
MIT Open Access Articles

Searching for Fast Demosaicking Algorithms

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ma, Karima, Gharbi, Michael, Adams, Andrew, Kamil, Shoaib, Li, Tzu-Mao et al. 2022. 
"Searching for Fast Demosaicking Algorithms." ACM Transactions on Graphics.

As Published: http://dx.doi.org/10.1145/3508461

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/146387

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146387
https://creativecommons.org/licenses/by/4.0/


172

Searching for Fast Demosaicking Algorithms

KARIMA MA, Massachusetts Institute of Technology

MICHAEL GHARBI, ANDREW ADAMS, and SHOAIB KAMIL, Adobe Systems Inc

TZU-MAO LI, University of California San Diego

CONNELLY BARNES, Adobe Systems Inc

JONATHAN RAGAN-KELLEY, Massachusetts Institute of Technology

Fig. 1. We use a combination of learning and program search to automatically synthesize efficient, high-quality demosaicking algorithms. They significantly

advance the Pareto frontier of cost vs. quality over prior state-of-the-art methods from 10 s to 1000 s of operations per pixel (plot, right). They are at least

1dB higher quality at the same cost, or 5–10× faster at the same quality, relative to prior published algorithms. Visual quality is noticeably improved on

challenging image content (note the Bayer grid speckling and zippering artifacts in the LMMSE, GradientHalide, and VNG outputs). The only prior methods

which offer higher quality than ours are large convolutional models 2–3 orders of magnitude more computationally expensive (Demosaicnet, Henz at al.).

In addition to traditional Bayer demosaicking shown here, we present Pareto-dominant algorithms for demosaicking from X-Trans sensors, and for joint

demosaicking superresolution and superresolution alone.

We present a method to automatically synthesize efficient, high-quality

demosaicking algorithms, across a range of computational budgets, given

a loss function and training data. It performs a multi-objective, discrete-

continuous optimization which simultaneously solves for the program

This work was partially supported by DARPA agreement HR00112090017 and NSF
award CCF-1723445. GPU compute resources were provided by Crusoe Energy.
Authors’ addresses: K. Ma and J. Ragan-Kelley, Massachusetts Institute of Technol-
ogy; 32 Vassar St, Cambridge, MA 02139; emails: {karima, jrk}@mit.edu; M. Gharbi,
A. Adams, S. Kamil, and C. Barnes, Adobe Systems Inc; 601 Townsend St, San Fran-
cisco, CA 94103, 345 Park Avenue San Jose, CA 95110, 104 Fifth Ave, 4th Fl, New
York NY 10011, 801 N. 34th Street Seattle, WA 98103; emails: mgharbi@adobe.com,
andrew.b.adams@gmail.com, kamil@adobe.com, connellybarnes@gmail.com; T.-M.
Li, University of California San Diego, 9500 Gilman Drive, Mail Code 0404 La Jolla,
CA 92093-0404; email: tzli@ucsd.edu.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

© 2022 Association for Computing Machinery.
0730-0301/2022/05-ART172
https://doi.org/10.1145/3508461

structure and parameters that best tradeoff computational cost and im-

age quality. We design the method to exploit domain-specific structure for

search efficiency. We apply it to several tasks, including demosaicking both

Bayer and Fuji X-Trans color filter patterns, as well as joint demosaicking

and super-resolution. In a few days on 8 GPUs, it produces a family of

algorithms that significantly improves image quality relative to the prior

state-of-the-art across a range of computational budgets from 10 s to 1000 s

of operations per pixel (1 dB–3 dB higher quality at the same cost, or 8.5–

200× higher throughput at same or better quality). The resulting programs

combine features of both classical and deep learning-based demosaicking

algorithms into more efficient hybrid combinations, which are bandwidth-

efficient and vectorizable by construction. Finally, our method automati-

cally schedules and compiles all generated programs into optimized SIMD

code for modern processors.

CCS Concepts: • Software and its engineering → Genetic program-

ming; • Computing methodologies → Image processing; Machine

learning; Artificial intelligence;

Additional Key Words and Phrases: Demosaicking, super-resolution, do-

main specific programming, differentiable programming, neural architec-

ture search, data driven methods

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.

https://orcid.org/0000-0003-4180-6433
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3508461


172:2 • K. Ma et al.

ACM Reference format:

Karima Ma, Michael Gharbi, Andrew Adams, Shoaib Kamil, Tzu-Mao Li,

Connelly Barnes, and Jonathan Ragan-Kelley. 2022. Searching for Fast De-

mosaicking Algorithms. ACM Trans. Graph. 41, 5, Article 172 (May 2022),

18 pages.

https://doi.org/10.1145/3508461

1 INTRODUCTION

Demosaicking is among the most ubiquitous and performance-

critical image processing tasks. As the critical first step, it can make

or break the results of the entire camera imaging pipeline: any de-

tail lost in demosaicking is gone forever, while any false detail in-

troduced becomes a complex spatial structure nearly impossible to

remove downstream. Balancing the two concerns is difficult, and

the problem is ill-posed, so there is no correct answer. At the same

time, demosaicking must often be performed under extreme com-

putational budgets: a single stream of 4K 60 FPS video requires

processing 0.5 gigapixels per second. Even if we dedicate one of

the cores in a high-end mobile processor (CPU, GPU, or DSP) just

to the task of demosaicking, with perfect SIMD utilization, this still

leaves time for at most a few hundred operations per pixel.

Faced with this challenge, current demosaickers generally target

one of two extremes (Figure 1). Most widely-deployed implemen-

tations, from cell phones to Adobe Camera Raw, are limited to at

most 100s of operations per pixel of highly-optimized computation,

hand-crafted to invert a single specific color filter array [Hirakawa

and Parks 2006; Zhang and Wu 2005]. With this, they deliver rea-

sonable image quality but struggle to avoid artifacts like Moiré

and false detail in challenging situations. Meanwhile, deep learn-

ing and optimization-based methods have emerged which dramat-

ically improve quality, and more easily generalize to different color

filter arrays and other problem variants, but at the cost of 2–3 or-

ders of magnitude more computation (hundreds of thousands to

millions of operations per pixel), putting them out of reach of most

practical use cases [Gharbi et al. 2016; Heide et al. 2014]. Depend-

ing on the chosen implementation, demosaicking can take any-

where from 25% to 85% of the Adobe Camera Raw ISP runtime.

We develop new families of efficient, learned demosaicking al-

gorithms which significantly improve the state-of-the-art image

quality achievable across the whole range from 10 s to 1000 s of

operations per pixel. In addition to the common Bayer pattern, we

also develop demosaicking algorithms for the Fuji X-Trans pattern,

and that jointly solve demosaicking and super-resolution from a

Bayer pattern.

Our programs are Pareto-dominant: they offer both significantly

higher quality (1 dB–3 dB) at the same computational cost as any

prior algorithm in the same range, and can deliver comparable

or better image quality at dramatically lower computational cost

(8.5–220× or more). They are designed for efficient stream-

ing SIMD implementation, and automatically compile to highly-

optimized kernels for modern processors.

We generate this family of new algorithms automatically by de-

veloping a multi-objective, discrete-continuous search which si-

multaneously solves for the program structure and parameters to

find the best tradeoff between computational cost and image qual-

ity in a target range of computational budgets. The search is driven

by the same loss function and training data as recent demosaicking

and super-resolution neural networks [Anwar and Barnes 2020;

Chu et al. 2021b; Dong et al. 2014; Gharbi et al. 2016; Henz et al.

2018; Shi et al. 2016; Wang et al. 2018]. However, we found stan-

dard neural architecture search (NAS) techniques to be insuffi-

cient for our task: these methods usually target highly regular and

extremely over-parameterized models. We focus on low-cost mod-

els, which requires a careful design that exploits domain-specific

structure. Our search produces state-of-the-art results in 4–5 days

on 8 GeForce Titan Xp GPUs—on the same order as the cost of

training a single neural network to convergence. The resulting pro-

grams combine features of both classical and deep learning-based

demosaicking and super-resolution algorithms into more efficient

hybrid combinations, composing building blocks into algorithms

that are bandwidth-efficient and highly vectorizable by construc-

tion. Finally, our method automatically schedules and compiles

any program produced by the search into highly-optimized SIMD

code.

We believe our approach lays the foundation for automatically

optimizing image processing pipelines for performance and qual-

ity, combining the advantages of both classical algorithms and

deep learning to produce better, more efficient algorithms than

currently exist. For example, in addition to three variants of the

demosaicking problem, we show that our search method can

also produce Pareto-dominant programs for the task of the high-

performance super-resolution, alone.

In summary, we make the following contributions:

— New, state-of-the-art Bayer & X-Trans demosaicking, joint

demosaicking with super-resolution, as well as standalone

super-resolution algorithms that dramatically outperform

prior work across the most commercially relevant range of

computational budgets.

— A method for automatically generating such algorithms that

span a wide range of compute budgets.

— We show that adding domain-specific primitives and search

structures significantly improves the performance-quality

tradeoffs achievable by differentiable program search on im-

age processing tasks in the low-cost regime.

— We define a search space that generates SIMD and locality-

friendly algorithms by construction, and a compiler that

exploits this structure to automatically generate highly-

optimized streaming implementations.

2 RELATED WORK

Our approach combines genetic program search with gradient-

based optimization of differentiable programs, applying insights

from machine learning and classical algorithms, to automatically

search for efficient demosaicking programs that cover a large spec-

trum of the quality-performance tradeoff space.

2.1 Image Demosaicking

Reconstructing full-color images from color filter arrays is a well-

researched, but inherently ill-posed, problem whose solutions

must balance quality and efficiency [Li et al. 2008]. Demosaicking

errors typically occur at edges, creating false “zipper” patterns or

“maze” artifacts, but they can also affect large spatial regions, caus-

ing color fringing, false color Moiré patterns, or over-smoothing.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.

https://doi.org/10.1145/3508461


Searching for Fast Demosaicking Algorithms • 172:3

Classical algorithms share two key design elements: they use edge-

adaptive directional filters to avoid smoothing over edges [Hamil-

ton Jr and Adams Jr 1997; Hibbard 1995], and they exploit cross-

channel correlations to guide the interpolation of the missing red

and blue values, using an estimate of the more densely sampled

green channel. For example, the smooth hue prior [Cok 1987] pre-

dicts smooth variations of differences or ratios between colors.

Many proposed methods improve edge and color correlation de-

tection, and sometimes jointly address denoising [Alleysson et al.

2005; Buades et al. 2009; Dubois 2005; Duran and Buades 2014;

Hirakawa and Parks 2005, 2006; Kiku et al. 2013; Menon and Cal-

vagno 2009; Niu et al. 2018; Zhang et al. 2009, 2011].

A different class of algorithms cast demosaicking as an in-

verse problem and solve for the full-color image using optimiza-

tion [Chang et al. 2015; Condat and Mosaddegh 2012; Getreuer

2011; Heide et al. 2014; Kokkinos and Lefkimmiatis 2018; Tan

et al. 2017a]. While these methods achieve high-quality demo-

saicking, the large computational cost of optimization limits their

applicability.

Data-driven techniques optimize the parameters of demosaick-

ing algorithms using ground truth natural images [Go et al. 2000;

Kapah and Hel-Or 2000; Khashabi et al. 2014; Kwan and Wu

2004; Li et al. 2018]. Recent approaches use convolutional neu-

ral networks [Gharbi et al. 2016; Henz et al. 2018; Klatzer et al.

2016; Kokkinos and Lefkimmiatis 2018, 2019; Liu et al. 2020;

Ratnasingam 2019; Tan et al. 2018, 2017b]. Deep learning meth-

ods achieve state-of-the-art quality, but remain computationally

expensive.

2.2 Super-resolution

Super-resolution recovers a high-resolution image from one or

more low-resolution images. Classical iterative algorithms are of-

ten computationally expensive and rely on image degradation pri-

ors which can hinder their robustness [Yang and Huang 2017]. It

is also difficult to avoid over blurring and introducing artifacts like

false high frequencies and jagged edges. SRCNN introduced a mod-

ern convolutional neural network for super-resolution [Dong et al.

2014]. Subsequent work has introduced much larger models, some

with over 1,000 convolutional layers [Zhang et al. 2018]. Despite

producing state of the art image quality, these models are too ex-

pensive to run in most commercial applications. Unfortunately, ex-

isting fast super-resolution models like SRCNN and ESPCN [Shi

et al. 2016] perform dramatically (2–3 dB) worse than large mod-

els (see Figure 8).

An even more challenging problem is super-resolving images di-

rectly from raw camera data. An overwhelming majority of photos

are taken today by smartphone cameras. Their portability requires

small sensors with limited resolution. Such cameras would bene-

fit greatly from joint super-resolution and demosaicking programs.

Traditional approaches to joint super-resolution and demosaicking

require slow iterative optimization like coordinate descent [Farsiu

et al. 2004] or clustering [Bennett et al. 2006]. Recent deep convo-

lutional models [Qian et al. 2019; Xing and Egiazarian 2021] can

take minutes to process a high-resolution image on a CPU, mak-

ing them too slow to run in most commercial image processing

pipelines.

2.3 Neural Architecture Search and Genetic

Programming

NAS and genetic programming methods automatically generate

programs that maximize some (often single) objectives, such as

classification accuracy [Koza and Koza 1992; Zoph and Le 2016].

In graphics, genetic programming has been used for shader simpli-

fication [He et al. 2015; Sitthi-Amorn et al. 2011; Wang et al. 2014]

and image pipeline optimization [Lou et al. 2016a].

The space of NAS and genetic programming approaches can

be understood in terms of how they define their program search

space, their search strategy, and their performance evaluation cri-

teria [Elsken et al. 2019]. Our search algorithm can be viewed as a

multi-objective NAS via genetic programming. Unlike most NAS

methods, our search procedure focuses on low-cost algorithms

and uses domain-specific program structures to design an efficient

search space. It discovers fast and high-quality demosaicking pro-

grams that significantly outperform models produced by generic

NAS baselines (Section 4.2) and super-resolution programs that

achieve nearly comparable quality to models that are 84×more ex-

pensive produced by a prior multi-objective NAS technique [Chu

et al. 2021b].

Search Space. To make the search tractable, NAS search spaces

are often constrained to fixed-structure compositions (e.g., stacks)

of repeated cells made of coarse-grained network building blocks

(convolutions, skip connections, activations, etc.) [Zhong et al.

2018; Zoph et al. 2018]. This often leads to expensive models,

with a limited structural variation. In contrast, because we are in-

terested in efficient programs, we search over the complete pro-

gram structure via local directed acyclic graph (DAG) mutations

and include domain-specific operators beyond conventional NAS

building blocks (Section 3.1). We factor our search space into se-

mantically meaningful sub-tasks, which reduces the combinatorial

complexity and improves quality (Section 3.2.3).

Search Strategy and Evaluation criteria. Although network prun-

ing [Blalock et al. 2020] remains the most popular technique to

speed up trained models, recent NAS work has explored multi-

objective optimizations that account for model efficiency [Ander-

son et al. 2019; Chu et al. 2021b; Gong et al. 2019; Zhou and Diamos

2018]. However, few enable full exploration of the cost–quality

tradeoff. [Tan et al. 2019; Zoph and Le 2016] collapse the two ob-

jectives into a single scalar reward, which prevents sampling along

the Pareto curve during training, and limits user control. We use

a variant of genetic search that allows us to sample the models we

mutate and retain after each generation based on their dominance

across the Pareto frontier. LEMONADE [Elsken et al. 2018] and

FALSR [Chu et al. 2021a] also use multi-objective genetic search,

but LEMONADE only samples models to mutate based on their

costs.

Generated Model Efficiency. All prior NAS approaches we know

search over cost regimes orders of magnitude more expensive than

ours. MnasNet [Tan et al. 2019], which targets image classification

on smartphones, produces models that are 10 to 100×more expen-

sive than ours. FALSR [Chu et al. 2021a] produces super-resolution

models with 326 k to 1021 k parameters, while our programs have

under 10 k.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



172:4 • K. Ma et al.

Fig. 2. System overview. We define a search space over demosaicking programs that consist of DAGs of both conventional neural network and domain-

specific image processing building blocks. We further factor this space into a search over green prediction and chroma prediction sub-programs. We use

genetic search combined with Pareto sampling to select which programs to mutate and maintain across generations. The Pareto dominance of our programs

is measured by our cost model, which estimates the computational cost, and a cheap training process, which estimates the quality of a given program.

3 TECHNIQUE

To generate demosaicking algorithms that balance cost with qual-

ity, we must efficiently search over a large number of candidate

programs. Each program is differentiable and parameter-heavy,

and needs to be trained on a large dataset. The key constraint driv-

ing our design decisions below is thus the time it takes to run the

search. We take measures to decrease the time it takes to train each

program, and to reduce the combinatorial complexity of our search

space towards programs that are likely to be fast and high-quality.

We use a genetic search algorithm that populates each genera-

tion with mutations of the best-performing programs of the pre-

vious generation. Figure 2 illustrates the overall system. Because

we are optimizing for multiple objectives, the notion of “best-

performing” is not simple. We want high-quality programs that

span a range of runtime budgets. We, therefore, divide the cost axis

into cost tiers, and mutate and maintain programs from each tier

based on their proximity to the Pareto frontier. We estimate pro-

gram quality with a fast training procedure on a small dataset and

we estimate computational cost with a simple model (a weighted

sum of operations performed). From the final generation, we take

the top 100 programs ranked by their Pareto-dominance, compile

them to efficient Halide [Ragan-Kelley et al. 2012] implementations

to measure true cost, and train them on the entire dataset to get

true quality.

In the rest of this section, we first detail the domain-specific

building blocks from which our search constructs programs

(Section 3.1) then describe the genetic search process (Section 3.2),

before finally describing our automatic compilation pipeline

(Section 3.3).

3.1 Building Blocks

We design our search primitives based on four criteria. First, they

need to be efficient to evaluate. Second, we need to be able to easily

compose them into a meaningful pipeline. Third, they need to be

differentiable to allow end-to-end training. Finally, they need to be

sufficient to express existing demosaicking algorithms—both clas-

sical feed-forward demosaicking algorithms and deep-learning-

based demosaicking and super-resolution algorithms (Figure 3).

Fig. 3. We construct our program search space using building blocks in-

spired by both classical edge-adaptive (a) and deep-learning-based (b) de-

mosaicking algorithms. We follow the classical regime by first reconstruct-

ing the green color (G), then reconstructing the red and blue (R/B) colors

by predicting the difference between them and the reconstructed green

color. Classical edge-adaptive demosaicking often selects between direc-

tional 1D filters for green colors to adapt to edges. Therefore, we include

both 1D and 2D grouped convolutions, a softmax layer, element-wise mul-

tiplication, and sum reductions to reproduce this. For the deep-learning

regime, we incorporate the commonly used packing and unpacking prim-

itives (b) that pack a Bayer pattern into translation-invariant images and

unpack them back to the input resolution. We also include standard deep

learning primitives including convolutional and pooling layers, pixel-wise

operations with potential inter-channel computation, including element-

wise operations, a stack operator, and variants of 1× 1 convolution layers.

Due to the higher sampling rate of the green channel in mosaic

patterns, inspired by classical demosaicking algorithms [Cok 1987;

Hibbard 1995], we factor our program search to first reconstruct

the green image, and then use the green image to guide the

reconstruction of the other two channels. Classical demosaick-

ing algorithms often reconstruct the green channel using an

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



Searching for Fast Demosaicking Algorithms • 172:5

edge-adaptive selection from several local directional fil-

ters [Adams Jr 1995; Hirakawa and Parks 2005; Zhang et al. 2011].

Unlike conventional NAS, we include both 1D and 2D grouped

convolution layers [Xie et al. 2017] to allow for directional filters

and a softmax primitive, element-wise multiplication, and sum

reductions to enable differentiable selection across filters. 1D con-

volutions also provide computational savings over linearly separa-

ble 2D convolutions. We also include variants of 1× 1 convolution

layers and channel-wise sum reductions to facilitate inter-channel

communication.

Classical demosaicking algorithms often reconstruct red and

blue channels by predicting their differences to the green channel.

We include element-wise operations like addition and subtraction

to model this technique. Our element-wise operators and stack op-

erator also support residual connections [He et al. 2016] by com-

bining intermediate outputs along the channel dimension.

Some deep-learning-based methods for demosaicking [Gharbi

et al. 2016; Liu et al. 2020] use a packing layer that packs each

repeating 2 × 2 grid in the Bayer pattern into four translation-

invariant image channels (two green, one blue, and one red), and

an unpacking layer that converts a 4 channel image back to the

full resolution grid. But mosaic patterns may have different peri-

odicities. For example, the Bayer pattern has a 2 × 2 period but

the X-Trans pattern has a 6 × 6 period. We support the correct

handling of different mosaic patterns with packing and unpacking

operations parameterized by scale. Unpacking layers are also com-

monly used by deep super-resolution models [Anwar and Barnes

2020; Qian et al. 2019; Shi et al. 2016; Wang et al. 2018] in an up-

sampling layer to move information from the channel dimension

into the spatial dimensions.

Upsampling and Downsampling are another set of important

domain-specific building blocks for tasks like demosaicking and

super-resolution. Downsampling is an efficient alternative for in-

creasing a model’s receptive field for recognizing high-frequency

patterns and avoiding moiré artifacts, compared to the conven-

tional approach of adding convolutional layers. We support mul-

tiple types of upsampling and allow our search to choose which

ones to use. Our upsampling operators are: Unpack, Bicubic, and

LearnedUpsample via transposed convolution. For Downsample

we use a Pack or a LearnedDownsample which is a strided con-

volution with a filter width twice as large as the stride for proper

anti-aliasing.

Finally, we designed insertion functions that insert predicted

color values into their proper color channels with the given color

values from the mosaic to produce full red, green, and blue images.

These specialized functions allow our programs to make location-

aware color predictions and save computation by only predicting

the missing values.

In all, we use the following building blocks:

— element-wise: Add, Sub, Mul, Stack, ReLU
— convolutional: GroupedConv1D, GroupedConv2D
— filter selection: SoftMax
— per-pixel inter-channel computation: GroupedConv1x1,

GroupedSum, InterleavedSum
— upsample: Unpack, Bicubic, LearnedUpsample
— downsample: Pack, LearnedDownsample
— insertion: GreenInsert, ChromaInsert

The convolutional operators GroupedConv1D, GroupedConv2D,

and GroupedConv1x1 are parameterized by the number of groups

and output channels. The filter width is 3 except in the 1 × 1

case. SoftMax is used without scaling parameters. GroupedSum
and InterleavedSum both take an N channel image, and pro-

duce a N /k channel image by summing together values within

the channel group. GroupedSum sums over consecutive channels

while InterleavedSum outputs channel i by summing over chan-

nels i + jN /k for 0 ≤ j < k . All operations are done in single

precision floating point.

3.2 Search Algorithm

We combine multi-objective genetic search and gradient descent to

find Pareto-dominant pipelines represented as DAGs of the build-

ing blocks described above. Our search space requires special mu-

tation rules (Section 3.2.1) both to deal with complex DAG struc-

tures where nodes can have multiple downstream parents to share

computation, and to respect the constraints of special operators

(e.g., that all inputs to a stage be upsampled/downsampled to the

same resolution, and that the output needs to be at the correct tar-

get resolution). Because our search space is very large and allows

for arbitrary DAGs, we factor it using domain-specific knowledge

to reduce its combinatorial complexity, leverage pruning rules to

exclude obviously bad or inefficient programs, and use fast and

robust training methods to quickly explore thousands of models

(Sections 3.2.2 and 3.2.3).

The goal of our search is to explore the design space of fast de-

mosaickers, so we initialize it with two efficient models, shown in

Figure 4, that are based on prior state-of-the-art designs. One seed

model is a small simplified version of Demosaicnet [Gharbi et al.

2016] with fewer layers and channel counts. We do not use the pub-

lished full-size Demosaicnet as a seed model because its through-

put is far below (almost two orders of magnitude lower) than the

range of throughputs for efficient demosaickers. Our other seed

model is inspired by the GradientHalide model [Li et al. 2018]

but uses multiple resolutions via upsampling and downsampling

operators.

To optimize program quality across a range of compute costs, we

bin our programs into cost tiers. After each search generation, we

keep the top 20 programs in each cost tier and sample 12 models

from each tier to mutate for the next generation. The width of each

bin doubles as the programs get larger. The cost tier bins start at 0–

200 FLOPs for green interpolation programs (Section 3.2.3) and 0–

300 FLOPs for blue/red interpolation programs. The blue/red inter-

polation programs are allowed to be more expensive because they

use a green interpolation program to produce one of their inputs.

During each generation, the newly mutated programs are trained

on a small dataset for a few epochs. Programs are trained for 6

epochs on a 100 k image subset of the Demosaicnet dataset during

the search. One could increase the number and width of the cost

tiers to cover lower throughput programs. However, this would in-

crease the search time by adding more expensive programs to train

per generation.

Estimating Cost. We estimate the cost of each program by

traversing the DAG and counting the number of floating point

operations required by the computations performed at each

node, treating operations that can be executed using fused

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



172:6 • K. Ma et al.

Fig. 4. Inputs and outputs of our search: seed programs are shown on the left, derived from prior work, and four green prediction models found by our search

are shown on the right, ordered by increasing computational cost and quality. We use a Demosaicnet [Gharbi et al. 2016] variant and a multi-resolution

demosaicking program inspired by AHD [Hirakawa and Parks 2005] as our seed models. Note how the diverse generated models differ significantly from

the original seeds, how their DAG structures become increasingly complex as quality improves, and how they combine conventional neural building blocks

with our domain-specific primitives. (Convolutional layers denote group count after their filter size).

multiply-add (FMA) as a single operation. The total cost of a

program is the sum of the costs at each node. While this mea-

sure neglects data movement, it successfully estimates relative run-

time, as demonstrated in Section 4, because our programs are con-

strained to operations that can be efficiently blocked or fused for

locality.

Selecting Programs for Mutation. Within each cost tier, we select

which programs to mutate and keep for the next generation using

importance sampling. The likelihood of choosing a program is in-

versely proportional to its Pareto rank compared to other programs

within its tier. Models on the Pareto frontier have rank 1. Models

that would be on the frontier after removing all rank 1 models have

rank 2, and so on. Thus, models are importance sampled based on

their proximity to the current Pareto frontier.

3.2.1 Mutations. Each program selected for mutation is modi-

fied using one of the following operations:

• Insertion chooses, uniformly at random, a building block to

add to the program at a random location in the DAG. If the

chosen insertion location is invalid for the building block, this

mutation rule continues randomly selecting locations until

a valid location is found. If the operation to insert has two

operands, then the second operand is chosen to be the out-

put of some existing sub-DAG of the program. This induces

recurrent connections and shared computations.

• Deletion chooses, uniformly at random, a DAG node to re-

move from the program.

• Resolution Changes Inserting, removing, and moving Up-

samples and Downsamples is tricky. We must ensure that all

resolution-changing mutations preserve the correct output

resolution and do not allow intermediate outputs with differ-

ent resolutions to be combined. To solve this problem, we use

graph coloring and color each node by its output resolution.

This representation allows us to perform resolution change

mutations easily by manipulating color boundaries.

— Create Resolution Change, randomly selects a subgraph

from within a color boundary to compute at a lower reso-

lution relative to its parent boundary. The resolution scale

factor is randomly chosen as either 2 or 3.

— Remove Resolution Change, randomly selects a color

boundary and removes the resolution change it induces by

deleting or inserting Upsamples and Downsamples.

— Shrink Resolution Subgraph, randomly selects a node

at a boundary and changes its resolution to that of the ad-

jacent color across the boundary.

— Swap Resolution Operation, randomly selects a resolu-

tion changing node and changes the type of Upsampling or

Downsampling function used.

• Decouple randomly chooses a sub-DAG shared by more than

one consumer node and duplicates it, allowing later mutations

to modify each copy separately.

• Channel Count Change picks a random convolution oper-

ation and modifies its output channel count.1

• Group Change picks a random convolution operation and

modifies its channel grouping [Xie et al. 2017], where the

allowed groupings are any common factors of the input and

output channel counts of the operation being mutated. Our

1The options for channel count are {8, 10, 12, 16, 20, 24, 28, 32}.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



Searching for Fast Demosaicking Algorithms • 172:7

search finds that using grouped convolutions can provide use-

ful computational savings (Figure 4).

• Green Input Change, used only during the search for

red/blue interpolation programs (Section 3.2.3), modifies a

red/blue program to use a different green subprogram as its

input.

Search is biased towards insertion and deletion over other muta-

tions, because we found this allows generations to increase quality

and decrease cost more quickly.

3.2.2 Fast Training. Each mutated program is trained using gra-

dient descent on a dataset of difficult mosaic patches [Gharbi et al.

2016]. In an ideal world, we would be able to train programs on

the entire dataset to convergence; however, the training time (5–10

GPU-hours per program) would make search intractable. Instead,

we employ a strategy to drastically cut down training time while

still obtaining a good estimate of quality.

First, we constrain the training to use a fixed random subset of

100,000 (out of 2.6 million) images, and only train for 6 epochs.

Both parameters were set based on the exploration of the train-

ing dynamics of our space of programs. We found this setting

produces a good ranking of options that corresponds fairly closely

to the fully-trained results, but in just 10–15 GPU-minutes per

program.

Second, to avoid under-estimating quality due to catastrophic

weight initialization [Frankle and Carbin 2019], we initialize three

sets of weights. We simultaneously train all three sets for one

epoch. After one epoch, we keep training the set of weights with

the best validation PSNR. We observe that bad weight initializa-

tions can usually be detected within the first epoch by comparing

performance across initializations. This strategy greatly improves

the robustness of our quality measurements for a small increase in

training time.

3.2.3 Efficiently Structured Search. We structure the search

space in a number of ways to raise the likelihood of finding inter-

esting points in the quality-efficiency tradeoff space within a fixed

amount of time. Because of the large cost of training each program,

we employ three key strategies, in addition to the structure of our

building blocks, to steer the search towards useful programs:

— We bias the selection of mutations during search towards in-

sertion and deletion (Section 3.2.1);

— We eagerly discard likely-poor programs before training

them;

— We factor the search into the space of subprograms that es-

timate green values and the space of subprograms that use

these green values to interpolate red and blue values.

Because our search is allowed to consider all possible DAGs con-

sisting of our building blocks, mutations may result in programs

that are unlikely to represent interesting points in the tradeoff be-

tween the amount of computation and the quality of the demo-

saicking result. For example, a mutation may insert an operation

that is the inverse of the operation before it (such as an addition

followed by subtraction, or a downsample followed by an upsam-

ple). Similarly, insertions may result in trivial operations (e.g., an

InterleavedSum over a single channel). To avoid spending valu-

able training time on these programs, we eagerly discard them be-

fore the training phase.

We observe that some prior work on demosaicking algorithms

uses different strategies to interpolate green values compared

to blue and red values, due to the presence of twice as many

known green values versus the other colors. Green values are also

predicted first because they serve as a useful guide for predict-

ing red and blue. We, therefore, reduce the combinatorial com-

plexity of the search by factoring it into two separate search

spaces: one for green prediction programs and another for red

and blue prediction programs. We first perform the search over

green-interpolation programs and select a set of generated pro-

grams that are Pareto-dominant over a range of computing costs.

Then the red-blue search can select any of these Pareto-dominant

green-interpolation programs to use as an additional input to the

mosaic to help guide the red and blue interpolation. We show

that this strategy is more efficient than the alternative of search-

ing for a single program that interpolates all values jointly in

Section 4.2.

3.3 Compiling Programs to Optimized Implementations

Compiling our programs to efficient SIMD code is straightforward

and fully automatic, as our building blocks were intentionally se-

lected with this in mind. We compile our programs by lowering

them to Halide [Ragan-Kelley et al. 2012]. We traverse the model

graph, mapping each node to its corresponding Halide implemen-

tation. These are typically 5–10 lines of code each.

Halide code also requires a “schedule” that specifies how the

algorithm runs on the hardware. Generating this is also straight-

forward and fully automatic, again thanks to our choice of search

space. All of our nodes have small spatial support, so we fuse the

entire pipeline in tiles. We compute stages as needed per tile of

output.2 Nodes that only have one consumer are inlined into that

consumer whenever this would not incur recompute (i.e., when the

consumer is not a stencil or reduction over channels). Nodes that

perform a computation that varies across the output channels (e.g.,

Stack) are unrolled across output channels. All nodes that reduce

across input channels (e.g., conv layers) are fully unrolled across

input channels. Upsamples and downsamples are never inlined,

to avoid complicating the addressing patterns of the consuming

stage.

This simple heuristic scheduler gives a performance that corre-

lates extremely well with our cost model, as shown in Figure 10.

Halide includes more complex automatic schedulers (e.g., [Adams

et al. 2019]), but they proved unnecessary in this work.

4 EVALUATION

We evaluate our search technique and the programs it produces

according to cost (program throughput) and quality (PSNR rela-

tive to ground truth) on three demosaicking applications: Bayer

demosaicking, X-Trans demosaicking, and joint Bayer demosaick-

ing with super-resolution. In addition, we evaluate our technique’s

2We used a tile size of 768×240, which was empirically determined on our target x86
processor. Tile size would ideally be re-tuned if compiling for a different target.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



172:8 • K. Ma et al.

Fig. 5. Bayer demosaicking quality vs. throughput on the HDR-VDP and

Moiré datasets for our automatically generated Pareto frontier of pro-

grams, prior state-of-the-art algorithms, and a grid search over Demo-

saicnet variants representative of structured pruning. Our search process

significantly improves the quality vs. performance tradeoff of existing pro-

grams in the real-time performance regime, and spans a frontier of state-

of-the-art algorithms covering a throughput range of 10—100 Megapixels

per second on a single CPU core. Our search found a program that is > 8×
faster than the best baseline model, Gradient Halide with 15 7 × 7 filters,

at the same quality and another program that is >1 dB better at the same

throughput.

generalization to the standalone task of super-resolution. We

compare our programs against the cost and quality of existing

demosaicking, super-resolution, and joint demosaicking super-

resolution methods. We also visualize the outputs of programs pro-

duced by our method that span a wide range of throughputs and

compare them qualitatively to the outputs of our baselines. We fur-

ther evaluate our three key design choices:

(1) We study the usefulness of our domain-specific search prim-

itives by comparing to our search algorithm restricted to tra-

ditional convolutional network primitives.

(2) We evaluate the importance of decomposing the search

into green-prediction followed by red/blue prediction, by

searching for programs that directly predict all three color

channels.

(3) We study the accuracy of our cost model by comparing the es-

timated cost with the actual runtimes of generated programs.

All results are evaluated on held-out test datasets, which we did

not touch during the search process. These are the Set5, Set14, Ur-

ban100, BSD100, Kodak, and McMaster datasets along with 1,000

randomly-selected 128× 128 patches from each of the challenging

HDR-VDP and Moiré datasets used by Gharbi et al. [2016]. All per-

Fig. 6. X-Trans demosaicking quality vs. throughput for our automatically

generated Pareto frontier of programs and state-of-the-art algorithms on

the HDR-VDP and Moiré datasets. Very few demosaicking algorithms exist

that support X-Trans, making our technique vital for finding algorithms at

different points in the quality-performance tradeoff space. Our search pro-

duces a program that is 5.4× faster than Markesteijin with 0.4 dB higher

quality. The highest quality program found by our search is 3.7 dB better

than Markesteijn and more than 100× faster than Demosaicnet, with very

high quality reconstruction at 33.25 dB test set performance.

formance measurements are for a single core on an Intel i9-9960X

CPU @ 3.10 GHz with HyperThreading disabled.3

4.1 Pareto-Dominant Programs

Figures 5, 6, 7, 8 show the Pareto frontier of programs found by

our search along with several existing demosaicking, joint demo-

saicking with super-resolution, and super-resolution algorithms as

baselines. Table 1 lists for each application and test dataset, the

PSNRs and throughputs of all our baseline methods, and a selection

of models found by our search. For demosaicking and joint demo-

saicking with super-resolution tasks, our programs are the result of

40 generations of search over green reconstruction programs, and

40 generations on red and blue reconstruction programs. For the

super-resolution task, our programs are the result of 40 search gen-

erations. Our search process significantly improves the quality vs.

performance tradeoff of existing programs in the real-time perfor-

mance regime, and spans a frontier of state-of-the-art algorithms

covering a throughput range of one to two orders of magnitude in

megapixels per second depending on the application.

3We use single-core performance because all algorithms trivially parallelize in tiles,
and parallelism increases bench-marking noise while not impacting relative perfor-
mance. For our neural network baselines, since there were no fast implementations
available at the time of writing, we used the correlation equation for our programs
between modeled cost and measured runtime to estimate throughput.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



Searching for Fast Demosaicking Algorithms • 172:9

Fig. 7. Joint demosaicking and super-resolution quality vs. throughput for

our automatically generated Pareto frontier of programs and state-of-the-

art algorithms on the HDR-VDP and Moiré datasets. Most work on joint

demosaicking and super-resolution (DNDMSR & TENet) has been focused

on designing deep neural networks that are very computationally expen-

sive. ESPCN+GradientHalide is the best performing baseline out of those

that operate near the regime of throughputs we consider in our search.

Our search produces a program that dominates ESPCN+GradientHalide

by > 30× in throughput and 0.13 dB in quality and another program that is

nearly 1dB better with 1.7× faster throughput. The best joint demosaicking

and super-resolution deep model is DNDMSR, which has 0.84 dB higher

quality than our best program but is more than 300× slower. Our search

produces a dense range of Pareto-dominant joint demosaicking and super-

resolution algorithms across a throughput regime where there were previ-

ously very few options.

4.1.1 Bayer Demosaicking. For the Bayer demosaicking task,

we compare quality and throughput against implementations of

AHD, LMMSE, and VNG4 from librtprocess [CarVac 2021], a li-

brary extracted from RawTherapee [The RawTherapee Team 2021]

(Figure 5). Parameters are set to place these algorithms as close to

the Pareto frontier as possible, typically by tuning for maximum

performance. For AHD, we add a final chroma median filtering

step to replicate what is done in RawTherapee. We also compare

against variants of two published demosaicking algorithms, Gradi-

ent Halide [Li et al. 2018] and Demosaicnet [Gharbi et al. 2016].

We scale the Gradient Halide model by increasing the size and

number of filters and we structurally prune Demosaicnet via grid

search over layer and channel counts to span a range of compute

budgets. For reference we also show where the published version

of Demosaicnet and another even larger neural network demo-

saicker [Henz et al. 2018] lie on the tradeoff space. [Henz et al.

2018] has higher quality than Demosaicnet but is 7.5× slower; both

are orders of magnitude too expensive for most production use

cases. The programs produced by our method cover a wide range

Fig. 8. Super-resolution quality vs. throughput for our automatically gen-

erated Pareto frontier of programs and state-of-the-art algorithms, evalu-

ated on standard super-resolution datasets: BSD100, Urban100, Set5, and

Set14. ESPCN is the best performing baseline out of those that operate

near the regime of throughputs we consider in our search. Our method

found a program that achieves the same PSNR as ESPCN while being

nearly 50× faster and another program that achieves 1.45 dB better qual-

ity while being 2× faster. SRCNN and ESPCN are significantly Pareto-

dominated by our models which shows that finding efficient high-quality

super-resolution models requires more than just scaling down a deep con-

volutional neural network. The fastest large neural network, FALSR-B, is

0.47 dB better than our best model but 90× slower.

of compute budgets and significantly outperform all of our base-

lines. Our method produces programs that achieve significantly

better image quality (> 1 dB) at the same compute budget of exist-

ing baselines, or comparable image quality with nearly 10× higher

throughput. Figure 11 visualizes the demosaicked outputs of 3 pro-

grams produced by our method compared to the outputs of our

baseline methods and Demosaicnet on images from our test sets.

Our programs avoid producing the artifacts seen in the baselines,

such as zippering in the first column of LMMSE, AHD, and Gra-

dient Halide, color fringing and Bayer grid artifacts in the second

column of AHD and GradientHalide, and the Bayer grid and zip-

pering artifacts in the fifth and sixth columns of LMMSE. As ex-

pected, the output quality of our programs improves as their cost

increases.

4.1.2 X-Trans Demosaicking. It is even more difficult to write

good demosaicking algorithms for the X-Trans mosaic due to

its large periodicity and irregular pattern. This is evidenced by

the fact that very few X-Trans demosaicking algorithms have

been created compared to those for Bayer. In such cases, it is

especially beneficial to have a system that can automatically gen-

erate good demosaickers. For the X-Trans demosaicking task we

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



172:10 • K. Ma et al.

compare against the Markesteijn algorithm, also from RawTher-

apee, and the X-Trans variant of Demosaicnet (Figure 6). Our

search produced a program that is 3.2 dB better in quality than

Markesteijn at a similar throughput, and another program that is

5.4× faster than Markesteijn and 0.4 dB better in quality. The high-

est quality program found by our search is a staggering 3.7 dB bet-

ter than Markesteijn and more than 100× faster than Demosaic-

net while producing high quality outputs with a test set perfor-

mance of 33.25 dB on the difficult HDR-VDP and Moiré datasets.

Figure 12 visualizes the outputs of 3 programs produced by our

method that cover a range of throughputs as well as the outputs of

the Markesteijn algorithm and the X-Trans Demosaicnet variant.

Our programs avoid the artifacts produced by the Markesteijn al-

gorithm such as the moire artifacts in the first and third column,

the color fringing in columns 2 through 6, and the maze pattern in

the third column.

4.1.3 Joint Bayer Demosaicking and Super-resolution. Most re-

cent work on super-resolution has been focused on designing

high quality models in a very low throughput regime of less than

0.002 Megapixels per second (e.g., DRLN [Anwar and Barnes 2020],

RCAN [Zhang et al. 2018], PROSR [Wang et al. 2018]). FALSR [Chu

et al. 2021b] uses genetic search to find cheaper super-resolution

models but the fastest model produced by their approach, which

operates at less than 0.05 Megapixels per second, is still 50× slower

than the slowest model produced by our method with less than

0.5 dB higher quality. ESPCN [Shi et al. 2016] and SRCNN [Dong

et al. 2014] are two smaller super-resolution models that operate

closer to the throughput regime we consider for real-time perfor-

mance programs and we compare to them as baselines for our

super-resolution applications.

For the joint Bayer demosaicking and super-resolution task we

compared against the best variant of the GradientHalide model

(15 filters, each 7 × 7) for demosaicking chained with either

SRCNN, ESPCN, or bicubic upsampling. We also show perfor-

mance of Demosaicnet chained with SRCNN, ESPCN, and bicu-

bic upsampling for completeness. For context, we report the

performance of several large super-resolution deep neural net-

works: DRLN, ProSR, RCAN, and FALSR, each chained with De-

mosaicnet, and two joint demosaicking super-resolution deep neu-

ral networks: TENet [Qian et al. 2019] and DNDMSR [Xing and

Egiazarian 2021], which all lie outside the typical commercial ap-

plication throughput requirements.

ESPCN+GradientHalide is the best performing baseline out

of those that operate near the regime of throughputs we con-

sider in our search. Our search found a program that dominates

ESPCN+GradientHalide by >30× in throughput at similar quality

and another program that is nearly 1 dB better and 1.7× faster.

The best joint demosaicking and super-resolution deep model is

DNDMSR, which has 0.84 dB higher quality than our best pro-

gram but is more than 300× slower. Note that chaining an ex-

pensive model like Demosaicnet with SRCNN produces a model

with 40× lower throughput than our best program with only

0.25 dB higher quality, but for only a 3× decrease in throughput

our search can improve program quality by more than 0.25 dB,

indicating that it is more efficient to search over a joint model.

Our search produces a dense range of Pareto dominant joint de-

Fig. 9. Search space design ablation. Our domain-specific building blocks

and search space factorization yield significant improvements to the

achievable Pareto frontier. The gap in program quality between our search

method with and without these domain-specific choices is significant,

with a difference of up to 1 dB between programs with the same through-

put, or a gap of up to 3× in throughput between programs of the same

quality. The further gap in quality between our method without domain

specific choices and a grid search over structurally pruned versions of De-

mosaicnet shows that our method of using genetic search over a space of

programs represented as mutable DAGs is crucial as well.

mosaicking and super-resolution algorithms across a throughput

regime where there were previously very few options. Figure 13

shows the outputs of one of our Pareto dominant programs along

with several of other methods. Our program avoids the high fre-

quency speckling seen in the first and fifth columns, the color fring-

ing in the third column, and the zippering artifacts in the last col-

umn of Bicbuic+GradientHalide, ESPCN+GradientHalide and SR-

CNN+GradientHalide.

4.1.4 Super-resolution. We also applied our method to the

super-resolution task alone and compared against the same super-

resolution models from the joint task excluding TENet and

DNDMSR which are joint models. ESPCN is the best performing

baseline out of those that operate near the regime of through-

puts we consider in our search. Our method found a program that

achieves the same PSNR as ESPCN while being nearly 50× faster

and another program that is 1.45 dB better and almost 2× faster.

SRCNN and ESPCN are significantly Pareto dominated by our mod-

els which shows that finding Pareto-dominant super-resolution

models require more than just scaling down a deep convolutional

neural network. The fastest deep neural network, FALSR-B, is 0.47

dB better than our best model but 90× slower. In Figure 14, we

show the outputs of several other methods along with one of our

Pareto dominant models. SRCNN tends to produce over-blurred

outputs and ESPCN introduces false high frequencies as seen in

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



Searching for Fast Demosaicking Algorithms • 172:11

Fig. 10. Modeled vs. measured runtimes for the four tasks. Our search procedure is guided by estimated program costs from our cost model. It is crucial

that these costs correlate well with the actual runtimes of our programs (or at least monotonically increase with respect to actual runtime) in order for our

search to effectively explore the Pareto frontier of programs. Actual benchmarked runtimes of our programs show that there is a strong correlation between

our estimated costs and true runtimes with R2 ranging from 0.96 to 0.99 across all four applications. Our cost model is accurate in absolute terms, as well:

one unit of cost translates to 1.6 CPU cycles per SIMD vector of output when compiled to AVX2 code on a single core of our Skylake X test machine.

the first, third, and sixth columns. SRCNN also produces zippering

artifacts as shown in the third column.

4.2 Ablation: Search Space Design

We investigate the benefits of our two main design choices: (1) us-

ing domain specific building blocks and (2) modularizing the de-

mosaicking task into chroma reconstruction guided by a green re-

construction sub-task. In Figure 9, we compare our search space

to an alternative design, “Ours without domain-specific decisions”,

which is restricted to using only conventional NAS building blocks:

convolution, ReLU, element-wise addition, and stacking. It is still

allowed to mutate channel and group counts for convolutional op-

erations. This alternative search space construction also does not

factor the green reconstruction task from the red and blue recon-

struction task. Note that this search space is larger than or equiv-

alent to that considered by other NAS approaches like FALSR and

LEMONADE, with the exception that we do not use BatchNorm

(used by LEMONADE which searches for image classification mod-

els) because is not used for regression tasks like demosaicking and

super-resolution. For fair comparison, this alternative design was

run for 40 generations and we compare it to our method run for 20

generations for green reconstruction and another 20 for chroma

reconstruction.

We also compare our search method to a grid search over vari-

ants of Demosaicnet with different layer and filter counts to see

how our method compares to structured pruning. We do not com-

pare to unstructured pruning because in unstructured pruning, re-

moving parameters does not guarantee or directly translate to a

faster model.

Figure 9 shows that our two search space design choices

yield significant improvements to the Pareto frontier. The gap in

program quality between our method and “Ours without domain-

specific decisions” is significant, with a difference in favor or our

method of up to 1 dB between programs with the same throughput,

or up to 3× difference in throughput between programs of the same

quality, indicating that a modularized search with domain specific

building blocks is crucial for producing Pareto dominant programs.

The further gap in quality between “Ours without domain-specific

decisions” and the grid search shows that even without domain

specific intelligence, our method of using genetic search over a

space of programs represented as mutable DAGs yields notable im-

provements to the frontier on its own. We limited the range of pro-

gram throughputs that our search considers to stay within the real-

time performance regime, and the grid search method explored

a few models that were orders of magnitude more expensive than

those considered by our search. Thus, the quality range of the

grid search programs extends above those produced by our search.

However, since the grid search’s search space is a subset of our

method’s search space, our system can be easily configured to

cover lower throughput ranges if desired, to expand the range of

program quality. For the range of throughputs considered by our

search, both our method and “Ours without domain-specific deci-

sions” produce frontiers that significantly Pareto dominate struc-

tured pruning via grid search. Our domain specific search method

produces programs that are up to 6.4× faster at the same quality

or up to 1 dB better at the same throughput compared to the grid

search models.

4.3 Correlation Between Program Cost and Runtime

Given that our search procedure is guided by program costs based

on estimated floating point operations, it is important to know that

these costs correlate well with the actual runtimes of our programs.

Figure 10 shows a strong correlation between our estimated costs

and actual benchmarked runtimes of our programs (R2 > 0.96 for

all tasks). Performance is also good in absolute terms: one unit

of cost in our cost model translates to around 1.6 CPU cycles per

SIMD vector of output when compiled to AVX2 code on a single

core of our Skylake X test machine.

5 FUTURE WORK, LIMITATIONS, AND CONCLUSION

Our work opens exciting avenues for future work in synthesiz-

ing high-performance hybrid algorithms that combine aspects of

deep learning and task-specific classical operations. For instance,

for image processing, our method could potentially be extended to

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



172:12 • K. Ma et al.

Fig. 11. Bayer demosaicking qualitative comparison. We show a selection of results from the Bayer demosaicking task for 3 algorithms we discovered,

covering a range of computation budgets, and a selection of baselines. The Gradient Halide implementation uses 15 7 × 7 filters. We report the speed of

each algorithm in megapixels per second (Mpix/s). Our programs avoid producing the artifacts seen in the baseline methods, such as zippering in the first

column of LMMSE, AHD, and GradientHalide, color fringing and Bayer grid artifacts in the second column of AHD and GradientHalide, and the Bayer grid

and zippering artifacts in the fifth and sixth columns of LMMSE. The output quality of our programs improves as their cost increases.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



Searching for Fast Demosaicking Algorithms • 172:13

Table 1. Quantitative Comparison for the Four Tasks

PSNR Throughput
(dB) (Mpixels/s)

Bayer Demosaicking
hdrvdp moire kodak mcm

Demosaicnet 33.73 35.65 40.75 39.05 0.116

Gradient Halide 30.53 32.26 37.47 35.72 7.82
VNG4 28.19 29.93 35.58 34.28 8.65
AHD 27.69 30.01 35.41 33.81 9.25
LMMSE 29.47 31.79 35.61 33.71 21.0

ours 31.05 32.98 38.05 36.28 33.9
ours 31.27 33.12 38.60 36.91 18.3
ours 31.74 33.31 39.25 37.50 7.6

X-Trans Demosaicking
hdrvdp moire kodak mcm

Demosaicnet 32.52 35.51 39.58 37.80 0.038

Markesteijn 28.35 30.79 36.38 34.58 6.78

ours 30.67 33.48 37.44 35.23 20.9
ours 31.27 34.15 38.13 36.14 10.89
ours 31.74 34.76 38.48 36.48 4.09

PSNR Throughput
(dB) (Mpixels/s)

Super-resolution from Bayer
hdrvdp moire kodak mcm

Dnet+DRLN 24.83 27.75 32.56 32.02 0.002
Dnet+ESPCN 24.00 26.66 31.18 30.44 0.110
Dnet+FALSR-A 24.71 27.46 32.39 31.73 0.013
Dnet+FALSR-B 24.64 27.39 32.31 31.68 0.034
Dnet+FALSR-C 24.64 27.37 32.30 31.68 0.029
Dnet+ProSR 24.53 27.25 32.19 31.46 0.001
Dnet+RCAN 24.81 27.68 32.60 32.02 0.0039
Dnet+SRCNN 24.32 27.00 31.89 31.37 0.076
Dnet+Bicubic 23.49 26.16 30.84 30.12 0.116
GrHalide+Bicubic 22.95 25.53 30.10 28.99 7.70
GrHalide+ESPCN 23.25 25.74 30.03 28.85 1.80
GrHalide+SRCNN 23.45 26.00 30.56 29.36 0.217
TENet 24.73 27.23 32.59 32.12 0.005
DNDMSR 25.01 27.50 32.77 32.37 0.010

ours 23.69 26.30 31.05 30.05 18.0
ours 23.83 26.45 31.27 30.35 10.2
ours 24.01 26.54 31.48 30.60 5.26
ours 24.16 26.67 31.75 31.00 3.04

Super-resolution
bsd100 set14 set5 urban100

DRLN 30.88 32.11 36.20 31.00 0.002
ESPCN 28.93 29.51 33.16 26.24 2.34
FALSR-A 30.57 31.27 35.50 29.40 0.015
FALSR-B 30.42 31.05 35.28 28.77 0.048
FALSR-C 30.41 31.05 35.32 28.76 0.038
ProSR 30.23 31.09 34.51 29.68 0.001
RCAN 30.86 32.04 36.20 30.91 0.0040
SRCNN 29.66 30.30 34.40 27.25 0.223
Bicubic 28.03 28.46 31.87 25.10 517

ours 29.72 30.43 34.55 27.25 19.0
ours 29.88 30.59 34.79 27.57 10.8
ours 29.93 30.64 34.83 27.70 7.90
ours 29.99 30.76 34.90 27.91 3.20

For all demosaicking tasks, we report PSNR on test images from the Gharbi et al. [2016], Kodak, and McMaster datasets for our baselines and several algorithms we
discovered that span a range of runtime costs. For the superresolution task, we report PSNR on the test images from the standard BSD100, Set14, Set5, and Urban100
superresolution test datasets. Figures 11–14 show qualitative results for programs produced by our search compared to baseline algorithms.

cover other operations that have classical solutions such as multi-

scale tone and detail transfer, photographic style transfer, dehaz-

ing [Chen et al. 2017], blurring and sharpening [Lou et al. 2016b],

or matting [Li et al. 2019]. Our method could also be extended to

explore whether the task-specific set of building blocks or primi-

tives could be automatically extracted from example classical pro-

grams, unlike in this article’s case where the building blocks are

pre-specified and fixed.

One limitation and area for future work is that we have not

yet explored fixed-point quantization of the network weights

[Lin et al. 2016], which would further improve throughput, and

would be necessary for implementation on a DSP or imaging ASIC.

In conclusion, we have presented a discrete and continuous

search for demosaicking and super-resolution algorithms that are

able to synthesize pipelines that Pareto-dominate state-of-the-art

algorithms when both quality and performance matter. These algo-

rithms lower to highly-efficient SIMD code and combine the bene-

fits of classical and deep methods. We believe our approach opens

up an important new direction for task-specific learning via pro-

gram search.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



172:14 • K. Ma et al.

Fig. 12. X-Trans demosaicking qualitative comparison. We show a selection of outputs from the X-Trans demosaicking task for 3 algorithms we discovered,

covering a range of computation budgets, as well as the outputs of the Markesteijn algorithm and the X-Trans Demosaicnet. We report the speed of each

algorithm in megapixels per second (Mpix/s) Our programs avoid the artifacts produced by the Markesteijn algorithm such as the moire artifacts in the

first and third column, the color fringing in columns 2 through 6, and the maze pattern in the third column while being up to 3× faster. Our programs obtain

visual quality close to that of Demosaicnet, which is 100× more expensive than our most expensive program.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



Searching for Fast Demosaicking Algorithms • 172:15

Fig. 13. Joint demosaicking with super-resolution qualitative comparison. We show a selection of results on the joint demosaicking and super-resolution

task from a program we discovered and a selection of baselines. The Gradient Halide implementation uses 15 7 × 7 filters. We report the speed of each

algorithm in megapixels per second (Mpix/s). Our program is 1.5× faster than ESPCN+GradientHalide and 15× faster than SRCNN+GradientHalide while

avoiding the high-frequency speckling seen in the first and fifth columns, the color fringing in the third column, and the zippering artifacts in the last

column of Bicbuic+GradientHalide, ESPCN+GradientHalide, and SRCNN+GradientHalide.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



172:16 • K. Ma et al.

Fig. 14. Super-resolution qualitative comparison. We show a selection of results on the super-resolution task from a program we discovered and a selection

of baseline algorithms. We report the speed of each algorithm in megapixels per sec (Mpix/s). SRCNN tends to produce over-blurred outputs and ESPCN

introduces false high frequencies as seen in the first, third, and sixth columns. SRCNN also produces zippering artifacts as shown in the third column. For

nearly 300× faster throughput our program’s output quality approaches that of FALSR-A, a large expensive deep neural network.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.



Searching for Fast Demosaicking Algorithms • 172:17

ACKNOWLEDGMENTS

We thank Dillon Sharlet for providing valuable inspiration for the

design of building blocks for demosaicking, and the design consid-

erations of production demosaickers.

REFERENCES
Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël

Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, and
Jonathan Ragan-Kelley. 2019. Learning to optimize halide with tree search and
random programs. ACM Transactions on Graphics 38, 4 (2019), 12 pages. DOI:
https://doi.org/10.1145/3306346.3322967

James E. Adams Jr. 1995. Interactions between color plane interpolation and other im-
age processing functions in electronic photography. In Proceedings of the Cameras
and Systems for Electronic Photography and Scientific Imaging. 144–151.

David Alleysson, Sabine Susstrunk, and Jeanny Hérault. 2005. Linear demosaicing
inspired by the human visual system. IEEE Transactions on Image Processing 14, 4
(2005), 439–449.

A. Anderson, J. Su, Rozenn Dahyot, and D. Gregg. 2019. Performance-oriented neural
architecture search. In Proceedings of the International Conference on High Perfor-
mance Computing & Simulation. 177–184.

Saeed Anwar and Nick Barnes. 2020. Densely residual laplacian super-resolution. IEEE
Transactions on Pattern Analysis and Machine Intelligence 44, 3 (2022), 1192–1204.
https://doi.org/10.1109/TPAMI.2020.3021088

Eric P. Bennett, Matthew Uyttendaele, C. Lawrence Zitnick, Richard Szeliski, and
Sing Bing Kang. 2006. Video and image Bayesian demosaicing with a two color
image prior. In Proceedings of the Computer Vision – ECCV 2006. Aleš Leonardis,
Horst Bischof, and Axel Pinz (Eds.), Springer Berlin, 508–521.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. 2020.
What is the state of neural network pruning? In Proceedings of Machine Learn-
ing and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020, Inderjit S.
Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze (Eds.). mlsys.org. https:
//proceedings.mlsys.org/book/296.pdf.

Antoni Buades, Bartomeu Coll, Jean-Michel Morel, and Catalina Sbert. 2009. Self-
similarity driven color demosaicking. IEEE Transactions on Image Processing 18,
6 (2009), 1192–1202.

CarVac. 2021. librtprocess Github Page. Retrieved 31 March 2022 from https://github.
com/CarVac/librtprocess.

Kan Chang, Pak Lun Kevin Ding, and Baoxin Li. 2015. Color image demosaicking us-
ing inter-channel correlation and nonlocal self-similarity. Signal Processing: Image
Communication 39, PA (2015), 264–279.

Qifeng Chen, Jia Xu, and Vladlen Koltun. 2017. Fast image processing with fully-
convolutional networks. In Proceedings of the IEEE International Conference on
Computer Vision.

Xiangxiang Chu, Bo Zhang, Hailong Ma, R. Xu, Jixiang Li, and Qingyuan Li. 2021b.
Fast, accurate and lightweight super-resolution with neural architecture search.
In Proceedings of the 2020 25th International Conference on Pattern Recognition.
59–64.

Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, and Qingyuan Li. 2021a. Fast, ac-
curate and lightweight super-resolution with neural architecture search. In Pro-
ceedings of the 2020 25th International Conference on Pattern Recognition. IEEE,
59–64.

David R. Cok. 1987. Signal processing method and apparatus for producing interpo-
lated chrominance values in a sampled color image signal. US Patent 4,642,678.
Accessed 31 March 2022.

Laurent Condat and Saleh Mosaddegh. 2012. Joint demosaicking and denoising by to-
tal variation minimization. In Proceedings of the International Conference on Image
Processing. IEEE, 2781–2784.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2014. Learning a deep
convolutional network for image super-resolution. In Proceedings of the Computer
Vision – ECCV 2014. Springer International Publishing, Cham, 184–199.

Eric Dubois. 2005. Frequency-domain methods for demosaicking of Bayer-sampled
color images. Signal Processing Letters 12, 12 (2005), 847–850.

Joan Duran and Antoni Buades. 2014. Self-similarity and spectral correlation adaptive
algorithm for color demosaicking. IEEE Transactions on Image Processing 23, 9
(2014), 4031–4040.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Efficient multi-objective
neural architecture search via lamarckian evolution. In Proceedings of the 7th Inter-
national Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=ByME42AqK7.

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. 2019. Neural architecture
search: A survey. The Journal of Machine Learning Research 20, 55 (2019), 1–21.
http://jmlr.org/papers/v20/18-598.html.

Sina Farsiu, Michael Elad, and P. Milanfar. 2004. Multiframe demosaicing and super-
resolution from undersampled color images. In Proceedings of the IS&T/SPIE Elec-
tronic Imaging.

Jonathan Frankle and Michael Carbin. 2019. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In Proceedings of the International Conference
on Learning Representations. Retrieved from https://openreview.net/forum?id=rJl-
b3RcF7.

Pascal Getreuer. 2011. Color demosaicing with contour stencils. In Proceedings of the
International Conference on Digital Signal Processing. IEEE, 1–6.

Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand. 2016. Deep joint
demosaicking and denoising. ACM Transactions on Graphics 35, 6 (2016), 191:1–
191:12.

Jinwook Go, Kwanghoon Sohn, and Chulhee Lee. 2000. Interpolation using neural net-
works for digital still cameras. Transactions on Consumer Electronics 46, 3 (2000),
610–616.

Chengyue Gong, Zixuan Jiang, Dilin Wang, Yibo Lin, Qiang Liu, and David Z. Pan.
2019. Mixed precision neural architecture search for energy efficient deep learn-
ing. In Proceedings of the International Conference on Computer-Aided Design. IEEE,
1–7.

John F. Hamilton Jr and James E. Adams Jr. 1997. Adaptive color plan interpolation
in single sensor color electronic camera. US Patent 5,629,734. Accessed 31 March
2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the Conference on Computer Vision
and Pattern Recognition. 770–778.

Yong He, Tim Foley, Natalya Tatarchuk, and Kayvon Fatahalian. 2015. A system for
rapid, automatic shader level-of-detail. ACM Transactions on Graphics 34, 6 (2015),
1–12.

Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushfiqur Rouf, Dawid Pająk, Dikpal
Reddy, Orazio Gallo, Jing Liu, Wolfgang Heidrich, Karen Egiazarian, Jan Kautz,
and Kari Pulli. 2014. FlexISP: A flexible camera image processing framework. ACM
Transactions on Graphics 33, 6 (2014), 231:1–231:13.

Bernardo Henz, Eduardo S. L. Gastal, and Manuel M. Oliveira. 2018. Deep joint design
of color filter arrays and demosaicing. Computer Graphics Forum 37, 7 (2018), 389–
399.

Robert H. Hibbard. 1995. Apparatus and method for adaptively interpolating a full
color image utilizing luminance gradients. US Patent 5,382,976. Accessed 31
March 2022.

Keigo Hirakawa and Thomas W. Parks. 2005. Adaptive homogeneity-directed de-
mosaicing algorithm. IEEE Transactions on Image Processing 14, 3 (2005), 360–
369.

Keigo Hirakawa and Thomas W. Parks. 2006. Joint demosaicing and denoising. IEEE
Transactions on Image Processing 15, 8 (2006), 2146–2157.

Oren Kapah and Hagit Zabrodsky Hel-Or. 2000. Demosaicking using artificial neural
networks. In Proceedings of the Applications of Artificial Neural Networks in Image
Processing. International Society for Optics and Photonics, 112–120.

Daniel Khashabi, Sebastian Nowozin, Jeremy Jancsary, and Andrew W. Fitzgibbon.
2014. Joint demosaicing and denoising via learned nonparametric random fields.
IEEE Transactions on Image Processing 23, 12 (2014), 4968–4981.

Daisuke Kiku, Yusuke Monno, Masayuki Tanaka, and Masatoshi Okutomi. 2013. Resid-
ual interpolation for color image demosaicking. In Proceedings of the International
Conference on Image Processing. IEEE, 2304–2308.

Teresa Klatzer, Kerstin Hammernik, Patrick Knobelreiter, and Thomas Pock. 2016.
Learning joint demosaicing and denoising based on sequential energy minimiza-
tion. In Proceedings of the International Conference on Computational Photography.
IEEE, 1–11.

Filippos Kokkinos and Stamatios Lefkimmiatis. 2018. Deep image demosaicking us-
ing a cascade of convolutional residual denoising networks. In Proceedings of the
European Conference on Computer Vision. 303–319.

Filippos Kokkinos and Stamatios Lefkimmiatis. 2019. Iterative joint image demosaick-
ing and denoising using a residual denoising network. IEEE Transactions on Image
Processing 28, 8 (2019), 4177–4188.

John R. Koza and John R. Koza. 1992. Genetic Programming: On the Programming of
Computers By Means of Natural Selection. MIT Press.

Cindy Kwan and Xiaolin Wu. 2004. A classification approach to color demosaick-
ing. In Proceedings of the International Conference on Image Processing. IEEE,
2415–2418.

Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-
Kelley. 2018. Differentiable programming for image processing and deep learning
in Halide. ACM Transactions on Graphics 37, 4 (2018), 139:1–139:13.

Xin Li, Bahadir Gunturk, and Lei Zhang. 2008. Image demosaicing: A systematic sur-
vey. In Proceedings of the Visual Communications and Image Processing. Interna-
tional Society for Optics and Photonics, 68221J.

Xiaoqiang Li, Jide Li, and Hong Lu. 2019. A survey on natural image matting with
closed-form solutions. IEEE Access 7 (2019), 136658–136675.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016. Fixed point quantiza-
tion of deep convolutional networks. In Proceedings of the International Conference
on Machine Learning. PMLR, 2849–2858.

Lin Liu, Xu Jia, Jianzhuang Liu, and Qi Tian. 2020. Joint demosaicing and de-
noising with self guidance. In Proceedings of the Computer Vision and Pattern
Recognition.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1109/TPAMI.2020.3021088
https://proceedings.mlsys.org/book/296.pdf
https://github.com/CarVac/librtprocess
https://openreview.net/forum?id=ByME42AqK7
http://jmlr.org/papers/v20/18-598.html
https://openreview.net/forum?id=rJl-b3RcF7


172:18 • K. Ma et al.

Liming Lou, Paul Nguyen, Jason Lawrence, and Connelly Barnes. 2016a. Image perfo-
ration: Automatically accelerating image pipelines by intelligently skipping sam-
ples. ACM Transactions on Graphics 35, 5 (2016), 1–14.

Liming Lou, Paul Nguyen, Jason Lawrence, and Connelly Barnes. 2016b. Image perfo-
ration: Automatically accelerating image pipelines by intelligently skipping sam-
ples. ACM Transactions on Graphics 35, 5 (2016), 1–14.

Daniele Menon and Giancarlo Calvagno. 2009. Joint demosaicking and denoising with
space-varying filters. In Proceedings of the International Conference on Image Pro-
cessing. IEEE, 477–480.

Yan Niu, Jihong Ouyang, Wanli Zuo, and Fuxin Wang. 2018. Low cost edge sensing
for high quality demosaicking. IEEE Transactions on Image Processing 28, 5 (2018),
2415–2427.

Guocheng Qian, Jinjin Gu, Jimmy S. J. Ren, Chao Dong, Furong Zhao, and Juan-Ting
Lin. 2019. Trinity of pixel enhancement: A joint solution for demosaicking, de-
noising and super-resolution. arXiv:1905.02538. Retrieved from https://arxiv.org/
abs/1905.02538.

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-
inghe, and Frédo Durand. 2012. Decoupling algorithms from schedules for easy
optimization of image processing pipelines. ACM Transactions on Graphics 31, 4
(2012), 32:1–32:12.

Sivalogeswaran Ratnasingam. 2019. Deep camera: A fully convolutional neural net-
work for image signal processing. In Proceedings of the International Conference
on Computer Vision Workshops.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P. Aitken, Rob
Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-time single image and
video super-resolution using an efficient sub-pixel convolutional neural network.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition. 1874–1883. DOI: https://doi.org/10.1109/CVPR.2016.207

Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and Jason Lawrence. 2011.
Genetic programming for shader simplification. ACM Transactions on Graphics
30, 6 (2011), 1–12.

Daniel Stanley Tan, Wei-Yang Chen, and Kai-Lung Hua. 2018. DeepDemosaicking:
Adaptive image demosaicking via multiple deep fully convolutional networks.
IEEE Transactions on Image Processing 27, 5 (2018), 2408–2419.

Hanlin Tan, Xiangrong Zeng, Shiming Lai, Yu Liu, and Maojun Zhang. 2017a. Joint
demosaicing and denoising of noisy Bayer images with ADMM. In Proceedings of
the International Conference on Image Processing. IEEE, 2951–2955.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V. Le. 2019. Mnasnet: Platform-aware neural architecture
search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2820–2828.

Runjie Tan, Kai Zhang, Wangmeng Zuo, and Lei Zhang. 2017b. Color image demo-
saicking via deep residual learning. In Proc. IEEE I International Conference on
Multimedia & Expo. 793–798.

The RawTherapee Team. 2021. RawTherapee Home Page. Retrieved 31 March 2022
from https://rawtherapee.com.

Rui Wang, Xianjin Yang, Yazhen Yuan, Wei Chen, Kavita Bala, and Hujun Bao. 2014.
Automatic shader simplification using surface signal approximation. ACM Trans-
actions on Graphics 33, 6 (2014), 1–11.

Yifan Wang, Federico Perazzi, Brian McWilliams, Alexander Sorkine-Hornung, Olga
Sorkine-Hornung, and Christopher Schroers. 2018. A fully progressive approach
to single-image super-resolution. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017. Ag-
gregated residual transformations for deep neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 1492–
1500.

Wenzhu Xing and Karen Egiazarian. 2021. End-to-end learning for joint image demo-
saicing, denoising and super-resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 3507–3516.

Jianchao Yang and Thomas Huang. 2017. Image super-resolution: Historical overview
and future challenges. Super-Resolution Imaging. CRC Press. DOI: https://doi.org/
10.1201/9781439819319

Lei Zhang, Rastislav Lukac, Xiaolin Wu, and David Zhang. 2009. PCA-based spatially
adaptive denoising of CFA images for single-sensor digital cameras. IEEE Trans-
actions on Image Processing 18, 4 (2009), 797–812.

Lei Zhang and Xiaolin Wu. 2005. Color demosaicking via directional linear minimum
mean square-error estimation. IEEE Transactions on Image Processing 14, 12 (2005),
2167–2178.

Lei Zhang, Xiaolin Wu, Antoni Buades, and Xin Li. 2011. Color demosaicking by local
directional interpolation and nonlocal adaptive thresholding. Journal of Electronic
Imaging 20, 2 (2011), 023016.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. 2018.
Image super-resolution using very deep residual channel attention networks. In
Proceedings of the European Conference on Computer Vision.

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. 2018. Practical block-
wise neural network architecture generation. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2423–2432.

Yanqi Zhou and Gregory Diamos. 2018. Neural architect: A multi-objective neural
architecture search with performance prediction. In Proceedings of the Conference
on SysML. 1–3.

Barret Zoph and Quoc V. Le. 2016. Neural architecture search with reinforcement
learning. In Proceedings of the 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017. OpenReview.net. https:
//openreview.net/forum?id=r1Ue8Hcxg.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2018. Learning trans-
ferable architectures for scalable image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 8697–8710.

Received August 2021; revised December 2021; accepted December 2021

ACM Transactions on Graphics, Vol. 41, No. 5, Article 172. Publication date: May 2022.

https://arxiv.org/abs/1905.02538
https://doi.org/10.1109/CVPR.2016.207
https://rawtherapee.com
https://doi.org/10.1201/9781439819319
https://openreview.net/forum?id=r1Ue8Hcxg

