logical indeterminacy?”, or “Is mereological indeterminacy worldly or not?”. But it
is a decent first step. Last but not least, as we have already observed, our ordinary
intuition about the relation of parthood involves that it is susceptible to comparison.
Among the two loosened up whiskers the looser one is less a part of Tibbles than
the tighter one. Among the two trees at the boundary the further one is less a part
of Kilimanjaro than the closer one. So on and so forth. Such intuitions can be neatly
captured by a degree-theoretic semantics as long as we have multiple comparable
intermediate degrees.

The above discussion is not meant to be a decisive argument against using
non-degree-theoretic semantics for cases of mereological indeterminacy. There is a
variety of different non-degree-theoretic semantics, and I do not believe there is a
sufficiently strong objection against them all. Each one has its own problems, and I

3Admittedly it is of course theoretically possible for there to be degree-theoretic views of mereologi-
cal indeterminacy that are not truth functional. But to my knowledge in the current context this is not
something worth of special discussion.
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will postpone the discussion of some of them to the later sections.4 The above dis-
cussion is only meant to point out some general advantages enjoyed by having a
degree-theoretic semantics, and that the latter is a good place to start, if our goal is to
develop a semantics for the relation of parthood that tolerates indeterminacy.

3 What Are Boolean Degrees?

The classical value range t0, 1u is the two-element complete Boolean algebra, and in
classical semantics, logical terms like “and”, “or”, etc. are interpreted by the algebraic
operations - meet, join, etc. - on the Boolean algebra. If our plan is to enlarge the
classical value range whereas keep the rest of classical semantics unchanged, then
the natural suggestion is to use larger complete Boolean algebras as value range and
still interpret logical terms using Boolean operations. Degrees of truth, then, form a
complete Boolean algebra that has more than two elements.

Definition 3.1 A Boolean algebra5 is a set B together with binary operations [ and
\, unary operation ´, and elements 0 and 1 that satisfies:

1. commutative and associative laws for [ and \;
2. distributive laws for [ over \ and \ over [;
3. for any x, y P B, x \ px [ yq “ x; x [ px \ yq “ x; x \ ´x “ 1; x [ ´x “ 0.

In each Boolean algebra we can define an ordering ď as follows: for any x, y P B,
x ď y just in case x [y “ x. We can show that this ordering is a partial order: in fact,
it gives rise to a bounded distributive complemented lattice. 1 is the top element with
respect to this ordering, and 0 is the bottom element with respect to this ordering.6

Definition 3.2 A complete Boolean algebra B is a Boolean algebra where each
subset of B has a supremum with respect to the ordering ď.

In classical semantics, models are t0, 1u-valued. In Boolean semantics, models
are B-valued7, where B can be any complete Boolean algebra. Just as in the classi-
cal case, a Boolean model A comes with a pre-given set of objects, A, as its domain.
Any constant in the language is interpreted by an object in the domain. The identity

4For example, we will talk about supervaluation semantics and its connection to Boolean semantics in
Section Six.
5For a detailed introduction to Boolean algebras, see [11].
6In fact, an alternative characterization of a Boolean algebra is a bounded distributive complemented
lattice.
7For a more formal definition of a Boolean-valued model, see Def. A.1 in the Appendix.
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symbol is interpreted by a function from A2 to B that satisfies the following
conditions: for any a1, a2, a3 P A8,

�a1 “ a1�
A

“ 1

�a1 “ a2�
A

“ �a2 “ a1�
A

�a1 “ a2�
A

[ �a2 “ a3�
A

ď �a1 “ a3�
A

An n-ary relation symbol P is interpreted by a function from An to B that satisfies
the following conditions: for any a1, ..., an, b1, . . . , bn P A9,

�P pa1, ..., anq�A [ p
ę

1ďiďn

�ai “ bi�
A

q ď �P pb1, . . . , bnq�A

Again, just as in the classical case, the sentential connectives and quantifiers are
interpreted by algebraic operations on the Boolean algebra: conjunction by binary
meet, disjunction by binary join, negation by complementation, universal quantifi-
cation by infinite meet and existential quantification by infinite join. In particular,
given an assignment function x from the set of all variables to A, and where φ, ψ are
formulas,

��φ�Arxs “ ´�φ�Arxs

�φ ^ ψ�Arxs “ �φ�Arxs [ �ψ�Arxs

�φ _ ψ�Arxs “ �φ�Arxs \ �ψ�Arxs

�Dviφ�Arxs “
ğ

aPA

�φ�Arxpvi{aqs

�@viφ�Arxs “
ę

aPA

�φ�Arxpvi{aqs

where xpvi{aq is the assignment function that takes vi to a and agrees with x at
everywhere else.

Now we have shown that Boolean semantics arises from classical semantics sim-
ply by replacing the two-element complete Boolean algebra of classical truth degrees
with an arbitrary non-trivial complete Boolean algebra. After this change, we faith-
fully follow the classical procedure, step-by-step. The new value range can be as large
as we want10, as there can be arbitrarily large complete Boolean algebras. Therefore,
there can be multiple intermediate degrees in between the top degree 1 and the bot-
tom degree 0. Ordered by ď, some of the intermediate degrees are higher/lower than
some others. These Boolean degrees are perfect for modeling mereological indeter-
minacy. The whisker W1 that is firmly attached to Tibbles is part of Tibbles to the

8Here and in the following, for any sentence φ and any Boolean model A, �φ�A means the value of φ in
A. We might omit the superscript occasionally when the context is clear.
9In any complete Boolean algebra B, for any D Ď B,

Ű

D is the infimum of D with respect to the
ordering ď, whose existence is guaranteed by the definition of a complete Boolean algebra (with an easy
derivation). Similarly,

Ů

D is the supremum of D with respect to ď.
10This means that there is no limitation to how large a Boolean value range can be (i.e. there is no largest
cardinal κ such that there is no complete Boolean algebra of size larger than κ). This does not mean,
however, that for any cardinal κ , there is a complete Boolean algebra of size κ . For example, there is no
complete Boolean algebra that has exactly five elements.
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degree 1; the whisker W2 that has already fallen off from Tibbles is part of Tibbles
to the degree 0; the whisker W that has loosened up and is inclined to fall off is part
of Tibbles to the degree p, where p is an intermediate degree between 0 and 1 in a
complete Boolean algebra that is sufficiently large; the whisker W1 that is just like
W except that it is looser and has a greater inclination to fall off is part of Tibbles
to the degree q, where q is some intermediate degree between 0 and 1 that is strictly
less than p. Boolean mereology centers around the simple idea that parthood comes
in Boolean degrees. The basic thought behind the view is that while the classical
picture does great in modeling the parthood relations among abstract mathematical
objects like geometrical spheres or spacial-temporal regions that are perfectly pre-
cise, it is inadequate when we wish to further theorize about the parthood relations
among ordinary objects like cats and mountains that have vague mereological bound-
aries. To deal with the ordinary objects we need a wider range of parthood degrees in
addition to 0 and 1, and that wider range should be a larger complete Boolean algebra
under Boolean mereology.

4 Why Boolean Degrees?

In the literature on mereological indeterminacy, or the literature on vagueness in gen-
eral, the most mainstream, or even perhaps the only currently available version of
degree-theoretic semantics, is the one which changes the classical semantics by sub-
stituting the classical value range with the real interval r0, 1s, ordered in the standard
way. Let us call a degree-theoretic semantics of this kind, or just a degree-theoretic
semantics under which the degrees of parthood are ordered linearly, a fuzzy seman-
tics. Of course, my definition here of a fuzzy semantics is very general, and as it
stands a cluster of views that differ from each other in bigger or smaller details sat-
isfy this definition. But the points that I am about to make in the rest of this section
should be applicable to them all.

Since any complete Boolean algebra larger than t0, 1u is not a linear order,
Boolean semantics, in the sense that matters, is not a fuzzy semantics. Boolean
semantics actually shares a lot in common with a fuzzy semantics. They both origi-
nate from the simple thought that the classical semantics is inadequate at modeling
the mereological status of ordinary objects because it offers too few options. There-
fore, they both plan to change the classical semantics by enlarging the value range and
keep the rest untouched. The key difference, of course, is which structure we should
replace the classical value range with. It is interesting to note that the classical value
range t0, 1u is the only non-degenerate ordering that is both linear and Boolean. So
both Boolean semantics and fuzzy semantics agree in that we should generalize some
algebraic property of the classical value range in order to build larger ranges, but they
disagree on which algebraic property we should generalize: for the fuzzy semantics,
it is the property of being linear; for Boolean semantics, it is the property of being
Boolean.

Despite sharing commonalities, Boolean mereology and the fuzzy ones differ in
substantial ways. In the rest of this section, I will argue that Boolean semantics is
the better degree-theoretic semantic framework when it comes to theorizing about
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mereological indeterminacy. Starting with a humble point, the biggest motivation
behind the fuzzy views is that our intuition that parthood among ordinary objects is
not an all-or-nothing matter; rather, it seems to come in different degrees. Common
sense confirms that the tighter whisker W is part of Tibbles to an extent greater than
that of the looser whisker W1, though neither of the two whiskers are definitely part
of Tibbles, as they are both on the verge of falling off. The biggest selling point of
the fuzzy views, I think, is that it is able to capture this intuition. Under a fuzzy view,
we can, for example, say that W is part of Tibbles to the degree 0.5 while W1 is part
of Tibbles to the degree 0.4; or in general, the tighter a shaky whisker is, the higher
the degree we assign to it being part of Tibbles. But we can do the same thing with
a Boolean ordering of truth degrees. Complete Boolean algebras can be as large as
we want, and therefore there can be as many intermediate parthood degrees as want.
As long as the Boolean value range has more than four elements, there will be two
intermediate degrees p, q between 0 and 1 such that q is strictly less than p, so that
we can let p be the degree to which W is part of Tibbles and q be the degree to which
W1 is part of Tibbles.

Second, although sometimes we have borderline cases of parthood whose degrees
of parthood seem comparable, sometimes we have borderline cases of parthood
whose degrees of parthood seem incomparable. Consider, for example, the tree T
that is at the boundary of Mount Kilimanjaro. It is indeterminate whether T is part of
Kilimanjaro, meaning that the degree to which T is part of Kilimanjaro is an inter-
mediate value between 0 and 1, just as the degree to which the whisker W is part of
Tibbles. But should the former degree be higher than the latter, or should the latter be
higher than the former, or should they be equivalent? How exactly should we com-
pare the degree to which T is part of Kilimanjaro to the degree to which W is part of
Tibbles? I think it is impossible to answer these questions. Unlike in the case of W
and W1, there is simply no sensible dimension in which we can compare the degree to
which T is part of Kilimanjaro and the degree to which W is part of Tibbles. The two
degrees should be simply incomparable. It is absurd to assert that T is more part of
Kilimanjaro than W is part of Tibbles and equally absurd to assert the opposite. But
under a fuzzy semantics we have no choice but to have the two degrees be compa-
rable to each other, since a linear ordering of degrees is connected, meaning that for
any two fuzzy degrees p, q, either p ď q or q ď p. This is, I believe, a unfortunate
consequence of using a fuzzy semantics on mereology. And we can avoid it by adopt-
ing a Boolean semantics instead. Any complete Boolean algebra that is larger than
t0, 1u is not connected, and therefore there will be elements p, q such that neither
p ď q nor q ď p. Boolean mereology thus has the resources to refrain from compar-
ing the degree to which T is part of Kilimanjaro and the degree to which W is part of
Tibbles. In short, under Boolean mereology, unlike under its fuzzy counterpart, we
do not have to make incomparable comparisons.

Third, the most commonly held and perhaps the most powerful objection to the
fuzzy views is that they are in tension with classical rules of reasoning.11 Departing
from classical logic, I believe, comes with great costs, for at least two reasons. First,

11See, for exmaple, [14].
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classical rules and tautologies that are invalid under the fuzzy views - say, for exam-
ple, the law of excluded middle - are widely endorsed and employed in almost all
other areas in philosophy and in mathematics. Rejecting classical logic would mean
that fuzzy mereology has to be an isolated, lonely bubble in the theory space. Sec-
ond, the way in which the fuzzy views violate classical logic brings upon unwelcome
consequences. For example, consider the sentence that W is part of Tibbles. The truth
degree of this sentence has to be an intermediate value, since W is a borderline case.
But by this reasoning, the negation of this sentence - that W is not part of Tibbles -
also has to have an intermediate truth value. And because the values are ordered lin-
early, the conjunction of the two sentences - that W is both part of and not part of
Tibbles - has to have an intermediate truth value as well, at least under the standard
form of the fuzzy view. But that sounds wrong: nothing can be both part of and not
part of Tibbles. The conjunction has the form of a contradiction, and a contradiction
should be outright false instead of being somewhere in between truth and falsity.

Boolean mereology, in contrary, avoids all these problems, as it not only is com-
patible with but also enforces classical logic. As we will prove in the Appendix,
Boolean-valued models, for first-order languages, for example, are sound and com-
plete with respect to first-order logic. This means that all the theorems of first-order
logic are true to the degree 1 in every Boolean-valued model.12 Therefore, sen-
tences like that W is both part of and not part of Tibbles always have degree 0 in
Boolean-valued models. Similarly, sentence like that W is either part of Tibbles or
not part of Tibbles always have degree 1. With Boolean truth degrees, we can have a
many-degree truth-functional semantics with classical rules of inferences satisfied.

Last but not least, under Boolean mereology, not only can we have theorems of
classical logic satisfied, we can also have principles of classical mereology satisfied.
This point will be exemplified in the next section where we discuss a special kind of
Boolean models for the language of mereology - the atomic Boolean models. Basi-
cally, we can have Boolean-valued models of mereology where all the principles of
classical mereology have value 1. In contrast, this is something that is incredibly
difficult, if not utterly impossible, to achieve, under the fuzzy approach.

For example, consider the case of Tibbles, of which W is a vague part. Under
fuzzy semantics, the sentence that W is part of Tibbles should be a real number in
p0, 1q. Let’s say that W is part of Tibbles to the degree 0.5. Now, clearly Tibbles
is distinct from the whole mereological universe (whose existence is guaranteed by
classical mereology): lots of things, the Eiffel Tower, for example, are part of Tib-
bles to the degree 0. A consequence of classical mereology - the principle of strong

12In fact, it is proven in the Appendix that Boolean-valued models preserves classical validity, defined
as preservation of having truth value 1 (Theorem B.3). An alternative way of defining validity in this
context is to say that a sentence is a (Boolean) consequence of a set of premises just in case in every
Boolean-valued model, the value of the sentence is larger than or equal to the supremum of the values
of the premises. McGee and McLaughlin (in [19]) proved that in the context of propositional calculus,
this alternative definition of Boolean consequence also coincides with that of logical consequence. My
conjecture is that this equivalence also holds in the context of predicate calculus, since I see no difficulty
of extending their proof to the first-order case.
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complementation13 - says that everything that is distinct from the universe has a
(mereological) complement. Since Tibbles is distinct from the universe to the degree
1, there has to be an object, call it Complement, such that it is the complement of
Tibbles to the degree 1. This means that (1) Complement overlaps with Tibbles to
the degree 0, and (2) the fusion of Tibbles and Complement is identical to the entire
universe to the degree 1. But, then, what should be the degree to which W is part of
Complement? In order for the degree to which Complement overlaps with Tibbles
to be 0, the degree to which W is part of Tibbles and is part of Complement has to
be 0, which means that the degree to which W is part of Complement can only be
0. But then the fusion of Tibbles and Complement is such that W is part of it to the
degree 0.5, whereas the universe is such that W is part of it to the degree 1. So the
fusion of Tibbles and Complement is not identical to the entire universe to the degree
1. Contradiction.

For similar but slightly more difficult reasons, we can see that even the principle
of weak supplementation14 is going to fail under fuzzy semantics. And it is not hard
to see that the failure of these classical mereological principles under fuzzy semantics
is essentially due to the linear ordering of the truth values. In the case of Tibbles and
Complement, in order for the principle of strong complementation to be true, we need
the degree x to which W is part of Complement to be such that the supremum of x

and 0.5 is 1 and the infimum of x and 0.5 is 0. Nevertheless, when the truth values are
linearly ordered, there simply is no such value. When the truth values form a Boolean
ordering, on the other hand, such a value does exist, as we will see shortly below.
In any case, the general point here is simply that by adopting a fuzzy semantics we
will have to sacrifice part of classical mereology, and this is a sacrifice that cannot be
ignored, as classical mereology is well-understood and deeply intertwined with other
areas in contemporary metaphysics. We can avoid this sacrifice by adopting Boolean
semantics instead.

5 Atomic BooleanModels

The goal of this section is to investigate a special kind of Boolean models for mere-
ology, which we will call the atomic Boolean models. These models arise from a
simple and natural idea. We start with a pre-given set of mereological atoms S. Then,
taking a complete Boolean algebra B as value range, we let domains of the models
consist of functions from S to B. Intuitively, any function f : S Ñ B corresponds to
an object composed of the mereological atoms. For any a P S, f paq is the degree to
which the atom a is part of (the object represented by) f .

13Formally, the principle of strong complementation is the following sentence in LM : @v1p�Upv1q Ñ

Dv2p�v1 ˝ v2 ^ @v3pFupv3, tv1, v2uq Ñ Upv3qqqqq, where Upv1q :“ @v2pv2 À v1q. For the definition
of LM and other defined notions, see Def. 5.1.
14Formally, the principle of weak supplementation is the following sentence in LM : @v1@v2pv1 Ä v2 Ñ

Dv3pv3 À v2 ^ �v1 ˝ v3qq. For the definition of LM and other defined notions, see Def. 5.1.
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The atomic Boolean models15 are particularly interesting and worth studying for
multiple reasons. First, as mentioned above, atomic Boolean models are intuitively
motivated. If the world is built up from mereological atoms, and if mereological
relations comes in degrees, then the natural picture is that every object in the world
is composed of the atoms to certain degrees. That is, it should be the case that every
object in the world can be represented by a function from the set of all atoms to
Boolean degrees, which is exactly what atomic Boolean models are like. Second, as
argued above, Boolean mereology, unlike the fuzzy views, is easily compatible with
axioms of classical mereology. Below we will exemplify this point by showing that
a special case of the atomic Boolean models - the SEV I models - are models of the
system CM , which is equivalent to classical mereology. So with Boolean semantics
we can have a degree-theoretic semantics of mereology with all axioms of classical
mereology satisfied.

Third, in the literature on vague mereology, there has been a fair amount of dis-
cussion on the relationship between vague parthood on the one hand, and vague
existence and vague identity on the other hand.16 Many, for example, have either
argued or tacitly assumed that vague parthood entails vague existence, and therefore
proponents of mereological vagueness are also stuck with existential vagueness. A
study of atomic Boolean models, as I will show below, will shed light on how, under
Boolean semantics, vague parthood is connected with vague existence and vague
identity. In particular, I will show that their connection neither takes the form of
entailment nor takes the form of exclusion, as there can be atomic Boolean models,
though being models of vagueness, that disallow vagueness in existence/identity, and
atomic Boolean models that allow vagueness in existence/identity.

Last but not least, I believe that atomic Boolean models are mathematically inter-
esting to study as well. This is because atomic Boolean models are similar in multiple
respects to the standard Boolean-valued models of set theory, as presented in, say,
Bell [3]. For example, the definition of the values of the atomic clauses on part-
hood in the atomic Boolean models is similar to the definition of the values of the
clauses on subsethood in the Boolean models for set theory: the former is defined
in terms of the degree to which every atom that is part of the first object is part of
the second object, while the latter is defined in terms of the degree to which every

15The atomic Boolean models, as we will see in a moment, are models of the axiom of Atomicity. This does
not mean, however, that Boolean semantics are stuck with atomic mereology. Note that atomic Boolean
models are a special kind of Boolean-valued models for mereology that naturally arise on the assumption
that the world is atomic. There can certainly be other types of Boolean-valued models for mereology that
model, for example, some kind of gunky mereology. We focus on atomic Boolean models here simply
because of their simplicity and their effectiveness in illustrating our points, as will be listed below.
16Here’s a non-comprehensive list of articles that have touched on these equestions: Evans [8], Weatherson
[28], Barnes and Williams [2] have argued that vague parthood entails vague identity; Cook [5], Sainsbury
[24], and some others have argued for the opposite; van Inwagen [27], Lewis [15], Smith [25], Merricks
[20] and many others hold that vague parthood entails vague existence; Morreau [21] and Donnelly [6]
hold the opposite view.
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element that is a member of the first set is a member of the second set. Another
example is that when proving the holding of the axiom of Fusion in the atomic
Boolean models, we construct a fusion in the same way as we construct a mixture of
a collection of Boolean-valued sets. These commonalities in techniques perhaps hint
towards a deeper connection between Boolean-valued parthood and Boolean-valued
membership, which seems to be worth of further study.

We will divide the rest of this section into two subsections. We will devote the first
subsection to presenting a version of the formal theory of mereology that is tailored
specifically to our needs. In the second subsection, we will define properly different
kinds of the atomic Boolean models, use them to explore the relationship between
vagueness in parthood and vagueness in existence/identity, and discuss which axioms
of classical mereology hold in these different kinds of atomic Boolean models.

5.1 Classical Mereology

As mentioned above, one of the primary goals of studying atomic Boolean models
is to investigate the relation between vague parthood and vague existence/identity.
We will also investigate how, given the presence of vague parthood, different axioms
of classical mereology are connected with the presence/non-presence of vague exis-
tence/identity. But to meet these needs we will have to deviate from the standard
formulation of classical mereology to some extent, for reasons I will explain in a
moment. In particular, the deviation will come in two parts: (a) we will alter, in minor
but important details, the way in which some non-primitive mereological notions
are defined in terms of the notion of parthood, and (b) we will present and group
the axioms of classical mereology in a way that is slightly more complicated and
cumbersome than the standard.

Part (a) of the deviation further consists of two changes. The first, and the most
important change we will make is that we will define an “existence” predicate and
restrict quantification to objects that satisfy this predicate at certain places (for exam-
ple, when defining “overlap”, “fusion”, etc.). The reason why we need this change is
because the standard formulation of classical mereology tacitly assumes that every-
thing in the domain of quantification fully exists, and therefore leaves no room for
vague existence at all. In order to be able to discuss the possibility of vague exis-
tence, therefore, we have to define this “existence” predicate that serves the purpose
of measuring the degree to which an object exists, and have it impact the domain
of quantification at places that matter. The second change we will make is less non-
trivial and is mostly just for convenience: we will define the notion of proper part
without using the identity symbol. Later we will see that this small change allows all
the axioms of atomic classical mereology except Anti-Symmetry to be formulated
without the identity symbol. Therefore, it will follow directly from the formulation of
these axioms that the truth/falsity of these axioms in a Boolean model is not affected
by how identity is defined in the model, or in other words, whether we have vague
identity or not.
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Now we introduce the language of mereology and the defined notions:

Definition 5.1 The language of mereology, LM , is the second order language17

whose signature contains a single binary relation À (parthood). We further define the
following relations in this language:

1. v1 Ä v2 :“ v1 À v2 ^ �v2 À v1.
2. Epv1q :“ Dv2p�v1 À v2q.
3. v1 ˝ v2 :“ Dv3pEpv3q ^ v3 À v1 ^ v3 À v2q.
4. Atpv1q :“ Epv1q ^ @v2pEpv2q Ñ �v2 Ä v1q.
5. FUpv1, X1q “ @v2pX1pv2q Ñ v2 À v1q ^ @v3pv3 À v1 ^ Epv3q Ñ

Dv4pX1pv4q ^ v3 ˝ v4qq.

Intuitively, v1 À v2 means that v1 is a part of v2. v1 Ä v2 means that v1 is a proper
part of v2. Epv1q means that v1 exists, or that v1 is not zero, in the sense that v1 is not
a part of everything. v1 ˝ v2 means that v1 and v2 overlap. Atpv1q means that v1 is a
mereological atom. FUpv1, X1q means that v1 fuses the X1’s, i.e. that everything in
X1 is part of v1. and everything that exists and is part of v1 overlaps with something
in X1.

We now move on to axioms of mereology, which are sentences in LM . We divide
these axioms into four groups, for purposes we will explain in a moment:

Definition 5.2 The minimal theory of Classical Mereology (MCM) contains the
following three axioms:

(Transitivity) @v1@v2@v3pv1 À v2 ^ v2 À v3 Ñ v1 À v3q

(Supplementation) @v1@v2pv2 Â v1 Ñ Dv3pEpv3q ^ v3 À v2 ^ �v1 ˝ v3qq

(Fusion) @X1pDv1X1pv1q Ñ Dv2pFUpv2, X1qq

The theory of Classical Mereology without Identity (CM´) contains MCM and the
following extra axiom:

(NoZero) Dv1Dv2pv1 Â v2q Ñ �Dv3�pEpv3qq

The theory of Classical Mereology (CM) contains CM´ and the following extra
axiom:

(Anti-Symmetry) @v1@v2pv1 À v2 ^ v2 À v1 Ñ v1 “ v2q

The minimal theory of Atomic Classical Mereology (MACM) / the theory of Atomic
Classical Mereology without Identity (ACM´) / the theory of Atomic Classical

17Whether classical mereology should be formulated as a first-order or second-order theory is not a trivial
issue, and one might have different preferences based on their other theoretical commitments. For example,
a nominalist might want to avoid quantifying over second-order entities. But none of these concerns, I
think, matter to our discussion of mereological indeterminacy. In this paper I define the theory of classical
mereology as a second-order theory simply because this is the more demanding option, and all the Boolean
constructions we have laid out in this paper can be easily carried over to the first-order case.
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Mereology (ACM) contains MCM/CM´/CM and the following extra axiom:

(Atomicity) @v1pEpv1q Ñ Dv2pAtpv2q ^ v2 À v1qq

We have the minimal theory consisting of Transitivity, Supplementation and
Fusion because these, as we will show in the next subsection, will be the core axioms
that will be satisfied no matter whether we have vague existence, vague identity, or
not, as we will show in the next subsection. The axioms NoZero and Anti-Symmetry
are listed separately because these are the ones that do take a stand on whether there
is vague existence/identity or not: the former disallows vague existence and the latter
requires vague identity. An interesting observation is that the minimal theory MCM

together with Anti-Symmetry forms a neutral system that is in between the classical
theory of mereology18 and the (second-order) theory of complete Boolean algebras,
in the following sense:

Theorem 5.1 CM is equivalent to Tarski’s system, which is the theory closed under
the following two axioms:

(Transitivity) @v1@v2@v3pv1 À v2 ^ v2 À v3 Ñ v1 À v3q

(UniqueFusionExistence) @X1pDv1X1pv1q Ñ D!v2pFU 1
pv2, X1qq

where FU 1pv2, X1q is defined as: FU 1pv2, X1q “ @v3pX1pv3q Ñ v3 À v2q ^

@v4pv4 À v2 Ñ Dv5pX1pv5q ^ Dv6pv6 À v4 ^ v6 À v5qqq.

Theorem 5.2 The (second-order) theory of complete Boolean algebra is equivalent
to MCM plus Anti-symmetry plus the following axiom:

(ZeroExistence) Dv1�Epv1q

The proofs of these theorems are in the Appendix.

5.2 Atomic BooleanModels

We shall now define the atomic Boolean models. As we mentioned above, the domain
of these models consists of functions from a pre-given set of mereological atoms S

to a complete Boolean algebra B. But which of these functions shall we include in
the domain exactly? For reasons I will explain in a moment there are at least two
collections of functions from S to B that may reasonably form the domain of a model:

1. M “ tf : S Ñ B |
Ů

aPS

f paq “ 1u.

2. N “ tf : S Ñ B |
Ů

aPS

f paq ą 0u.

In the Appendix (Lemma D.1 and Lemma E.1) we will prove that in any atomic
Boolean model, for any f : S Ñ B in the domain,

Ů

aPS f paq “ �Epf q�, the degree

18By “the classical theory of mereology” I mean the theory that originates from Tarski’s paper [26]. For a
full development of Tarski’s system, see [12].
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to which f exists. So the set M consists of functions that correspond to objects that
exist to the degree 1. In our setting, to exist vaguely means to satisfy the existence
predicate E to a degree that is in between 0 and 1. Therefore, atomic Boolean models
with domain M have no room for vague existence at all. They will be used to show
that under Boolean mereology, vague parthood does not entail vague existence, con-
trary to what many have argued, as there are Boolean models of vague parthood that
are not models of vague existence. On the other hand, the set N consists of functions
that correspond to objects that exist to any positive degree. Atomic Boolean models
with domain N , therefore, have objects in their domains that exist vaguely. Under
Boolean mereology, mereological vagueness can co-occur with existential vagueness,
although not necessarily.

Definition 5.3 Let S be a set (of mereological atoms). Let B be a complete Boolean
algebra. A B-valued SE (“Sharp-Existence”) model on S, SB

S , is a B-valued model
for LM with:

1. The domain M “ tf : S Ñ B |
Ů

aPS

f paq “ 1u.

2. For any f1, f2 P M , �f1 À f2�
SB

S “
Ű

aPS

pf1paq ñ f2paqq.19

A B-valued V E (“Vague-Existence”) model on S, SB
V , is a B-valued model for LM

with:

1. The domain N “ tf : S Ñ B |
Ů

aPS

f paq ą 0u.

2. For any f1, f2 P N , �f1 À f2�
SB

V “
Ű

aPS

pf1paq ñ f2paqq.

In both kinds of models the values of parthood clauses are defined in the same way.
Roughly, the degree to which an object is a part of another is defined as the degree of
the sentence that every atom that is a part of the former is also a part of the latter.

Note that in defining these models we have omitted the definition of the values
of identity clauses. This is because, depending on whether we want vague identity in
our models or not, there are two different ways of defining identity in atomic Boolean
models. The first way, which is given under the label “Vague-Identity”, is to define
identity in terms of the degree to which two objects share the same atoms. This is the
way that is friendly to vague identity: it allows objects to be identical to each other
to an intermediate degree. The second way, which is given under the label “Sharp-
Identity”, is to define identity “in the sharp way”, that is, to define the degree to which
two objects are identical as 1 when the corresponding functions are the same, and as

19For any p, q in a Boolean algebra B, p ñ q “ ´p \ q.
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0 when the corresponding functions are different. This is the way, as you may expect,
that is hostile to vague identity. Given two functions f1, f2 : S Ñ B:

(Vague-Identity) �f1 “ f2� “
ę

aPS

pf1paq ô f2paqq.

(Sharp-Identity) If f1 and f2 are not the same, then �f1 “ f2� “ 0.

We can freely combine Vague/Sharp-Identity with SE/V E models and get four
different kinds of models, as listed in the following:

Definition 5.4 Let S be a set (of mereological atoms). Let B be a complete Boolean
algebra. The B-valued SEV I (“Sharp-Existence Vague-Identity”) model on S, SB

SV ,
is the B-valued model for LM with:

1. The domain M “ tf : S Ñ B |
Ů

aPS

f paq “ 1u.

2. For any f1, f2 P M , �f1 À f2�
SB

SV “
Ű

aPS

pf1paq ñ f2paqq.

3. For any f1, f2 P M , �f1 “ f2�
SB

SV “
Ű

aPS

pf1paq ô f2paqq.

The B-valued SESI (“Sharp-Existence Sharp-Identity”) model on S, SB
SS , is the

B-valued model for LM with:

1. The domain M “ tf : S Ñ B |
Ů

aPS

f paq “ 1u.

2. For any f1, f2 P M , �f1 À f2�
SB

SS “
Ű

aPS

pf1paq ñ f2paqq.

3. For any f1, f2 P M , if f1 and f2 are not the same, then �f1 À f2�
SB

SS “ 0.

The B-valued V EV I (“Vague-Existence Vague-Identity”) model on S, SB
V V , is the

B-valued model for LM with:

1. The domain N “ tf : S Ñ B |
Ů

aPS

f paq ą 0u.

2. For any f1, f2 P N , �f1 À f2�
SB

V V “
Ű

aPS

pf1paq ñ f2paqq.

3. For any f1, f2 P N , �f1 “ f2�
SB

V V “
Ű

aPS

pf1paq ô f2paqq.

The B-valued V ESI (“Vague-Existence Sharp-Identity”) model on S, SB
V S , is the

B-valued model for LM with:

1. The domain N “ tf : S Ñ B |
Ů

aPS

f paq ą 0u.

2. For any f1, f2 P N , �f1 À f2�
SB

V S “
Ű

aPS

pf1paq ñ f2paqq.

3. For any f1, f2 P N , if f1 and f2 are not the same, then �f1 À f2�
SB

V S “ 0.

Assuming that B is larger than t0, 1u, all of the four different kinds of models are
models of mereological vagueness, as it is easy to see that in all of the models there
are objects that are part of one another to an intermediate degree. But they deliver
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different answers on whether there is vagueness in existence and/or on whether there
is vagueness in identity. Just as in the case of existential vagueness, mereological
vagueness can co-occur with vagueness in identity, but not necessarily.

In the rest of this section we will investigate which axioms of mereology hold in
these four kinds of models. Most results will be simply stated here with the proofs in
the Appendix.

As we have mentioned before, we formulate most axioms of mereology (all except
Anti-Symmetry) without using the identity symbol. And hence whether these axioms
hold or not in these models does not depend upon whether they are V I or SI . In fact,

Theorem 5.3 In any SE model, Transitivity, Supplementation, Fusion, Atomicity
and NoZero all have value 1.

Theorem 5.4 In any V E model, Transitivity, Supplementation, Fusion and Atomicity
all have value 1, but NoZero has value 0.

So the core theory of atomic classical mereology - and by that I mean the system
MACM - is satisfied by all four kinds of models discussed here. Therefore, all four
models can be legitimately considered models of atomic classical mereology. The
difference between the V E and the SE models, of course, is that the axiom of NoZero
does not hold in the V E models. This is, I believe, a somewhat unfortunate result for
the supporters of vague existence. It means that if we allow objects that exist vaguely,
then we will have to have the model believe that there is an empty object that is part of
everything, even when there is more than one object. Under the standard conception
of classical mereology, such an empty object is disallowed, because it is normally
considered as philosophically unmotivated.20 Nevertheless, it is not hard to see why
there has to be tension between existential vagueness and the axiom of NoZero, in the
current context. Assuming there is more than one object, then the axiom of NoZero
has value 1 just in case every object f in the domain satisfies the existence predicate
to the degree 1. So the axiom of NoZero literally leaves there to be no room for
objects that exist to intermediate degrees. Proponents of existential vagueness has to
sacrifice the axiom of NoZero.

Luckily, proponents of existential vagueness could argue that although the axiom
of NoZero, in its current form, cannot be satisfied by models in which objects may
exist vaguely, there is a satisfiable weaker meta-principle that is in the same spirit.
The latter is the principle that there cannot be in the domain any object that is truly
empty - that is, any object that satisfies the existence predicate to the degree 0. This
has to be a principle in the meta-language because we simply do not have the expres-
sive resources to state something of the form “x satisfies F to the degree p” in
the object language. As it is easy to see, all V E models satisfy this meta-principle
straightforwardly according to the definition of their domain N . Proponents of V E

20Although most people find the existence of an empty object philosophically unmotivated, there are some
people who have provided ways to justify the existence of an empty object. Giraud [10] has construed it as
a Meinongian object lacking all nuclear properties. Priest [22] has construed it as an Heideggerian nothing.
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models could argue that although the V E models believe that there is an empty
object, there isn’t really an empty object in the domain of these models, and the latter
is all we care about.21

Moving on to the only axiom left - the axiom of Anti-Symmetry. As the readers
might have expected, the holding or not of Anti-Symmetry in an atomic Boolean
model is only associated with whether identity is defined in the vague way or in the
sharp way in the model. Let us call a model a V I model if it is SEV I or V EV I , and
similarly a model a SI model if it is SESI or V ESI . It can be shown that:

Theorem 5.5 In any V I model, Anti-Symmetry has value 1.

Theorem 5.6 In any SI model, Anti-Symmetry has value 0.

The opponents of vagueness in identity, therefore, have to sacrifice part of the
standard package of classical mereology, just as the proponents of existential vague-
ness. In this case the sacrifice is the axiom of Anti-Symmetry. It is not hard to see
why “Sharp-Identity” makes trouble for the holding of Anti-Symmetry: since there is
mereological vagueness, there can be objects that are part of each other to an interme-
diate degree. Since their corresponding functions has to be different, “Sharp-Identity”
insists that they are identical to the degree 0, and hence the degree to which they are
part of each other is strictly greater than the degree to which they are identical, which
causes the failure of Anti-Symmetry.

Just as the proponents of existential vagueness, there are, I believe, some ways
for the opponents of vagueness in identity to argue back. They could say that, for
example, in the context of mereology, there should really be two different notions of
identity: one is the notion of mereological coincidence, and the other is the notion
of strict/real identity. Two objects mereologically coincide - that is, are identical in
the former sense - just in case they are indistinguishable in terms of mereological
relations. On the other hand, two objects are strictly identical just in case they are
indistinguishable in terms of any kind of properties or relations, mereological or not.
And the key idea is that the equality symbol in the axiom of Anti-Symmetry should
be interpreted as mereological coincidence instead of as strict identity: if two objects
are part of one another, then they should be indistinguishable in terms of mereolog-
ical relations, but saying that they should also be indistinguishable in terms of any
relations seems like an overkill. In an atomic Boolean model, the degree to which two
objects mereologically coincide should be defined according to “Vague-Identity”,
that is, as the degree to which two objects share the same atoms, and the degree
to which two objects are strictly identical should be defined according to “Sharp-
Identity”, such that it can only be an extreme value. Since the relation that plays a role
in Anti-Symmetry is mereological coincidence, we will have Anti-Symmetry hold in
the models, and since strict identity is still defined traditionally, we also avoid the
controversies surrounding vagueness in identity.22

21This is an example of an intriguing and perhaps weird feature of Boolean-valued models. Some models
could be such that an existential sentence is true in the model without there being a witness.
22A standard argument against vagueness in identity is Evans’ Argument. See [8].
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Below is a chart summarizing which axioms hold in each of the four kinds of
atomic Boolean models:

MACM MACM`NoZero MACM`Anti-Symmetry ACM

SEV I ✓ ✓ ✓ ✓
SESI ✓ ✓ ✗ ✗
V EV I ✓ ✗ ✓ ✗
V ESI ✓ ✗ ✗ ✗

Here’s a summary of what we have achieved in this section. First, we have intro-
duced a special kind of Boolean-valued models for mereology - the atomic Boolean
models, and argued that they are intuitively motivated, given that the world is atomic.
Second, we have used the SEV I models to exemplify our previous point that with
Boolean degrees, we can have a degree-theoretic semantics that is compatible with
the whole package of atomic classical mereology. Finally, we have used the atomic
Boolean models to investigate the connection between mereological vagueness on the
one hand and vagueness in existence and identity on the other hand. We have shown
that contrary to many have argued, mereological vagueness entails neither existential
vagueness nor vagueness in identity. With the four different kinds of atomic Boolean
models, proponents of mereological vagueness can freely choose between having and
not having vagueness in existence or identity: SEV I models for sharp existence plus
vague identity, SESI models for sharp existence plus sharp identity, V EV I models
for vague existence plus vague identity, and V ESI models for vague existence plus
sharp identity. There are, nevertheless, prices to be paid. Although all four models are
models for the core theory of atomic classical mereology, the axiom of NoZero does
not hold in the “Vague-Existence” models and the axiom of Anti-Symmetry does not
hold in the “Sharp-Identity” models.

6 The Nature of Mereological Vagueness

Our investigation of Boolean mereology so far has been fruitful, but not all impor-
tant questions on the topic of mereological vagueness have been properly addressed.
For example, one essential question is: given that there is mereological vagueness,
what is the source, or the nature of it? Is mereological vagueness a pure linguistic
phenomenon, or is the world itself vague? Does the picture of Boolean mereology
entail that mereological vagueness is semantic or ontological? In this section I intend
to discuss these questions.

There are, I believe, two most commonly held answers to the question “What is
the nature of mereological vagueness?”. One option, which I will call “the seman-
tic thesis” in the following, is to say that mereological vagueness has a semantic
nature. The phenomenon exists because our linguistic practices are indeterminate, in
the sense that they do not pin down the exact meanings of certain terms, including,
perhaps, singluar names like “Tibbles”. The linguistic rules that we have governing
the name “Tibbles” do not pick out a unique referent for it. The world in itself, on the
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other hand, is perfectly precise, mereologically speaking: there is no indeterminacy in
the mereological organization of the underlying reality. Mereological indeterminacy
happens when we try to represent what the world is like using natural languages: if
there were no language, or if natural languages were perfectly precise, there would
be no indeterminacy in the parthood relation.

The other option, which I will call “the ontic thesis”, is to say that mereologi-
cal vagueness has an ontic, or worldly, nature. There is indeed indeterminacy in the
mereological organization of the underlying reality. Regardless of the terms we use
to represent them, ordinary objects in the world, like for example Tibbles the cat, are
themselves vague, in the sense that their mereological constitution is indeterminate.
Mereological vagueness is a feature of the world itself, not a feature of our languages.

Which one of the two theses do we have to adopt, as a Boolean mereologist? I
believe that Boolean mereology, as the simple thesis that the relation of parthood
should be modeled by Boolean degrees, is compatible with either thesis. Boolean
mereology only says that sentences like “W is part of Tibbles” are true to an inter-
mediate Boolean degree; it does not specify why these sentences are true to an
intermediate Boolean degree. I will show below that the model-theoretic framework
of Boolean-valued semantics can be applied to both theses and give rise to two
distinctive views that have their unique advantages and disadvantages. I will call
the view we get by combining the semantic thesis and Boolean-valued semantics
“semantic Boolean mereology” and the view we get by combining the ontic thesis
and Boolean-valued semantics “ontic Boolean mereology”, and discuss them in turn
in the following two subsections.

6.1 Semantic BooleanMereology

The semantic thesis explains mereological indeterminacy in terms of linguistic inde-
terminacy and denies worldly indeterminacy. The most standard and commonly-held
version of the view locates the indeterminacy in singular names like “Tibbles” or
“Kilimanjaro”. On this view, all there is in the world are objects with precise mere-
ological boundaries. Names like “Tibbles” do not pick out a unique referent among
the precise objects. Rather, there are multiple precise objects, located where Tibbles
is, that are equally qualified candidates for being the referent of “Tibbles”.

How does Boolean-valued semantics accommodate this view? To simplify our dis-
cussion, let us assume that the world is atomic and all that exists is (sharp) fusions
of atoms. Let S be the collection of all atoms. Since all that exists is (sharp) fusions
of atoms, the domain of our Boolean-valued model has to be the collection M 1 of
all functions from S to t0, 1u except the one that takes all atoms to 0, where each
function represents a fusion of atoms by being its characteristic function. As there
are only precise objects in the domain, the identity symbol in the model can simply
be interpreted as the sharp identity function on these objects. Now, since we want
“Tibbles” to have no unique referent, “Tibbles” cannot be treated as an ordinary con-
stant in the model. Rather, we need it to be the case that “Tibbles” indeterminately
refers to multiple objects in the domain. In the context of Boolean-valued semantics,
indeterminacy means having an intermediate truth value. So we want “Tibbles” to be
interpreted in the model as a function from M 1 to B, which maps each object in the
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domain to the degree to which the name “Tibbles” refers to it. In other words, we will
treat “Tibbles” semantically as if it were a unary predicate. Of course, “Tibbles” can-
not be treated as if it were an arbitrary unary predicate: there are further constraints
that the interpretation of “Tibbles” has to satisfy. In particular, the interpretation of
“Tibbles” has to be such that the sentence D!vpT ibblespvqq - there is exactly one Tib-
bles - has value 1. As a result, the values attributed to the objects by (the interpretation
of) “Tibbles” has to form a maximal antichain in the Boolean algebra.

Let me spell out the above picture in more details, by constructing a concrete B-
valued23 model for the language consisting of “Tibbles”, “W”, and “is part of”, M1,
tailored to the needs of the standard semantic approach. Again, we assume that the
world is atomic and all that exists is (sharp) fusions of atoms. Also, we assume, just
for simplicity, that the name “W” picks out, instead of a whisker, an atom in the
whisker that is about to fall off from the cat. The domain of the model, M 1, consists of
all functions from S to t0, 1u, except the one that takes all a P S to 0. That is, M 1 “

tg : S Ñ B | for any a P S, gpaq “ 0 or 1, and for some b P S, gpbq ‰ 0u, which
is equivalent to P(S) (the powerset of S) minus the empty set. Let the language L 1

be tt, w, Àu, where À is the binary relation of parthood, w is a constant playing
the role of “W”, and t is a unary predicate playing the role of “Tibbles”. Since w is
supposed to name an atom, the interpretation of w in M1 will be the characteristic
function of a singleton subset tau of S. In other worlds, �w�M

1
“ ga : S Ñ B, where

a P S and ga takes a to 1 and every b ‰ a P S to 0. The interpretation of À in M1

will be the function from M 1 ˆM 1 Ñ 2 that corresponds to the subset relationship on
PpSqzH. The interpretation of “ in M1 will be the “real” identity relation on M 1:
for any g, g1 P M , �g “ g1� “ 1 if g and g1 are the same and �g “ g1� “ 0 if g and
g1 are not the same. Finally, the interpretation of t in M1, �t�M

1
, will be a function

from M 1 to B that satisfies the following conditions:

1. For any g ‰ g1 P M 1, �tpgq�M
1

[ �tpg1q�M
1

“ 0.
2.

Ů

gPM 1

�tpgq�M
1

“ 1.

3. For some g P M such that �tpgq�M
1

‰ 0, gpaq “ 1, and for some g1 P M such
that �tpg1q�M

1
‰ 0, gpaq “ 0.

For every g P M 1, �tpgq�M
1

is the degree to which t “refers to” g. �tpgq�M
1

‰ 0
means that g is a possible, or permissible referent of t . The third condition serves
many purposes: first, it guarantees that there is more than one permissible referent of
t ; second, it means that w is part of some permissible referent of t yet is not part of
some other permissible referent of t ; and third, together with the first two conditions,
it ensures that no g is the determinate referent of t , in the sense that �tpgq�M

1
“ 1.

The first two conditions also guarantee that �D!vptpvqq�M
1

“ 1: it is true in M1 that
there is exactly one t .

What is the degree to which w is part of t in M1? We want it to be an intermediate
degree between 0 and 1, capturing the fact that it is indeterminate whether w is part of

23Here we assume B is an arbitrary complete Boolean algebra.



X. Wu

t . And the conditions we impose on the interpretation of t in M1 can indeed guarantee
that. But there is a small complication. The sentence that w À t contains t syntacti-
cally as a constant, yet our model M1 treats t as a unary predicate. So we need to find
some way to translate this sentence, or any sentence that contains t syntactically as a
constant, to a sentence that contains t syntactically as a unary predicate. The trick we
will use here is to translate any sentence of the form φptq, which has t as a constant, to
the sentence D!viptpviqq^@vj ptpvj q Ñ φpvj qq. It is easy to check that this translation
recipe always preserves truth values for sentences involving constants. Moving on to
the sentence under discussion: (let T 1 “ tg P M 1 | �tpgq�M

1
‰ 0 and gpaq “ 0u)

�w À t�M
1

“ �D!viptpviqq ^ @vj ptpvj q Ñ pw À vj qq�M
1

“ �@vj ptpvj q Ñ pw À vj qq�M
1

“
ę

gPM 1

�tpgq�M
1

ñ gpaq

“
ę

gPT 1

´�tpgq�M
1

“ ´
ğ

gPT 1

�tpgq�M
1

The three conditions we impose on the interpretation of t guarantee that 0 ă
Ů

gPT 1

�tpgq�M
1

ă 1. Therefore, 0 ă �w À t�M
1

ă 1, which is exactly what we want.

Since M1 is a Boolean-valued model, all principles of classical logic will hold in
it. Also, as it is easy to see that M1 restricted to the language of mereology LM is
isomorphic to the powerset model on S, the whole package of atomic classical mere-
ology, by which I mean the system ACM , will hold in M1. One feature of M1 worth
mentioning is that M is not a “witnessing” model, in the sense there are existential
sentences whose truth value is strictly greater than that of any of its instances. For
example, the sentence “something is Tibbles” will have value 1 in the model without
any of its instances having value 1. But this is exactly what supporters of the seman-
tic thesis would want: although they would agree that “Tibbles exists” is true, they
would not identity any (sharp) object in the domain as uniquely identical to Tibbles.

Therefore, Boolean-valued semantics, as shown above, provides an elegant model
theory for the semantic thesis. Under semantic Boolean mereology, the actual world
that we live in is just like the model M we constructed above. All there is are sharp
objects, and the parthood relation that holds between them is also sharp. Mereological
indeterminacy is grounded in the linguistic indeterminacy of terms like “Tibbles”,
which is further explained in terms of there being multiple objects in the domain to
which the term applies to a degree larger than 0.

The standard model-theoretic framework that accompanies the semantic thesis
is supervaluation semantics.24 A supervaluation model consists of a fixed domain
of objects25 and multiple permissible precisifications. Each precisification can be

24As in, for example, [9].
25Sometimes supervaluationism is used on cases where it is indeterminate what the domain of quantifi-
cation is. One example are cases of quantum indeterminacy (see [4] or [16]). On cases of mereological
indeterminacy, nevertheless, it is usually safe to assume that the domain of quantification is determinate.
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understood as a two-valued model with the given domain. A sentence is (super)true if
it is true in all precisifications, (super)false if false in all precisifications, and neither
(super)true nor (super)false if otherwise. On cases like Tibbles, each permissible pre-
cisification assigns to “Tibbles” a different object in the domain as its referent. “W is
part of Tibbles”, in the intended model, will be a sentence that is neither (super)true
nor (super)false. A supervaluation model is actually a special case of Boolean-valued
models like M1. Let S be a supervaluation model for L 1 with domain D and precisi-
fications tAi | i P Iu, where in each Ai, �w�Ai “ a P D and �t�Ai “ ai P D. We
can transform S to a PpI q-valued Boolean model MS with domain D as follows:

1. �w�M
S

“ a.

2. For any b P D, �tpbq�M
S

“ ti P I | Mi |ù t “ bu.

3. For any b, c P D, �b À c�M
S

“ ti P I | Mi |ù b À c�.

Using the translation recipe we introduced above, �w À t�M
S

“ ti P I | Ai |ù

w À tu will be a proper non-empty subset of I , as there are precisifications in which
w is part of t and ones in which w is not part of t . That w À t , therefore has an
intermediate truth value in MS, which corresponds to that it is neither (super)true
nor (super)false in S. Although mathematically speaking, transforming a superval-
uation model into a Boolean-valued model makes no significant difference, from a
philosophical perspective such a transformation brings upon a number of benefits.
Since supervaluation models now become Boolean-degree-theoretic, they can enjoy
all the advantages that the Boolean semantics has, as discussed in the previous sec-
tions: being truth-functional, having distinct comparable borderline statuses, having
incomparable borderline statuses etc.

Semantic Boolean mereology is an attractive story and enjoys many theoretic
advantages. For example, some people ([7]) have argued that vagueness should be a
uniform phenomenon, in the sense that different types of vagueness should have the
same nature: they are either all semantic or all ontic. Since there are strong arguments
for vagueness in properties (like the property of being bald) being a semantic phe-
nomenon, mereological vagueness should be theorized as a semantic phenomenon
as well. To me, the biggest advantage held by semantic Boolean mereology is that it
naturally comes with a solution to the notorious problem of the many (see, for exam-
ple, [18]). As long as we accept classical mereology, the principle of fusion existence
will generate a great number of distinct objects that heavily overlap with each other,
all located where Tibbles is. There are, then, two seemingly contradictory intuitions.
The first intuition is that there should be only one referent of “Tibbles”, instead of
many. The second intuition is that since these objects only have minute differences -
say, only in whether it has an atom on the periphery of Tibbles like w, no one among
them seems to have a better claim to be the referent of “Tibbles” than others. It is
not hard to see how semantic Boolean mereology resolves this apparent contradic-
tion. Under semantic Boolean mereology, the candidate referents are all such that it
is indeterminate whether they are the referent of “Tibbles”, in the sense that “Tib-
bles” refer to them to an intermediate degree, and none of these degrees are strictly
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higher or lower than any one of the others. This captures the second intuition. Mean-
while, “there is only one Tibbles” always has value 1 in the intended models, which
corresponds to the first intuition.

Despite its advantages, semantic Boolean mereology also has some problems.
An immediate consequence of semantic Boolean mereology is that the majority of
names of ordinary objects - “Tibbles”, “Kilimanjaro”, “Marie Curie”, “Earth”, “Eiffel
Tower”, etc. - do not refer successfully, in the sense that they do not fix a unique refer-
ent. This is a bizarre consequence. It means that our ordinary methods of identifying
and naming objects almost always fail, even under the best possible circumstances.
The level of referential ambiguity displayed in the scenario in which I point to the
only furry creature in the room and say “this is Tibbles” is the same as that displayed
in the scenario in which I point to a corner where there are three men and say “this
is John”. If the foundation of our theory of meaning, as many have proposed, is that
names designate objects, then that foundation is based on an impossible idealization.

Also, although semantic Boolean mereology is not completely incompatible with
the existence of ordinary objects, ordinary objects under semantic Boolean mereol-
ogy, in some sense, are ontologically shallow. Let us consider Tibbles the cat. Under
this theory, the sentence that “Tibbles exists” is true to the degree 1, and in this sense
ordinary objects like Tibbles do exist. But since all there is in the domain of the
intended models are objects with precise mereological boundaries, there is no exist-
ing object that is really, or determinately, identical to Tibbles. In other words, there is
no object x such that “Determinately x is Tibbles” is true to the degree 1. So Tibbles,
in a certain sense, does not really exist. This is, I believe, not quite in line with our
common-sense conception of Tibbles’ existence: normally we would think that there
exists a cat in the world that truly is Tibbles.

6.2 Ontic BooleanMereology

Unlike the semantic thesis, the ontic thesis holds that there are indeed objects in the
world that are vague in their mereological organization, and names of these objects
refer to them in the standard, determinate way. Under the context of Boolean seman-
tics, this is to say that there are objects in the domain such that they stand in the
parthood relation with some other objects to intermediate Boolean degrees, which are
(unique) referents of some constants. The intended models for ontic Boolean mereol-
ogy, then, are models like the atomic Boolean models. Take, for example, the SEV I

model SB
SV for LM . We may extend SB

SV to a model for L 1 by letting w denote
some ga P M such that a P S and ga takes a to 1 and every b ‰ a P S to 0, and t

denote some f P MzM 1 such that f paq is some intermediate value between 0 and 1.
In other words, w (determinately) denotes (the characteristic function of) some atom
and t (determinately) denotes (the characteristic function of) a vague object whose
value distribution on atoms, especially on w, involves intermediate values.

There are, then, two core differences between semantic Boolean mereology and
ontic Boolean mereology. The first difference is that the domain of an intended model
for semantic Boolean mereology contains only sharp objects, whereas the domain
of an intended model for ontic Boolean mereology contains both sharp objects and
vague objects. The second difference is that simple names like “Tibbles” under ontic
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Boolean mereology are interpreted normally as constants and have determinate ref-
erents, whereas under semantic Boolean mereology they are interpreted syntactically
as unary predicates and have multiple indeterminate referents.

In my opinion, Boolean-valued semantics provides the best model-theoretic
framework for proponents of the ontic thesis. The two alternative semantics frame-
work, in comparison to Boolean-valued semantics, both have serious problems. The
first alternative is the fuzzy-valued model theory, and in section Four I have already
argued at great length why it is less appropriate than Boolean model theory, when
applying to mereological indeterminacy. The second alternative is supervaluation
model theory. But unlike in the semantic case, the combination of supervaluation
semantics and the ontic thesis (see [1]), in my opinion, yields an awkward theory,
which I will call “ontic supervaluationism” in the following. Under ontic superval-
uationism, there are multiple distinct “precisificatons” of the underlying reality that
are used to explain mereological vagueness. Although the model-theoretic techniques
employed in this view is basically identical to that in the semantic case, from the
philosophical perspective ontic supervaluationism feels much more unnatural and
faces more difficult questions, compared to its semantic counterpart. For example, in
the case of semantic supervaluationism, we have a fairly good understanding of what
a “precisification” is: it is a total interpretation function that is consistent with how
we use terms like “Tibbles” in languages. But what is, or could be, a “precisification”
of the reality, in the case of ontic supervaluationism? It cannot be language or mind
dependent, as it is supposed to capture a feature of the world, so is it something that
exists out there? What is its ontological status? If it is like a possible world that exists
along side our world, why is the vagueness of the objects in our world grounded
in these things? Also, following the ontic thesis, the referent of the name “Tibbles”
needs to be an object that exists in the actual world, but somehow it also has to be a
different object in each of these precisifications - how exactly can we reconcile these
claims? I do not see an easy answer for any of these questions, and therefore I think
that supervaluation semantics is not really a viable option for supporters of the ontic
thesis.

Just like semantic Boolean mereology, or perhaps any philosophical theory, ontic
Boolean mereology has its advantages and disadvantages. Its biggest advantage is
that it overcomes the two difficulties held by semantic Boolean mereology, as pre-
sented in the previous subsection. Under ontic Boolean mereology, we are not stuck
with a vast scale of referential failure. Also for ordinary objects like Tibbles, we will
have something existing in the domain that is determinately Tibbles, so the existence
of Tibbles is not ontologically shallow. The biggest problem plaguing ontic Boolean
mereology, on the other hand, is the problem of many. Again, if we accept the princi-
ple of fusion existence, there will be a number of distinct vague objects with minute
differences, all located at where Tibbles is. Now, ontic semantic mereology claims
that there is among them a unique referent of “Tibbles”, but which one of these
objects should be the unique referent? Consider, for example, the model SB

SV . Every
function in M corresponds to an object in the world, and as long as B is large enough,
there can be many functions f in M that p1q has the same value on every other atom
except a P S, and p2q has an intermediate value on a (let a be the referent of w in
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SB
SV ). The difficult question seems to be: what makes one of them a better candidate

for being the referent of t than others?
Note that this is a problem that troubles all supporters of the ontic thesis, not just

supporters of ontic Boolean mereology. Ontic fuzzy mereology and ontic superval-
uationism face this problem equally. In my opinion, the simplest, and the best way
for the ontic Boolean mereologists to respond to the problem of the many is to reject
the principle of fusion existence and embrace an ontology that is less well-populated.
In a model like SB

SV , for example, they could say that not all functions in M cor-
responds to an object existing in the world. Rather, only one of the many possible
profiles of value distribution on the atoms relevant to Tibbles actually corresponds to
an existing (ordinary) object - a cat, in particular, and that is the unique referent of
“Tibbles”. The difficult question they would face then, which I will call the “special
condition question”, is “What’s special about this particular value profile, compared
to the others, that makes it a profile of an object?”. At this point, there are two kinds
of responses on the table. The first response is to suggest that there is some kind of
naturalness condition satisfied by this value profile, perhaps in terms of contact and
adhesion, that is responsible for its “objecthood”. The second response is to claim
that it is simply a piece of brute fact that this particular value profile corresponds
to an object. And in general, there are just brute facts true of the world we live in
that some Boolean value profiles correspond to actually existing (ordinary) objects
whereas others do not.26

Does this mean that ontic Boolean mereologists have to completely forsake clas-
sical mereology? Not necessarily. What they have to deny is that classical mereology
- the principle of fusion existence, in particular, holds on ordinary objects like cats,
but they could still say that it holds on more fundamental and abstract entities like
spacial-temporal regions. They could hold that, for example, any Boolean profile on
spacial-temporal points(atoms) corresponds to a spacial-temporal region that is part
of the ontology, but only one of the (relevant) special-temporal regions is occupied by
a cat-like entity, which is Tibbles the cat. Of course, what they would have to answer,
then, is a slightly different version of the special condition question, perhaps along
the lines of “What’s special about this particular value profile, compared to the others,
that makes it a profile of an ordinary, cat-like object?”, and they could again adopt one
of the two potential responses. The point here is just that ontic Boolean mereologists
do have the freedom to choose between a sparse ontology and a sparser ontology, and
between completely and partially denying the principle of fusion existence.

Appendix A: Preliminaries on BooleanModel Theory

Definition A.1 Let L be an arbitrary first-order/second-order language. For sim-
plicity, we assume that L has no function symbols/variables, but only relation

26Note that when facing a similar many-valued version of the problem of many, the ontic fuzzy mereolo-
gists also typically tend to choose one of the two possible responses discussed here to the special condition
question. Nicholas Smith, for example, uses the first kind of response in [25]. Peter van Inwagen uses the
second kind of response in [27].
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symbols/variables, individual constants/variables.27 Let B be a complete Boolean
algebra. A B-valued model28 A for the language L consists of:

1. A universe A of elements;
2. The B-value of the identity symbol: a function �“�A : A2 Ñ B;
3. The B-values of the relation symbols: (let P be a n-ary relation) �P �A : An Ñ

B;
4. The B-values of the constant symbols: (let c be a constant) �c�A P A.

And it needs to satisfy:

1. For the B-value of the identity symbol29: for any a1, a2, a3 P A

�a1 “ a1�
A

“ 1B (1)

�a1 “ a2�
A

“ �a2 “ a1�
A (2)

�a1 “ a2�
A

[ �a2 “ a3�
A

ď �a1 “ a3�
A (3)

2. For the B-value of relation symbols: let P be an n-ary relation; for any
xa1, . . . , any, xb1, . . . , bny P An,

�P pa1, . . . , anq�A [ p
ę

1ďiďn

�ai “ bi�
A

q ď �P pb1, . . . , bnq�A (4)

Definition A.2 Let A be a B-valued model of L . For any n P ω, we define Dn
A

as the following set: Dn
A “ tR : An Ñ B | for any xa1, . . . , any, xb1, . . . , bny P

An, Rpa1, . . . , anq [ p
Ű

1ďiďn�ai “ bi�
Aq ď Rpb1, . . . , bnqu. We call the Dn

A’s the
second-order domains of A. For each n P ω, we call Dn

A the n-ary second-order
domain of A.

Given a B-valued model A for L , we define satisfaction in A as follows. Let V ar

be the set of all variables. An assignment s on A is a function with domain V ar such
that (1) for any individual variable vi , spviq P A, and (2) for any relation variable Xi

of arity n, spXiq P Dn
A.30 We define the value of a term/an atomic open formula in A

under assignment s in the standard way. For complex formulas,

1. ��φ�Arss “ ´�φ�Arss.
2. �φ ^ ψ�Arss “ �φ�Arss [ �ψ�Arss.
3. �Dviφ�Arss “

Ů

aPA�φ�Arspvi{aqs.
4. �DXiφ�Arss “

Ů

RPDn
A
�φ�ArspXi{Rqs.

The values of the quantified formulas are well-defined as B is complete. We say
that φ is a first-order formula when φ has no second order variables.

27Our theory can be easily generalized to first order languages with function symbols, as functions can
always be treated as relations that satisfy special conditions.
28See [30] for a detailed model theory on Boolean-valued models.
29Here and in the following, when the context is clear, we use �ai “ aj �

A to abbreviate �“�Apai , aj q,
and similarly for cases of the relation symbols.
30In the case when L is a first-order language, this line can simply be ignored, for obvious reasons. And
similarly for 2(c), 3(f) and 3(g) below.
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Theorem A.1 Let A be a B-valued model for L . For any formula φpv1, . . . , vnq in
L , any assignments s, s1 on A,

�φpspv1q, . . . , spvnqq�A [ p
ę

1ďiďn

�spviq “ s1
pviq�

A
q ď �φps1

pv1q, . . . , s1
pvnqq�A

Proof By a straightforward induction on the complexity of φpv1, . . . , vnq.

Appendix B: Soundness and Completeness

Definition B.1 Let T be a theory in a language L . Let A be a B-valued model of
L . A is a model of T just in case for any φ P T , �φ�A “ 1B .

Definition B.2 Let T be a theory and φ be a sentence in a language L . φ is a
Boolean-consequence of T , in symbols, T |ùB φ just in case for any Boolean valued
model A, if A is a model of T , then A is a model of φ.

In the rest of this section we assume that L is a first-order language.

Theorem B.1 Let T be a theory and φ be a sentence in L . If T $ φ, then T |ùB φ.

Proof See [23] or [30] for a detailed proof.

Corollary B.1.1 Let φ be a theorem of first order logic. Then in any Boolean valued
model A, �φ�A “ 1.

TheoremB.2 Let T be a theory inL . T is consistent if and only if for some complete
Boolean Algebra B, T has a B-valued model A.

Proof See [23] or [30] for a detailed proof.

Corollary B.2.1 Let B be any complete Boolean algebra. A theory T has a B-valued
model just in case every finite subset of T has a B-valued model.

Theorem B.3 Let T be a theory and φ be a sentence in a first order language L . If
T |ùB φ, then T $ φ.

Corollary B.3.1 Let T be a theory and φ be a sentence in a first order language L .
T |ùB φ if and only if T $ φ.
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Appendix C: Equivalence Between Systems

In this section we prove the two promised theorems in Section Five (Theorem 5.1
and Theorem 5.2).

Theorem C.1 CM is equivalent to Tarski’s system, which is the theory closed under
the following two axioms:

(Transitivity) @v1@v2@v3pv1 À v2 ^ v2 À v3 Ñ v1 À v3q

(UniqueFusionExistence) @X1pDv1X1pv1q Ñ D!v2pFU 1
pv2, X1qq

Proof We first show that CM entails Tarski’s system. (Transitivity) is already in
CM . For (UniqueFusionExistence), let X1 be such that Dv1X1pv1q. By (Fusion),
Dv2pFUpv2, X1qq. Let v3 ď v2. If Epv3q, then we are done. Suppose �Epv3q. By
(NoZero), @v4@v5pv4 À v5q. Hence trivially v3 À v3 and v3 À v1.

For the other direction, we can just use the standard argument that these axioms
are all theorems of Tarski’s system. See, for example, [13].

Theorem C.2 The (second-order) theory of complete Boolean algebra (CBA) is
equivalent to MCM plus Anti-symmetry plus the following axiom:

(ZeroExistence) Dv1�Epv1q

Proof For the direction that the latter system entails CBA, it suffices to show
that (Reflexivity), (SupremumExistence), (Complementation) and (Distribution) are
all theorems of the latter system. See [13] for proofs. For the other direction, the
only axiom worth mentioning is (Fusion). We will show that if Suppv1, X1q, then
FUpv1, X1q. That v1 is a upper bound of X1 is obviously the case. We only need to
show that @v2pv2 À v1 ^ Epv2q Ñ Dv3pX1pv3q ^ v3 ˝ v2qq. Suppose the antecedent.
Assume for reductio that @v4pXpv4q Ñ v2 [ v4 “ 0q. Then by infinite distribution,
v2 [ v1 “ 0. Since Epv2q, v2 ‰ 0. Hence . Contradiction.

Appendix D: The SEModels

In this section we prove the following result:

Theorem D.1 In any SE model, Transitivity, Supplementation, Fusion, Atomicity
and NoZero all have value 1.

Theorem D.2 (Transitivity) SB
S |ù @v1@v2@v3pv1 À v2 ^ v2 À v3 Ñ v1 À v3q.
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Lemma D.2.1 For any f P M , �Epf q� “
Ů

aPS f paq “ 1.31

Proof �Epf q� “ �Dv2p�f À v2q� “
Ů

gPM

Ů

aPS f paq [ ´gpaq. We want to show
that

Ů

gPM

Ů

aPS f paq [ ´gpaq “
Ů

aPS f paq. For any a P S, let ga be the function
from S to B that takes a to 1 and every b ‰ a to 0. Obviously ga P M . Pick some
a P S, then it is easy to see for any b ‰ a P S, f paq ď

Ů

cPS f pcq [ ´gbpcq. Hence
f paq ď �Epf q�. For the other direction, pick some g P M . Obviously

Ů

aPS f paq [

´gpaq ď
Ů

aPS f paq.

Lemma D.2.2 For any f1, f2 P M , �f1 ˝ f2� “
Ů

aPS f1paq [ f2paq.

Proof By definition, �f1 ˝ f2� “ �Dv3pEpv3q ^ v3 À f1 ^ v3 À f2q�. Since every
g P M is such that �Epgq� “ 1, �f1 ˝ f2� “

Ů

gPM�g À f1� [ �g À f2� “
Ů

gPM

Ű

aPS gpaq ñ pf1paq[f2paqq. We will show that this is equal to
Ů

aPS f1paq[

f2paq “ p.
For the ď direction: Fix g P M . Since

Ů

aPS gpaq “ 1,
Ű

aPS gpaq ñ pf1paq [

f2paqq “
Ű

aPS ´gpaq \ pf1paq [ f2paqq ď
Ű

aPS ´gpaq \ p “ 0 \ p “ p.
For the ě direction: Fix a P S. Then it is easy to see that f1paq “ �ga À f1�, and

similarly f2paq “ �ga À f2�. Hence f1paq [ f1paq ď �f1 ˝ f2�.

Theorem D.3 (Supplementation)
.

Proof Let f1, f2 P M . Since every g P M is such that �Epgq� “ 1, we just need to
show that ´�f2 À f1�ď

Ů

gPM�g À f2� [ ´�g ˝ f1�. ´�f2 À f1�“
Ů

aPS f2paq [

´f1paq. Fix some a P S. �ga À f1� “ f2paq. By the previous lemma, ´�ga ˝ f1� “

´p
Ů

bPS gapbq [ f1pbqq “ ´f1pbq.

Theorem D.4 (Fusion) SB
S |ù @X1pDv1X1pv1q Ñ Dv2pFUpv2, X1qq.

Proof We will show that for any R P D1
M , �Dv1Rpv1q Ñ Dv2pFUpv2, Rqq� “ 1.

That is, q “
Ů

tPM Rptq ď �Dv1p@v2pRpv2q Ñ v2 À v1q ^ @v3pv3 À v1 ^ Epv3q Ñ

Dv4pRpv4q ^ v3 ˝ v4qqq� “
Ů

f PMpp
Ű

gPM Rpgq ñ �g À f �q [ p
Ű

hPMp�h À f � ñ

p
Ů

sPM Rpsq [ �h ˝ s�qqqq.
We define f R P M as follows: pick some particular a P S, let f Rpaq “

p
Ů

gPM Rpgq [ gpaqq \ ´q. For any b ‰ a P S, let f Rpbq “
Ů

gPM Rpgq [ gpbq.

31We omit the superscripts when the context is clear.
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We first show that f R is indeed in M , i.e.
Ů

cPS f Rpcq “ 1:
ğ

cPS

f R
pcq “ p

ğ

b‰aPS

f R
pbqq \ f R

paq

“ p
ğ

b‰aPS

ğ

gPM

Rpgq [ gpbqq \ pp
ğ

gPM

Rpgq [ gpaqq \ ´qq

“ p
ğ

cPS

ğ

gPM

Rpgq [ gpcqq \ ´q

“ p
ğ

gPM

Rpgq [
ğ

cPS

gpcqq \ ´q “ pq [ 1q \ ´q “ 1

Now we show that
Ű

gPM Rpgq ñ �g À f R� “
Ű

gPM Rpgq ñ p
Ű

cPS gpcq ñ

f Rpcqq “ 1. Pick any g P M . Rpgq ñ p
Ű

cPS gpcq ñ f Rpcqq “ ´Rpgq \

pp
Ű

c‰a ´gpcq\f Rpcqq[p´gpaq\f Rpaqqq “ p
Ű

c‰a ´Rpgq\´gpcq\f Rpcqq[

p´Rpgq \ ´gpaq \ f Rpaqq.
Ű

c‰a ´Rpgq \ ´gpcq \ f Rpcq “
Ű

c‰a ´Rpgq \

´gpcq \ p
Ů

hPM Rphq [ hpcqq ě
Ű

c‰a ´Rpgq \ ´gpcq \ p´Rpgq [ gpcqq “ 1.
´Rpgq \ ´gpaq \ f Rpaq “ ´Rpgq \ ´gpaq \ p

Ů

hPM Rphq [ hpcqq \ ´q “ 1.
We next show that q ď

Ű

hPMp�h À f R� ñ p
Ů

sPM Rpsq [ �h ˝ s�qq. Fix any
h P M . We want to show that q ď p

Ů

cPS hpcq [ ´f Rpcqq \ p
Ů

dPS

Ů

sPM Rpsq [

spdq[hpdqq “ p. Now it is easy to see that p “ p1 \p2, where p1 “ p
Ů

c‰a hpcq[

´f Rpcqq \ p
Ů

d‰a

Ů

sPM Rpsq [ spdq [ hpdqq and p2 “ phpaq [ ´f Rpaqq \

p
Ů

sPM Rpsq [ spaq [ hpaqq. But p1 “ p
Ů

c‰a hpcq [ ´f Rpcqq \ p
Ů

d‰a f Rpdq [

hpdqq “
Ů

c‰aphpcq [ ´f Rpcqq \ pf Rpcq [ hpcqq “
Ů

c‰a hpcq ě ´hpaq, as
Ů

bPS hpbq “ 1.
On the other hand, let

Ů

sPM Rpsq [ spaq “ p3. Then p2 “ phpaq [ ´f Rpaqq \

pp3 [ hpaqq “ phpaq [ ´p3 [ qq \ pp3 [ hpaqq “ phpaq [ qq \ phpaq [ p3q. Hence
p “ p1 \ p2 ě ´hpaq \ phpaq [ qq \ phpaq [ p3q ě q.

To prove Atomicity we need some more lemmas.

Lemma D.4.1 Let f P M .SB
S |ù @vpEpvq Ñ �v Ä f q just in case tf paq | a P Su

is an antichain in B.

Proof Right to left direction. Let f P M be such that tf paq | a P Su is an antichain.
Fix some random g P M . We will show that �Epgq Ñ �g Ä f � “ 1. That is,

ğ

aPS

gpaq ď p
ğ

bPS

gpbq [ ´f pbqq \ p
ę

cPS

gpcq \ ´f pcqq

Fix some random a P S. It is easy to see that

gpaq [ ´f paq ď
ğ

bPS

gpbq [ ´f pbq

gpaq [ p
ę

cPSztau

´f pcqq ď
ę

cPS

gpcq \ ´f pcq
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Since tf paq | a P Su is an antichain, f paq ď p
Ű

cPSztau ´f pcqq. Hence, gpaq [

f paq ď
Ű

cPS gpcq \ ´f pcq. Therefore,

gpaq “ pgpaq [ ´f paqq \ pgpaq [ f paqq ď p
Ů

bPS

gpbq [ ´f pbqq \ p
Ű

cPS

gpcq \ ´f pcqq

Left to right direction. Let f P M be such that for some a, b P S, f paq[f pbq ą 0.
Define g P M as follows: for any c P S,

gpcq “

#

f paq [ ´f pbq if c “ a;
f pcq if otherwise.

It is easy to see that �Epgq� “�Epf q�. And hence g is indeed in M . We will show
that �Epgq Ñ �g Ä f � ă 1. That is,

ę

aPS

´gpaq \ p
ğ

bPS

gpbq [ ´f pbqq \ p
ę

cPS

gpcq \ ´f pcqq ă 1

Observe that
Ű

aPS ´gpaq “ 0, as g P M . Also
Ů

bPS gpbq [ ´f pbq “ 0. And
Ű

cPS gpcq \ ´f pcq “ gpaq \ ´f paq “ pf paq [ ´f pbqq \ ´f paq “ ´f paq \

´f pbq ă 1, as f paq [ f pbq ą 0. Hence the whole thing is less than 1.

Lemma D.4.2 Let f P M . SS
A |ù Atpf q just in case tf paq | a P Su is a maximal

antichain in B.

Proof Recall that Atpf q “ Epf q ^ @vpEpvq Ñ �v Ä f q. The result follows from
the previous lemma as for any f P M , �Epf q� “ 1.

Theorem D.5 (Atomicity) SB
S |ù @v1pEpv1q Ñ Dv2pAtpv2q ^ v2 À v1qq.

Proof Fix some random f P M . Since �Epf q� “ 1, we need to show that
�Dv2pAtpv2q ^ v2 À f q� “ 1. Let C “ ta P S | f paq ‰ 0u. Enumerate C by
α “ |C|: C “ ta1, . . . , aβ, ... | β ă αu. Define g P M as follows: for any c P S,

gpcq “

$

’

’

&

’

’

%

f paβq [ p
Ű

γ ăβ

q ´ f paγ q if c “ aβ P C;

f pcq “ 0 if c R C.

Hence �Epgq� “
Ů

aPC gpaq “
Ů

aPC f paq “ �Epf q� “ 1. Also, �g À f � “ 1.
Since tgpaq | a P Su is an antichain, by Lemma D.4.1, �@vpEpvq Ñ �v Ä gq� “ 1.
Hence �Atpgq� “ �Epf q� “ 1.

Theorem D.6 (NoZero)

Proof This can be proven simply by showing that ��Dv3�pEpv3qq� “ 1, as for any
f P M , �Epf q� “ 1.
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Corollary D.6.1 SB
S is a model of ACM´.

Appendix E: The VEModels

In this section we prove the following result:

Theorem E.1 In any V E model, Transitivity, Supplementation, Fusion and Atomic-
ity all have value 1, but NoZero has value 0.

Transitivity is proven in the same way as before.

Lemma E.1.1 For any f P N , �Epf q� “
Ů

aPS f paq.

Proof The same proof as in that of Lemma D.2.1.

Lemma E.1.2 For any f1, f2 P N , �f1 ˝ f2� “
Ů

aPS f1paq [ f2paq.

Proof For this proof and many followings, we need to consider two cases. Case one
is when

Ů

aPS f1paq [ f2paq “ 0. Then for any a P S, f1paq [ f2paq “ 0. Then
�f1 ˝f2� “

Ů

gPN

Ů

aPS gpaq[
Ű

bPS gpbq ñ pf1pbq[f2pbqq “
Ů

gPN

Ů

aPS gpaq[
Ű

bPS ´gpbq “ 0.
Case two is when

Ů

aPS f1paq [ f2paq ą 0. Then define f P N such that for any
a P S, f paq “ f1paq [ f2paq. It is easy to see that �f À f1� “ �f À f2� “ 1.

�f1 ˝ f2� “ �DvpEpvq ^ v À f1 ^ v À f2q� “
Ů

gPSB �Epgq ^ g À f1 ^ g À f2�.

Fix some random g P SB , �Epgq ^ g À f1 ^ g À f2� “
Ů

aPS gpaq [
Ű

bPSpgpbq ñ pf1pbq [ f2pbqqq ď
Ů

aPS gpaq [ pgpaq ñ pf1paq [ f2paqqq ď
Ů

aPS f1paq [ f2paq “ �Epf q� “ �Epf q ^ f À f1 ^ f À f2�. Hence
Ů

gPSB �Epgq ^ g À f1 ^ g À f2� “ �Epf q ^ f À f1 ^ f À f2� “ �Epf q� “
Ů

aPS f1paq [ f2paq.

Theorem E.2 (Supplementation)
.

Proof Let f1, f2 P N . We want to show that
.

Again, there are two cases. If , then we are done. If
then define f P N such that for any a P S, f paq “ ´f1paq [ f2paq. We can easily
show that �f À f2� “ 1. Also, �Epf q� “

Ů

aPS ´f1paq [ f2paq, by Lemma E.1.1,
and ��f1 ˝ f � “ ´p

Ů

aPS f1paq [ ´pf1paq [ f2paqqq “ 1, by Lemma E.1.2. Hence

.
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Theorem E.3 (Fusion) SB
V |ù @X1pDv1X1pv1q Ñ Dv2pFUpv2, X1qq.

Proof Let R P D1
M . Again, there are two cases. Case one:

Ů

aPS

Ů

gPN Rpgq[gpaq “

0. Then for any g P N, a P S, Rpgq [ gpaq “ 0. This case can be proven easily by
unpacking the definitions. Case two:

Ů

aPS

Ů

gPN Rpgq[gpaq ą 0. Then define f R P

N : for any a P S, let f paq “
Ů

gPSB Rpgq[gpaq. We will show that �FUpf R, Rq� “

�@v2pRpv2q Ñ v2 À f Rq ^ @v3pv3 À f R ^ Epv3q Ñ Dv4pRpv4q ^ v3 ˝ v4qq� “ 1.
�@v2pRpv2q Ñ v2 À f Rq� “

Ű

hPSB Rphq ñ p
Ű

aPS hpaq ñ f Rpaqq. Fix some
h P N . Then ´Rphq \ p

Ű

aPS ´hpaq \ p
Ů

gPSB Rpgq [ gpaqqq “
Ű

aPS ´pRphq [

hpaqq \
Ů

gPSB Rpgq [ gpaqq ě
Ű

aPS ´pRphq [ hpaqq \ pRphq [ gphqq “ 1.

�@v3pv3 À f R ^ Epv3q Ñ Dv4pRpv4q ^ v3 ˝ v4qq� “
Ű

gPSB p�g À f R� [

�Epgq�q ñ p
Ů

hPSB pRphq [ �h ˝ g�qq. Fix some g P N .
Ů

hPSB pRphq [ �h ˝

g�q “
Ů

hPSB Rphq [
Ů

aPS hpaq [ gpaq “
Ů

aPS

Ů

hPSB Rphq [ hpaq [ gpaq “
Ů

aPS f Rpaq [ gpaq “ �f R ˝ g�. But �f R ˝ g� “ �Dv1pEpv1q ^ v1 À f R ^ v1 À

gq� “
Ů

tPSB �Eptq� [ �t À f R� [ �t À g� ě �Epgq� [ �g À f R�.

Lemma E.3.1 Let f P N . SS
V |ù Atpf q just in case tf paq | a P Su is a maximal

antichain in B.

Proof Using the same proof as in Lemma D.4.1 we can show that for any f P N ,
SB

V |ù @vpEpvq Ñ �v Ä f q just in case tf paq | a P Su is an antichain in B.
Recall that Atpf q “ Epf q ^ @vpEpvq Ñ �v Ä f q. Suppose �Atpf q� “ 1.

Then tf paq | a P Su is an antichain. Also, since
Ů

aPS f paq “ �Epf q� “ 1,
tf paq | a P Su is a maximal antichain. Similarly, suppose tf paq | a P Su is a maxi-
mal antichain, then �Epf q� “

Ů

aPS f paq “ 1. Also, �@vpEpvq Ñ �v Ä f q� “ 1.
Hence �Atpf q� “ 1.

Theorem E.4 (Atomicity) SB
V |ù @v1pEpv1q Ñ Dv2pAtpv2q ^ v2 À v1qq.

Proof The same proof as in Theorem D.5, using the previous lemma.

Theorem E.5 (NoZero is false.)

Proof This can be proven by showing two things. First, has value
1 . Let f1, f2 P N be such
that for some a P S, f1paq “ 1 and f2paq “ 0. Then f1paq [ ´f2paq “ 1. Second,
��Dv3�pEpv3qq� has value 0. Define f p P SB to be the constant function that takes
every a P S to p, where 0 ă p ă 1, and f ´p P N to be the constant function
that takes every a P S to ´p. Then �Epf pq� “ p and �Epf ´pq� “ ´p. Hence
��Dv3�pEpv3qq� ě �Epf pq� [ �Epf ´pq� “ 0.

Corollary E.5.1 SB
V is a model of MACM , but not a model of ACM´.
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Appendix F: Identity and Anti-Symmetry

Recall that an atomic Boolean model is a V I model if it is SEV I or V EV I , and
similarly is a T I model if it is SET I or V ET I .

Proposition F.1 In any V I model, Anti-Symmetry has value 1.

Proof Directly follows from Vague-Identity: for any f1, f2 P M{N , �f1 “ f2� “
Ű

aPS f1paq ô f2paq “ �f1 À f2� [ �f2 À f1�.

Proposition F.2 In any T I model, Anti-Symmetry has value 0.

Proof Define f1 : S Ñ B as follows: for some a P S, f1paq “ p, where 0 ă p ă 1;
for any b ‰ a P S, f1pbq “ 1. Define f2 : S Ñ B as follows: f2paq “ ´p and for
any b ‰ a P S, f2pbq “ 1. Define f : S Ñ B as follows: for any c P S, f pcq “ 1. It
is easy to see that f1, f2 P M Ď N .

It is also easy to see that �f1 À f � “ �f2 À f � “ 1. And �f À f1� “ 1 ñ

p “ p, �f À f2� “ 1 ñ ´p “ ´p. Also, since f, f1, f2 are different functions,
�f1 “ f � “ �f1 “ f � “ 0.

Hence �f1 À f ^f À f1 Ñ f “ f1� “ p1[pq ñ 0 “ ´p. And �f2 À f ^f À

f2 Ñ f “ f2� “ p1 [ ´pq ñ 0 “ p. Hence �@v1@v2pv1 À v2 ^ v2 À v1 Ñ v1 “

v2q� ď p [ ´p “ 0.

Corollary F.0.1 In any SEV I model, Transitivity, Supplementation, Fusion, Atom-
icity, NoZero and Anti-Symmetry all have value 1.

Corollary F.0.2 In any SET I model, Transitivity, Supplementation, Fusion, Atom-
icity and NoZero all have value 1, but Anti-Symmetry has value 0.

Corollary F.0.3 In any V EV I model, Transitivity, Supplementation, Fusion, Atom-
icity, and Anti-Symmetry all have value 1, but NoZero has value 0.

Corollary F.0.4 In any V ET I model, Transitivity, Supplementation, Fusion and
Atomicity all have value 1, but NoZero and Anti-Symmetry have value 0.
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