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Fig. 1. Neural Radiance Factorization (NeRFactor). Given a set of multi-view images (and their camera poses) of an object lit by just one unknown
illumination condition (Left), NeRFactor is able to factorize the scene appearance into 3D neural fields of surface normals, light visibility, albedo, and reflectance
(Center), which enables applications such as free-viewpoint relighting that supports shadows and material editing (Right).

We address the problem of recovering the shape and spatially-varying re-
flectance of an object from multi-view images (and their camera poses) of an
object illuminated by one unknown lighting condition. This enables the ren-
dering of novel views of the object under arbitrary environment lighting and
editing of the object’s material properties. The key to our approach, which
we call Neural Radiance Factorization (NeRFactor), is to distill the volumetric
geometry of a Neural Radiance Field (NeRF) [Mildenhall et al. 2020] repre-
sentation of the object into a surface representation and then jointly refine
the geometry while solving for the spatially-varying reflectance and environ-
ment lighting. Specifically, NeRFactor recovers 3D neural fields of surface
normals, light visibility, albedo, and Bidirectional Reflectance Distribution
Functions (BRDFs) without any supervision, using only a re-rendering loss,
simple smoothness priors, and a data-driven BRDF prior learned from real-
world BRDFmeasurements. By explicitly modeling light visibility, NeRFactor
is able to separate shadows from albedo and synthesize realistic soft or hard
shadows under arbitrary lighting conditions. NeRFactor is able to recover
convincing 3D models for free-viewpoint relighting in this challenging and
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underconstrained capture setup for both synthetic and real scenes. Qualita-
tive and quantitative experiments show that NeRFactor outperforms classic
and deep learning-based state of the art across various tasks. Our videos, code,
and data are available at people.csail.mit.edu/xiuming/projects/nerfactor/.
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1 INTRODUCTION
Recovering an object’s geometry and material properties from cap-
tured images, such that it can be rendered from arbitrary viewpoints
under novel lighting conditions, is a longstanding problem within
computer vision and graphics. The difficulty of this problem stems
from its fundamentally underconstrained nature, and prior work
has typically addressed this either by using additional observations
such as scanned geometry, known lighting conditions, or images
of the object under multiple different lighting conditions, or by
making restrictive assumptions such as assuming a single material
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for the entire object or ignoring self-shadowing. In this work, we
demonstrate that it is possible to recover convincing relightable
representations from images of an object captured under one un-
known natural illumination condition, as shown in Figure 1. Our
key insight is that we can first optimize a Neural Radiance Field
(NeRF) [Mildenhall et al. 2020] from the input images to initialize
our model’s surface normals and light visibility (though we show
that using Multi-View Stereo [MVS] geometry also works), and
then jointly optimize these initial estimates along with the spatially-
varying reflectance and the lighting condition to best explain the
observed images. The use of NeRF to produce a high-quality geome-
try estimation for initialization helps break the inherent ambiguities
among shape, reflectance, and lighting, thereby allowing us to re-
cover a full 3D model for convincing view synthesis and relighting
using just a re-rendering loss, simple spatial smoothness priors for
each of these components, and a novel data-driven Bidirectional
Reflectance Distribution Function (BRDF) prior. Because NeRFactor
models light visibility explicitly and efficiently, it is capable of re-
moving shadows from albedo estimation and synthesizing realistic
soft or hard shadows under arbitrary novel lighting conditions.
Although the geometry estimated by NeRF is effective for view

synthesis, it has two limitations that prevent it from being easily
used for relighting. First, NeRF models shape as a volumetric field,
and as such it is computationally expensive to compute shading
and visibility at each point along a camera ray for a full hemisphere
of lighting. Second, the geometry estimated by NeRF contains ex-
traneous high-frequency content that, while unnoticeable in view
synthesis results, introduces high-frequency artifacts into the sur-
face normals and light visibility computed from NeRF’s geometry.
We address the first issue by using a “hard surface” approximation
of the NeRF geometry, where we only perform shading calculations
at a single point along each ray, corresponding to the expected
termination depth of the volume. We address the second issue by
representing the surface normal and light visibility at any 3D lo-
cation on this surface as continuous functions parameterized by
Multi-Layer Perceptrons (MLPs), and encourage these functions
to be close to the values derived from the pretrained NeRF and
be spatially smooth. Thus, our model, which we call Neural Radi-
ance Factorization (NeRFactor), factors the observed images into
estimated environment lighting as well as a 3D surface representa-
tion of the object with surface normals, light visibility, albedo, and
spatially-varying BRDFs. This enables us to render novel views of
the object under arbitrary novel environment lighting.
In summary, our main technical contributions are:
• a method for factorizing images of an object under an un-
known lighting condition into shape, reflectance, and illumi-
nation, thereby supporting free-viewpoint relighting (with
shadows) and material editing,

• a strategy to distill NeRF-estimated volume density into sur-
face geometry (with normals and light visibility) to use as an
initialization when improving the geometry and recovering
reflectance, and

• a novel data-driven BRDF prior learned from training a latent
code model on real measured BRDFs.

Input and output. The input to NeRFactor is a set of multi-view
images of an object illuminated under one unknown environment
lighting condition and the camera poses of these images. NeRFac-
tor jointly estimates a plausible collection of surface normals, light
visibility, albedo, spatially-varying BRDFs, and the environment
lighting that together explain the observed views. We then use the
recovered geometry and reflectance to synthesize images of the
object from novel viewpoints under arbitrary lighting. Modeling vis-
ibility explicitly, NeRFactor is able to remove shadows from albedo
and synthesize soft or hard shadows under arbitrary lighting.

Assumptions. NeRFactor considers objects to be composed of hard
surfaces with a single intersection point per ray, so volumetric light
transport effects such as scattering, transparency, and translucency
are not modeled. In addition, we only model direct illumination
to simplify computation. Finally, our reflectance models consider
materials with achromatic specular reflectance (dielectrics), so we
do not model metallic materials (though one can easily extend our
model for metallic materials by additionally predicting a specular
color for each surface point).

2 RELATED WORK
Inverse rendering [Sato et al. 1997; Marschner 1998; Yu et al. 1999;
Ramamoorthi and Hanrahan 2001], the task of factorizing the ap-
pearance of an object in observed images into the underlying geom-
etry, material properties, and lighting conditions, is a longstanding
problem in computer vision and graphics. Since the full general
inverse rendering problem is well-known to be severely undercon-
strained, most prior approaches have addressed this problem by
assuming no shadow, learning priors on shape, illumination, and
reflectance, or requiring additional observations such as scanned
geometry, measured lighting conditions, or additional images of the
object under multiple (known) lighting conditions.
Methods for single-image inverse rendering [Barron and Malik

2014; Li et al. 2018; Sengupta et al. 2019; Yu and Smith 2019; Sang
and Chandraker 2020; Wei et al. 2020; Li et al. 2020; Lichy et al.
2021] largely rely on strong priors on geometry, reflectance, and
illumination learned from large datasets. Recent methods can effec-
tively infer plausible settings of these factors from a single image,
but do not recover full 3D representations that can be viewed from
arbitrary viewpoints.

Most methods that recover factorized full 3Dmodels for relighting
and view synthesis rely on additional observations instead of strong
priors. A common strategy is to use 3D geometry obtained from
active scanning [Lensch et al. 2003; Guo et al. 2019; Park et al. 2020;
Schmitt et al. 2020; Zhang et al. 2021a], proxy models [Sato et al.
2003; Dong et al. 2014; Georgoulis et al. 2015; Gao et al. 2020; Chen
et al. 2020], silhouette masks [Oxholm and Nishino 2014; Godard
et al. 2015; Xia et al. 2016], or Multi-View Stereo (MVS; followed
by surface reconstruction and meshing) [Laffont et al. 2012; Nam
et al. 2018; Philip et al. 2019; Goel et al. 2020] as a starting point
before recovering reflectance and refined geometry. In this work,
we show that starting with geometry estimated using a state-of-
the-art neural volumetric representation enables us to recover a
fully-factorized 3D model just using images captured under one illu-
mination, without requiring any additional observations. Crucially,
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using initial geometry estimated in this way enables us to recover
factored models for objects that have proven to be challenging for
traditional geometry estimation methods, including objects with
highly reflective surfaces and detailed geometry.
A large body of work within the computer graphics commu-

nity has focused on the specific subproblem of material acquisition,
where the goal is to estimate Bidirectional Reflectance Distribution
Function (BRDF) properties from images of materials with known
(typically planar) geometry. These methods have traditionally uti-
lized a signal processing-based reconstruction strategy and used
complex controlled camera and lighting setups to adequately sample
the BRDF [Foo 2015; Matusik et al. 2003; Nielsen et al. 2015], and
more recent methods have enabled material acquisition from more
casual smartphone setups [Aittala et al. 2015; Hui et al. 2017]. How-
ever, this line of work generally requires the geometry be simple
and fully known, while we focus on a more general problem where
our only observations are images of an object with complex shape
and spatially-varying reflectance.

Our work builds upon a recent trend within the computer vision
and graphics communities that replaces traditional shape represen-
tations such as polygonmeshes or discretized voxel grids with Multi-
Layer Perceptrons (MLPs) that represent geometry as parametric
functions. These MLPs are optimized to approximate continuous 3D
geometry bymapping from 3D coordinates to properties of an object
or scene (such as volume density, occupancy, or signed distance) at
that location. This strategy has been successful for recovering con-
tinuous 3D shape representations from 3D observations [Mescheder
et al. 2019; Park et al. 2019; Tancik et al. 2020] and from images
observed under fixed lighting [Mildenhall et al. 2020; Yariv et al.
2020]. The Neural Radiance Fields (NeRF) [Mildenhall et al. 2020]
technique has been particularly successful for optimizing volumet-
ric geometry and appearance from observed images for the purpose
of rendering photorealistic novel views.

NeRF has inspired subsequent approaches that extend its neural
representation to enable relighting [Bi et al. 2020; Boss et al. 2021;
Srinivasan et al. 2021; Zhang et al. 2021b]. We list the differences
between these concurrent approaches and NeRFactor as follows.

• Bi et al. [2020] and NeRV [Srinivasan et al. 2021] require
multiple known lighting conditions, while NeRFactor handles
just one unknown illumination.

• NeRD [Boss et al. 2021] does not model visibility or shad-
ows, while NeRFactor does, successfully separating shadows
from albedo (as will be shown). NeRD uses an analytic BRDF,
whereas NeRFactor uses a learned BRDF that encodes priors.

• PhySG [Zhang et al. 2021b] does not model visibility or shad-
ows and uses an analytic BRDF, just like NeRD. In addition,
PhySG assumes non-spatially-varying reflectance, while NeR-
Factor models spatially-varying BRDFs.

3 METHOD
The input to NeRFactor is assumed to be only multi-view images
(and their camera poses) of an object lit by one unknown illumination
condition. NeRFactor represents the shape and spatially-varying
reflectance of an object as a set of 3D fields, each parameterized by
Multi-Layer Perceptrons (MLPs) whose weights are optimized so as

to “explain” the set of observed input images. After optimization,
NeRFactor outputs, at each 3D location x on the object’s surface, the
surface normaln, light visibility in any directionv(ωi), albedoa, and
reflectance zBRDF that together explain the observed appearance∗.
By recovering the object’s geometry and reflectance, NeRFactor en-
ables applications such as free-viewpoint relighting (with shadows)
and material editing.

We visualize the NeRFactor model and an example factorization
it produces in Figure 2. For implementation details including the
network architecture, training paradigm, runtime, etc., see Section A
of the appendix and our GitHub repository.

3.1 Shape
The input to our model is the same as what is used by NeRF [Milden-
hall et al. 2020], so we can apply NeRF to our input images to com-
pute initial geometry (though using Multi-View Stereo [MVS] ge-
ometry as initialization also works, as demonstrated in Section 4.4).
NeRF optimizes a neural radiance field: an MLP that maps from
any 3D spatial coordinate and 2D viewing direction to the vol-
ume density at that 3D location and color emitted by particles at
that location along the 2D viewing direction. NeRFactor leverages
NeRF’s estimated geometry by “distilling” it into a continuous sur-
face representation that we use to initialize NeRFactor’s geometry.
In particular, we use the optimized NeRF to compute the expected
surface location along any camera ray, the surface normal at each
point on the object’s surface, and the visibility of light arriving from
any direction at each point on the object’s surface. This subsec-
tion describes how we derive these functions from an optimized
NeRF and how we re-parameterize them with MLPs so that they
can be fine-tuned after this initialization step to improve the full
re-rendering loss (Figure 3).

Surface points. Given a camera and a trained NeRF, we compute
the location at which a ray r (t) = o + td from that camera o along
direction d is expected to terminate according to NeRF’s optimized
volume density σ :

xsurf = o +

(∫ ∞

0
T (t)σ

(
r (t)

)
t dt

)
d , (1)

where T (t) = exp
(
−
∫ t
0 σ

(
r (s)

)
ds
)
is the probability that the ray

travels distance t without being blocked. Instead of maintaining a
full volumetric representation, we fix the geometry to lie on this sur-
face distilled from the optimized NeRF. This enables much more effi-
cient relighting during both training and inference because we can
compute the outgoing radiance just at each camera ray’s expected
termination location instead of every point along each camera ray.

Surface normals. We compute analytic surface normals na(x) at
any 3D location as the negative normalized gradient of NeRF’s σ -
volume w.r.t. x . Unfortunately, the normals derived from a trained
NeRF tend to be noisy (Figure 3) and therefore produce “bumpy” ar-
tifacts when used for rendering (see the supplemental video). There-
fore, we re-parameterize these normals using an MLP fn, which

∗In this paper, vectors and matrices (as well as functions that return them) are in bold;
scalars and scalar functions are not.
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(a)Model. NeRFactor leverages NeRF’s σ -volume as an initialization to predict,
for each surface location xsurf, surface normal n, light visibility v , albedo a ,
BRDF latent code zBRDF, and the lighting condition. x denotes 3D locations,ωi
light direction, ωo viewing direction, and ϕd, θh, θd Rusinkiewicz coordinates.
Note that NeRFactor is an all-MLP architecture that models only surface points
(unlike NeRF that models the entire volume).

(novel view; original lighting)
RenderingOur Factorization

Normals Visibility

Albedo BRDF

Illum.

(b) Example factorization. NeRFactor jointly solves for plausible surface
normals, light visibility, albedo, BRDFs, and lighting that together explain
the observed views. Here we visualize light visibility as ambient occlusion
and zBRDF directly as RGBs (similar colors indicate similar materials).

Fig. 2. NeRFactor is a coordinate-based model that factorizes, in an unsupervised manner, the appearance of a scene observed under one unknown lighting
condition. It tackles this severely ill-posed problem by using a reconstruction loss, simple smoothness regularization, and data-driven BRDF priors. Modeling
visibility explicitly, NeRFactor is a physically-based model that supports shadows under arbitrary lighting.

maps from any location xsurf on the surface to a “denoised” sur-
face normal n: fn : xsurf 7→ n. During the joint optimization of
NeRFactor’s weights, we encourage the output of this MLP I) to
stay close to the normals produced from the pretrained NeRF, II) to
vary smoothly in the 3D space, and III) to reproduce the observed
appearance of the object. Specifically, the loss function reflecting I)
and II) is:

ℓn =
∑
xsurf

(
λ1
3
fn(xsurf) − na(xsurf)

2
2 (2)

+
λ2
3
fn(xsurf) − fn(xsurf + ϵ)


1

)
, (3)

where ϵ is a random 3D displacement from xsurf sampled from a
zero-mean Gaussian with standard deviation 0.01 (0.001 or 0.25
for the real scenes due to different scene scales), and λ1 and λ2 are
hyperparameters set to 0.1 and 0.05, respectively. A similar smooth-
ness loss on surface normals is used in the concurrent work by
Oechsle et al. [2021] for the goal of shape reconstruction. Crucially,
not restricting x on the expected surface increases the robustness
of the MLP by providing a “safe margin” where the output remains
well-behaved even when the input is slightly displaced from the
surface. As shown in Figure 3, NeRFactor’s normal MLP produces
normals that are significantly higher-quality than those produced
by NeRF and are smooth enough to be used for relighting (Figure 5).

Light visibility. We compute the visibility va to each light source
from any point by marching through NeRF’s σ -volume from the
point to each light location, as in Bi et al. [2020]. However, similar
to the estimated surface normals described above, the visibility esti-
mates derived directly from NeRF’s σ -volume are too noisy to be
used directly (Figure 3) and result in rendering artifacts (see the sup-
plemental video). We address this by re-parameterizing the visibility

function as another MLP that maps from a surface location xsurf
and a light directionωi to the light visibility v : fv : (xsurf,ωi) 7→ v .
We optimize the weights of fv to encourage the recovered visibility
field I) to be close to the visibility traced from the NeRF, II) to be
spatially smooth, and III) to reproduce the observed appearance.
Specifically, the loss function implementing I) and II) is:

ℓv =
∑
xsurf

∑
ωi

(
λ3

(
fv(xsurf,ωi) −va(xsurf,ωi)

)2 (4)

+λ4
��fv(xsurf,ωi) − fv(xsurf + ϵ ,ωi)

��) , (5)

where ϵ is the random displacement defined above, and λ3 and
λ4 are hyperparameters set to 0.1 and 0.05, respectively. As the
equation shows, smoothness is encouraged across spatial locations
given the same ωi, not the other way around. This is by design,
to avoid the visibility at a certain location getting blurred over
different light locations. Note that this is similar to the visibility
fields in Srinivasan et al. [2021] but in our case, we optimize the
visibility MLP parameters to denoise the visibility derived from a
pretrained NeRF and minimize the re-rendering loss. For computing
the NeRF visibility, we use a fixed set of 512 light locations given
a predefined illumination resolution (to be discussed later). After
optimization, fv produces spatially smooth and realistic estimates
of light visibility, as can be seen in Figure 3 (II) and Figure 4 (C),
where we visualize the average visibility over all light directions
(i.e., ambient occlusion).

In practice, before the full optimization of our model, we inde-
pendently pretrain the visibility and normal MLPs to just reproduce
the visibility and normal values from the NeRF σ -volume without
any smoothness regularization or re-rendering loss. This provides a
reasonable initialization of the visibility maps, which prevents the
albedo or Bidirectional Reflectance Distribution Function (BRDF)
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MLP from mistakenly attempting to explain away shadows as be-
ing modeled as “painted on” reflectance variation (see “w/o geom.
pretrain.” in Table 1 and Figure S2).

3.2 Reflectance
Our full BRDF model R consists of a diffuse component (Lambertian)
fully determined by albedo a and a specular spatially-varying BRDF
fr (defined for any location on the surface xsurf with incoming light
direction ωi and outgoing direction ωo) learned from real-world
reflectance:

R(xsurf,ωi,ωo) =
a(xsurf)

π
+ fr (xsurf,ωi,ωo) . (6)

Prior art in neural rendering has explored the use of parameterizing
fr with analytic BRDFs such as microfacet models [Bi et al. 2020;
Srinivasan et al. 2021] within a NeRF-like setting. We also explore
this “analytic BRDF” version of NeRFactor in Section 5.1. Although
these analytic models provide an effective BRDF parameterization
for the optimization to explore, no prior is imposed upon the pa-
rameters themselves: All materials that are expressible within a
microfacet model are considered equally likely a priori. Addition-
ally, the use of an explicit analytic model limits the set of materials
that can be recovered, and this may be insufficient for modeling all
real-world BRDFs.
Instead of assuming an analytic BRDF, NeRFactor starts with a

learned reflectance function that is pretrained to reproduce a wide
range of empirically observed real-world BRDFs while also learning
a latent space for those real-world BRDFs. By doing so, we learn data-
driven priors on real-world BRDFs that encourage the optimization
to recover plausible reflectance functions. The use of such priors
is crucial: Because all of our observed images are taken under one
(unknown) illumination, our problem is highly ill-posed, so priors
are necessary to disambiguate the most likely factorization of the
scene from the set of all possible factorizations.

Albedo. Weparameterize the albedoa at any surface locationxsurf
as an MLP fa : xsurf 7→ a. Because there is no direct supervision
on albedo, and our model is only able to observe one illumination
condition, we rely on simple spatial smoothness priors (and light
visibility) to disambiguate between, e.g., the “white-painted surface
containing a shadow” case and the “black-and-white-painted surface”
case. In addition, the reconstruction loss of the observed views also
drives the optimization of fa. The loss function that reflects this
smoothness prior is:

ℓa = λ5
∑
xsurf

1
3
fa(xsurf) − fa(xsurf + ϵ)


1 , (7)

where ϵ is the same random 3D perturbation as defined above, and
λ5 is a hyperparameter set to 0.05. The output from fa is used as
albedo in the Lambertian reflectance but not in the non-diffuse
component, for which we assume the specular highlight color to be
white. We empirically constrain the albedo prediction to [0.03, 0.8]
following Ward and Shakespeare [1998], by scaling the network’s
final sigmoid output by 0.77 and then adding a bias of 0.03.

Learning priors from real-world BRDFs. For the specular compo-
nents of the BRDF, we seek to learn a latent space of real-world

BRDFs and a paired “decoder” that translates each latent code in the
learned space zBRDF to a full 4D BRDF. To this end, we adopt the
Generative Latent Optimization (GLO) approach [Bojanowski et al.
2018], which has been previously used by other coordinate-based
models such as Park et al. [2019] andMartin-Brualla et al. [2021]. The
fr component of our model is pretrained using the the MERL dataset
[Matusik et al. 2003]. Because the MERL dataset assumes isotropic
materials, we parameterize the incoming and outgoing directions for
fr using Rusinkiewicz coordinates [Rusinkiewicz 1998] (ϕd,θh,θd)
(3 degrees of freedom) instead ofωi andωo (4 degrees of freedom).
Denote this coordinate conversion by д : (n,ωi,ωo) 7→ (ϕd,θh,θd),
wheren is the surface normal at that point. We train a function f ′r (a
re-parameterization of fr) that maps from a concatenation of a latent
code zBRDF (which represents a BRDF identity) and Rusinkiewicz
coordinates (ϕd,θh,θd) to an achromatic reflectance r :

f ′r :
(
zBRDF, (ϕd,θh,θd)

)
7→ r . (8)

To train this model, we optimize both the weights of the MLP and
the set of latent codes zBRDF to reproduce a set of real-world BRDFs.
Simple mean squared errors are computed on the log of the High-
Dynamic-Range (HDR) reflectance values to train f ′r .

Because the color component of our reflectance model is assumed
to be handled by the albedo MLP, we discard all color information
from the MERL dataset by converting its RGB reflectance values
into achromatic ones†. The latent BRDF identity codes zBRDF are
parameterized as unconstrained 3D vectors and initialized with a
zero-mean isotropic Gaussian with a standard deviation of 0.01. No
sparsity or norm penalty is imposed on zBRDF during training. After
this pretraining, the weights of this BRDF MLP are frozen during
the joint optimization of our entire model, and we predict only
zBRDF for each xsurf by training from scratch a BRDF identity MLP
(Figure 2a): fz : xsurf 7→ zBRDF. This can be thought of as predicting
spatially-varying BRDFs for all the surface points in the plausible
space of real-world BRDFs. We optimize the BRDF identity MLP to
minimize the re-rendering loss and the same spatial smoothness
prior as in albedo:

ℓz = λ6
∑
xsurf

fz(xsurf) − fz(xsurf + ϵ)

1

dim(zBRDF)
, (9)

where λ6 is a hyperparameter set to 0.01, and dim(zBRDF) denotes
the dimensionality of the BRDF latent code (3 in our implementation
because there are only 100materials in the MERL dataset). The final
BRDF is the sum of the Lambertian component and the learned
non-diffuse reflectance (subscript of xsurf dropped for brevity):

R(x ,ωi,ωo) =
fa(x)

π
+ f ′r

(
fz(x),д

(
fn(x),ωi,ωo

) )
, (10)

where the specular highlight color is assumed to be white.

3.3 Lighting
We adopt a simple and direct representation of lighting: an HDR
light probe image [Debevec 1998] in the latitude-longitude format.

† In principle, one should perform diffuse-specular separation on the MERL BRDFs
and then learn priors on just the specular lobes. We experimented with this idea by
using the separation provided by Sun et al. [2018], but this yielded qualitatively worse
results.
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In contrast to spherical harmonics or a mixture of spherical Gaus-
sians, this representation allows our model to represent detailed
high-frequency lighting and therefore to support hard cast shadows.
That said, the challenges of using this representation are clear: It
contains a large number of parameters, and every pixel/parameter
can vary independently of all other pixels. This issue can be ame-
liorated by our use of the light visibility MLP, which allows us to
quickly evaluate a surface point’s visibility to all pixels of the light
probe. Empirically, we use a 16× 32 resolution for our lighting envi-
ronments, as we do not expect to recover higher-frequency content
beyond that resolution (lighting is effectively low-pass filtered by
the object’s BRDFs [Ramamoorthi and Hanrahan 2001], and our
objects are not shiny or mirror-like).
To encourage smoother lighting, we apply a simple ℓ2 gradient

penalty on the pixels of the light probe L along both the horizontal
and vertical directions:

ℓi = λ7
©«
 [−1 1

]
∗ L

2
2
+

 [−11 ]
∗ L

2
2

ª®¬ , (11)

where ∗ denotes the convolution operator, and λ7 is a hyperparame-
ter set to 5× 10−6 (given that there are 512 pixels with HDR values).
During the joint optimization, these probe pixels get updated di-
rectly by the final reconstruction loss and the gradient penalty.

3.4 Rendering
Given the surface normal, visibility for all light directions, albedo,
and BRDF at each point xsurf, as well as the estimated lighting, the
final physically-based, non-learnable renderer renders an image
that is then compared against the observed image. The errors in
this rendered image are backpropagated up to, but excluding, the σ -
volume of the pretrained NeRF, thereby driving the joint estimation
of surface normals, light visibility, albedo, BRDFs, and lighting.
Given the ill-posed nature of the problem (largely due to our

only observing one unknown illumination), we expect the majority
of useful information to be from direct illumination rather than
global illumination and therefore consider only single-bounce direct
illumination (i.e., from the light source to the object surface then to
the camera). This assumption also reduces the computational cost
of evaluating our model. Mathematically, the rendering equation in
our setup is (subscript of xsurf dropped again for brevity):

Lo(x ,ωo) =

∫
Ω
R(x ,ωi,ωo)Li(x ,ωi)

(
ωi · n(x)

)
dωi (12)

=
∑
ωi

R(x ,ωi,ωo)Li(x ,ωi)
(
ωi · fn(x)

)
∆ωi =

∑
ωi

(
fa(x)

π
+ (13)

f ′r

(
fz(x),д

(
fn(x),ωi,ωo

) ))
Li(x ,ωi)

(
ωi · fn(x)

)
∆ωi , (14)

where Lo(x ,ωo) is the outgoing radiance at x as viewed fromωo,
Li(x ,ωi) is the incoming radiance, masked by the visibility fv(x ,ωi),
arriving at x along ωi directly from a light probe pixel (since we
consider only single-bounce direct illumination), and ∆ωi is the
solid angle corresponding to the lighting sample atωi.
The final reconstruction loss ℓrecon is simply the mean squared

error (with a unit weight) between the rendering and the observed

image. Therefore, our full loss function is the summation of all the
previously defined losses: ℓrecon + ℓn + ℓv + ℓa + ℓz + ℓi.

4 RESULTS & APPLICATIONS
In this section, we show I) the high-quality geometry achieved by
NeRFactor, II) NeRFactor’s capability of jointly estimating shape, re-
flectance, and lighting, III) the application of free-viewpoint relight-
ing, with a single point light or any arbitrary light probe (Figure 5
and Figure 6), enabled by this capability, IV) NeRFactor’s perfor-
mance when using MVS instead of NeRF for shape initialization,
and finally V) the application of material editing (Figure 8).
See Section B of the appendix for how the various types of data

used in this work are rendered, captured, or collected.

4.1 Shape Optimization
NeRFactor jointly estimates an object’s shape in the form of surface
points and their associated surface normals as well as their visibility
to each light location. Figure 3 visualizes these geometric properties.
To visualize light visibility, we take the per-pixel mean of the 512 vis-
ibility maps corresponding to each pixel of a 16×32 light probe, and
visualize that average map (i.e., ambient occlusion) as a grayscale
image. See the supplemental video for movies of per-light visibility
maps (i.e., shadow maps). As Figure 3 shows, our surface normals
and light visibility are smooth and resemble the ground truth, thanks
to the joint estimation procedure that minimizes re-rendering errors
and encourages spatial smoothness.
If we ablate the spatial smoothness constraints and rely on only

the re-rendering loss, we end up with noisy geometry that is insuf-
ficient for rendering. Although these geometry-induced artifacts
may not show up under low-frequency lighting, harsh lighting con-
ditions (such as a single point light with no ambient illumination,
i.e., One-Light-at-A-Time [OLAT]) reveal them as demonstrated
in the supplemental video. Perhaps surprisingly, even when our
smoothness constraints are disabled, the geometry estimated by
NeRFactor is still significantly less noisy than the original NeRF
geometry (compare [A] with [B] of Figure 3 and see [I] of Table 1)
because the re-rendering loss encourages smoother geometry. See
Section 5.1 for more details.

4.2 Joint Estimation of Shape, Reflectance, & Lighting
In this experiment, we demonstrate how NeRFactor factorizes ap-
pearance into shape, reflectance, and illumination for scenes with
complex geometry and/or reflectance.
When visualizing albedo, we adopt the convention used by the

intrinsic image literature of assuming that the absolute brightness
of albedo and shading is unrecoverable [Land and McCann 1971],
and furthermore we assume that the problem of color constancy
(solving for a global color correction that disambiguates between the
average color of the illuminant and the average color of the albedo
[Buchsbaum 1980]) is also out of scope. In accordance with these
two assumptions, we visualize our predicted albedo and measure
its accuracy by first scaling each RGB channel by a global scalar
that is identified so as to minimize the mean squared error w.r.t. the
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(A) Derived from NeRF (B) Jointly Optimized (C) NeRFactor: Jointly Optimized 
w/ Smoothness Constraints

(D) Ground Truth

I. Surface Normals

II. Light Visibility (mean)

Fig. 3. High-quality geometry recovered by NeRFactor. (A) We can directly derive the surface normals and light visibility from a trained NeRF. However,
geometry derived in this way is too noisy to be used for relighting (see the supplemental video). (B) Jointly optimizing shape and reflectance improves the
NeRF geometry, but there is still significant noise (e.g., the stripe artifacts in II). (C) Joint optimization with smoothness constraints leads to smooth surface
normals and light visibility that resemble ground truth. Visibility averaged over all incoming light directions is ambient occlusion.

ground-truth albedo‡, as is done by Barron and Malik [2014]. Unless
stated otherwise, all albedo predictions for the synthetic scenes are
corrected this way, and we apply gamma correction (γ = 2.2) to
display them properly in the figures. Our estimated light probes are
not scaled this way w.r.t. the ground truth (since lighting estimation
is not the primary goal of this work) and are visualized by simply
scaling their maximum intensity across all RGB channels to 1 and
then applying gamma correction (γ = 2.2).
As shown in Figure 4 (B), NeRFactor predicts high-quality and

smooth surface normals that are close to the ground truth except in
regions with very high-frequency details such as the bumpy surface
of the hot dog buns. In drums, we see that NeRFactor successfully
reconstructs fine details such as the screw at the cymbal center
and the metal rims on sides of the drums. For ficus, NeRFactor
recovers the complex leaf geometry. The ambient occlusion maps
also correctly portray the average exposure of each point in the scene
to the lights. Albedo is recovered cleanly with barely any shadowing
or shading detail inaccurately attributed to albedo variation; note
how the shading on the drums is absent in the albedo prediction.
Moreover, the predicted light probes correctly reflect the locations of
the primary light sources and the blue sky (blue pixels in [I]). In all
three scenes, the predicted BRDFs are spatially-varying and correctly

‡As such, such corrections are impossible for real scenes where the ground-truth albedo
is unavailable.

reflect that different parts of the scene have different materials, as
indicated by different BRDF latent codes in (E).

Instead of representing lighting with a more sophisticated repre-
sentation such as spherical harmonics, we opt for a straightforward
representation: a latitude-longitude map whose pixels are HDR in-
tensities. Because lighting is effectively convolved by a low-pass
filter when reflected by a moderately diffuse BRDF [Ramamoor-
thi and Hanrahan 2001], we do not expect to recover lighting at a
resolution higher than 16 × 32. As shown in Figure 4 (I), NeRFac-
tor estimates a light probe that correctly captures the bright light
source on the far left and the blue sky. Similarly, in Figure 4 (II),
the dominant light source location is also correctly estimated (the
bright white blob on the left).

4.3 Free-Viewpoint Relighting
NeRFactor estimates 3D fields of shape and reflectance, thus en-
abling simultaneous relighting and view synthesis. As such, all the
relighting results shown in this paper and the supplemental video
are rendered from novel viewpoints. To probe the limits of NeRFac-
tor, we use harsh test lighting conditions that have one point light on
at a time (OLAT), with no ambient illumination. These test illumina-
tions induce hard cast shadows, which effectively exposes rendering
artifacts due to inaccurate geometry or materials. For visualization
purposes, we composite the relit results (using NeRF’s predicted

ACM Trans. Graph., Vol. 40, No. 6, Article 237. Publication date: December 2021.

https://www.youtube.com/watch?v=UUVSPJlwhPg
https://www.youtube.com/watch?v=UUVSPJlwhPg


237:8 • Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul Debevec, William T. Freeman, and Jonathan T. Barron

N/A

I. Prediction

N/A

III. Prediction

N/A

II. Ground Truth

II. Prediction

I. Ground Truth

III. Ground Truth

(D) Albedo & Illum.(B) Surface Normals(A) Rendering (C) Light Visibility (E) BRDF z

Fig. 4. Joint optimization of shape, reflectance, and lighting. Although our recovered surface normals, visibility, and albedo sometimes omit some
fine-grained detail, they still closely resemble the ground truth. Despite that lighting recovered by NeRFactor is heavily oversmoothed (because our objects are
not shiny) and incorrect on the bottom half of the hemisphere (since objects are only ever observed from the top hemisphere), the dominant light sources and
occluders are localized nearby their ground-truth locations in the light probes. Note that we are unable to compare against ground-truth BRDFs, as they are
defined using Blender’s shader node trees, while our recovered BRDFs are parameterized by our learned model.
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(E) “Courtyard” (D) OLAT 3(B) OLAT 1(A) View Synthesis & 
Original Illum.

(F) “Sunrise”(C) OLAT 2

I. Ground Truth

I. Prediction

II. Prediction

II. Ground Truth

III. Prediction

III. Ground Truth

IV. Prediction

IV. Ground Truth

Fig. 5. Free-viewpoint relighting. The factorization that NeRFactor produces can be used to perform “free-viewpoint relighting”: rendering a novel view of
the object under arbitrary lighting conditions including the challenging OLAT conditions. The renderings produced by NeRFactor qualitatively resemble the
ground truth and accurately exhibit challenging effects such as specularities and cast shadows (both hard and soft).
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(E) “Sunrise” (D) “Studio”(B) “Interior”(A) View Synthesis (F) “Sunset”(C) “Courtyard”

(E) Normals(D) BRDF z(B) Reconstruction(A) An Input View (F) Visibility (mean)(C) Albedo

I. Factorizing Appearance

II. Free-Viewpoint Relighting

Lighting

Fig. 6. Results of real-world captures. (I) Given images of a real-world object lit by unknown lighting (A), NeRFactor factorizes its appearance into albedo
(C), spatially-varying BRDF latent codes (D), surface normals (E), and light visibility for all incoming light directions (visualized here as ambient occlusion; F).
Note how the estimated flower albedo is shading-free. (II) With this factorization, one can synthesize novel views of the scene relit by any arbitrary lighting.
Even on these challenging real-world scenes, NeRFactor is able to synthesize realistic specularities and shadows across various lighting conditions.

opacity or MVS’ mesh silhouettes) onto backgrounds whose colors
are the averages over upper halves of the light probes.
As shown in Figure 5 (II), NeRFactor synthesizes correct hard

shadows cast by the hot dogs under the three test OLAT conditions.
NeRFactor also produces realistic renderings of the ficus under the
OLAT conditions (I), especially when the ficus is back-lit by the
point light in (D). Note that the ground truth in (D) appears brighter
than NeRFactor’s results because NeRFactor models only direct
illumination, whereas the ground-truth image was rendered with
global illumination. When we relight the objects with two new
light probes, realistic soft shadows are synthesized on the hotdog
plate (II). In ficus, specularities on the vase correctly reflect the
primary light sources in both test probes. The leaves also exhibit
realistic specular highlights close to the ground truth in (F). In
drums (III), the cymbals are correctly estimated to be specular and

exhibit realistic reflection, though different from the ground-truth
anisotropic reflection (D). This is as expected because all MERL
BRDFs are isotropic [Matusik et al. 2003]. Though unable to explain
these anisotropic reflections, NeRFactor correctly leaves them out
in albedo rather than interprets them as albedo paints, since doing
that would violate the albedo smoothness constraint and contradict
those reflections’ view dependency. In lego, realistic hard shadows
are synthesized by NeRFactor for the OLAT test conditions (IV).

Relighting real scenes. We apply NeRFactor to the two real scenes,
vasedeck and pinecone, captured by Mildenhall et al. [2020]. These
captures are particularly suitable for NeRFactor: There are around
100multi-view images of each scene lit by an unknown environment
lighting. As in NeRF, we run COLMAP Structure FromMotion (SFM)
[Schönberger and Frahm 2016] to obtain the camera intrinsics and
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(D) Relighting: “Sunrise” (E) Relighting: “Sunset”(B) MVS vs. NeRFactor 
Visibility (mean)

(A) MVS vs. NeRFactor 
Normals

(C) View Synthesis, Est. 
Lighting, & Nearest Input

scan110

scan118

Fig. 7. Results of real-world captures when using MVS for shape initialization. (A, B) We demonstrate how NeRFactor smooths out the noisy MVS
geometry while preserving its details. (C, D, E) With higher-quality geometry, we can perform realistic view synthesis and relighting (note the shadows in [D]).
See Section 4.4 for more discussions.

extrinsics for each view. We then train a vanilla NeRF to obtain an
initial shape estimate, which we distill into NeRFactor and jointly
optimize together with reflectance and illumination. As Figure 6
(I) shows, the appearance is factorized into lighting and 3D fields
of surface normals, light visibility, albedo, and spatially-varying
BRDF latent codes that together explain the observed views. With
such factorization, we relight the scenes by replacing the estimated
illumination with novel arbitrary light probes (Figure 6 [II]). Because
our factorization is fully 3D, all the intermediate buffers can be
rendered from any viewpoint, and the relighting results shown are
also from novel viewpoints. Note that bound these real scenes within
3D boxes to avoid faraway geometry blocking light from certain
directions and casting shadows during relighting.

4.4 Shape Initialization Using Multi-View Stereo
We have demonstrated how NeRFactor uses the geometry extracted
from NeRF as an initialization, and continues to refine this geometry
while factorizing reflectance and lighting jointly. Here we explore
whether NeRFactor can work with other shape initializations such
as MVS. Specifically, we consider the DTU-MVS dataset [Jensen et al.
2014; Aanæs et al. 2016] that provides around 50 multi-view images
(and their corresponding camera poses) for each scene. We initialize
NeRFactor’s shape with the Poisson reconstruction [Kazhdan et al.
2006] of the MVS reconstruction by Furukawa and Ponce [2009].
See Section B of the appendix for more details on these data. This
experiment explores not only another possibility for shape initial-
ization but also one more source of real images that NeRFactor is
evaluated on.

NeRFactor achieves high-quality shape estimation when starting
from MVS geometry instead of NeRF geometry. As Figure 7 (A, B)
demonstrates, the surface normals and light visibility estimated
by NeRFactor are free of the noise MVS suffers from and mean-
while possess enough geometric details. With these higher-quality

geometry estimates, NeRFactor achieves realistic view synthesis
results that resemble the nearest neighbor input images (Figure 7
[C]). The shiny material of scan110 indeed facilitates the recovery
of a higher-frequency lighting condition (compare the two lighting
conditions recovered in [C]). We then further relight the scenes,
from this novel viewpoint, with two novel light probes, as shown in
(D, E). In addition to the realistic specular highlights, notice also the
shadows synthesized by NeRFactor in (D), thanks to its visibility
modeling. Note that NeRFactor opts to explain scan110 with white
albedo and gold lighting (instead of the other way around) due to the
fundamental ambiguity discussed in Section 4.2, but still manages
to relight the scene realistically using this plausible explanation.

4.5 Material Editing
Since NeRFactor factorizes diffuse albedo and specular BRDF from
appearance, one can edit the albedo, non-diffuse BRDF, or both, and
then re-render the edited object under an arbitrary lighting condi-
tion from any viewpoint. Here we override the estimated zBRDF to
the learned latent code of pearl-paint in the MERL dataset and the
estimated albedo to colors linearly interpolated from the turbo col-
ormap, spatially varying based on the surface points’ x-coordinates.
As Figure 8 (Left) demonstrates, with the factorization by NeRFactor,
we are able to realistically relight the original estimated materials
with the two challenging OLAT conditions. Furthermore, the edited
materials are also relit with realistic specular highlights and hard
shadows by the same test OLAT conditions (Figure 8 [Right]).

5 EVALUATION STUDIES
In this section, we perform ablation studies to evaluate the impor-
tance of each model component and compare NeRFactor against
both classic and deep learning-based state of the art in the tasks of ap-
pearance factorization and relighting. For quantitative evaluations,
we use as metrics Peak Signal-to-Noise Ratio (PSNR), Structural
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OLAT 1

OLAT 2

Original Material Edited Material

Fig. 8. Material editing and relighting. With the NeRFactor factoriza-
tion, we show the original materials relit by two OLAT conditions (Left)
alongside the edited materials relit by the same OLAT conditions (Right).
See the text for how we modified the albedo and reflectance.

Similarity Index Measure (SSIM) [Wang et al. 2004], and Learned
Perceptual Image Patch Similarity (LPIPS) [Zhang et al. 2018].

See also Section C.1 of the appendix for whether albedo estimation
for the same object remains consistent across different input lighting
conditions.

5.1 Ablation Studies
In this section, we compare NeRFactor against other reasonable
design alternatives by ablating each of the major model components
and observing whether there is performance drop quantitatively.
We present the quantitative ablation studies in Table 1. For the

qualitative ablation studies, see Section C.2 of the appendix and the
supplemental video.

Learned vs. analytic BRDFs. Instead of using an MLP to parame-
trize the BRDF and pretraining it on an external BRDF dataset to
learn data-driven priors, one can adopt an analytic BRDF model
such as the microfacet model of Walter et al. [2007] and ask an MLP
to predict spatially-varying roughness for the microfacet BRDF. As
Table 1 shows, this model variant achieves good performance across
all tasks but overall underperforms NeRFactor. Note that to improve
this variant, we remove the smoothness constraint on the predicted
roughness because even a tiny smoothness weight still drives the
optimization to the local optimum of predicting maximum rough-
ness everywhere (this local optimum is a “safe” solution that renders
everything more diffuse to satisfy the ℓ2 reconstruction loss). As
such, this model variance sometimes produces noisy rendering due
to its non-smooth BRDFs as shown in the supplemental video.

With vs. without geometry pretraining. As shown in Figure 2a and
discussed in Section 3, we pretrain the normal and visibility MLPs
to just reproduce the NeRF values given xsurf before plugging them
into the joint optimization (where they are then fine-tuned together
with the rest of the pipeline), to prevent the albedo MLP from mis-
takenly attempting to explain way the shadows. Alternatively, one
can train these two geometry MLPs from scratch together with the
pipeline. As Table 1 shows, this variant indeed predicts worse albedo
with shading residuals (Figure S2 [C]) and overall underperforms
NeRFactor.

With vs. without smoothness constraints. In Section 3, we intro-
duce our simple yet effective spatial smoothness constraints in the
context of MLPs and their crucial role in this underconstrained setup.
Ablating these smoothness constraints does not prevent this variant
from performing well on view synthesis (similar to how NeRF is
capable of high-quality view synthesis without any smoothness
constraints) as shown in Table 1, but does hurt this variant’s per-
formance on other tasks such as albedo estimation and relighting.
Qualitatively, this variant produces noisy estimations insufficient
for relighting (see Figure S2 [B] and the supplemental video).

Optimizing shape vs. just using NeRF’s shape. If we ablate the
normal and visibility MLPs entirely, this variant is essentially using
NeRF’s normals and visibility without improving upon them (hence
“using NeRF’s shape”). As Table 1 and the supplemental video show,
even though the estimated reflectance is smooth (encouraged by
the smoothness priors from the full model), the noisy NeRF normals
and visibility produce artifacts in the final rendering.

5.2 Baseline Comparisons
In this section, we compare NeRFactor with both classic and deep
learning-based state of the art (Oxholm and Nishino [2014] and
Philip et al. [2019]) in the tasks of appearance factorization and
free-viewpoint relighting.

See Section C.3 of the appendix for comparisons with the classic
single-view SIRFS approach [Barron and Malik 2014].

Oxholm and Nishino [2014]. We compare NeRFactor with a signif-
icantly improved version of the multi-view approach that estimates
the shape and non-spatially-varying BRDF under a known lighting
condition [Oxholm and Nishino 2014]. Due to the source code being
unavailable, we re-implemented this method in our framework, cap-
turing the main ideas of smoothness regularization on shape and
data-driven BRDF priors, and then enhanced it with a better shape
initialization (visual hull→ NeRF shape) and the ability to model
spatially-varying albedo (the original paper considers only non-
spatially-varying BRDFs). Other differences include representing
the shape with a surface normal MLP instead of mesh and expressing
the predicted BRDF with a pretrained BRDF MLP instead of MERL
BRDF bases [Nishino 2009; Nishino and Lombardi 2011; Lombardi
and Nishino 2012]. Also note that this baseline has the advantage
of receiving the ground-truth lighting as input, whereas NeRFactor
has to estimate lighting together with shape and reflectance.
As shown in Figure 9 (I), even though this improved version of

Oxholm and Nishino [2014] has access to the ground-truth illumi-
nation, it struggles to remove shadow residuals from the albedo
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Table 1. Quantitative evaluation. Reported numbers are the arithmetic means of all four synthetic scenes (hotdog, ficus, lego, and drums) over eight
uniformly sampled novel views. The top three performing techniques for each metric are highlighted in red, orange, and yellow, respectively. For Tasks IV and
V, we relight the scenes with 16 novel lighting conditions: eight OLAT conditions plus the eight light probes included in Blender. We are unable to present
normal, view synthesis, or relighting metrics for SIRFS since it does not support non-orthographic cameras or “world-space” geometry (although Figure S3
shows that the geometry recovered by SIRFS is inaccurate). See Section 5.1 for discussion and Section C.2 for qualitative ablation studies.

I. Normals II. Albedo III. View Synthesis IV. FV Relighting (point) V. FV Relighting (image)

Angle◦ ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SIRFS - 26.0204 0.9420 0.0719 - - - - - - - - -
Oxholm & Nishino† 32.0104 26.3248 0.9448 0.0870 29.8093 0.9275 0.0810 20.9979 0.8407 0.1610 22.2783 0.8762 0.1364

NeRFactor 22.1327 28.7099 0.9533 0.0621 32.5362 0.9461 0.0457 23.6206 0.8647 0.1264 26.6275 0.9026 0.0917
using microfacet 22.1804 29.1608 0.9571 0.0567 32.4409 0.9457 0.0458 23.7885 0.8642 0.1256 26.5970 0.9011 0.0925
w/o geom. pretrain. 25.5302 27.7936 0.9480 0.0677 32.3835 0.9449 0.0491 23.1689 0.8585 0.1384 25.8185 0.8966 0.1027
w/o smoothness 26.2229 27.7389 0.9179 0.0853 32.7156 0.9450 0.0405 23.0119 0.8455 0.1283 26.0416 0.8887 0.0920
using NeRF’s shape 32.0634 27.8183 0.9419 0.0689 30.7022 0.9210 0.0614 22.0181 0.8237 0.1470 24.8908 0.8651 0.1154

†Oxholm and Nishino [2014] requires the ground-truth illumination, which we provide, and this baseline represents a significantly enhanced version (see Section 5.2).

II. Relighting (another view)I. Albedo Estimation

(B) NeRFactor
(ours)

(A) Oxholm & 
Nishino [2014]†

(C) Ground Truth(B) NeRFactor
(ours)

(A) Oxholm & 
Nishino [2014]†

(C) Ground Truth

Fig. 9. Comparisons against Oxholm and Nishino [2014]. See Section 5.2 for discussions. †We significantly enhanced this baseline, as explained in
Section 5.2; in addition, we provide it with the ground-truth illumination since it does not estimate lighting.

estimation because of its inability to model visibility (hotdog and
lego). As expected, these residuals in albedo negatively affect the
relighting results in Figure 9 (II) (e.g., the red shade on the hotdog
plate). Moreover, because the BRDF estimated by this baseline is not
spatially-varying, BRDFs of the hot dog buns and the ficus leaves are
incorrectly estimated to be as specular as the plate and vase, respec-
tively. Finally, this baseline is unable to synthesize non-local light
transport effects such as shadows (hotdog and lego), in contrast
to NeRFactor that correctly produces realistic hard cast shadows
under the OLAT conditions.

Philip et al. [2019]. The recent work by Philip et al. [2019] presents
a technique to relight large-scale scenes and specifically focuses on
synthesizing realistic shadows. The input to their system is similar to
ours: multi-view images of a scene lit by unknown lighting. However,
their technique only supports synthesizing images illuminated by a
single primary light source such as the Sun. In other words, unlike
NeRFactor, their approach does not support relightingwith arbitrary
lighting such as another random light probe. As such, we compare
it with NeRFactor only on the task of point light relighting.
The “yellow fog” in the background of their results (Figure 10

[A]) is likely due to the poor geometry reconstruction. Because
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their network is trained on outdoor scenes (not images with back-
grounds), we additionally compute error metrics after masking out
the yellow fog with the ground-truth object masks (“Philip et al.
[2019] + Masks”) for a more generous comparison. As the table
in Figure 10 shows, NeRFactor outperforms “Philip et al. [2019]
+ Masks” in both PSNR and SSIM. The baseline achieves a lower
(better) LPIPS score because it renders new viewpoints by reproject-
ing observed images using estimated proxy geometry, as is typical
of Image-Based Rendering (IBR) algorithms. Thus, it retains the
high-frequency details present in the input images, resulting in a
lower LPIPS score. However, as a physically-based (re-)rendering
approach that operates fully in the 3D space, NeRFactor synthesizes
shadows that better match the ground truth (while the baseline’s
shadows tend to be overly soft [OLAT 1] or cover a less accurate
region [OLAT 2]) and supports relighting with arbitrary light probes
such as “Studio,” which has four major light sources (Figure 6 [D]).

(A) Philip et al. 
[2019]

(B) NeRFactor
(ours)

(C) Ground Truth

OLAT 2

OLAT 1

PSNR ↑ SSIM ↑ LPIPS ↓

Philip et al. [2019] 20.0397 0.5000 0.1812
Philip et al. [2019] + Masks 21.8620 0.8436 0.1140
NeRFactor (ours) 22.9625 0.8592 0.1230

Fig. 10. Comparisons with Philip et al. [2019] in point light relight-
ing. The numbers here are averages over eight test OLAT conditions. See
Section 5.2 for discussions.

6 LIMITATIONS
Although we demonstrate that NeRFactor outperforms its variants
and the baseline methods, there are still a few important limitations.
First, to keep light visibility computation tractable, we limit the
resolution of the light probe images to 16 × 32, a resolution that
may be insufficient for generating very hard shadows or recovering
very high-frequency BRDFs. As such, when the object is lit by a
very high-frequency illumination such as the one in Figure S1 (Case
D) where the sun pixels are fully HDR, there might be specularity
or shadow residuals in the albedo estimation (such as those on the
vase). Second, for fast rendering, we consider only single-bounce
direct illumination, so NeRFactor does not properly account for
indirect illumination effects. Finally, NeRFactor initializes its geom-
etry estimation with NeRF or MVS. While it is able to fix errors

made by NeRF up to a certain degree, it can fail if NeRF estimates
particularly poor geometry in a manner that happens to not affect
view synthesis. We observe this in the two real-world NeRF scenes,
which contain faraway incorrect “floating” geometry that is not
visible from the input cameras but casts shadows on the objects.

7 CONCLUSION
In this paper, we have presented Neural Radiance Factorization (NeR-
Factor), a method that recovers an object’s shape and reflectance
from multi-view images and their camera poses. Importantly, NeR-
Factor recovers these properties from images under an unknown
illumination condition, while the majority of prior work requires
observations under multiple known illumination conditions. To
address the ill-posed nature of this problem, NeRFactor relies on
priors to estimate a set of plausible shape, reflectance, and lighting
that collectively explain the observed images. These priors include
simple yet effective spatial smoothness constraints (implemented in
the context of Multi-Layer Perceptrons [MLPs]) and a data-driven
prior on real-world BRDFs.We demonstrate that NeRFactor achieves
high-quality geometry sufficient for relighting and view synthesis,
produces convincing albedo as well as spatially-varying BRDFs, and
generates lighting estimations that correctly reflect the presence or
absence of dominant light sources. With NeRFactor’s factorization,
we can relight the object with point lights or light probe images,
render images from arbitrary viewpoints, and even edit the ob-
ject’s albedo and BRDF. We believe that this work makes important
progress towards the goal of recovering fully-featured 3D graphics
assets from casually-captured photos.
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Supplemental Information

A IMPLEMENTATION DETAILS
NeRFactor is implemented in TensorFlow 2 [Abadi et al. 2016]. All
training uses the Adam optimizer [Kingma and Ba 2015] with the
default hyperparameters. See our GitHub repository for our imple-
mentation that reproduces the results in this paper.

A.1 Staged Training
There are three stages in training NeRFactor. First, we optimize
a NeRF using the input images and their camera poses (once per
scene), and train a BRDF MLP on the MERL dataset (only once for
all scenes). Both of these MLPs are frozen during the final joint
optimization since the NeRF only provides a shape initialization,
and the BRDF MLP provides a latent space of real-world BRDFs for
the optimization to explore. Future shape refinement happens in
NeRFactor’s normal and visibility MLPs, and the actual material
prediction happens in NeRFactor’s albedo and BRDF identity MLPs.
Second, we use this trained NeRF to initialize our geometry by opti-
mizing the normal and visibility MLPs to simply reproduce the NeRF
values, without any additional smoothness loss or regularization.
Finally, we jointly optimize the albedo MLP, BRDF identity MLP,
and light probe pixels from scratch, along with the pretrained nor-
mal and visibility MLPs. Finetuning the normal and visibility MLPs
along with the reflectance and lighting allows the errors in NeRF’s
initial geometry to be fixed in order to minimize the re-rendering
loss (Figure 3).

A.2 Architecture & Positional Encoding
We use the default architecture for NeRF [Mildenhall et al. 2020],
and all other MLPs we introduce contain four layers (with a skip
connection from the input to the second layer), each with 128 hid-
den units. As in NeRF [Mildenhall et al. 2020], we apply positional
encoding to the input coordinates of all networks with 10 encoding
levels for 3D locations and 4 encoding levels for directions.

A.3 Runtime
We train NeRF for 2,000 epochs, which takes 6–8 hwhen distributed
over four NVIDIA TITAN RTX GPUs. Prior to the final joint opti-
mization, computing the initial surface normals and light visibility
from the trained NeRF takes 30min per view on one GPU for a
16×32 light probe (i.e., 512 light locations). This step can be trivially
parallelized because each view is processed independently. Geom-
etry pretraining is performed for 200 epochs, which takes around
20min on a TITAN RTX. The final joint optimization is performed
for 100 epochs, which takes only 30min on one TITAN RTX.

B DATA
This work uses three types of data: multi-view images of an object
and the corresponding camera poses, real-world measured BRDFs,
and captured light probes.

B.1 Synthetic Renderings
We use the synthetic Blender scenes (hotdog, drums, lego, and
ficus) released by Mildenhall et al. [2020] and replace the lighting
used there with our own natural illuminations taken from real light
probe images. The light probes are from hdrihaven.com, Stumpfel
et al. [2004], and the Blender distribution§. This yields significantly
more natural input illumination conditions. We also disable all non-
standard post-rendering effects used by Blender Cycles when ren-
dering the images, such as “filmic” tone mapping, and retain only
the standard linear-to-sRGB tone mapping. We render all images di-
rectly to PNGs instead of EXRs to simulate real-world mobile phone
captures where raw HDR pixel intensities may not be available;
this indeed facilitates applying NeRFactor directly to real scenes as
shown in Figure 6 and Figure 7.

B.2 Real Captures
We use mobile phone captures of two real scenes released by Milden-
hall et al. [2020]: vasedeck and pinecone. These scenes are cap-
tured by inwards-facing cameras on the upper hemisphere. There
are close to 100 images per scene, and the camera poses are obtained
by COLMAP SFM [Schönberger and Frahm 2016]. NeRFactor is di-
rectly applicable because it is designed to work with PNGs instead
of EXRs.
In addition, we also use real images from the DTU-MVS dataset

[Jensen et al. 2014; Aanæs et al. 2016]. Each scene in this dataset
consists of around 50 multi-view images and their corresponding
camera poses for each scene. We use images under “the most diffuse
lighting” in DTU-MVS for all scenes¶. The 3D surfaces are from the
Poisson reconstruction [Kazhdan et al. 2006] of the MVS reconstruc-
tion by Furukawa and Ponce [2009], as bundled in DTU-MVS∥.

B.3 Measured BRDFs
We use real measured BRDFs from the MERL dataset by Matusik
et al. [2003]. The MERL dataset consists of 100 real-world BRDFs
measured by a conventional gonioreflectometer. Because the color
components of BRDFs are not used by our model, we convert the

§https://www.blender.org
¶These are the “*_3_*” images in the DTU-MVS release.
∥These are the “furu???_l3_surf_11_trim_8.ply” mesh files in their release.
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RGB reflectance values to be achromatic by converting linear RGB
values to relative luminance.

C ADDITIONAL EVALUATION STUDIES
Here we study whether the albedo estimation by NeRFactor is con-
sistent for the same object when lit by different input lighting con-
ditions. We then visualize the importance of different model com-
ponents to supplement the quantitative ablation studies in Table 1.
Finally, we compare NeRFactor with SIRFS, a classic single-view
approach by Barron and Malik [2014].

C.1 Estimation Consistency Across Different Illuminations
In this experiment, we study how different illumination conditions
affect the albedo estimation by NeRFactor. More specifically, we
probe how consistent the estimated albedo predictions are across
different input illumination conditions. To this end, we light ficus
with four drastically different lighting conditions, as shown in Fig-
ure S1, and then estimate the albedo with NeRFactor from these
four sets of multi-view images.

Case A Case B Case D

Estimated Albedo

Case C 40.034.7

A B D

A

B

C

Albedo PSNR (dB) ↑
C

D
Illumination Used for Rendering

∞ 38.1 38.0 35.7

38.1 ∞ 36.4 37.7

38.0 36.4 ∞ 34.7

35.7 37.7 34.7 ∞

Fig. S1. Albedo estimation consistency across different input illumi-
nation conditions. The albedo fields recovered by NeRFactor are largely
consistent across varying illumination conditions of the input images.

As Figure S1 shows, NeRFactor’s predictions are similar across the
four input illuminations, with pairwise PSNR ≥ 34.7 dB. Note that
the performance on Case D is worse (e.g., the specularity residuals
on the vase) than on Case C, despite that both cases seem to have
the Sun as the primary light source. The reason is that Case D has
the Sun pixels properly measured by Stumpfel et al. [2004], whereas
Case C is an internet light probe that clips the Sun pixels. Therefore,
Case D has a much higher-frequency lighting condition than Case
C, making it a harder case for NeRFactor to correctly factorize the
appearance.

C.2 Qualitative Ablation Studies
Figure S2 shows, qualitatively, what happens when each of the major
model components is ablated. See Section 5.1 for more discussions
and Table 1 for the quantitative evaluation.

As Figure S2 (A) shows, one can fix the geometry to that of NeRF
and estimate only the reflectance and illumination by ablating the
normal and visibility MLPs of NeRFactor, but the NeRF geometry is
too noisy (I) to be used for relighting (see the supplemental video).
(B) Ablating the smoothness regularization leads to noisy geometry
and albedo (I, II). (C) If we train the normal and visibility MLPs
from scratch during the joint optimization (i.e., no pretraining), the

recovered albedo may mistakenly attempt to explain shading and
shadows (III). (D) If we replace the learned BRDF with an MLP pre-
dicting the roughness parameter of a microfacet BRDF, the predicted
reflectance either falls into the local optimum of maximum rough-
ness everywhere or becomes spatially non-smooth (not pictured
here; see the supplemental video). (E) NeRFactor is able to recover
a plausible set of normals, albedo, and lighting without direct super-
vision on any factor. The lighting recovered by NeRFactor, though
oversmoothed, correctly captures the location of the Sun.

C.3 More Baseline Comparisons
In addition to Oxholm and Nishino [2014] and Philip et al. [2019]
(Section 5.2), here we also compare NeRFactor with SIRFS [Barron
and Malik 2014], both qualitatively and quantitatively.
SIRFS is a single-image method that decomposes appearance

into surface normals, albedo, and shading (not shadowing) in the
input view under unknown lighting. In contrast, NeRFactor is a
multi-view approach that estimates these properties plus BRDFs
and visibility (hence, shadows) in the full 3D space alongside the
unknown lighting. In other words, NeRFactor gets to observe many
more views than SIRFS, which observes only one view. Under this
setup, NeRFactor outperforms SIRFS quantitatively as shown by
Table 1. Figure S3 shows that although SIRFS achieves reasonable
albedo estimation, it produces inaccurate surface normals likely due
to its inability to incorporate multiple views or to reason about shape
in “world space.” In addition, SIRFS is unable to render the scene
from arbitrary viewpoints or synthesize shadows during relighting.

ACM Trans. Graph., Vol. 40, No. 6, Article 237. Publication date: December 2021.

https://www.youtube.com/watch?v=UUVSPJlwhPg
https://www.youtube.com/watch?v=UUVSPJlwhPg


237:18 • Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul Debevec, William T. Freeman, and Jonathan T. Barron

I. Surface Normals

II. Albedo (color-corrected)

III. View Synthesis

IV. Illumination

(C) NeRFactor w/o 
Geometry Pretrain.

(B) NeRFactor w/o 
Smoothness

(A) NeRFactor
Using NeRF’s Shape

(F) Ground Truth(D) NeRFactor
Using Microfacet

(E) NeRFactor (ours)

Fig. S2. Ablation studies. See Section C.2 for discussions.

II. Surface NormalsI. Albedo

(B) NeRFactor (ours) (C) Ground Truth(B) NeRFactor (ours)(A) SIRFS (C) Ground Truth (A) SIRFS

Fig. S3. Comparisons with SIRFS. Although the albedo estimation by SIRFS is reasonable, the surface normals are highly inaccurate (likely due to its
inability to use multiple images to inform shape estimation).
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