
MIT Open Access Articles

Contention Resolution for Coded Radio Networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bender, Michael, Gilbert, Seth, Kuhn, Fabian, Kuszmaul, John and Medard, Muriel.
2022. "Contention Resolution for Coded Radio Networks."

As Published: https://doi.org/10.1145/3490148.3538573

Publisher: ACM|Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and
Architectures

Persistent URL: https://hdl.handle.net/1721.1/146396

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146396

Contention Resolution for Coded Radio Networks
Michael A. Bender

Stony Brook University

Stony Brook, New York, USA

bender@cs.stonybrook.edu

Seth Gilbert

National University of Singapore

Singapore

seth.gilbert@comp.nus.edu.sg

Fabian Kuhn

University of Freiburg

Freiburg, Germany

kuhn@cs.uni-freiburg.de

John Kuszmaul

Yale University

New Haven, Connecticut, USA

john.kuszmaul@yale.edu

Muriel Médard

Massachusetts Institute of Technology

Cambridge, Massachusetts, USA

medard@mit.edu

ABSTRACT
Randomized backoff protocols, such as exponential backoff, are a

powerful tool for managing access to a shared resource, often a

wireless communication channel (e.g., [1]). For a wireless device

to transmit successfully, it uses a backoff protocol to ensure exclu-

sive access to the channel. Modern radios, however, do not need

exclusive access to the channel to communicate; in particular, they

have the ability to receive useful information even when more than

one device transmits at the same time. These capabilities have now

been exploited for many years by systems that rely on interference

cancellation, physical layer network coding and analog network

coding to improve efficiency. For example, Zigzag decoding [56]

demonstrated how a base station can decode messages sent by

multiple devices simultaneously.

In this paper, we address the following question: Can we de-
sign a backoff protocol that is better than exponential backoff when
exclusive channel access is not required. We define the Coded Ra-

dio Network Model, which generalizes traditional radio network

models (e.g., [30]). We then introduce the Decodable Backoff Al-

gorithm, a randomized backoff protocol that achieves an optimal

throughput of 1 − 𝑜 (1). (Throughput 1 is optimal, as simultaneous

reception does not increase the channel capacity.) The algorithm

breaks the constant throughput lower bound for traditional ra-

dio networks [47–49], showing the power of these new hardware

capabilities.

CCS CONCEPTS
• Theory of computation → Online algorithms; Design and
analysis of algorithms; Distributed algorithms; • Networks→
Network algorithms.

KEYWORDS
contention resolution; randomized backoff; coded networks; sched-

uling

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9146-7/22/07. . . $15.00

https://doi.org/10.1145/3490148.3538573

ACM Reference Format:
Michael A. Bender, Seth Gilbert, Fabian Kuhn, John Kuszmaul, and Muriel

Médard. 2022. Contention Resolution for Coded Radio Networks. In Pro-
ceedings of the 34th ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA ’22), July 11–14, 2022, Philadelphia, PA, USA. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3490148.3538573

1 INTRODUCTION
Randomized backoff protocols [1–3, 47, 63, 79], such as exponen-

tial backoff [79], are a powerful tool for managing access to a shared

resource, often a communication channel. These protocols are used

prominently in wireless networks from AlohaNet [2, 3, 25, 91] to

802.11 [1] and beyond [26]. Wireless devices typically need to trans-

mit their messages to a base station, and in order for a device’s

transmission to be successful, the device must have exclusive ac-
cess to the channel, that is, no other wireless device can be trans-

mitting. If more than one device transmits simultaneously, there is

amessage collision and the base station receives indecipherable

noise [47, 53, 65, 74, 79, 98].

The problem of designing backoff protocols is traditionally for-

malized as the contention-resolution problem. The devices cor-

respond to agents that arrive over time, each with a message that

needs to be transmitted. To perform the transmission, the device re-

quires exclusive access to the channel [2, 3, 30, 47, 53, 65, 74, 79, 98].

Time is subdivided into synchronized slots, which are sized to fit

a message, and the objective is to maximize the utilization or

throughput of the channel, which is roughly (but not exactly) the

fraction of slots that successfully transmit messages. For example,

traditional binary exponential backoff yieldsΘ(1/log𝑛) throughput
with adversarial packet injection [16]; for stochastic packet injec-

tions, there is much work analyzing the arrival rates under which

binary exponential backoff is stable or unstable [7, 57, 62].
1
Newer

backoff protocols can achieve Θ(1) throughput [15, 19–23, 27] even
under adversarial packet injection.

Modern devices do not need exclusive access to the channel
to broadcast. An exciting development over the last decade has

been improvements in modern radio hardware, in particular, the

ability to receive useful information when more than one device

transmits at the same time [11, 26, 38, 56, 61, 69–71, 94]. This infor-

mation is not sufficient to immediately recover the messages sent;

however, when a base station receives enough information about

1
In fact, there is much work on stochastic arrival models [4, 6, 47, 50, 52, 57, 57, 65, 65,

72, 79, 80, 83, 84, 92].

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

119

https://doi.org/10.1145/3490148.3538573
https://doi.org/10.1145/3490148.3538573

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Michael A. Bender, Seth Gilbert, Fabian Kuhn, John Kuszmaul, and Muriel Médard

a set of messages, it can then decode the original messages. The

point is that on modern hardware, backoff protocols do not need to

guarantee exclusive access to the channel, because exclusive access

is no longer necessary.

In fact, these capabilities have now been exploited for many years

by systems that rely on interference cancellation [11, 26, 61, 94],

physical layer network coding [38, 41, 70, 71] and analog network

coding [69] to improve efficiency. For example, the celebrated paper

on Zigzag decoding [56] showed how a base station can decode

messages sent by multiple devices simultaneously. (In one scenario

cited in their paper, this reduced packet loss from approximately

72% to less than 1%!)

ZigZag decoding was built on top of 802.11, i.e., exponential

backoff; it showed that, in practice, improved signal-decoding tech-

niques can yield significant improvements, even while using tradi-

tional exponential backoff for contention resolution.

Coding-compatible contention resolution. In this paper, we

address the following question, taking an algorithmic approach: Can

we design a backoff protocol that is better than exponential backoff

for this setting where exclusive channel access is not required, that

is, when devices can have simultaneous transmissions? To do so,

we define the Coded Radio Network Model (see Section 2), which

generalizes traditional radio network models [30] (where devices

do need exclusive access to the channel to transmit). We then ask:

what is the best throughput that can be achieved?

To see an example of the throughput achieved by some standard

approaches, consider the case where the base station can only de-

code a message if there is exactly one transmitter. Then, if there are

𝑛 devices and each device broadcasts in each round with probability

1/𝑛, the system achieves throughput 1/𝑒 (and many consider this

to be the ideal achievable throughput in many situations). With bi-

nary exponential backoff, if 𝑛 devices begin the protocol at the same

time, it takesΘ(𝑛 log𝑛) time for all the packets to complete, and the

throughput achieved is 1/log𝑛 [16]. Recent work has shown how to

achieve Θ(1) throughput even in an adversarial setting [20, 27, 28],

and Chang, Jun, and Pettie [27] showed how to achieve throughput

1/𝑒 −𝑂 (𝜀), for any 𝜀 > 0.

At the other end of the spectrum, several papers have proved

lower bounds that establish the best achievable throughput in

different situations. For example, in a “full sensing” model, no

protocol can achieve better than 0.568 throughput [47, 96]; in an

“acknowledgment-based” model, no protocol can achieve better

than 0.530045 throughput [47–49].

This raises the question: what is the best achievable throughput in
a system that uses modern techniques to decode simultaneous signals?
If we can send an arbitrary number of messages simultaneously,

it may seem as if there is no inherent limit. This is not the case.

There are two main reasons, one pragmatic and one information

theoretical. First, from a practical perspective, there is a limit to

the number of simultaneous signals that a base station can usefully

interpret. For each signal received, there is noise, fading, frequency

offset, inter-symbol interference, etc., all of which means that the

more simultaneous signals, the less useful information the base

station receives (see, e.g., [95], Chapter 3). Thus, there is some de-
coding threshold 𝜅 where if there are more than 𝜅 simultaneous

transmissions, the base station learns nothing useful. A key impli-

cation here is that there is a maximum achievable throughput, and

contention resolution is still important—even though we no longer

need to guarantee exclusive channel access for the transmitter.

From the perspective of information theory, there is an even

stronger limitation: none of the techniques we are considering (e.g.,

iterative interference cancellation) has increased the actual capacity

of the communication channel.
2
It simply provides a method for

using that capacity more efficiently. For example, if two messages

are being transmitted simultaneously, it will then take twice as long

to receive and decode them. This is observed in practice in ZigZag

Decoding [56], where the authors state: “when senders collide,

ZigZag attains the same throughput as if the colliding packets were

a priori scheduled in separate time slots.” The conclusion, then, is

that the maximum achievable throughput is still 1.

Results. In this paper, we develop a randomized backoff proto-

col designed for a system that can support multiple simultaneous

transmissions. Our model captures the fact that the base station

can only receive useful information if there are ≤ 𝜅 simultaneous

transmissions, and it reflects the fact that (conceptually) if ℓ mes-

sages are transmitted simultaneously, the base station only receives

roughly 1/ℓ of each original message. The new algorithm achieves

optimal throughput arbitrarily close to 1, approaching 1 as 𝜅 grows.

More precisely, it achieves a throughput of 1 − Θ(1/log𝜅). (And
in doing so, it shows that the increased power of simultaneous

transmission is non-trivial, as it breaks the constant-throughput

lower bounds [47–49, 96].)

The basic idea of the protocol is relatively simple: it uses a backon-

backoff mechanism to construct groups of messages that will broad-

cast simultaneously until they are decoded. The backoff-backon

mechanism is tuned to yield groups of size at most (the decoding

threshold) 𝜅 , and a simple “admission control” mechanism prevents

newly arrived packets from disrupting the ongoing protocol. (En-

suring that the same packets broadcast together repeatedly is also

critical to protocols like ZigZag Decoding [56]—it is the repeated

overlaps that make simultaneous decoding easier.) Our analysis

relies on a potential-function argument, which shows that, at any

given time, we are either decoding groups of packets or moving

closer to a good group structure.

The key challenge is getting throughput 1−𝑜 (1). Even wasting a

few rounds to perform backoff may render our goals impossible to

achieve. For example, if there are 𝑥 packets injected into the system,

and we spend some Θ(𝑥) rounds running backoff to construct

batches of size 𝜅 , then our throughput will not be close to 1. Indeed,

a classical backoff protocol like exponential backoff [79] spends at

least Θ(𝑥) time even just growing its window to size Θ(𝑥). Thus, in
both the protocol design and the analysis, we have to be particularly

careful to prevent constant factors from creeping in!

To show good throughput, we focus on the rate at which packets

can be added to the system without creating a large backlog of

undelivered packets. If packets arrive at a rate equal to the channel

capacity, and yet there is never a backlog, then we conclude that

2
Typically, the capacity of a wireless channel depends on other factors, e.g., the trans-

mission frequency, the modulation scheme, etc. As we do not want to address those

issues in this paper, we simply define one time slot as the time it takes to send a single

message using the system at hand.

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

120

Contention Resolution for Coded Radio Networks SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

the backoff protocol is delivering a throughput equal to the channel

capacity. (We are not interested in executions where there are very

few packets—the throughput may look low simply because there is

nothing to do.) We allow for arbitrary adversarial packet arrival,

i.e., packet arrivals can be bursty, smooth, or whatever. (There is

no assumption of random packet arrivals.)

To show that we achieve throughput arbitrarily close to 1, we

assume that for some window size𝑤 , there are at most (1 − 𝑜 (1))
packet arrivals in every window of size at least𝑤 , i.e., at some level

of granularity the arrivals do not exceed the channel capacity. We

show that in this case, there is never a large backlog of packets in

the system, i.e., the system continues to deliver packets. In addition,

we show that there is no starvation, i.e., that packets do not stagnate

in the system too long and will eventually be delivered.

Theorem 1. Suppose that in every window of size 𝑤 , for some
𝑤 ≥ 16𝜅2, there are at most

(
1 − 5

ln𝜅

)
𝑤 packet arrivals. Then the

Decodable Backoff Algorithm guarantees the following two conditions
in the Coded Radio Network Model:
(i) At any given time, the number of packets in the system is atmost 2𝑤 ,
with probability ≥ 1 − 1/poly(𝑤).
(ii) A given packet is delivered within 𝑂 (

√
𝜅𝑤 ln

3𝑤) time slots, with
probability ≥ 1 − 1/poly(𝑤).

These results are proved in Theorem 11 and Theorem 15.

One thing to note is that the window size 𝑤 is not known to

the algorithm—it is simply an analytic tool. Thus the execution can

have entirely arbitrary packet arrivals and the theorem will hold if

there exists some𝑤 for which the arrival rate is satisfied. Another

note is that, despite the high probability bounds, the execution is

not limited to polynomial lengths; the claims will hold for any time

𝑡 , even in a very long execution. Finally, observe that for packet

latency, the best possible result is 𝑂 (𝑤): if the adversary injects

𝑤 packets in round 1, it will necessarily take at least 𝑤 rounds

for all of them to complete. (In fact, we consider the batch case in

Theorem 16.)

Other related work. There is a long history of algorithmic re-

search analyzing the performance of backoff protocols, looking at

different aspects. As in this paper, the primary goal has been to ana-

lyze packet delivery rates, whether in the form of throughput, total

time, or stability [16, 17, 24, 27, 37, 52, 54, 58, 64, 64, 76, 79, 85, 93].

An alternative metric has been looking at how long it takes to

deliver one message [31, 32, 35, 39, 40, 42, 45, 66, 66–68, 78, 97].

Backoff has been studied in a wide variety of different mod-

els. Many of the above papers have assumed that radios can de-

tect collisions; some work has focused on the case where there

is no collision detection [21, 28, 36, 37]. The large majority of

these protocols have been randomized, but there has been some

consideration of deterministic protocols [37, 73, 75, 77]. A few

papers have focused on more realistic wireless models that cap-

ture signal-to-noise ratio [43, 44]. There has been some signifi-

cant recent work on designing backoff protocols that are robust

to noise and/or jamming [8, 9, 12, 15, 20, 31, 81, 82, 86–90]. A

critical modelling question is how packets are injected, e.g., in

batches [13, 16, 18, 46, 51, 59, 60, 97], stochastically [4, 6, 50, 52,

57, 57, 65, 65, 72, 79, 80, 83, 84, 92], or via an adversarial queuing

theory model [10, 13, 16, 18, 33, 34, 51, 55, 59, 97]. There has also

been a variety of work looking at variations, e.g., the packets may

have deadlines [5], or the packets may have different sizes [18].

Our algorithm is built on themultiplicative-weight [14] approach,

which has long been used for contention resolution, e.g., in TCP

congestion control [29]. More recently, Awerbuch, Richa, and Schei-

deler [15] used a multiplicative-weight approach to solve backoff

in the presence of jamming and noise. And Cheng, Ji, and Pet-

tie [27] using multiplicative-weights updates to achieve 1/𝑒 − 𝑜 (1)
throughput.

2 CODED RADIO NETWORK MODEL
The goal of this section is to develop the Coded Radio Network

Model. We begin with background on how radios transmit and

receive signals, before continuing to present the model itself.

Physical-layer radios
Here we briefly describe how physical-layer radios work. (See,

e.g., [95], for more details.) The packet to be sent is broken up into

smaller pieces. Each of these pieces is then “modulated,” i.e., mapped

to a complex number. The mapping depends on the modulation

scheme, which impacts the transmission rate. For example, a simple

binary encoding scheme might map a 1 to 𝑒0𝑖 = (1, 0) and 0 to

𝑒𝜋𝑖 = (−1, 0). These complex numbers correspond to waveforms

which the radio transmits. (For example, in “phase-shift keying,”

the complex number determines the phase of the wave-form; for

the binary encoding above, the phase is 0 to transmit a 1 and 𝜋 to

transmit a 0.)

The receiver can observe the waveforms, which have been par-

tially corrupted during the transmission: the signals are attenuated

(i.e., the amplitude reduced), the phase has shifted based on the

distance between the transmitter and receiver, there is additional

noise, etc. Despite these challenges, modern receivers are designed

to synchronize with the transmitter, estimate the various error

parameters, and transform the waveform back into a sufficiently

close approximation of the original complex number. These are

then demodulated, and the packet reconstructed.

A notable aspect is that the process is additive: if two complex

number are transmitted simultaneously, the receiver is able to de-

code the sum of the original complex numbers (each partially cor-

rupted, as before, and with noise added). This sum can provide

useful information about the original messages; for example, if you

already know one of the messages, you can subtract it from the

sum and recover the second message. This is famously exploited in

systems that rely on interference cancellation, e.g., [11, 61, 70, 71].

Too many simultaneous transmissions, however, will make this

demodulation increasingly difficult because of the noise and signal

corruption that is added while the messages are in flight.

Our model
In this section, we describe the Coded Radio Network Model, which

models radios that can receive multiple packets transmitted simul-

taneously, while respecting the information-theoretic capacity of

the channel and the decoding limits inherent to modern hardware.

We assume that time is divided into (synchronized) slots, each

of which is sufficiently large to send a single packet. At any given

time, there are a collection of packets to be sent in the system.

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

121

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Michael A. Bender, Seth Gilbert, Fabian Kuhn, John Kuszmaul, and Muriel Médard

(Our discussion is going to focus on the packets, not the devices
sending them, which may lead to some strange elocutions in which

a message may seem to have agency in transmitting itself.)

There is a base station that is intended to receive all the pack-

ets. In a more traditional contention-resolution model, the base

station would receive a packet that was broadcast by itself (i.e., the

packet broadcast itself) in a time slot. Here, when there are simul-

taneous transmissions, we will allow the base station to recover

some information (i.e., at a lower level in the stack, it recovers sum

information).

We define 𝜅 as the decoding threshold for the system, i.e., the

threshold determined by the hardware for how many simultaneous

transmissions can yield useful information. We say that a time slot

is good if there is at least one and at most 𝜅 transmissions in that

time slot. We say that a time slot is bad if there are more than 𝜅

transmissions in that slot. If no packets broadcast in the slot, it is

a silent slot. (Silent slots are neither good nor bad.) The packets

in the system cannot tell which steps are good and bad. They can

hear which slots are silent, however.

The execution will consist of decoding windows, i.e., periods
of time during which the base station has collected enough in-

formation to decode packets. Packets that have been decoded are

delivered and leave the system. Since a base station only learns use-

ful information during a good time slot, it can only decode packets

sent during good time slots—and ignores packets sent only during

bad time slots. We focus on decoding windows where every packet

that is broadcast during a good time slot must be decoded.

A decodingwindow needs to be long enough that the base station

can decode all the packets sent during good slots. The information-

theoretic constraint implies that if we are to decode 𝑗 packets, we

are going to need at least 𝑗 good time slots. (In the next section, we

explain the linear-algebraic intuition why 𝑗 time slots is sufficient.)

At the end of a successful decoding window, a decoding event
occurs:

Definition 1. There is a decoding event of size 𝑗 at time 𝑡 if
there exists a time window that begins with a good slot and ends at
time 𝑡 , such that:

(1) The window contains no decoding events.
(2) Exactly 𝑗 packets broadcast in the window in good slots.
(3) The number of good slots in the window is at least 𝑗 .

That window is the decoding window.

(4) Decoding events occur iteratively over time, meaning a decod-
ing event occurs the first time that these conditions are satisfied
after the previous decoding event.

When a decoding event of size 𝑗 occurs, the 𝑗 packets that broadcast
in good slots during the decoding window are received by the base
station.

Every device knows when a successful decoding event occurs.

Examples. If three packets broadcast simultaneously for three

rounds (and 3 ≤ 𝜅), then those three rounds yield a decoding event

of size 3. Alternatively, if all three packets (𝑎, 𝑏, 𝑐) broadcast in
time slot 1 simultaneously, while packets 𝑏 and 𝑐 broadcast in time

slot 2 and packet 𝑐 broadcasts alone in time slot 3, then after these

three time slots a decoding event occurs and all three packets are

delivered. Notice that this definition satisfies our intuition that it

should always take at least 𝑗 time slots to successfully deliver 𝑗

packets.

This formalization of a decoding event does not take advantage

of all of the information that the decoding technology may be able

to obtain. For example, consider the schedule in which packets 𝑎

and 𝑏 broadcast together in time steps 1 and 3. In step 2 a single

packet 𝑐 broadcasts, i.e., there is a decoding event in the window

comprised of only step 2. According to Definition 1, we cannot

have a decoding event for steps 1-3, because there was already a

decoding event at step 2. Since decoding windows are required

to be disjoint, the broadcasts from step 1 cannot be used for any

future decoding window. Even though the broadcasts in steps 1 and

3 provide sufficient information to decode packets 𝐴 and 𝐵, that

information is lost.

In fact, this paper will only need (and have) decoding intervals

of size 𝑂 (𝜅). In practice, decoding windows will also be limited in

length, e.g., the base station should not have to remember and try

to decode arbitrarily long sequences.

Practicalities
Here, we are going to give some intuition for how random linear

network coding might be used to implement the model described

above. (Complete physical-layer implementations are beyond the

scope of this paper.)

From the perspective of linear network coding, each time slot

is a column vector 𝑡 with one entry for each possible transmitter:

𝑡 [𝑗] = 1 if device 𝑗 broadcasts and 𝑡 [𝑗] = 0 if device 𝑗 is silent.

Over the collection of good time slots that form a decoding window,

the collection of vectors forms a binary matrix 𝑇 containing one

column for each good slot. (We drop the empty and bad time slots.)

If device 𝑗 is transmitting message𝑚[𝑗], then due to the additive

nature of radio transmission, the base station receives the (row)

vector𝑚𝑇 during the decoding window. If the matrix𝑇 is invertible,

then the base station can now decode the packets sent during this

decoding window by computing𝑚𝑇𝑇−1
.

There are many techniques for ensuring that the matrices are in-

vertible. For example, random linear codingmultiplies eachmessage

by a random coefficient before it is sent. The resulting transmission

matrix 𝑇 is now a random matrix and hence likely to be invertible.

An alternative is to randomize the slots in which packets broadcast

to ensure that each column vector is unique (which is all that is

needed for linear independence).

A key technical issue is how the base station learns the transmis-

sion matrix. That is, the base station needs to know which packets

are being transmitted in which slots in order to decode the packets.

And in the case of random linear network coding, the base station

also needs to know the coefficients. Thus, there is a small amount

of “control information” that the base station needs to know before

the packets can be decoded.

This problem is easier to solve in the context of this paper, where

we ensure that the same packets always broadcast together during

each slot of a decoding window. (For example, consider the situa-

tion where packets (𝑎, 𝑏, 𝑐) are broadcast together three times until

a decoding event occurs.) This decision makes for both a simpler al-

gorithm, but also one that is more compatible with existing physical

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

122

Contention Resolution for Coded Radio Networks SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

layer systems. Indeed, the requisite control information can even

be sent using the ZigZag Decoding techniques [56]. In the general

case, other techniques are needed to communicate this control in-

formation, including error-correcting codes, lower communication

rates, leveraging random offsets (as in ZigZag Decoding), etc.

While our discussion here has been brief, developing systems

with these types of network coding capabilities has been and re-

mains an active and exciting area of research; see e.g., [26, 38, 41, 69–

71].

3 DECODABLE BACKOFF ALGORITHM
In this section, we describe the Decodable Backoff Algorithm, a

protocol for achieving efficient channel utilization in the Coded

Radio Network model.

Admission control. Our algorithm separates packets into two

types: active and inactive. Newly joined packets start as inactive.

Inactive packets listen but do not broadcast; active packets do both.

Silent steps trigger packet activations. When an inactive packet

hears a silent slot, it becomes active. An active packet stays active

until it successfully broadcasts and leaves the system; it never re-

turns to being inactive.

Types of epochs. The algorithm divides time into epochs, where
the same set of packets broadcast in each slot of the epoch. The

length of an epoch can vary from 1 to 𝜅 slots (as specified below).

Each packet 𝑗 has an associated joining probability 𝒑𝒋 , which
means that when a new epoch begins, packet 𝑗 joins the epoch
with probability 𝑝 𝑗 and then broadcasts (deterministically) in every

slot of the epoch. A packet has positive joining probability if and

only if it is active. (An inactive packet 𝑗 has joining probability

𝑝 𝑗 = 0.) If a packet does not join an epoch, then it remains silent

until the epoch is complete.

There are three triggers that causes an epoch to end, leading to

three types of epochs:

(1) A silent slot—This results in a silent epoch. A silent slot

implies that no packets joined the epoch.

(2) A decoding event—This results in a successful epoch
where the packets that joined the epoch are decoded.

(3) 𝜿 time slots have elapsed without a decoding event—
This results in a overfull epoch, as it implies that too many

packets joined the epoch and these slots will not be part of a

decoding window.

Epoch-joining probabilities.When a packet 𝑗 first becomes ac-

tive, its initial joining probability is

𝑝 𝑗 = 1/
√
𝜅. (1)

When an epoch ends, packet 𝑗 updates 𝑝 𝑗 as follows.

𝑝 𝑗 ←


𝑝 𝑗 · 𝜅1/4

upon a silent epoch,

𝑝 𝑗

𝜅1/4 upon an overfull epoch,

𝑝 𝑗 upon a successful epoch.

(2)

Algorithm highlights. The algorithm itself is concise, but deli-

cate: at the end of an epoch, packets multiplicatively update their

broadcast probabilities by a factor of 𝜅1/4
. Packets join with broad-

cast probability 𝑝0 = 1/
√
𝜅. Inactive packets only become active

upon hearing a silent epoch. Our target contention is 𝑐∗ =
√
𝜅. If

contention is in the window [𝜅1/4, 𝜅3/4], we say that contention
is good.

There are three important aspects that are critical to its success.

First, the epoch structure enables coordination among the packets

so that packets retransmit together, which enables them to be de-

coded.
3
(Contrast this structure with a protocol in which devices

broadcast independently in every round; it is much less likely to get

enough information on a collection of packets that can be simulta-

neously decoded.) Second, careful admission control is important

because it ensures that newly arriving packets do not interfere with

packets that are currently participating in epochs.

Third, and most critically, setting the 𝑝 𝑗 ’s is delicate, given the

objective of 1 − 𝑜 (1) throughput. It is critical that newly active

packets start with a 𝑜 (1) joining probability; see Equation (1), as

otherwise too much time might be spent backing off. (Recall that

even a small number of overfull epochs is too many for 1 − 𝑜 (1)
throughput.) Moreover, it is critical that the 𝑝 𝑗 s change rapidly.

To put Equation (2) in context, the “contention” on the channel

(expected number of broadcasts in a slot) changes much faster

(exponentially) than with exponential backoff [79]. Contention even

changes a 𝜔 (1)-factor faster than the multiplicative-weight-update

algorithm of Chang et al. [27].

4 POTENTIAL FUNCTION
Throughout the execution, we maintain a potential function Φ(𝑡)
that captures the state of the system at 𝑡 and measures the progress

toward delivering all packets. We will see that packet arrivals in-

crease Φ(𝑡) by 1 + 𝑜 (1) per newly arrived packet (Lemma 5), that

packets exiting the system successfully decrease Φ(𝑡) by 1 per

packet (Lemma 7), and that an epoch of length ℓ is either a suc-

cessful epoch or causes contention to move closer to the desired

contention of 𝑐∗ with high probability, and will decrease Φ(𝑡) by
ℓ (1 − 𝑜 (1)) in those cases (Lemma 3, Lemma 9).

Recall that 𝑝𝑖 is the joining probability for each packet 𝑖 .

We define the contention 𝒄𝒕 =
∑
𝑖 𝑝𝑖 . We define 𝒑min(𝒕) =

min{𝑖:𝑖 is an active packet} 𝑝𝑖 to be the minimum probability of any

active packet currently in the system. If there are no active packets

in the system, we define 𝑝min (𝑡) = 1. We define the target con-
tention 𝒄∗ =

√
𝜅. 𝑁𝑡 is the total number of packets in the system

at time 𝑡 , including both active and inactive packets.𝑀𝑡 counts the

number of inactive packets in the system at time 𝑡 .

The potential function consists of four components (named be-

low).

Φ(𝑡) = 𝑁𝑡 + max

{
0, 4𝜅 log𝜅

(𝑐𝑡
𝑐∗

)}
+ 4 log𝜅

(
1

𝑝min (𝑡)

)
+ 5𝑀𝑡

ln𝜅
.

(1) 𝑵 (𝒕) = 𝑁𝑡 . Since no term can go negative, this term implies

that if the potential is small, there cannot be many packets

remaining in the system.

3
It is also the case that simultaneous retransmissions simplify the lower physical-layer

implementation, as discussed in Section 2. For example, ZigZag Decoding [56] similarly

relies on simultaneous retransmissions for this reason.

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

123

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Michael A. Bender, Seth Gilbert, Fabian Kuhn, John Kuszmaul, and Muriel Médard

(2) logC(𝒕) = max

{
0, 4𝜅 log𝜅

(𝑐𝑡
𝑐∗

)}
. When positive, the term

indicates how far the contention is from ideal, i.e., howmany

epochs of length 𝜅 are needed to reach 𝑐∗.
(3) 𝒔(𝒕) = 4 log𝜅

(
1

𝑝min (𝑡)
)
. The term indicates how many silent

epochs (of length 1) would be necessary to bring the packet

with minimal join-probability up to join probability 1.

(4) 𝒖(𝒕) =
5𝑀𝑡

ln𝜅
. The term compensates for packet activations.

Potential is stored in this function for each arrived, inactive

packet. That potential then compensates for the increase in

the second term caused by the rise in contention when the

packets activate.

It is immediate that the potential function is always positive

when there are packets in the system. Since all the terms are non-

negative, it also is immediately true that 𝑁 (𝑡) ≤ Φ(𝑡), i.e., the
potential function is an upper bound on the number of packets in

the system. If we can show that the potential in the system remains

low, then we can conclude that the number of packets in the system

also remains low.

It is constructive to compare our potential function with the

function from Chang et al. [27]. Similarly, to Chang et al, Φ(𝑡) has
terms that measure the number of packets, how far contention

is from the algorithm’s target contention, and the smallest broad-

cast probability. Our design of Φ(𝑡) also takes into account that

(1) epochs can be different lengths, (2) there are transitions from

inactive to active packets, (3) our multiplicative-weight update rule

is especially aggressive, and (4) only a 𝑜 (1) fraction of slots can be

bad.

5 THROUGHPUT ANALYSIS
In this section, we will show that the Decodable Backoff Algorithm

guarantees 1 − 𝑜 (1) throughput. Most of the section is devoted

to analyzing the potential function, specifically showing that it

decreases by 1−𝑜 (1) in expectation in every round where it is > 6𝜅 ,

and increases by 1 + 𝑜 (1) for every packet that is injected by the

adversary). Thus, in Theorem 11, we can conclude that as long as

no more than𝑤 (1− 5/ln𝜅) packets arrive in a window of length𝑤 ,

then (with high probability) there are never more than 2𝑤 packets

in the system.

We first observe that successful epochs correspond to decoding

windows:

Lemma 2. An epoch is successful if and only if ≤ 𝜅 packets join the
epoch. In that case, there is a decoding event at the end of the epoch
and the decoding window corresponds exactly with the epoch.

Proof. If ≤ 𝜅 packets join the epoch, then those packets will

broadcast together in each of the following ≤ 𝜅 rounds of the epoch.

These broadcasts cause a decoding event at the end of the epoch

which includes those packets.

The last slot in a decoding windowmust be a good slot. (If the last

slot were bad, then the conditions would have been satisfied earlier

and the decoding event would have occurred earlier.) If > 𝜅 packets

join an epoch, then every round in the epoch is bad, and hence no

decoding event occurs at the end of the epoch. If no packets join

an epoch, then again the last slot of the epoch is not good and so

again, no decoding event occurs.

The decoding window cannot be a suffix of the successful epoch

that it concludes for the following reason: every slot in a successful

epoch is good (because ≤ 𝜅 packets joined the epoch); if the decod-

ing event delivers 𝑗 packets, then it must occur after exactly 𝑗 slots

of the epoch—no earlier, and no later. If there were even one slot

in the epoch that preceded the decoding window, then, the entire

decoding window could have moved one slot earlier.

The decoding window cannot extend to the left of the successful

epoch that ends with the decoding event. That is because between

the last decoding event and the beginning of this epoch, every slot

is either bad or empty, as each of the intervening epochs is either

overfull or silent. And, as per the definition of the decoding window,

it must begin with a good slot.

Thus we conclude that the decoding window corresponds exactly

with a successful epoch which ≤ 𝜅 packets joined. □

5.1 Analyzing the probability of an error epoch
Definition 2. We define an error epoch to be an epoch that is

either a silent epoch that occurs when contention 𝑐𝑡 ≥ 𝜅1/4 or an
overfull epoch that occurs when contention 𝑐𝑡 ≤ 𝜅3/4. Note that this
is well-defined since contention is constant throughout an epoch.

Lemma 3. An epoch beginning at time 𝑡 is an error epoch with
probability at most 1/2Θ(𝜅1/4) .

Proof. An error epoch is a silent epoch that occurs when 𝑐𝑡 ≥
𝜅1/4

or an overfull epoch that occurs when 𝑐𝑡 ≤ 𝜅3/4
.

Applying Chernoff bounds, the probability of an epoch being

silent (i.e. no packets joining the epoch) when 𝑐𝑡 > 𝜅1/4
is at most

1/2Θ(𝜅1/4)
. Similarly, the probability that an epoch is overfull (i.e.

more than 𝜅 packets join) when 𝑐𝑡 < 𝜅3/4
is at most 1/𝜅1/4(Θ(𝜅)) =

1/𝜅Θ(𝜅) . Applying a union bound, the probability of an error epoch

occurring is at most 1/2Θ(𝜅1/4)
. □

We now bound the number of error epochs during an interval.

Lemma 4. Let 𝑡2 be a time slot. Then for all intervals 𝐼 = (𝑡1, 𝑡2]
where 𝑡1 < 𝑡2, of size𝑤 = 𝑡𝑡 − 𝑡1 satisfying

√
𝑤 > Θ(𝜅1/4), the num-

ber of error epochs occurring in 𝐼 is at most
√
𝑤 + 𝑐 (𝑡2 − 𝑡1)/2Θ(𝜅

1/4) ,
for any fixed constant 𝑐 ≥ 6, with probability ≥ 1 − 1/poly(𝑤).

Proof. Choose an arbitrary slot 𝑡1 < 𝑡2, and define interval

𝐼 = (𝑡1, 𝑡2]. Let 𝑗 be the random variable denoting the number of

error epochs that occur in 𝐼 . By Lemma 3, E[𝑗] ≤ (𝑡2 − 𝑡1)/2Θ(𝜅
1/4)

,

as 𝐼 contains at most 𝑡2 − 𝑡1 distinct epochs. Let 𝑋𝑖 be an indicator

random variable that is 1 iff the 𝑖th epoch in 𝐼 is an error epoch.

Note that P[𝑋𝑖 = 1] ≤ 1/2Θ(𝜅1/4)
, even if we condition on the

values of 𝑋 𝑗 for all 𝑗 ≠ 𝑖 . Thus, we can apply Chernoff Bounds to

find:

P
[
𝑗 ≥
√
𝑤 + 𝑐 (𝑡2 − 𝑡1)/2Θ(𝜅

1/4)
]
≤ 1/2

√
𝑤+𝑐 (𝑡2−𝑡1)/2Θ(𝜅

1/4)
.

Union bounding over all 𝑡1 from 𝑡1 = 0 to 𝑡1 = 𝑡2, we find that

the probability that the number of error epochs in 𝐼 exceeds
√
𝑤 +

𝑐 (𝑡2 − 𝑡1)/2Θ(𝜅
1/4)

for any interval 𝐼 = (𝑡1, 𝑡2], over all 𝑡1, is at most

𝑡2∑
𝑡1=0

1/2
√
𝑤+𝑐 (𝑡2−𝑡1)/2Θ(𝜅

1/4)
≤ (2/𝑐)2Θ(𝜅

1/4)−
√
𝑤 .

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

124

Contention Resolution for Coded Radio Networks SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

The inequality follows due to the sum being over a geometric

series. □

5.2 Evolution of the Potential Function
Consider an epoch of length ℓ during which 𝑖 packets are inserted

by the adversary, for any arbitrary (ℓ, 𝑖). We prove in this subsection

that error epochs are the only epochs in which the potential Φ(𝑡)
fails to decrease by at least ℓ (1 − 1/𝜅) − 𝑖 (1 + 5/ln𝜅) (Lemma 9).

First, we analyze the impact of packets joining the system on the

potential function. This takes place in two steps. First, they arrive

and are inactive. This only increases the first and last terms of the

potential function:

Lemma 5. Each packet that arrives during in slot 𝑡 increases the
potential by Φ(𝑡) by 1 + 5/ln𝜅.

Proof. Newly inserted packets arrive as inactive packets, and

thus they have no impact on contention or 𝑝min. The only terms

they affect are the first and last, which increase by 1 and 5/ln𝜅,
respectively, per newly inserted packet. □

Next, we consider what happens to the potential function when

packets activate. This activation occurs only during a silent epoch,

and can impact only the second, third, and fourth terms of the

potential function:

Lemma 6. If Φ(𝑡) > 6𝜅 and slot 𝑡 is part of a non-error epoch,
then packet activations do not increase Φ(𝑡). More precisely, packet
activations in slot 𝑡 increase Φ(𝑡) only in the following situations:

• Φ(𝑡) < 6𝜅 and 𝑝min (𝑡) > 1/
√
𝜅.

• Slot 𝑡 is part of an error epoch, and 𝑝min (𝑡) > 1/
√
𝜅.

In these cases, Φ(𝑡) increases by < 2 because of packet activations
during the (silent) epoch.

Proof. Upon hearing a silent slot, all inactive packets activate.

Assume that 𝑟 = 𝑀𝑡 packets activate. Notice that if 𝑝min > 1/
√
𝜅,

then 𝑝min decreases when packets activate.

We first show that if 𝑝min does not change due to the packet

activations, then the potential does not increase due to packet

activations. To show this, assume that 𝑝min does not change when

the packets are activated. Consider the four terms of the potential

function:

• 𝑁 (𝑡) does not change based on packet activations (as it is

only affected by new packet injections).

• The second term of the potential function logC(𝑡) increases
by at most 4𝑟/ln𝜅 because: If 𝑐𝑡 < 𝑐∗, then logC(𝑡) = 0;

hence we only need to consider the increase in contention

above 𝑐∗ =
√
𝜅. That is, the maximum increase in logC(𝑡)

is at most 4𝜅 log𝜅 (1 + (𝑟/
√
𝜅)/
√
𝜅) ≤ 4𝜅𝑟/(𝜅 ln𝜅) = 4𝑟/ln𝜅

(this inequality follows using ln(1 + 𝑥) ≤ 𝑥).

• 𝑠 (𝑡) does not increase, by assumption for this case.

• 𝑢 (𝑡) decreases by 5𝑟/ln𝜅 because 𝑟 inactive packets became

active.

We conclude that if 𝑝min is not changed by the packet activations

(and hence 𝑠 (𝑡) is not increased), then the increase in potential due

to logC(𝑡) is less than the decrease in potential due to 𝑢 (𝑡), and
hence Φ(𝑡) does not increase.

Next, we show that even if 𝑝min does change due to packet

activations, the potential never increases by more than 2. Consider

the third term of the potential function 𝑠 (𝑡). If 𝑝min decreases, then

𝑠 (𝑡) increases. A packet, when activated, begins with 𝑝 𝑗 = 1/
√
𝜅.

Thus, the most that 𝑠 (𝑡) can increase is < 4 log𝜅

√
𝜅 = 2 since

𝑝min < 1 during a silent slot. In total, summing the changes over

all four parts of the potential function, the potential increases by at

most: 4𝑟/ln𝜅 + 2 − 5𝑟/ln𝜅 < 2.

It remains to show that Φ(𝑡) increases (by at most 2, as already

shown) only when 𝑝min is reduced due to packet activations and
either Φ(𝑡) < 6𝜅 or there is an error epoch. Consider the following

three cases (immediately prior to the packet activations):

Case 1: The number of active packets< 𝜿 and𝒑min is reduced
by packet activations. If 𝑟/ln𝜅 ≥ 2, then there is no increase in

potential due to packet activations because (4𝑟/ln𝜅 +2) −5𝑟/ln𝜅 ≤
0. Otherwise, 𝑟 < 2 ln𝜅.

In this latter case (where the potential might increase and 𝑟 <

2 ln𝜅), we can compute the potential function before the packet

activations as follows:

• 𝑁 (𝑡) ≤ 𝜅 + 𝑟 , by the case assumption. Since 𝑟 ≤ 2 ln𝜅 ≤ 𝜅,

we conclude that 𝑁 (𝑡) ≤ 2𝜅.

• logC(𝑡) ≤ 4𝜅 log𝜅 (𝑐𝑡/
√
𝜅) ≤ 2𝜅 because 𝑐𝑡 ≤ 𝜅.

• 𝑠 (𝑡) ≤ 4 log𝜅 (
√
𝜅) ≤ 2; because 𝑝min is reduced by the

packet activations, we know that before these activations, it

must have been the case that 𝑝min ≥ 1/𝜅.
• 𝑢 (𝑡) = 5𝑟/ln𝜅 < 10.

Thus, Φ(𝑡) ≤ 2𝜅 + 2𝜅 + 2 + 10 ≤ 4𝜅 + 12. Given that 𝜅 ≥ 6, we

conclude that Φ(𝑡) ≤ 6𝜅 . Thus, in this case, the potential increases

only if Φ(𝑡) ≤ 6𝜅.

Case 2: The number of active packets≥ 𝜿 and𝒑min is reduced
by packet activations. Since 𝑝min is reduced by the packet acti-

vations, we know that prior to their activation, 𝑝min > 1/
√
𝜅. It

follows that 𝑐𝑡 > 𝜅/
√
𝜅 =
√
𝜅. We know that this is a silent epoch,

because otherwise the packets would not have activated. And the

contention at the beginning of this silent epoch was >
√
𝜅. Thus,

this epoch is an error epoch, by definition.

Case 3: 𝒑min is not reduced by packet activations. As we have
already shown, the potential does not increase.

Over all three cases, then, we see that potential only increases

when Φ(𝑡) ≤ 6𝜅 and 𝑝min is reduced by the packet activations, or

when there is an error epoch and 𝑝min is reduced by the packet

activations. And in all such cases, the potential increases by at most

2. □

Lemma 7. A successful epoch of length ℓ , during which 𝑖 packets
are inserted by the adversary, will result in a decrease to the potential
of at least ℓ − 𝑖 (1 + 5/ln𝜅).

Proof. First, let us look at the change in potential due to the

inserted packets. The first term 𝑁𝑡 increases by 𝑖 because there

are 𝑖 new packets; the last term increases by 5𝑖/ln𝜅 because these

packets are inactive (until the next silent epoch). The other terms

in the potential function are not affected by new packet injections.

Now consider the change in potential due to the successful epoch.

The first term 𝑁𝑡 will decrease by ℓ , as the epoch corresponds with

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

125

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Michael A. Bender, Seth Gilbert, Fabian Kuhn, John Kuszmaul, and Muriel Médard

a decoding window (Lemma 2) of size ℓ and hence ℓ packets are

successfully delivered. The net change in the second term is non-

positive, as the contention 𝑐𝑡 does not increase upon a successful

epoch (since no broadcast probabilities are increased). Similarly, the

net change in 𝑠 (𝑡) is also non-positive, as 𝑝min cannot decrease upon

a successful epoch. (It may increase if the packet(s) with minimal

joining probability are delivered.) Finally, 𝑢 (𝑡) does not change
since inactive packets are unaffected by a successful epoch. □

Having established preliminaries regarding the effects of packet

arrivals, packet activations, and successful epochs on Φ(𝑡), we now
examine the behavior of our potential function Φ(𝑡).

Lemma 8. An error epoch increases Φ(𝑡) by at most 𝜅 + 𝑖 (1 +
5/ln𝜅) + 2, where 𝑖 is the number of packets that arrive during the
epoch.

Proof. There are two types of error epochs: a silent epoch with

high contention or an overfull epoch without high contention. In

both cases, the 𝑖 new packets that arrive increase the first term of

the potential by 𝑖 and the last term of the potential by 5𝑖/ln𝜅.
• When there is an overfull epoch, 𝑝min decreases multiplica-

tively by a factor of 𝜅1/4
, causing an increase to 𝑠 (𝑡) of ex-

actly 1. Changes to 𝑐𝑡 only decrease the potential. There is

no change in potential due to packet activations because the

epoch is not silent.

• When there is a silent epoch, 𝑐𝑡 increases multiplicatively

by a factor of 𝜅1/4
, causing an increase to logC(𝑡) of exactly

𝜅 . Changes to 𝑝min only decrease the potential. By Lemma 6,

the packet activations caused by silent (error) epoch increase

Φ(𝑡) by at most 2.

Thus the overall increase to Φ(𝑡) caused by an error epoch is at

most 𝜅 + 2.

□

Lemma 9. Consider a given non-error epoch of length ℓ , during
which 𝑖 packets are inserted by the adversary. If any of the following
conditions hold: (i) Φ(𝑡) > 6𝜅 or (ii) 𝑝min < 1/

√
𝜅 or (iii) contention

≥ 𝜅1/4, then Φ(𝑡) decreases by at least ℓ (1 − 1/𝜅) − 𝑖 (1 + 5/ln𝜅).
Otherwise, Φ(𝑡) decreases by at least ℓ (1 − 1/𝜅) − 𝑖 (1 + 5/ln𝜅) − 2.

Proof. Note that if the epoch is a successful epoch, we can

immediately apply Lemma 7 to achieve the desired result. Thus

we only need to consider overfull and silent epochs. Notably, if

contention ≥ 𝜅1/4
and ≤ 𝜅3/4

, then the epoch is successful (because

it is a non-error epoch).

By Lemma 5, we know that the 𝑖 packet arrivals will increaseΦ(𝑡)
by exactly 𝑖 (1 + 5/ln𝜅). By Lemma 6, we know that, if Φ(𝑡) ≥ 6𝜅

or 𝑝min ≤ 1/
√
𝜅, any packet activations that occur during this

epoch do not increase Φ(𝑡). If contention ≥ 𝜅1/4
, then the epoch

is not silent (because it is a non-error epoch) and so no packets

are activated. Otherwise, the packet activations increase Φ(𝑡) by at

most 2.

Thus, it is sufficient to show that, setting aside packet arrivals

and activations, Φ(𝑡) decreases by at least ℓ (1 − 1/𝜅) over this
epoch. We proceed by casework, considering high contention, low

contention, and contention near 𝑐∗ =
√
𝜅.

Case 1: 𝒄𝒕 > 𝜿3/4.

Since the epoch is not an error epoch, it cannot be a silent epoch.

Thus we need only consider the case when it is an overfull epoch.

An overfull epoch is of length ℓ = 𝜅 by definition. Overfull

epochs have no effect on the first and fourth terms in Φ(𝑡). The
epoch will cause a decrease to logC(𝑡) of 𝜅 due to a multiplicative

decrease in 𝑐𝑡 by a factor of 𝜅1/4
. It will also increase 𝑠 (𝑡) by 1 due

to 𝑝min decreasing multiplicatively by a factor of 𝜅1/4
. Thus we

have a net decrease in Φ of 𝜅 − 1 = ℓ (1 − 1/𝜅).

Case 2: 𝒄𝒕 < 𝜿1/4.
Since the epoch is not an error epoch, it cannot be an overfull

epoch. We have already considered successful epochs, so we need

only consider a silent epoch.

A silent epoch has no effect on the first and last terms in Φ(𝑡),
and the second term, logC(𝑡), will be 0 both before and after this

epoch due to contention remaining below 𝑐∗. Thus the only term

affected by this epoch is 𝑠 (𝑡), which will decrease by 1 = ℓ as 𝑝min

increases multiplicatively by a factor of 𝜅1/4
.

Case 3: 𝜿1/4 ≤ 𝒄𝒕 ≤ 𝜿3/4.
Because the epoch is not an error epoch, it must be a successful

epoch. As noted earlier, we can then apply Lemma 7 to complete

the proof.

□

5.3 Bounding the Potential
Lemma 10. Suppose that in every window of size𝑤 , for any given

𝑤 ≥ 16𝜅2, there are at most
(
1− 5

ln𝜅

)
𝑤 packet arrivals. Then Φ(𝑡) ≤

2𝑤 , with probability at least 1 − 1/poly(𝑤).

Proof. Consider the last time before 𝑡 when Φ was less than

6𝜅. We label this time 𝑡 ′. The interval (𝑡 ′, 𝑡] is of length 𝑡 − 𝑡 ′, so
at most

⌈
𝑡−𝑡 ′
𝑤

⌉(
1 − 5

ln𝜅

)
𝑤 < (𝑡 − 𝑡 ′ +𝑤)

(
1 − 5

ln𝜅

)
packets arrive

during interval (𝑡 ′, 𝑡]. Furthermore, Φ > 6𝜅 over this interval.

Suppose that 𝑗 error epochs occur during (𝑡 ′, 𝑡], for any arbitrary
𝑡 ′. By Lemma 4, we know that 𝑗 ≤

√
𝑤+𝑐 (𝑡2−𝑡1)/2Θ(𝜅

1/4)
, for a fixed

constant 𝑐 , with probability ≥ 1 − 1/poly(𝑤). For the remainder of

the proof, we assume that this event occurs.

We observe that at least (𝑡 − 𝑡 ′) − 𝑗𝜅 − 𝜅 time was spent in non-

error epochs that complete by time 𝑡 . (Note that there is potentially

one incomplete epoch at the end, which has at most 𝜅 slots.)

Let ℓ be the number of slots in completed non-error epochs in

the interval (𝑡 ′, 𝑡]. Let 𝑖 be the number of packets that are injected

during that interval. Applying Lemmas 8 and 9, it follows that:

Φ(𝑡) ≤ Φ(𝑡 ′) − ℓ
(
1 − 1

𝜅

)
+ 𝑖

(
1 + 5

ln𝜅

)
+ 𝑗 (𝜅 + 2)

≤ 6𝜅 −
(
𝑡 − 𝑡 ′ − (𝑗 + 1)𝜅

) (
1 − 1

𝜅

)
+

(𝑡 − 𝑡 ′ +𝑤)
(
1 − 5

ln𝜅

) (
1 + 5

ln𝜅

)
+ 𝑗 (𝜅 + 2)

≤ 7𝜅 − (𝑡 − 𝑡 ′)
(
1 − 1

𝜅

)
+ (𝑡 − 𝑡 ′ +𝑤)

(
1 − 25

ln
2 𝜅

)
+ 2 𝑗 (𝜅 + 2)

≤ 7𝜅 +𝑤 − (𝑡 − 𝑡 ′)
(

24

ln
2 𝜅

)
+ 2 𝑗 (𝜅 + 2) .

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

126

Contention Resolution for Coded Radio Networks SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

Thus, if Φ(𝑡) ≥ 2𝑤 then:

2 𝑗 (𝜅 + 2) ≥ 𝑤 − 7𝜅 + (𝑡 − 𝑡 ′)
(

24

ln
2 𝜅

)
and hence:

𝑗 > 𝑤/(𝜅 + 2) − 7 + (𝑡 − 𝑡 ′)
(

12

𝜅 ln
2 𝜅

)
≥
√
𝑤 + (𝑡 − 𝑡 ′)

(
12

𝜅 ln
2 𝜅

)
.

This, however, contradicts our assertion that 𝑗 ≤
√
𝑤 + 𝑐 (𝑡2 −

𝑡1)/2Θ(𝜅
1/4)

, for a fixed constant 𝑐 , implying that Φ(𝑡) < 2𝑤 . □

Theorem 11. Suppose that in every window of size 𝑤 , for any
given𝑤 ≥ 16𝜅2, there are at most

(
1 − 5

ln𝜅

)
𝑤 packet arrivals. Then

at any arbitrary time 𝑡 , the number of packets in the system is at
most 2𝑤 with probability at least 1 − 1/poly(𝑤).

Proof. By Lemma 10, we know that Φ(𝑡) < 2𝑤 , with probability

at least 1 − 1/poly(𝑤). Since the first term of the potential is the

number of packets in the system, this immediately implies that that

are at most 2𝑤 packets in the system. □

6 LATENCY ANALYSIS
In this section, we consider the maximum latency of a packet. Under

the assumption that the adversary can inject (1 − 𝑜 (1))𝑤 packets

in a window of size𝑤 , it is unavoidable that the worst-case latency

of a packet will be Ω(𝑤): if the adversary injects 𝑤 packets in a

slot, and the maximum capacity is one packet per slot, then at

least half the packets will take at least𝑤/2 slots. Our goal in this

section is to show that the worst-case throughput is𝑂 (
√
𝜅𝑤 ln

3𝑤).
We also consider the batch case and show that if 𝑛 packets arrive

simultaneously, they will all be delivered by time 𝑛 +𝑂 (1).

6.1 Packet Latency Analysis
We begin by defining a sparse system event that occurs when

there are very few active packets in the system. We will show

that whenever a sparse system event occurs, each packet has a

reasonable chance of success.

Definition 3. A sparse system event occurs in slot 𝑡 if: (i)Φ(𝑡) ≤
6𝜅; (ii) contention < 𝜅1/4, (iii) 𝑝min ≥ 1/

√
𝜅.

When a sparse system event occurs, it means that every active

packet was joining epochs with a relatively high probability; after

the epoch completes, any new packets that activated have lowered

𝑝min. Notice that when a sparse system event does not occur, then

the potential decreases (aside from new packets being injected):

Lemma 9 shows that potential decreases in non-error epochs, and

Lemma 3 shows that error epochs are unlikely.

We first show that no packet observes toomany completed sparse

system events before it is delivered.

Lemma 12. A given packet 𝑝 remains active in the system for
at most 𝑂 (

√
𝜅 ln𝑤) sparse system events, with probability at least

1 − 1/poly(𝑤).

Proof. When a sparse system event occurs, two facts are true:

(i) the probability that packet 𝑝 joins that epoch is ≥ 1/
√
𝜅 because

of the condition on 𝑝min; (ii) the number of active packets is ≤ 𝜅.

The latter fact follows because if there were more than 𝜅 active

packets, then the total contention would be at least 𝜅 · 1/
√
𝜅 ≥
√
𝜅 ,

contradicting the condition on contention.

Since there are at most 𝜅 active packets, then all the packets

that join the epoch will be successfully delivered. Since 𝑝 (once

active) joins with probability 1/
√
𝜅 , we conclude that 𝑝 had a 1/

√
𝜅

probability of being successfully delivered. The probability that 𝑝

fails to be delivered after Θ(
√
𝜅 ln𝑤) sparse system events (while

it is active) is at most (1 − 1/
√
𝜅)Θ(

√
𝜅 ln𝑤) ≤ 1/poly(𝑤). □

We now argue that, with high probability, a sparse system event

occurs every 𝑂 (𝑤 ln𝑤) slots. The first step is to show that if the

potential is some value 𝛼 at a time 𝑡 , then a sparse system event

occurs within time 𝑂 ((𝛼 +𝑤) ln2𝑤).

Lemma 13. Suppose that in every window of size𝑤 , for any given
𝑤 ≥ 16𝜅2, there are at most

(
1 − 5

ln𝜅

)
𝑤 packet arrivals. Fix a time

𝑡 and define 𝛼 = Φ(𝑡). Then, with high probability in 𝑤 , by time
𝑡 + 1.1(𝛼 +𝑤) ln2𝑤), either all packets active at time 𝑡 are delivered
or a sparse system event occurs.

Proof. Let 𝑡1 = 𝑡 and let 𝑡2 = 𝑡1 +𝑞𝑤 be the largest number that

is congruent with 𝑡1 (mod 𝑤) and smaller than 𝑡1+1.1(𝛼+𝑤) ln2𝑤 .

It is necessarily true then that 𝑡2 − 𝑡1 is a multiple of𝑤 satisfying

𝑡2−𝑡1 ≥ 𝑡 +(𝛼+𝑤) ln2𝑤 (i.e., relaxing the constant in the inequality

from 1.1 to 1 allows us to take 𝑡2 − 𝑡1 to be a multiple of𝑤). Assume,

for the sake of contradiction, that no sparse system event occurs

during the interval (𝑡1, 𝑡2]. We will show that all the packets active

at time 𝑡1 are delivered with high probability.

Suppose that 𝑗 error epochs occur during (𝑡1, 𝑡2]. By Lemma 4,

we know that 𝑗 ≤
√
𝑤 + 6(𝑡2 − 𝑡1)/2Θ(𝜅

1/4)
, with probability ≥

1 − 1/poly(𝑤). For the remainder of the proof, we assume that this

event occurs.

We observe that at least (𝑡2 − 𝑡1) − 𝑗𝜅 −𝜅 time was spent in non-

error epochs that complete by time 𝑡2. (Note that there is potentially

one incomplete epoch at the end, which has at most 𝜅 slots.)

We also observe that the number of packets that are injected in

the interval (𝑡1, 𝑡2] is at most:

⌈
𝑡−𝑡 ′
𝑤

⌉(
1− 5

ln𝜅

)
𝑤 < (𝑡2−𝑡1)

(
1− 5

ln𝜅

)
.

We can now bound the potential at time 𝑡2. At slot 𝑡1, Φ(𝑡1) = 𝛼 ;

by Lemma 9 that the potential decreases by (1 − 1/𝜅) in each slot

that was not part of an error epoch and increases (1 = 5/ln𝜅) for
each injected packet; by Lemma 8, the potential increases at most

𝜅 + 2) for each error epoch. We use this to bound how long until

the potential reaches zero.

Let ℓ be the number of slots in completed non-error epochs in

the interval (𝑡1, 𝑡2]. Let 𝑖 be the number of packets that are injected

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

127

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Michael A. Bender, Seth Gilbert, Fabian Kuhn, John Kuszmaul, and Muriel Médard

during that interval. Applying Lemmas 8 and 9, it follows that:

Φ(𝑡2) ≤ Φ(𝑡1) − ℓ
(
1 − 1

𝜅

)
+ 𝑖

(
1 + 5

ln𝜅

)
+ 𝑗 (𝜅 + 2)

≤ 𝛼 −
(
𝑡2 − 𝑡1 − (𝑗 + 1)𝜅

) (
1 − 1

𝜅

)
+

(𝑡2 − 𝑡1)
(
1 − 5

ln𝜅

) (
1 + 5

ln𝜅

)
+ 𝑗 (𝜅 + 2)

≤ 𝛼 − (𝑡2 − 𝑡1)
(
1 − 1

𝜅

)
+ (𝑡2 − 𝑡1)

(
1 − 25

ln
2 𝜅

)
+ (2 𝑗 + 1) (𝜅 + 2)

≤ 𝛼 − (𝑡2 − 𝑡1)
(

24

ln
2 𝜅

)
+ 6 𝑗𝜅

≤ 𝛼 − (𝑡2 − 𝑡1)
(

24

ln
2 𝜅

)
+ 6

√
𝑤𝜅 + (𝑡2 − 𝑡1)

36𝜅

2
Θ(𝜅1/4)

≤ (𝛼 + 6𝑤) − (𝑡2 − 𝑡1)
(

18

ln
2 𝜅

)
.

Thus, since (𝑡2 − 𝑡1) ≥ (𝛼 + 𝑤) ln2𝑤 ≥ (𝛼 + 𝑤) ln2 𝜅, we can

conclude that the potential has dropped below zero, implying that

all the packets in the system have been delivered. □

A corollary of the previous lemma is that a sparse system event

occurs in every interval of size 𝑂 (𝑤 ln
2𝑤), with high probability.

Corollary 14. Suppose that in every window of size𝑤 , for any
given𝑤 ≥ 16𝜅2, there are at most

(
1− 5

ln𝜅

)
𝑤 packet arrivals. For any

interval of time (𝑡1, 𝑡2) where (𝑡2 − 𝑡1) > 4𝑤 ln
2𝑤 , then either every

packet active at time 𝑡1 is delivered by time 𝑡2, or a sparse system
event occurs in that interval, with probability 1 − 1/poly(𝑤).

Proof. From Lemma 10, we know that at time 𝑡1, Φ(𝑡) ≤ 2𝑤

with probability at least 1 − poly(𝑤). From Lemma 13, we know

that by time 𝑡1 + 1.1(𝛼 +𝑤) ln2𝑤 ≤ 𝑡1 + 4𝑤 ln
2𝑤 ≤ 𝑡2, either all

the packets active at time 𝑡1 are delivered or a sparse system event

occurs, with probability at least 1 − poly(𝑤). □

We can conclude from the preceding lemmas that, with high

probability, every packet is delivered in 𝑂 (
√
𝜅𝑤 ln

3𝑤) time.

Theorem 15. Suppose that in every window of size𝑤 , for any given
𝑤 ≥ 16𝜅2, there are at most

(
1 − 5

ln𝜅

)
𝑤 packet arrivals. Then any

given packet is delivered within time 𝑂 (𝑤
√
𝜅 ln

3𝑤) with probability
1 − 1/poly(𝑤).

Proof. Assume that packet 𝑝 is injected at time 𝑡 . We first need

to consider how long until packet 𝑝 becomes active.

We now bound how long until a sparse system event occurs

which leads to a non-error epoch; such an epoch will be silent,

and hence packet 𝑝 will become active. In every window of

length Θ(𝑤 ln
2𝑤), there is a sparse system event with probability

1 − poly(𝑤) or all active packets are delivered, by Corollary 14. If

all active packets are delivered, then the next epoch is necessarily

silent. If a sparse system event occurs, by Lemma 3, we know that

the epoch comprising the sparse system event is an error epoch

with probability 1/2Θ(𝜅1/4) ≤ 1/𝑒; otherwise it is silent and 𝑝 be-

comes active. Thus, the probability that there is no silent epoch (and

hence packet 𝑝 remains inactive) for Θ(ln𝑤) intervals of length
Θ(𝑤 ln

2𝑤) is ≤ 1/poly(𝑤).

Once 𝑝 becomes active, we know by Lemma 12 that 𝑝 will be

delivered within𝑂 (
√
𝜅 ln𝑤) sparse system events, with probability

at least 1−poly(𝑤). We know by Corollary 14 that in every interval

of length𝑂 (𝑤 ln
2𝑤), either all packets (including 𝑝) are delivered or

there is a sparse system event, with probability at least 1−1/poly(𝑤).
Thus, within 𝑂 (𝑤

√
𝜅 ln

3𝑤), packet 𝑝 is delivered with probability

at least 1 − 1/poly(𝑤). □

6.2 Batch Analysis
Theorem 16. Suppose that a batch of 𝑛 ≠ 0 packets arrives at

time 0, and the adversary does not inject any packets besides this
initial batch. Then with high probability in 𝑛, all of the packets have
successfully been delivered by time 𝑛(1 + 10/𝜅) +𝑂 (𝜅).

Proof. Assume 𝑛 packets arrive at time 0, which is a silent

epoch, and then all immediately activate. Thus at time 1 we have

Φ(1) = 𝑛 +max

(
0, 4𝜅 log𝜅

𝑛

𝜅

)
+ 4 log𝜅

1

1/
√
𝜅

≤ 𝑛(1 + 5/ln𝜅) + 2

We now consider Φ(𝑡). At least 𝑡 − 1 − 𝜅 slots have been in non-

error epochs since time 1, and let 𝑗 be the number of error epochs.

Then

Φ(𝑡) ≤ Φ(1) − (𝑡 − 1 − 𝜅) (1 − 1/𝜅) + 𝑗 (𝜅 + 2)
≤ Φ(1) − 𝑡 (1 − 1/𝜅) + (𝑗 + 1) (𝜅 + 2) .

With high probability in 𝑛, we have, via an application of Cher-

noff Bounds, that 𝑗 ≤ 2𝑡/2Θ(𝜅1/4)
, for any 𝑡 ≥ 𝑛. We assume this

holds to obtain

Φ(𝑡) ≤ Φ(1) − 𝑡 (1 − 1/𝜅) + (1 + 2𝑡/2Θ(𝜅
1/4)) (𝜅 + 2) .

Taking 𝑡 = 4𝜅 + 𝑛(1 + 10/𝜅), we have that Φ(𝑡) ≤ 0. Thus there

are, with high probability in 𝑛, no packets left in the system by slot

𝑡 = 4𝜅 + 𝑛(1 + 10/𝜅), which is 𝑂 (𝑛(1 + 1/𝜅)). □

ACKNOWLEDGMENTS
This research was supported by NSF grants CCF-2118832, CCF-

2106827, CSR-1763680, CCF-1716252, CNS-1938709, and CCF-

1725543, as well as by Singapore MOE grant MOE2018-T2-1-160

(Beyond Worst-Case Analysis).

REFERENCES
[1] 2016. IEEE Standard for Information Technology–Telecommunications and

Information Exchange Between Systems Local and Metropolitan Area Networks

– Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications. IEEE Std 802.11-2016 (Revision of IEEE
Std 802.11-2012) (2016), 1–3534.

[2] N. Abramson. 1970. The ALOHA System — Another Alternative for Computer

Communications. In Proc. of AFIPS FJCC, Vol. 37. 281–285.
[3] N. Abramson. 1973. The Aloha system. In Computer-Communication Networks,

N. Abramson and Frank Kuo (Eds.). Prentice-Hall, Englewood Cliffs, New Jersey,

501–518.

[4] Norman Abramson. 1977. The throughput of packet broadcasting channels. IEEE
Transactions on Communications 25, 1 (1977), 117–128.

[5] Kunal Agrawal, Michael A. Bender, Jeremy Fineman, Seth Gilbert, and Maxwell

Young. 2020. Contention Resolution with Message Deadlines. In Proc. 32nd ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 23–35.

[6] D. Aldous. 1987. Ultimate instability of exponential back-off protocol for

acknowledgment-based transmission control of random access communication

channels. IEEE Transactions on Information Theory 33, 2 (1987), 219–223.

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

128

Contention Resolution for Coded Radio Networks SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

[7] David J. Aldous. 1987. Ultimate Instability of Exponential Back-Off Protocol for

Acknowledgment-Based Transmission Control of Random Access Communica-

tion Channels. IEEE Trans. on Inform. Theory IT-33, 2 (March 1987), 219–223.

[8] Lakshmi Anantharamu, Bogdan S Chlebus, Dariusz R Kowalski, and Mariusz A

Rokicki. 2011. Medium access control for adversarial channels with jamming. In

International Colloquium on Structural Information and Communication Complex-
ity. Springer, 89–100.

[9] Lakshmi Anantharamu, Bogdan S Chlebus, Dariusz R Kowalski, and Mariusz A

Rokicki. 2019. Packet latency of deterministic broadcasting in adversarial multiple

access channels. J. Comput. System Sci. 99 (2019), 27–52.
[10] Lakshmi Anantharamu, Bogdan S. Chlebus, and Mariusz A. Rokicki. 2009. Ad-

versarial Multiple Access Channel with Individual Injection Rates. In Proceedings
of the 13th International Conference on Principles of Distributed Systems (OPODIS).
174–188.

[11] J.G. Andrews. 2005. Interference cancellation for cellular systems: a contemporary

overview. IEEE Wireless Communications 12, 2 (2005), 19–29. https://doi.org/10.

1109/MWC.2005.1421925

[12] Antonio Fernández Anta, Chryssis Georgiou, Dariusz R. Kowalski, and Elli Zavou.

2017. Adaptive packet scheduling over a wireless channel under constrained

jamming. Theor. Comput. Sci. 692 (2017), 72–89. https://doi.org/10.1016/j.tcs.

2017.06.020

[13] Antonio Fernández Anta, Miguel A. Mosteiro, and Jorge Ramón Muñoz. 2013.

Unbounded Contention Resolution in Multiple-Access Channels. Algorithmica
67, 3 (2013), 295–314.

[14] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The Multiplicative Weights

Update Method: a Meta-Algorithm and Applications. Theory Comput. 8, 1 (2012),
121–164. https://doi.org/10.4086/toc.2012.v008a006

[15] Baruch Awerbuch, Andrea Richa, and Christian Scheideler. 2008. A Jamming-

Resistant MAC Protocol for Single-Hop Wireless Networks. In Proceedings of the
27th ACM Symposium on Principles of Distributed Computing (PODC). 45–54.

[16] Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and

Charles E. Leiserson. 2005. Adversarial Contention Resolution for Simple Chan-

nels. In Proc. 17th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 325–332.

[17] Michael A. Bender, Jeremy T. Fineman, and Seth Gilbert. 2006. Contention

Resolution with Heterogeneous Job Sizes. In Algorithms - ESA 2006, 14th Annual
European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings.
112–123. https://doi.org/10.1007/11841036_13

[18] Michael A. Bender, Jeremy T. Fineman, and Seth Gilbert. 2006. Contention Reso-

lution with Heterogeneous Job Sizes. In Proc. 14th Annual European Symposium
on Algorithms (ESA). 112–123.

[19] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Maxwell Young. 2016.

How to Scale Exponential Backoff: Constant Throughput, Polylog Access At-

tempts, and Robustness. In Proc. 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 636–654.

[20] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Maxwell Young. 2019.

Scaling Exponential Backoff: Constant Throughput, Polylogarithmic Channel-

Access Attempts, and Robustness. J. ACM 66, 1 (January 2019), 6:1–6:33. https:

//dl.acm.org/citation.cfm?id=3276769

[21] Michael A. Bender, Tsvi Kopelowitz, William Kuszmaul, and Seth Pettie. 2020.

Contention Resolution without Collision Detection. In Proc. 52st Annual ACM
Symposium on the Theory of Computing (STOC). 105–118.

[22] Michael A. Bender, Tsvi Kopelowitz, Seth Pettie, and Maxwell Young. 2016. Con-

tention Resolution with Log-Logstar Channel Accesses. In Proc. 48th Annual
Symposium on the Theory of Computing (STOC). 499–508.

[23] Michael A. Bender, Tsvi Kopelowitz, Seth Pettie, and Maxwell Young. 2018. Con-

tention Resolution with Constant Throughput and Log-Logstar Channel Ac-

cesses. SIAM J. Comput. 47, 5 (October 2018), 1735–1754. https://doi.org/10.1137/

17M1158604

[24] Giuseppe Bianchi. 2006. Performance Analysis of the IEEE 802.11 Distributed

Coordination Function. IEEE Journal on Selected Areas in Communications 18, 3
(Sept. 2006), 535–547.

[25] R. Binder, N. Abramson, F. Kuo, A. Okinaka, and D. Wax. 1975. ALOHA Packet

Broadcasting: A Retrospect. In Proceedings of the APIPS National Computer Con-
ference. 203–215.

[26] E. Casini, R. De Gaudenzi, and Od. R. Herrero. 2007. Contention Resolution

Diversity Slotted ALOHA (CRDSA): An Enhanced Random Access Schemefor

Satellite Access Packet Networks. IEEE Transactions on Wireless Communications
6 (2007), 1408–1419. Issue 4.

[27] Yi-Jun Chang, Wenyu Jin, and Seth Pettie. 2019. Simple Contention Resolution

via Multiplicative Weight Updates. In 2nd Symposium on Simplicity in Algorithms
(SOSA) (OASICS), Vol. 69. 16:1–16:16.

[28] Haimin Chen, Yonggang Jiang, and Chaodong Zheng. 2021. Tight Trade-off in

Contention Resolution without Collision Detection. In Proceedings of the 2021
ACM Symposium on Principles of Distributed Computing. 139–149.

[29] D. Chiu and R. Jain. 1989. Analysis of the Increase/Decrease Algorithms for

Congestion Avoidance in Computer Networks. Journal of Computer Networks

and ISDN 17, 1 (1989), 1–14.

[30] Imrich Chlamtac and Shay Kutten. 1985. On Broadcasting in Radio Networks-

Problem Analysis and Protocol Design. IEEE Trans. Commun. 33, 12 (1985),

1240–1246. https://doi.org/10.1109/TCOM.1985.1096245

[31] Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. 2016. Scalable

Wake-up of Multi-channel Single-hop Radio Networks. Theoretical Computer
Science 615, C (Feb. 2016), 23–44.

[32] Bogdan S. Chlebus, Leszek Gasieniec, Dariusz R. Kowalski, and Tomasz Radzik.

2005. On the Wake-Up Problem in Radio Networks. In Proceedings of the Interna-
tional Colloquium on Automata, Languages and Programming (ICALP). 347–359.

[33] Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. 2006. Adver-

sarial queuing on the multiple-access channel. In Proc. Twenty-Fifth Annual ACM
Symposium on Principles of Distributed Computing (PODC). 92–101.

[34] Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. 2012. Adver-

sarial Queuing on the Multiple Access Channel. ACM Transactions on Algorithms
8, 1 (2012), 5.

[35] Marek Chrobak, Leszek Gasieniec, and Dariusz R. Kowalski. 2007. The Wake-Up

Problem in MultiHop Radio Networks. SIAM J. Comput. 36, 5 (2007), 1453–1471.
[36] Gianluca De Marco, Dariusz R Kowalski, and Grzegorz Stachowiak. 2021. De-

terministic Contention Resolution without Collision Detection: Throughput vs

Energy. In 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). 1009–1019.

[37] Gianluca De Marco and Grzegorz Stachowiak. 2017. Asynchronous Shared Chan-

nel. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC ’17). 391–400.

[38] Mohammadreza Ebrahimi, Farshad Lahouti, and Victoria Kostina. 2020. Two-

Layer Coded Channel Access With Collision Resolution: Design and Analysis.

IEEE Trans. Wirel. Commun. 19, 12 (2020), 7986–7997. https://doi.org/10.1109/

TWC.2020.3018472

[39] Martín Farach-Colton and Miguel A Mosteiro. 2007. Initializing sensor networks

of non-uniform density in the weak sensor model. InWorkshop on Algorithms
and Data Structures. Springer, 565–576.

[40] Martín Farach-Colton and Miguel A Mosteiro. 2015. Initializing sensor networks

of non-uniform density in the weak sensor model. Algorithmica 73, 1 (2015),

87–114.

[41] Chen Feng, Danilo Silva, and Frank R. Kschischang. 2013. An Algebraic Approach

to Physical-Layer Network Coding. IEEE Transactions on Information Theory 59,

11 (2013), 7576–7596. https://doi.org/10.1109/TIT.2013.2274264

[42] Jeremy T. Fineman, Seth Gilbert, Fabian Kuhn, and Calvin Newport. 2016. Con-

tention Resolution on a Fading Channel. In Proceedings of the ACM Symposium
on Principles of Distributed Computing (PODC) (Chicago, Illinois, USA) (PODC
’16). 155–164.

[43] Jeremy T. Fineman, Seth Gilbert, Fabian Kuhn, and Calvin Newport. 2019. Con-

tention resolution on a fading channel. Distributed Comput. 32, 6 (2019), 517–533.
https://doi.org/10.1007/s00446-018-0323-9

[44] Jeremy T. Fineman, Seth Gilbert, Fabian Kuhn, and Calvin C. Newport. 2016.

Contention Resolution on a Fading Channel. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA,
July 25-28, 2016, George Giakkoupis (Ed.). ACM, 155–164. https://doi.org/10.

1145/2933057.2933091

[45] Jeremy T. Fineman, Calvin Newport, and Tonghe Wang. 2016. Contention Reso-

lution on Multiple Channels with Collision Detection. In Proceedings of the 2016
ACM Symposium on Principles of Distributed Computing (Chicago, Illinois, USA)

(PODC ’16). 175–184.
[46] Mihály Geréb-Graus and Thanasis Tsantilas. 1992. Efficient Optical Communica-

tion in Parallel Computers. In Proceedings of the 4th Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA). 41–48.

[47] Leslie Ann Goldberg. 2000. Notes on Contention Resolution. (2000). http:

//www.dcs.warwick.ac.uk/~leslie/contention.html

[48] Leslie Ann Goldberg, Mark Jerrum, Sampath Kannan, and Mike Paterson. 2000.

A Bound on the Capacity of Backoff and Acknowledgement-Based Protocols. In

Automata, Languages and Programming, 27th International Colloquium (ICALP).
705–716. https://doi.org/10.1007/3-540-45022-X_59

[49] Leslie Ann Goldberg, Mark Jerrum, Sampath Kannan, and Mike Paterson. 2004.

A bound on the capacity of backoff and acknowledgment-based protocols. SIAM
J. Comput. 33, 2 (2004), 313–331. https://doi.org/10.1137/S0097539700381851

[50] Leslie Ann Goldberg, Mark Jerrum, Sampath Kannan, and Mike Paterson. 2004.

A bound on the capacity of backoff and acknowledgment-based protocols. SIAM
J. Comput. 33, 2 (2004), 313–331.

[51] Leslie Ann Goldberg, Mark Jerrum, Tom Leighton, and Satish Rao. 1997. Doubly

Logarithmic Communication Algorithms for Optical-Communication Parallel

Computers. 26, 4 (Aug. 1997), 1100–1119.

[52] Leslie Ann Goldberg and Philip D. MacKenzie. 1999. Analysis of Practical Backoff

Protocols for Contention Resolution with Multiple Servers. J. Comput. System
Sci. 58, 1 (1999), 232–258. https://doi.org/10.1006/jcss.1998.1590

[53] Leslie AnnGoldberg, Philip D.MacKenzie,Mike Paterson, andAravind Srinivasan.

2000. Contention resolution with constant expected delay. J. ACM 47, 6 (2000),

1048–1096.

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

129

https://doi.org/10.1109/MWC.2005.1421925
https://doi.org/10.1109/MWC.2005.1421925
https://doi.org/10.1016/j.tcs.2017.06.020
https://doi.org/10.1016/j.tcs.2017.06.020
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1007/11841036_13
https://dl.acm.org/citation.cfm?id=3276769
https://dl.acm.org/citation.cfm?id=3276769
https://doi.org/10.1137/17M1158604
https://doi.org/10.1137/17M1158604
https://doi.org/10.1109/TCOM.1985.1096245
https://doi.org/10.1109/TWC.2020.3018472
https://doi.org/10.1109/TWC.2020.3018472
https://doi.org/10.1109/TIT.2013.2274264
https://doi.org/10.1007/s00446-018-0323-9
https://doi.org/10.1145/2933057.2933091
https://doi.org/10.1145/2933057.2933091
http://www.dcs.warwick.ac.uk/~leslie/contention.html
http://www.dcs.warwick.ac.uk/~leslie/contention.html
https://doi.org/10.1007/3-540-45022-X_59
https://doi.org/10.1137/S0097539700381851
https://doi.org/10.1006/jcss.1998.1590

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Michael A. Bender, Seth Gilbert, Fabian Kuhn, John Kuszmaul, and Muriel Médard

[54] Leslie Ann Goldberg, Philip D.Mackenzie, Mike Paterson, and Aravind Srinivasan.

2000. Contention Resolution with Constant Expected Delay. J. ACM 47, 6 (2000),

1048–1096.

[55] Leslie Ann Goldberg, Yossi Matias, and Satish Rao. 1999. An Optical Simulation

of Shared Memory. 28, 5 (Oct. 1999), 1829–1847.

[56] Shyamnath Gollakota and Dina Katabi. 2008. Zigzag decoding: combating hid-

den terminals in wireless networks. In Proceedings of the ACM SIGCOMM 2008
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (Seattle, WA, USA). 159–170. https://doi.org/10.1145/1402958.

1402977

[57] Jonathan Goodman, Albert G. Greenberg, Neal Madras, and Peter March. 1988.

Stability of Binary Exponential Backoff. Journal of the ACM (JACM) 35, 3 (June
1988), 579–602.

[58] Jonathan Goodman, Albert G. Greenberg, Neal Madras, and Peter March. 1988.

Stability of Binary Exponential Backoff. J. ACM 35, 3 (July 1988), 579–602.

[59] Albert G. Greenberg, Philippe Flajolet, and Richard E. Ladner. 1987. Estimating the

Multiplicities of Conflicts to Speed Their Resolution in Multiple Access Channels.

J. ACM 34, 2 (April 1987), 289–325.

[60] Albert G. Greenberg and Shmuel Winograd. 1985. A Lower Bound on the Time

Needed in the Worst Case to Resolve Conflicts Deterministically in Multiple

Access Channels. J. ACM 32, 3 (1985), 589–596.

[61] D. Halperin, J. Ammer, T. Anderson, and D. Wetherall. 2007. Interference Cancel-

lation: Better Receivers for a New Wireless MAC. In Hotnets.
[62] Johan Håstad, Frank Thomson Leighton, and Brian Rogoff. 1987. Analysis of

Backoff Protocols for Multiple Access Channels (Extended Abstract). In Proceed-
ings of the 19th Annual ACM Symposium on Theory of Computing (STOC), Alfred V.
Aho (Ed.). 241–253.

[63] Johan Håstad, Frank Thomson Leighton, and Brian Rogoff. 1996. Analysis of

Backoff Protocols for Multiple Access Channels. SIAM J. Comput. 25, 4 (1996),
740–774. https://doi.org/10.1137/S0097539792233828

[64] Johan Hastad, Tom Leighton, and Brian Rogoff. 740-774. Analysis of Backoff

Protocols for Multiple Access Channels. SIAM J. Comput. 25, 4 (740-774), 1996.
[65] J. Håstad, T. Leighton, and B. Rogoff. 1987. Analysis of Backoff Protocols for

Multiple Access Channels. In Proceedings of the Nineteenth Annual ACM Sym-
posium on Theory of Computing (New York, New York, USA) (STOC ’87). As-
sociation for Computing Machinery, New York, NY, USA, 241–253. https:

//doi.org/10.1145/28395.28422

[66] Tomasz Jurdziński and Grzegorz Stachowiak. 2002. Probabilistic algorithms

for the wakeup problem in single-hop radio networks. In Proceedings of the
International Symposium on Algorithms and Computation. Springer, 535–549.

[67] Tomasz Jurdzinski and Grzegorz Stachowiak. 2005. Probabilistic algorithms for

the wake-up problem in single-hop radio networks. Theory of Computing Systems
38, 3 (2005), 347–367.

[68] Tomasz Jurdzinski and Grzegorz Stachowiak. 2015. The cost of synchronizing

multiple-access channels. In Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing. 421–430.

[69] Sachin Katti, Shyamnath Gollakota, and Dina Katabi. 2007. Embracing Wireless

Interference: Analog Network Coding. ACM SIGCOMMComputer Communication
Review 9 (02 2007).

[70] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Médard, and

Jon Crowcroft. 2006. XORs in the air: practical wireless network coding. In

Proceedings of the ACM SIGCOMM 2006 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Pisa, Italy, September
11-15, 2006, Luigi Rizzo, Thomas E. Anderson, and Nick McKeown (Eds.). ACM,

243–254. https://doi.org/10.1145/1159913.1159942

[71] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Médard, and Jon

Crowcroft. 2008. XORs in the air: practical wireless network coding. IEEE/ACM
Trans. Netw. 16, 3 (2008), 497–510. https://doi.org/10.1145/1399562.1399563

[72] Frank P Kelly and Iain M MacPhee. 1987. The number of packets transmitted

by collision detect random access schemes. The Annals of Probability (1987),

1557–1568.

[73] Dariusz R. Kowalski. 2005. On selection problem in radio networks. In Pro-
ceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2005, Las Vegas, NV, USA, July 17-20, 2005. 158–166.
https://doi.org/10.1145/1073814.1073843

[74] James F. Kurose and Keith Ross. 2002. Computer Networking: A Top-Down Ap-
proach Featuring the Internet (2nd ed.). Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA.

[75] Gianluca De Marco and Dariusz R. Kowalski. 2015. Fast Nonadaptive Determin-

istic Algorithm for Conflict Resolution in a Dynamic Multiple-Access Channel.

SIAM J. Comput. 44, 3 (2015), 868–888.
[76] Gianluca De Marco and Dariusz R. Kowalski. 2017. Contention Resolution in a

Non-Synchronized Multiple Access Channel. Theoretical Computer Science 689
(2017), 1–13.

[77] Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak. 2019. Deter-

ministic Contention Resolution on a Shared Channel. In 39th IEEE International
Conference on Distributed Computing Systems, ICDCS. 472–482.

[78] Gianluca De Marco, Marco Pellegrini, and Giovanni Sburlati. 2007. Faster deter-

ministic wakeup in multiple access channels. Discret. Appl. Math. 155, 8 (2007),
898–903.

[79] Robert M. Metcalfe and David R. Boggs. 1976. Ethernet: Distributed Packet

Switching for Local Computer Networks. Commun. ACM 19, 7 (July 1976), 395–

404.

[80] Jeannine Mosely and Pierre Humblet. 1985. A class of efficient contention resolu-

tion algorithms for multiple access channels. IEEE transactions on Communica-
tions 33, 2 (1985), 145–151.

[81] Adrian Ogierman, Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin

Zhang. 2018. Sade: competitive MAC under adversarial SINR. Distributed Com-
puting 31, 3 (01 Jun 2018), 241–254.

[82] Adrian Ogierman, Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin

Zhang. 2018. Sade: competitive MAC under adversarial SINR. Distributed Com-
puting 31, 3 (2018), 241–254.

[83] Prabhakar Raghavan and Eli Upfal. 1995. Stochastic contention resolution with

short delays. In Proceedings of the Annual ACM Symposium on Theory of Comput-
ing (STOC). 229–237.

[84] Prabhakar Raghavan and Eli Upfal. 1998. Stochastic Contention Resolution With

Short Delays. SIAM J. Comput. 28, 2 (1998), 709–719.
[85] Prabhakar Raghavan and Eli Upfal. 1999. Stochastic Contention Resolution With

Short Delays. 28, 2 (April 1999), 709–719.

[86] Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. 2010. A

Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks. In Proceed-
ings of the International Symposium on Distributed Computing (DISC). 179–193.

[87] Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. 2011. Competi-

tive and Fair Medium Access Despite Reactive Jamming. In Proceedings of the 31
𝑠𝑡

International Conference on Distributed Computing Systems (ICDCS). 507–516.
[88] Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. 2012. Com-

petitive and Fair Throughput for Co-Existing Networks Under Adversarial Inter-

ference. In Proceedings of the 31
𝑠𝑡 ACM Symposium on Principles of Distributed

Computing (PODC). 291–300.
[89] Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. 2013. Compet-

itive Throughput in Multi-Hop Wireless Networks Despite Adaptive Jamming.

Distributed Computing 26, 3 (2013), 159–171.

[90] Andréa W. Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. 2013. An

Efficient and Fair MAC Protocol Robust to Reactive Interference. IEEE/ACM
Trans. Netw. 21, 3 (2013), 760–771. https://doi.org/10.1109/TNET.2012.2210241

[91] Lawrence G. Roberts. 1975. ALOHA packet system with and without slots and

capture. SIGCOMM Compuer Communications Review 5, 2 (1975), 28–42.

[92] John F Shoch and Jon A Hupp. 1980. Measured performance of an Ethernet local

network. Commun. ACM 23, 12 (1980), 711–721.

[93] Nah-Oak Song, Byung-Jae Kwak, and Leonard E. Miller. 2003. On the Stability of

Exponential Backoff. Journal of Research of the National Institute of Standards
and Technology 108, 4 (2003).

[94] Arash Saber Tehrani, Alexandros G. Dimakis, and Michael J. Neely. 2011. SigSag:

Iterative detection through soft message-passing. In INFOCOM 2011. 30th IEEE
International Conference on Computer Communications, Joint Conference of the
IEEE Computer and Communications Societies, 10-15 April 2011, Shanghai, China.
IEEE, 1017–1025. https://doi.org/10.1109/INFCOM.2011.5934874

[95] David Tse and PramodViswanath. 2005. Fundamentals ofWireless Communication.
Cambridge University Press.

[96] B. S. Tsybakov and N. B. Likhanov. 1987. Upper Bound on the Capacity of a

Random Multiple-Access System. Problemy Peredachi Informatsii 23, 3 (1987),
64–78.

[97] Dan E.Willard. 1986. Log-logarithmic Selection Resolution Protocols in aMultiple

Access Channel. SIAM J. Comput. 15, 2 (May 1986), 468–477.

[98] Yang Xiao. 2005. Performance Analysis of Priority Schemes for IEEE 802.11 and

IEEE 802.11e Wireless LANs. Wireless Communications, IEEE Transactions on 4, 4

(July 2005), 1506–1515.

Session 3: Networks and Communications SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

130

https://doi.org/10.1145/1402958.1402977
https://doi.org/10.1145/1402958.1402977
https://doi.org/10.1137/S0097539792233828
https://doi.org/10.1145/28395.28422
https://doi.org/10.1145/28395.28422
https://doi.org/10.1145/1159913.1159942
https://doi.org/10.1145/1399562.1399563
https://doi.org/10.1145/1073814.1073843
https://doi.org/10.1109/TNET.2012.2210241
https://doi.org/10.1109/INFCOM.2011.5934874

	Abstract
	1 Introduction
	2 Coded Radio Network Model
	3 Decodable Backoff Algorithm
	4 Potential Function
	5 Throughput Analysis
	5.1 Analyzing the probability of an error epoch
	5.2 Evolution of the Potential Function
	5.3 Bounding the Potential

	6 Latency Analysis
	6.1 Packet Latency Analysis
	6.2 Batch Analysis

	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 46.89, 716.45 Width 521.05 Height 19.11 points
 Origin: bottom left

 1
 0
 BL

 2
 AllDoc
 2

 CurrentAVDoc

 46.8945 716.4476 521.0505 19.1052

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 11
 12
 11
 12

 1

 HistoryList_V1
 qi2base

