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ABSTRACT
In financial market, certain types of stochastic events are intrinsi-
cally impactful to the prediction of financial times series, such as
stock return, while few existing research attempts have been made
to incorporate stochastic event modeling to time series modeling
in a principled way. In this paper, we present a pioneering study
that fills this gap. In particular, we introduce a generic probabilistic
model that captures 1) the inter-dependencies among stochastic
events, and 2) the impact of these events on time series. To this
end, we extend multivariate Hawkes process (MHP) and proximal
graphical event model (PGEM) and apply this framework to model-
ing two financial events, companies’ quarterly revenue releases and
updates of consensus prediction of quarterly revenue, and their im-
pacts on the mean and correlation structures of future stock return.
Our model not only improves prediction of financial time series,
but also promotes AI trust for finance by revealing the causal rela-
tionship among the events. Extensive experimental results based on
real financial market data validate the effectiveness of our models
in learning event impact and improving investment decision by
incorporating stochastic event impacts.

CCS CONCEPTS
• Mathematics of computing → Stochastic processes; Multivari-
ate statistics.

KEYWORDS
Hawkes process, graphical event, quarterly revenue, stock return,
variance-covariance

∗To whom correspondence should be addressed.
†W. Chen did the work while being an intern at IBM Research.
‡These authors had equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICAIF’21, November 3–5, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9148-1/21/11. . . $15.00
https://doi.org/10.1145/3490354.3494407

ACM Reference Format:
Yada Zhu, Wenyu Chen, Yang Zhang, Tian Gao, and Jianbo Li. 2021. Prob-
abilistic Framework for Modeling Event Shocks to Financial Time Series.
In 2nd ACM International Conference on AI in Finance (ICAIF’21), Novem-
ber 3–5, 2021, Virtual Event, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3490354.3494407

1 INTRODUCTION
Time series is a collection of random variables observed sequen-
tially at fixed intervals of time and it is of paramount interest in
finance field and artificial intelligent (AI) area. Learning from time
series provides valuable insights for market movement and future
stock return and correlation that are essential for investment deci-
sion making. A prominent issue of financial time series analysis,
especially for predicting future value of company stocks, is the
dynamic impact of various events, such as release of quarterly earn-
ing reports, announcement of new products and change of credit
rating, as well as the price chain reactions due to the correlations
of event/time series entities [15]. In contrast to time series, event
streams are sequences of events of various types that typically oc-
cur as irregular and asynchronous continuous-time arrivals. It is
well known that event streams can be modeled using (multivariate)
point process [1, 8]. Both time series and stochastic point process
in general domains have been well studied and abundant methods
have been proposed to deal with each of them independently, while
few attempts have been made to incorporate the impact of stochas-
tic events into time series modeling and forecasting in a principled
way. The challenge lies in the sophisticated temporal interaction
among different events and their shock effects to time series, which
can also have temporal cross-correlations for multivariate time
series. Despite recently point process has gained growing interests
for finance applications, such as modeling the joint dynamics of
trades and mid-price changes of the NYSE [3] and pricing options
[18], few research attempts have been made to fill in this gap.

In this paper, we present a pioneering study to incorporate im-
pact of stochastic events into multivariate time series modeling and
demonstrate its application in capturing effects of crucial events on
stock return and correlation prediction. Specifically, we consider
two types of events, i.e., quarterly revenue release of public compa-
nies and updates of consensus estimate on the quarterly revenue.
Revenue measures a company’s earning power which is a key indi-
cator of future stock returns. As time close to revenue release, more
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information about a company’s financial status becomes available,
and consensus is more frequently updated by analysts to incor-
porate the new information. Consequently, stock price changes
immediately to reflect the latest market information. Therefore,
to predict the upcoming consensus update and stock return, we
propose a generic probabilistic framework to model event intensity,
event magnitude, and their effects to the distribution of stock re-
turn. To this end, we develop a set of probabilistic models including
extended multivariate Hawkes process (MHP) [17, 24] with differ-
ent kernels and a novel proximal graphical event model (PGEM).
The extended MHP models explicitly leverage domain knowledge
on event interactions and impact of every historical events. PGEM
learns historical impacts on events from a short window in the most
recent past. It learns not only the density of event occurrence but
also event causal relationship which sheds light on AI trust for fi-
nance. Further, we capture the impact of previous event magnitude
to consensus magnitude by adjusting the distribution mean under
liquidity market assumption. Following this, we incorporate the
effects of the two events into stock return distribution parameters.
This leads to time-varying mean and stock correlation structure
which overcome the challenge of prediction stock returns due to
stochastic event impact.

The main contributions of the paper are summarized as follows:

(1) propose a generic framework for capturing the impact of
stochastic events to time series modeling;

(2) propose novel and expandable probabilistic models to learn
the intensity of event occurrence and an explainable graph-
ical representation of event causal relationship;

(3) propose approaches to learn dynamic stock return distri-
butions and correlation structure under explicit impact of
quarterly revenue release and consensus update;

(4) evaluate the performance of the proposed framework and
variants of models with two sets of financial market data
in terms of interpretations of event inter-dependency, ef-
fectiveness of event magnitude prediction, and profitability
of simulated portfolios.

2 RELATEDWORK
There is rich literature in time series analysis as well as event
modeling via stochastic point process, e.g. [3, 13, 22, 25]. However,
these works do not really combine the event models with the time
series analysis, and apply them in the financial settings. To the best
of our knowledge, this is the first work that combines both aspects,
modeling the event occurrences via the point process and further
predicting the future time series based on the event models.

One of the most related works that consider both time series
and event modeling aspects is [21]—they model the event sequence
based on the time series input via the combined effects of two recur-
rent neural networks. These two RNNs take time series and event
sequences as input, respectively, and thus they are able to capture
the information from regular time series, and handle the irregu-
larity caused by the event occurrences at the same time. However,
their loss function does not look at the likelihood of the event occur-
rences under the point process model, and they do not investigate
into the structure of dependencies on the history events. Based on
[21], [20] adopt the composition structure of the intensity function,

and consider the maximum likelihood of the corresponding point
process. Furthermore, they use an additional attention layer based
on the infectivity matrix between different events to model the
dependencies on the history events. However, attention does not
necessarily indicates causation, and it is not straightforward to
interpret attention over time. Both of [20, 21] consider learning the
intensity function of event models based on the information of time
series, but they do not consider the opposite as we do in this paper,
i.e. the impact of the event models on the time series forecasting.

3 PROBLEM FORMULATION
Our general goal is to construct a probabilistic model that describes
the inter-dependencies among some key financial variables and
among different companies, so that it can predict the future values
of these variables based on the historical observations. This section
will formulate the problem and concretize the financial variable to
be studies and modelel.

3.1 Time Series v.s. Event Variables
Before we introduce our financial variables of interest, we would
like to emphasize that these variables can be categorized into two
data types – time series and events.

A time series variable,𝑿 , refers to a collection of random variables
corresponding to every time step. Formally,

𝑿 = {𝑋𝑖𝑡 },

where 𝑡 represents the time step (whose temporally granularity is
by day), and 𝑖 represents the company. We let 𝑑 denote the number
of companies we consider and 𝑇 denote the time horizon.

An event variable, 𝑬 , models financial variables that occur sporad-
ically, i.e. do not have observations at all the timestamps. Therefore,
each event is associated with two variables, the time variable, which
depicts the timestamps when the event happens, and the magnitude
variable, which depicts the magnitude of the event. Formally,

𝑬 = {𝑙𝑖𝑛, 𝐸𝑖𝑛, 𝑡𝑖𝑛},

where𝑛 denotes the event index, 𝑙𝑖𝑛 is the label of the𝑛-th event, (e.g.
𝑙𝑖𝑛 = 𝑧 for company release and 𝑙𝑖𝑛 = 𝑐 for consensus correction),
𝐸𝑖𝑛 denotes the magnitude of the 𝑛-th event, and 𝑡𝑖𝑛 denotes the
timestamp of the 𝑛-th event.

3.2 Variables of Interest
Although the proposed framework is generic and can be applied
to a wide variety of financial variables, for concreteness, we will
focus on the following three financial variables:

•CompanyRevenue Company revenue, denoted as 𝒁 , refers
to the quarterly revenue released by each public company, which is
a key indicator of the valuation and profitability of a company and
used to project future stock returns by investors. 𝒁 is considered as
an event variable (hence 𝒁 = {𝑧, 𝑍𝑖𝑛, 𝑡𝑍𝑖𝑛}) because usually a com-
pany releases its revenue once per quarter, whereas our temporal
granularity is by day.

• Consensus Consensus, denoted as 𝑪 , refers to the aggre-
gated revenue estimation of the upcoming quarters by legions of
stock analysts. Consensus usually remains constant until it is ad-
justed sporadically, so it is considered as an event variable (hence
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𝑪 = {𝑐,𝐶𝑖𝑛, 𝑡𝐶𝑖𝑛}). Note consensus change and consensus adjustment
are used interchangeably with consensus update in this paper.

• Stock Price and Return Stock price, 𝑺 , refers to the the
daily closing stock price of a company. It is considered as a time
series variable (i.e. 𝑺 = {𝑆𝑖𝑡 }). Define stock return, 𝑹 = {𝑅𝑖𝑡 } as

𝑅𝑖𝑡 =
𝑆𝑖𝑡

𝑆𝑖 (𝑡−1)
− 1.

Since stock return exhibits nicer statistical properties than stock
price, we will be using stock return in our model.

3.3 Objective
Given any timestamp 𝑡 , letH(𝑡) denote the historical observations
of all the aforementioned variables up to time 𝑡 . Our goal is to
predict the upcoming consensus adjustment and stock return. For-
mally, our goal is to compute the following conditional probability
densities given the history H(𝑡)

𝑝

(
𝑡𝐸
𝑖 (𝑛+1) |H (𝑡)

)
, 𝑝

(
𝐸𝑖 (𝑛+1) |H (𝑡)

)
, and 𝑝

(
𝑅𝑖 (𝑡+1) |H (𝑡)

)
. (1)

where, unless specified otherwise, 𝑛 refers to the closest event
index before 𝑡 . The inferred values can then be made or simulated
according to these distributions, e.g. by taking the expectation.

4 METHODOLOGY
We will solve the aforementioned problem using a probabilistic
framework, which consists of two steps. First, we will construct a
probabilistic model for the aforementioned three variables. Second,
we will estimate the parameters of the probabilistic model.

4.1 Overview
Throughout this section, we denote H𝑍 (𝑡), H𝐶 (𝑡), and H𝑅 (𝑡)
as the historical earning magnitude, consensus magnitude, and
stock returns, respectively. The construction of the probabilistic
dependencies conforms to many financial intuitions and financial
decision processes. Specifically, the time of the revenue release,
𝑡𝑍
𝑖𝑛
, is exogenously given. The magnitude of the revenue release,

𝑍𝑖𝑛 depends on its own historic values, H𝑍 (𝑡), and the consen-
sus historical values, H𝐶 (𝑡). Then, the consensus update time, 𝑡𝐶

𝑖𝑛
,

depends on the last and future revenue release times, i.e. 𝑡𝑍
𝑖𝑛′ and

𝑡𝑍
𝑖 (𝑛′+1) , where 𝑛

′ denotes the latest earning release event index be-
fore the current time 𝑡 , as well as previous consensus update times,
𝑡𝐶
𝑖 (𝑛−1) , 𝑡

𝐶
𝑖 (𝑛−2) , etc. The consensus adjustment value 𝐶𝑖𝑛 depends

on the previous consensus value H𝐶 (𝑡) and the historical revenue
of a companyH𝑍 (𝑡). The stock return 𝑅𝑖𝑡 depends on the historical
returnsH𝑅 (𝑡) and consensusH𝐶 (𝑡). To sum up, the conditional
probabilities upon the historical variables can be expressed as

𝑝 (𝑍𝑖𝑛 |H (𝑡)) = 𝑝

(
𝑍𝑖𝑛 |H𝑍 (𝑡),H𝐶 (𝑡)

)
,

𝑝

(
𝑡𝐶𝑖𝑛 |H (𝑡)

)
= 𝑝

(
𝑡𝐶𝑖𝑛 |𝑡

𝑍
𝑖𝑛′, 𝑡

𝑍
𝑖 (𝑛′+1) , 𝑡

𝐶
𝑖 (𝑛−1) , 𝑡

𝐶
𝑖 (𝑛−2) , . . .

)
,

𝑝 (𝐶𝑖𝑛 |H (𝑡)) = 𝑝

(
𝐶𝑖𝑛 |H𝐶 (𝑡),H𝑍 (𝑡)

)
,

𝑝 (𝑅𝑖𝑡 |H (𝑡)) = 𝑝

(
𝑅𝑖𝑡 |H𝑅 (𝑡),H𝐶 (𝑡)

)
.

(2)

The following subsections detail how each of the above probabilities
is modeled.

4.2 Consensus Adjustment Time (𝑡𝐶𝑖𝑛) Modeling
The distribution of 𝑡𝐶

𝑖𝑛
is parameterized by an event intensity pa-

rameter, 𝜆𝐶
𝑖
(𝑡), which depicts the probability density of the event

happening at time 𝑡 . More formally, the probability of an event
happening during the infinitesimal time interval [𝑡, 𝑡 + 𝑑𝑡] is given
by 𝜆𝐶

𝑖
(𝑡)𝑑𝑡 . According to Eq. (2), 𝜆𝐶

𝑖
(𝑡) should be a function of the

last and future revenue release times. We consider several ways of
modeling 𝜆𝐶

𝑖
(𝑡).

4.2.1 Multivariate Hawkes process (MHP) with domain knowledge.
The Hawkes processes [11] is known as a self-exciting process,
where the occurrences of events will further increase the intensity
of event happening. We use the multivariate Hawkes process (MHP,
see e.g. [17, 24]), which extends this self-excitation to the mutual
excitation of the events of different entities. In addition, based on
both the domain knowledge and our observation on the data (see
Fig. 2), the consensus updates tend to be more frequent when they
are close to the revenue release dates due to more information
available and increased interests of investors. Therefore, we make
some adjustments to the intensity expression of our MHP model.
To be more specific, given the history H(𝑡), the intensity of 𝜆𝐶

𝑖
(𝑡)

company 𝑖 is modeled as

𝜆𝐶𝑖 (𝑡) = 𝜆𝑖 +
𝑑∑︁
𝑗=1

∑︁
𝑛:𝑡𝐶

𝑗𝑛
<𝑡

𝛼𝑖 | 𝑗𝑔
(
𝑡 − 𝑡𝐶𝑗𝑛 ;𝑤𝑖 | 𝑗

)
+ 𝛼+𝑖 𝑔

(
𝑡+𝑖 − 𝑡 ;𝑤+

𝑖

)
+ 𝛼−𝑖 𝑔

(
𝑡 − 𝑡−𝑖 ;𝑤−

𝑖

)
,

(3)

where𝑔(·;𝑤) is called the nonnegative triggering kernel parametrized
by𝑤 , and 𝑡+

𝑖
and 𝑡−

𝑖
denote the time of the next/last revenue release

at time 𝑡 , respectively. In this expression, the first two terms come
from the original MHP model, while the last two terms account for
the adjustment as discussed above. In the experiments, we consider
two triggering kernels:

(1) exponential decay kernel,

𝑔(𝑡 ;𝑤) = exp(−𝑡/𝑤)/𝑤 ;

(2) sigmoid kernel,

𝑔(𝑡 ;𝑤) = 𝑒𝑤

𝑒𝑡 + 𝑒𝑤
.

We learn the model through the maximum likelihood estimator,
where the log-likelihood for the model is given by

log𝐿(𝜆, 𝛼,𝑤) =
𝑑∑︁
𝑖=1

𝑁𝐶
𝑖∑︁

𝑛=1
log 𝜆𝐶𝑖

(
𝑡𝐶𝑖𝑛

)
−

𝑑∑︁
𝑖=1

∫ 𝑇

0
𝜆𝐶𝑖 (𝑡) 𝑑𝑡, (4)

where 𝑁𝐶
𝑖

denotes the number of consensus events for company 𝑖 .
Following [17, 24], we penalize 𝛼𝑖 | 𝑗 with ℓ1 regularizer to impose
the sparsity.

4.2.2 Proximal Graphical Event Model (PGEM). Typical Hawkes
processes assume every historical release would impact new con-
sensus updates, which contradicts the intuition that only the most
recent few revenue reports would be impactful in practice. Due
to such a long historical influence, it is also very hard to interpret
the learned process to pin-point the exact factors that most influ-
ence new consensus updates. Therefore, we propose a different

3
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model, where the intensity model of 𝜆𝐶
𝑖
is defined using the prox-

imal assumption, which states that historical impacts on events
only come from a short window in the most recent past. This as-
sumption results in a proximal point process model (PGEM), such
as the graphical event model [5]. A PGEM M = {𝐺,𝑊 ,Λ} consists
of 3 components: (i) a graph 𝐺 = {𝑉 , 𝐸}, where edges 𝐸𝑖 𝑗 = 1 if
node 𝑋𝑖 is a cause event or a parent of node 𝑋 𝑗 , {𝑋𝑖 , 𝑋 𝑗 } ∈ 𝑉 , (ii) a
set of window function𝑊 , where each window𝑤𝑖 𝑗 ∈𝑊 indicates
the length of the recent history [𝑡 −𝑤𝑖 𝑗 , 𝑡) that 𝑋𝑖 would have an
impact on 𝑋 𝑗 , and (iii) a set of intensity functions 𝜆𝑖 |u ∈ Λ for each
node 𝑋𝑖 , where 𝑢 is the value of parent nodes of 𝑋𝑖 .

Different from the vanilla PGEM, we also propose to capture
the dependencies of the exogenous future events on the current
consensus release. Let 𝑤𝑟− and 𝑤𝑟+ define two windows to past
and future revenue reports from consensus update (note that since
we only consider Consensus here, we drop index 𝑐 from 𝑤𝑟 ). Let
𝑡− and 𝑡+ be the times for the most recent past and future revenue
reports at time 𝑡 , respectively. Assuming consensus update rate
𝜆𝐶
𝑖
(𝑡) at any given time 𝑡 depends on whether a duration of 𝑤𝑟−

has passed since 𝑡− and whether 𝑡+ would be reached within𝑤𝑟+

from 𝑡 . Then, the intensity rate 𝜆𝐶
𝑖
can be written as 𝜆𝐶

𝑖 |u, where
u is the actual values of the causal factors for consensus updates.
For example, if both past and future revenue report are the causal
factors (or parent nodes in PGEM), then the intensity rate 𝜆𝐶

𝑖𝜏 |−+̄
signifies the rate at which event 𝑐 occurs at any time 𝜏 given that
event 𝑟 has occurred at least once in the interval [𝜏 −𝑤𝑟− , 𝜏) (hence
−) and that 𝑟 will not occur in [𝜏, 𝜏 +𝑤𝑟+ ) (hence +̄).

In a PGEM, graph 𝐺 , window𝑊 , and intensity rates Λ can all
be learned. We first talk about the learning of𝑊 and Λ, given 𝐺 is
known. Given one particular graph, we can optimize window𝑊

and intensity rates Λ by maximizing the following log likelihood
function:

log𝐿(𝐷C
𝑖 ) =

∑︁
u

(
−𝜆𝐶

𝑖 |u𝐷 (u) + 𝑁 (𝑐; u) ln
(
𝜆𝐶
𝑖 |u

))
+

𝑁∑︁
𝑛=1

log𝑝 (𝐶𝑖𝑛)
(5)

where𝑁 (𝑐 ; u) is the number of times that 𝑐 is observed in the dataset
and that the condition u (from 2 |U | possible parental combinations)
is true in the relevant preceding or future windows, and 𝐷 (u) is
the duration over the entire time period where the condition u is
true. Formally,

𝑁 (𝑐; u) =
𝑁∑︁
𝑖=1

1 [𝑙𝑖 = 𝑐] 1𝑤𝑟
u (𝑡𝑖 )

and

𝐷 (u) =
𝑁+1∑︁
𝑖=1

∫ 𝑡𝑖

𝑡𝑖−1

1𝑤𝑟
u (𝑡)𝑑𝑡,

where 1[·] is an indicator function, which takes value 1 if the
condition is true and 0 otherwise. 1𝑤𝑟

u (𝑡) is an indicator for whether
u is true at time 𝑡 as a function of the relevant windows𝑤𝑟 . From
Equation 5, it is easy to see that the maximum likelihood estimates
(MLEs) of the conditional intensity rates are 𝜆𝑐 |u = 𝑁 (𝑐; u)/𝐷 (u).

Window learning can be found exactly if 𝐶 only has one parent
in PGEM. For a node 𝑥 with a single parent 𝑍 , the log likelihood

maximizing window 𝑤𝑧𝑥 either belongs to or is a left limit of a
window in the candidate set𝑊 ∗ = {𝑡𝑧𝑥 } ∪ max{𝑡𝑧𝑧 }, where {𝑡}
denotes inter-event times in the datasets. It can be seen that the
counts changes at the inter-events 𝑡𝑧𝑧 , and they are step functions
and therefore discontinuous at the jump points; this is the reason
why the optimal window can be a left limit of an element in𝑊 ∗.
Hence, one can search for the best window, which maximizes the
log-likelihood, in the set 𝑊 ∗. However, if 𝑐 has more than one
parents, the windows can be outside𝑊 ∗. One heuristic is to search
parents’ window values one at a time, conditioned on previous
windows.

Graph structure learning can be done with a forward and back-
ward search (FBS) procedure to compute the max Bayesian infor-
mation criterion [5], defined for a PGEM as:

BIC(𝐷𝑖
𝑐 ) = logL(𝐷𝑖

𝑐 ) − ln(𝑇 )2 |U | . (6)

where 𝑇 is the total time horizon in the datasets and |U| is the
size of 𝑐’s parent set. Given the BIC score, FBS conducts a forward
search first and initializes the parental set of 𝑐 to be empty, and then
iteratively add one candidates parent nod to see if the resulting
parental set increases the BIC score with learned𝑊 and Λ. If it is
better than the current best score, FBS keeps the new parental set
and check the next candidate. It runs until all variables have been
tested. Then in the backward search phase, FBS iteratively tests if
each candidate variable in the current parental set can be removed,
i.e., if the rest of parents give a better BIC score. If so, the candidate
parent is removed. After checking all candidates, FBS returns the
resulting parental set as the learned parents. For more details on
learning and consistency guarantees, we refer the readers to the
original paper [5].

4.3 Consensus (𝐶𝑖𝑛) and Revenue (𝑍𝑖𝑛) Modeling
In this subsection, we model the distributions of consensus magni-
tude and revenue magnitude based on their previous event magni-
tudes. We assume that the magnitudes do not depend on the event
intensities at the time when the events happen; also, unlike the
event intensity model, we do not consider the inter-dependencies
of magnitudes among different companies, although our model can
be easily extended to consider such interference and other external
information.

Under the liquid market assumption, the consensus magnitude
should reflect the market expectation on the revenue of the com-
pany. This means the last consensus magnitude should be the most
accurate market estimate for the revenue, as long as there is at
least one consensus update after the last revenue release. Therefore,
given the last consensus value𝐶𝑖

(
𝑡𝑍
𝑖𝑛

)
, we assume that the revenue

𝑍𝑖𝑛 follows a normal distribution centered at𝐶𝑖
(
𝑡𝑍
𝑖𝑛

)
with variance

(𝜎𝑍
𝑖
)2, i.e.

𝑍𝑖𝑛 |H (𝑡𝑖𝑛) ∼ N
(
𝐶𝑖

(
𝑡𝑍𝑖𝑛

)
, (𝜎𝑍𝑖 )

2
)

;

and on the other hand, if there is no consensus change after the
last revenue release, we simply use the last revenue magnitude as
the mean, and the distribution is given by

𝑍𝑖𝑛 |H (𝑡𝑖𝑛) ∼ N
(
𝑍𝑖

(
𝑡𝑍𝑖𝑛

)
, (𝜎𝑍𝑖 )

2
)
.
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In a similar but slightly more complicated way, we model the dis-
tribution of consensus magnitude as follows

𝐶𝑖𝑛 |H (𝑡𝑖𝑛) ∼ N
(
𝜇𝐶𝑖𝑛, (𝜎

𝐶
𝑖 )

2
)
, (7)

where

𝜇𝐶𝑖𝑛 = 𝐶𝑖,𝑛−1 + 𝛼

(
𝑍𝑖

(
𝑡𝐶𝑖𝑛

)
−𝐶𝑖,𝑛−1

)
1[𝜏𝐶𝑖 (𝑡𝑖𝑛) < 𝜏𝑍𝑖 (𝑡𝑖𝑛)] . (8)

Here, 𝑍𝑖
(
𝑡𝐶
𝑖𝑛

)
denotes the last revenue value announced before 𝑡𝐶

𝑖𝑛

and 𝜏𝐶
𝑖
(𝑡) and 𝜏𝑍

𝑖
(𝑡) denote the time of the last consensus/revenue

update before 𝑡 , respectively. Intuitively, if there is no revenue up-
date after the last consensus update, we assume that the value of this
consensus update will be centered around the last value; otherwise,
this consensus update will be also affected by the revenue update
that happens after the last consensus update. In our experiments,
we see that such simple adjustment is very effective in capturing
the consensus changes.

4.4 Stock Return (𝑅𝑖𝑡 ) Modeling
In practice, stock return is usually modeled as normal distribution
with constant mean and standard deviation for simplicity, i.e., 𝑅𝑖𝑡 ∼
N(𝝁0,𝒑Σ), where the mean and the variance-covariance matrix are
constant [6, 10, 12]. This simple model cannot capture the impact
of dynamic events which often leads to negative skewed returns.
Therefore, we propose two models to incorporate effects of revenue
release and consensus events to return modeling.

4.4.1 Normal with Adjusted Mean upon Events. To account for
impact of event occurrences, we first assume the return expectation
is affected by the most recent events as follows

𝝁𝑖 =
∑︁
𝑗,𝑙

𝛼𝑍
𝑖 𝑗𝑙

(
𝑍 𝑗 (𝑡) −𝐶 𝑗 (𝜏−𝑗 )

)
1[𝑡 = 𝑡−𝑗 + 𝑙]

+
∑︁
𝑗

𝛼𝐶𝑖 𝑗 (𝐶 𝑗𝑛 −𝐶 𝑗 (𝑛−1) )1[𝑡 = 𝑡𝐶𝑗𝑛]
(9)

where 𝛼𝑍
𝑖 𝑗𝑙

and 𝛼𝐶
𝑖 𝑗

are the coefficient of the impact of company
𝑗 ’s release and consensus update on company 𝑖 , 𝑙 denotes the the
number of days ahead of 𝑡 , 𝑡𝐶

𝑗𝑛
is the time of consensus update 𝑛.

4.4.2 Normal with Jump upon Events. The return time seriesmodels
we considered so far does not take into account the fact that the
stock prices becomemuchmore volatile upon the event occurrences.
To account for this fact, we draw inspiration from the stochastic
jump-diffusion process [16] for stock price modeling. If the log-
stock price followed the stochastic process

𝑑 log 𝑆𝑖 (𝑡) = 𝜇𝑅𝑖 𝑑𝑡 + 𝜎𝑖 𝑑𝑊
𝑅
𝑖 (𝑡) +

𝑁∑︁
𝑗=1

𝑘𝐶
𝑖 | 𝑗 (𝑡) 𝑑𝑞

𝐶
𝑗 (𝑡)

+
𝑁∑︁
𝑗=1

𝑘𝑍
𝑖 | 𝑗 (𝑡) 𝑑𝑞

𝑍
𝑗 (𝑡),

where 𝑞𝐶
𝑖
(𝑡) and 𝑞𝑍

𝑖
(𝑡) denote the counting process of consensus

updates and earning releases of company 𝑖 , respectively, and the
jump magnitude 𝑘𝐶

𝑖 | 𝑗 (𝑡) and 𝑘
𝑍
𝑖 | 𝑗 (𝑡) followed a normal distribution

that scales with the revenue surprise 𝑃 𝑗 (𝑡) or the consensus change
Δ 𝑗 (𝑡), i.e.

𝑘𝑍
𝑖 | 𝑗 (𝑡) ∼ N (𝛼𝑍

𝑖 | 𝑗𝑃 𝑗 (𝑡), 𝛽
𝑍
𝑖 | 𝑗𝑃

2
𝑗 (𝑡)),

and
𝑘𝐶
𝑖 | 𝑗 (𝑡) ∼ N (𝛼𝐶

𝑖 | 𝑗Δ 𝑗 (𝑡), 𝛽𝐶𝑖 | 𝑗Δ
2
𝑗 (𝑡)),

then we would obtain the marginal distribution for 𝑅𝑖 (𝑡) as a Gauss-
ian distribution with mean

𝜇𝑖 (𝑡) = 𝜇𝑅𝑖 +
𝑁∑︁
𝑗=1

1{𝑡 = 𝜏𝐶𝑗 (𝑡)}𝛼
𝐶
𝑖 | 𝑗Δ 𝑗 (𝑡) +

𝑁∑︁
𝑗=1

1{𝑡 = 𝜏𝑍𝑗 (𝑡)}𝛼
𝑍
𝑖 | 𝑗𝑃 𝑗 (𝑡)

and variance

𝑣𝑖 (𝑡) = 𝜎2
𝑖 +

𝑁∑︁
𝑗=1

1{𝑡 = 𝜏𝐶𝑗 (𝑡)}𝛽
𝐶
𝑖 | 𝑗Δ

2
𝑗 (𝑡) +

𝑁∑︁
𝑗=1

1{𝑡 = 𝜏𝑍𝑗 (𝑡)}𝛽
𝑍
𝑖 | 𝑗𝑃

2
𝑗 (𝑡) .

Based on the marginal distributions of 𝑅𝑖 (𝑡) inspired by the
jump-diffusion process, we now propose the joint distribution of
𝑅(𝑡) under the event models. We assume the correlation structure
Θ among different companies does not change with time, and thus
the joint distribution of 𝑅(𝑡) under the event model is given by

𝑹 (𝑡) ∼ N (𝝁 (𝑡),𝑫1/2
𝒗 (𝑡 )𝚯𝑫

1/2
𝒗 (𝑡 ) ),

where 𝐷𝑣 (𝑡 ) denotes the diagonal matrix of 𝑣 (𝑡).
Furthermore, we take into account the financial factor model:

following [9], we perform PCA to filter the common factors and
take the residual as the input of our learning framework. We then
perform a three-stage algorithm to learn 𝛼 ’s, 𝛽’s and Θ one after
another. The 𝛼 ’s and 𝛽’s are learned by least squares with ℓ1 penalty,
and Θ is learned by the thresholding operator following [9]. Note
that since the mean model and the variance model are learned
separately in a sequential order, each model can be replaced by
a more complicated/advanced model with event adjustments. For
example, we can replace the constant variance 𝜎2

𝑖
in the variance

expression 𝑣𝑖 (𝑡) with an ARCH or GARCH [4, 7] model, and learn
the ARCH/GARCH part and the event adjustment 𝛽’s in a two-stage
fashion.

5 EXPERIMENTS
In this section, we evaluate our proposed probabilistic framework
using real market datasets and present experiment results to answer
following questions:

(1) How good are the probabilistic models in recovering the
dependency and probability of event occurrence?

(2) How effective are the event magnitude models capturing
expected event magnitude?

(3) How profit if investment decisions are made based on in-
ferred stock return accounting for event impact?

5.1 Experimental Setup
Our data collected from Refinitiv Eikon1 includes 508 publicly
traded companies in the US stock market and 220 companies in
the Japan stock market. These companies are in the large capital
group that consensus updates are relatively frequent due to in-
vestor interests. For each company, the data contains historical
1https://www.refinitiv.com/en
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quarterly revenue release date and value, consensus adjustment
date and value, and daily closing market price. The data ranges
from 2007-01-02 to 2019-08-31. We use the data before 2017-01-01
as the training set to estimate model parameters and the rest to
evaluate model performance. Upon parameter estimation, we infer
future occurrence time of consensus updates and future values of
revenue, consensus and return via 2000 runs of simulation. For
good statistical properties, we used quarterly revenue growth over
the previous quarter and the corresponding consensus in related
calculation. The experiments are performed on a Macbook Pro with
2.6 GHz 6-Core Intel Core i7 and 32 GB 2400 MHz DDR4.

Note most existing deep/machine learning work on financial
time series prediction is point estimation [14, 23]. Classical multi-
variate time series models in statistics/econometrics literature, e.g.,
vector autoregressive (VAR), do not capture event impacts to future
values and usually assume normal distribution with constant mean
and standard deviation. To the best of our knowledge, there is no
directly comparable prior work to benchmark performance of this
pioneering work quantitatively.

5.2 Experimental Results
Event Intensity. We first report the mean and standard deviation

of per sample log likelihood values for consensus change inten-
sity estimation in Table 1. We can see that our proposed PGEM
obtains larger average likelihood values than the two extended
MHP models in train and test for both US and Japan markets. This
implies that data-driven method in learning temporal event depen-
dency performs better than multivariate point process with domain
knowledge. In addition, the likelihood values of US market is larger
than that of Japan market which is due to richer consensus updates
on US companies.

Table 1: Per sample log likelihood (mean ± std) for estimating
intensity of consensus change

Market Models Train Test

US
PGEM -2.58±0.30 -2.45±0.37
MHP (exp) -3.32±0.41 -3.30±0.51
MHP (sig) -3.22±0.37 -3.26±0.51

Japan
PGEM -2.83±0.71 -2.95±0.80
MHP (exp) -4.10±0.58 -4.09±0.70
MHP (sig) -4.15±0.66 -4.16±0.76

Next we visualize the learned graph structure for consensus
change to illustrate event dependency. In Fig. 1, we show 3 most
common learned structures along with the averaged parameters
over all different companies. Fig. 1 (a) indicates that when revenue
release occurred in the past 2 days, a consensus change is more
likely to occur, where the consensus change intensity (𝜆𝐶 |𝑅=1 =

0.85) is about 17 times of that (𝜆𝐶 |𝑅=0 = 0.05) if there are no revenue
release occurred in the same window. Fig. 1 (b) show the similar
influence of revenue release to consensus change (1.50 vs 0.11) as
well as consensus change following its previous update. Fig. 1(c)
show that future revenue release also impact the rate of consensus
update. Finally, the learned window size implies that the event

Revenue

Consensus

𝑤𝑖𝑛𝑑𝑜𝑤!→# = 2	𝑑𝑎𝑦𝑠
𝜆#|!%& = 0.05
𝜆#|!%' = 0.85

(a) #1 frequent graphical event structure

Revenue

Consensus

𝑤𝑖𝑛𝑑𝑜𝑤!→# = 3	𝑑𝑎𝑦𝑠
𝑤𝑖𝑛𝑑𝑜𝑤#→# = 1	𝑑𝑎𝑦𝑠
𝜆#|#%&,!%& = 0.11
𝜆#|#%&,!%( = 1.50

(b) #2 frequent graphical event structure

Consensus

Revenue
(future)

𝑤𝑖𝑛𝑑𝑜𝑤!→# = 4	𝑑𝑎𝑦𝑠
𝑤𝑖𝑛𝑑𝑜𝑤#→# = 1	𝑑𝑎𝑦𝑠
𝜆#|#%&,!%& = 0.11
𝜆#|#%&,!%( = 0.40

(c) #3 frequent graphical event structure

Figure 1: Top 3most frequent learned PGEMmodels over Rev-
enue and Consensus release events: (a), (b), and (c) account
for 46.4%, 28.0%, and 16.8% of all the datasets, respectively.

causal impact concentrates in a short time window ranging from 1
to 4 days.

Finally, we compare predicted and actual consensus update in-
tensity over dates to release. For each company, we compute the
average number of consensus changes over the 2000 simulations
and summarize the value for all the companies as histogram nor-
malized by the total events over dates to release. As shown in Fig. 2,
consensus change highly concentrates around release dates and its
intensity decreases quickly as dates to release increase. In addition,
the learned consensus change densities of all our 3 models match
that of actual adjustments, which validates that our proposed mod-
els can recover the probability of consensus adjustments. Moreover,
PGEM performs better than MHPs, especially right before release
time, based on the big spikes. This is consistent with the observation
from log likelihood values in Table 1.

Event Magnitude. To illustrate the effectiveness of the consen-
sus magnitude model, we compute the correlation of the actual
consensus values and the predicted ones given the actual history
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(a) US Market

(b) Japan Market

Figure 2: Normalized histogram of average number of con-
sensus adjustments vs days to release.

up to the corresponding updates for each company and plot the
(normalized) histograms of these correlations in Fig. 3. To validate
the benefit of the adjustment term with the learnable coefficient 𝛼
in the consensus magnitude model Eq. (8), we compare the distri-
bution of correlations for the learned 𝛼 (as shown in Fig. 3a and
3b) against that for the fixed 𝛼 = 0 (as shown in Fig. 3c and 3d).
Note that 𝛼 = 0 means not using the adjustment term. We see that
compared to the distribution without the adjustment term, the dis-
tribution with the adjustment tends to have higher correlation with
the actual values. In particular for the US market, the correlation
value is more concentrated around and closer to 1. This justifies the
effectiveness of our model for consensus magnitude Eq. (8) with the
adjustment term. In addition, the correlations in Fig. 3a are much
more concentrated than those in Fig. 3b. This is because consensus
of the selected US companies is much more frequently updated
than those companies in the Japan market. In other words, we have
richer data to train the model. On the contrary, as demonstrated in
Fig. 4, the revenue prediction of US companies is more spread than
that of Japan companies, which implies that market information
has been efficiently taken into account via consensus update for
the select US stocks.

Profitability. Ultimately, we evaluate our proposed probabilistic
framework and novel probabilistic models for event and returnmod-
eling via key performance indicators (KPIs) of simulated portfolios.
We use the results from our best event intensity model (PGEM) and
its combination with variants of return distribution models. We

(a) US: learned 𝛼 in Eq. (8) (b) JP: learned 𝛼 in Eq. (8)

(c) US: fixed 𝛼 = 0 in Eq. (8) (d) JP: fixed 𝛼 = 0 in Eq. (8)

Figure 3: Consensus magnitude: histogram plot for correla-
tion of predicted consensus magnitude and actual value.

(a) US (b) JP

Figure 4: Revenue magnitude: histogram plot for correlation
of predicted revenue magnitude and actual values.

create 2000 trials of daily returns in the test period for each compa-
nies and construct fully invested long-only portfolios that achieve
a given objective, i.e., minimum volatility (Min Vol) or maximum
Sharpe ratio (Max SR). The former one reflects the robustness of
dynamic variance-covariance prediction and the latter one brings
return forecasting into the picture. Based on the projected port-
folio returns, we calculate 4 KPIs, i.e., annualized return (Annu.
Ret), volatility (Vol), Sharpe ratio (SR), and maximum drawdown
(MDD), as shown in Table 2. Here we select two common prac-
tices as baselines: 1) Equal Weights that distributes funding equally
into all the stocks, which represents the market; 2) 𝑟3 that portfo-
lio returns are assumed as multivariate normal distribution with
constant parameters.

For respective portfolio optimization objective, our proposed
model 𝑟1 performs the best which validates the benefits of taking
into account dynamic event impacts in modeling both the mean and
variance-covariance matrix of the return distribution. If we keep
the variance-covariance matrix as constant as model 𝑟2, compared
to 𝑟3, we observe that Annu. Ret increases for Max SR but decreases
for Min Vol. This implies that return prediction is improved by in-
corporating event impact but the accuracy of variance-covariance
estimation is scarified. The baseline Equal Weights portfolio that
neither impact of crucial events nor historical information is lever-
aged to predict future stock returns performs the worst considering
all the 4 KPIs. We observe similar KPIs from simulated portfolio
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Table 2: Portfolio performance – US Market

Normal Dist. Objective Annu.
Ret.

Vol SR MDD

𝑟1: 𝜇𝑖 (𝑡),𝑣𝑖 (𝑡)
Max SR 9.70% 15.87% 0.66 25.39%
Min Vol 9.07% 12.41% 0.76 18.63%

𝑟2: 𝜇𝑖 (𝑡)
Max SR 7.54% 14.74% 0.57 21.76%
Min Vol 7.89% 14.36% 0.60 23.04%

𝑟3: 𝜇0, 𝑝𝜎
Max SR 7.46% 14.07% 0.58 24.23%
Min Vol 8.18% 12.19% 0.71 18.59%

Equal Weights 5.70% 14.68% 0.45 24.81%

using Japan market data and skip the presentation due to space
limitation.

6 DISCUSSION AND FUTUREWORK
In this paper, we for the first time present a probabilistic framework
to model the impact of stochastic events on multivariate financial
time series. We apply the framework to model two types of events,
i.e., quarterly revenue release and consensus change, and their
impact to predict future stock returns and evaluate its performance
using two sets of market data. Experiment results show that our
model can recover the probability of event intensity and provide
insight on casual event relationships as well as achieve improved
portfolio performance over baseline models that are widely used in
practice and literature for simplicity.

Although we demonstrate our proposed framework with these
three financial variables, our probabilistic framework is generically
applicable to other events, such as change of credit ranking, new
product release, merging and acquisition, to name a few, as wells
other financial variables, such as exchange rate, bond yield, and
commodity future, etc. The events can be extracted from regular
reports (e.g, quarterly earning reports), time series (e.g., based on
thresholding the stock price series [19]), and news. Our model also
can be easily extended to consider the inter-dependencies of magni-
tudes among different companies to reflect chain reaction of stock
valuation [2] and other information. Moreover, all the probabilistic
models in our generic probabilistic framework can be replaced by
complicated/advanced model, such as neural networks for mean
or variance-covariance prediction of stock returns, ARCH/GARCH
models to predict return variance, or non-symmetric distributions
for event and/or time series. However, financial forecasting prob-
lems usually involve large number of time series entities, limited
sample sizes, correlated samples and low signal strengths which
may lead to overfitting by using high complex models. In the fu-
ture, we plan to deepen our models to applications related to high-
frequency financial time series and interpretation of events from
real-time noisy market news.
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