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with RNNs to improve utility and privacy
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ABSTRACT
Location data collected from mobile devices represent mobility
behaviors at individual and societal levels. These data have impor-
tant applications ranging from transportation planning to epidemic
modeling. However, issues must be overcome to best serve these use
cases: The data often represent a limited sample of the population
and use of the data jeopardizes privacy.

To address these issues, we present and evaluate a system for
generating synthetic mobility data using a deep recurrent neural
network (RNN) which is trained on real location data. The system
takes a population distribution as input and generates mobility
traces for a corresponding synthetic population.

Related generative approaches have not solved the challenges of
capturing both the patterns and variability in individuals’ mobility
behaviors over longer time periods, while also balancing the gen-
eration of realistic data with privacy. Our system leverages RNNs’
ability to generate complex and novel sequences while retaining
patterns from training data. Also, the model introduces randomness
used to calibrate the variation between the synthetic and real data
at the individual level. This is to both capture variability in human
mobility, and protect user privacy.

Location based services (LBS) data from more than 22,700 mobile
devices were used in an experimental evaluation across utility and
privacy metrics. We show the generated mobility data retain the
characteristics of the real data, while varying from the real data at
the individual level, and where this amount of variation matches
the variation within the real data.
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1 INTRODUCTION
Location datasets collected from mobile devices have numerous
applications ranging from transportation research to analyzing a
pandemic [2, 10]. However, these datasets often represent a small
sample of the population, limiting their utility. Another important
issue is privacy for the device users from whom data were col-
lected, as simple approaches to anonymization are insufficient for
spatiotemporal data [9]. Prior works have attempted to mitigate
privacy risks with strategies that modify data, yet researchers have
shown that risks are still present [12]. Moreover, these modifica-
tions decrease data utility.

This work approaches the utility-privacy tradeoff with a system
to generate realistic synthetic mobility traces to be used instead of
real data. By retaining properties of the real data, the synthetic data
can retain utility. And by sufficiently varying from the real data at
the individual level, privacy risks can be mitigated. To address the
issue of limited sample sizes, the system uses population data as
input to generate synthetic data representing that population.

Our approach exploits patterns inherent in location traces by
leveraging the success of recurrent neural networks (RNNs) in text
generation and modeling our problem similarly. This approach also
allows inserting calibrated randomness to manage variation in the
model’s output. This helps generate data with variation beyond the
training data as well as balance the utility-privacy tradeoff.

Contribution:We present a system using an RNN to generate
realistic spatiotemporal data representing individuals’ mobility over
extended periods. The system takes home and work locations as
inputs to generate data for a given population size and distribution.
Our work includes an experimental implementation, using a loca-
tion based services (LBS) dataset, that generates data representing
individuals’ mobility over a 5-day workweek. To evaluate utility we
develop and use a variety of metrics that build on previous works.
For privacy, we develop metrics to evaluate whether the variation
between the synthetic and real data matches the level of variation
within the real data, at the individual level.

2 RELATEDWORK
Related works using location data from CDRs address issues of lim-
ited data by labeling users’ data with inferred home and work areas
to help expand datasets tomatch census population estimates [7, 17].
Common approaches use generative algorithms, such as "Explo-
ration and Preferential Return" (EPR) models [13, 17, 19]. These
models leverage the predictable nature of human mobility and often
assume users are in home and work areas during predefined hours.

The aforementioned works focus on data utility without address-
ing privacy. Other works use 𝜖-differential privacy (DP) [11] in their
location data publishing strategies, but without fully addressing
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Figure 1: Model training and generation. The RNN is trained
with real data, 𝐷 , where each user’s data is a stay trajectory
labeled by home, work locations. The trained RNN takes
home, work locations as input to generate synthetic data, 𝑆 ′.

our problem with spatiotemporal trajectory data that represents in-
dividuals over extended periods. For example [1] use DP to publish
aggregate metrics from location data, which [3] noted unsuitable
for applications requiring location traces. Other works use DP in
generative algorithms. [15] and [16] generate location trajectories
with a focus on retaining spatial properties. However, other than
being time ordered sequences, data generated by [15] lack temporal
information, and [16] is applied to trajectories that are vehicle trips
rather than data observed from individuals over a broader space
and time. [5] note the challenge of applying DP to sequential data
due to its inherent high-dimensionality. They use DP in generating
variable length n-grams representing location trajectories. How-
ever, their work is limited to short sequences over a small set of
discrete locations, such as metro stations [6], and [15] show their
approach does not handle spatial data.

Noting limitations of DP, [3] generate spatiotemporal trajectory
data to meet alternative privacy criteria, called (𝑘, 𝛿)-plausible deni-
ability. Plausible deniability requires defining a metric, to measure
similarity between trajectories, and thresholds, 𝛿 and 𝑘 .

A limitation of these works using DP and plausible deniability is
their abstract nature. They provide theory for how, given parame-
ters (𝜖, 𝑘, 𝛿), their privacy criteria would be met. But determining
parameter values, or analyzing the relationship between these val-
ues and privacy for real data, is beyond their scope. The privacy
evaluation in this work compares synthetic data to real data.

3 MODELING THE PROBLEM
Similar to related works [15, 16, 19], we transform spatiotempo-
ral data into sequences that discretize time and geographic space.
This results in a "stay trajectory" for each user, representing their
sequence of visited locations. Sequence indices represent time inter-
vals where values are the location the user stayed for the most time
within the interval. We use census areas as locations, and map data
points to their containing areas. We represent each stay trajectory
as 𝑠 = ⟨𝑠1, 𝑠2, ..., 𝑠𝑇 ⟩ and associate a ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pair with each
𝑠 , where ℎ𝑜𝑚𝑒 and𝑤𝑜𝑟𝑘 are areas in 𝑠 .

3.1 Leveraging a Recurrent Neural Network
RNNs have been successful in generating complex sequences that
retain structural properties inherent in text [14]. Stay trajectories

have properties similar to text. Both can be represented as sequences
of tokens, with temporal and spatial relationships between tokens.

RNNs predict a next element in a sequence conditioned on pre-
vious elements. Each prediction step samples from a distribution
of candidate next elements, where this process allows parameter-
izing randomness for the model’s output. By feeding a model’s
predictions back to itself, novel sequences can be generated.

To leverage RNNs for our use case we prefix each 𝑠 with its
⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pair, ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘, 𝑠1, 𝑠2, ..., 𝑠𝑇 ⟩. The prefixes serve as
labels and the prefixed trajectories are used to train the model. The
model can then learn relationships between the prefixes and the
tokens that follow, such as how tokens in the ℎ𝑜𝑚𝑒 , 𝑤𝑜𝑟𝑘 prefix
positions are likely candidates for nighttime and workday hours,
along with other structural relationships between tokens.

For data generation, we feed ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pairs to the trained
model as labels for it to generate corresponding stay trajectories.
The RNN treats the input ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pairs as prefixes for se-
quences it learned to complete. The sequences it then generates are
the synthetic stay trajectories with the given ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ labels.

4 EXPERIMENTAL EVALUATION
The code for the work described in this section is open source1.

4.1 Data Panel and Preprocessing
4.1.1 Data Panel. An LBS dataset was provided by a location intel-
ligence company. It was collected from users who opted-in to share
data anonymously through a GDPR-compliant framework. It was
provided as table rows containing a device ID, geolocation coordi-
nates, timestamp, and estimated time the device was in the location.
We created a panel from the first 5-day workweek of May 2018,
restricted to data points reported within the 3 counties surrounding
Boston, MA. After filtering, the panel included 22,707 devices that
each reported at least 3 days and nights of data in the 5-day period.

4.1.2 Home and Work. We defined functions, 𝑖𝑛𝑓 𝑒𝑟𝐻𝑜𝑚𝑒

and 𝑖𝑛𝑓 𝑒𝑟𝑊𝑜𝑟𝑘 , that take a stay trajectory as input and return cen-
sus tracts for ℎ𝑜𝑚𝑒 ,𝑤𝑜𝑟𝑘 . These were used to label stay trajectories
and evaluate model output. The area the user stayed most 8pm to
9am is inferred as ℎ𝑜𝑚𝑒 and the area stayed most during the re-
maining hours is𝑤𝑜𝑟𝑘2. We applied the 𝑖𝑛𝑓 𝑒𝑟𝐻𝑜𝑚𝑒 function to the
data panel to result in corresponding census tract level population
estimates. Compared to ACS 2018 census estimates [4] there is a
Pearson correlation coefficient of 0.648. This relatively high corre-
lation helps validate methods and shows data representativeness3.

4.1.3 Data Used for Model Training, Generation and Evaluation.
Stay trajectories were created for each device in the panel with
time intervals of 1 hour and census tracts as areas. These parame-
ters were chosen based on panel size and data sparsity; with more

1https://github.com/aberke/lbs-data/blob/master/trajectory_synthesis
2What we call 𝑤𝑜𝑟𝑘 can be considered any secondary location to ℎ𝑜𝑚𝑒 .
3For comparisonwe used data from location data company Safegraph. Theymade statis-
tics from their September 2019 data available, including the number of devices residing
in each census area. We measured the correlation between their device populations and
census estimates at the census tract level, restricting analysis to the geographic region
of our study. This included 396,061 devices. The Pearson correlation is 0.122. For details
see https://github.com/aberke/lbs-data/blob/master/safegraph-comparison.ipynb.
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Embedding size Dimension of the embedding layer. 128
Layer size Number of LSTM units in each hidden layer. 128
Layers Number of hidden layers. 6

Dropout Rate at which weighted connections between units are
randomly excluded during training (regularization). 0.1

Maximum length Max number of previous sequence tokens used to pre-
dict the next token (length needed to learn patterns). 60

Table 1: RNN model hyperparameters.

metric synthetic
sample

real
secondary
sample

randomly
generated
sample

trip distance (KL divergence) 0.0008 0.0015 0.3655
locations per user (KL divergence) 0.0124 0.0044 -2.4587
aggr. time per location (KL divergence) 0.0366 0.0085 0.9608
home label error rate 0.1375 0.0863* 0.9995
work label error rate 0.2675 0.2415* 0.9235

Table 2: Utility metrics evaluating error from real data. Two
baselines are used for comparison: A secondary real data
sample and randomly generated sample. Lower values in-
dicate lower error. *Measured as the rate at which labels
change between weeks (section 4.3.4).

data, greater spatial and temporal precision may be used. Stay tra-
jectories were then prefixed with their inferred ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ label.

𝐷 : 22,707 stay trajectories (from panel). 𝐷 is used to train the model.
𝑆 : A subset of 2000 stay trajectories randomly sampled from 𝐷 .
𝑆 ′: 2000 synthetic stay trajectories where the distribution of
⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ label pairs is consistent with 𝑆 ′. 𝑆 ′ is generated by
providing the ⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ label pair for each 𝑠 ∈ 𝑆 as model input.

4.2 RNN Model
The model was implemented with the textgenrnn library [21]. At
a high level, its architecture can be described as follows. An input
layer is followed by an embedding layer, then by "hidden" layers
of LSTM units, then by an attention layer, then the output layer,
where the embedding and LSTM layers are each skip-connected
to the attention layer. Numerous models were trained with differ-
ent hyperparameters. Their outputs were evaluated with metrics
described in sections 4.3 and 4.4 to select a best model. These se-
lected hyperparameters are shown in Table 1. The epoch and batch
size were 50 and 1024, respectively, and a "temperature" value of
1 parameterized randomness in the predictive sampling step. The
following sections report on the output of this model.

4.3 Utility Evaluation
We build on metrics from previous works [3, 17, 19] and borrow
their evaluation strategy of using Kullback-Leibler divergence [8]
to compute differences between metric distributions for the real
versus synthetic data. Results are shown in Table 2 and Figure 2.
We also evaluate how well synthetic trajectories match their input
labels. Note we cannot compare metrics between works because
the evaluations are for different data generation processes and use
different datasets. Even studies that apply the same processes to
multiple datasets yield different results for each dataset [15, 19].
To help evaluate utility, we follow the methods of [3] to create
baselines by drawing a secondary real sample and generating a

random sample, where each sample matches in size (|𝑆 |=2000) and
⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ label distribution.

Similar metrics between the synthetic and real samples may
imply the synthetic generation process is similar to drawing from
the real data in terms of utility.

4.3.1 Trip Distances. Wemeasure trip distances as the line distance
between area centroids, counted when consecutive areas in stay
trajectories differ. Distance distributions are transformed into dis-
crete probability distributions, 𝑃 (𝑑), via a histogram. Distributions
between the synthetic and real data closely match. The distribution
for the randomly generated sample is a different shape, showing
this is not simply due to the distribution of distances between areas.

4.3.2 Locations Per User. EPR modeling works have used this met-
ric to describe user "exploration" and evaluate synthetic data [17, 19].
Following their methods, 𝐿 is locations per user and we compute
the distribution of locations per user, 𝑃 (𝐿).

4.3.3 Proportion of Aggregate Time Spent Per Location. We com-
pute the aggregate time spent in each area for each sample. Com-
parison is then made to 𝑆 rather than 𝐷 because the distribution of
⟨ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘⟩ pairs is then consistent and where users spend time
is biased to where they live and work.

4.3.4 Home, Work Label Error. For each input label ⟨ℎ𝑜𝑚𝑒𝑖 ,𝑤𝑜𝑟𝑘𝑖 ⟩
and output 𝑠 ′

𝑖
∈ 𝑆 ′, we count errors when ℎ𝑜𝑚𝑒𝑖 ≠ 𝑖𝑛𝑓 𝑒𝑟𝐻𝑜𝑚𝑒 (𝑠 ′

𝑖
)

and𝑤𝑜𝑟𝑘𝑖 ≠ 𝑖𝑛𝑓 𝑒𝑟𝑊𝑜𝑟𝑘 (𝑠 ′
𝑖
), and calculate error rate as total errors

over |S’|. For a real baseline, we draw a second panel using the same
criteria for 𝐷 but for the following week. Error is then calculated
as the rate inferred labels changed for users between weeks.

4.4 Privacy Evaluation
Section 2 notes the challenges of applying DP to spatiotemporal
trajectory data, and how related works have limited their applica-
tion of DP to different problems or used plausible deniability [3].
We build on these previous works. Our evaluation considers 𝑆 ′ as
an alternative to 𝑆 , sampled from 𝐷 . We measure the similarity
between any synthetic trajectory in 𝑆 ′ and any real trajectory in 𝐷 ,
and check they are not too similar, when compared to similarities
between real trajectories in 𝑆 and any other real trajectories in 𝐷 .

For any two trajectories, 𝑠𝑖 , 𝑠 𝑗 , we measure the difference be-
tween them, 𝑑 (𝑠𝑖 , 𝑠 𝑗 ), as the Levenshtein edit distance [18]. We
compute the minimum distance between a given 𝑠 and any other
𝑠 𝑗 in 𝐷 , which we call𝑚𝑖𝑛-𝑑𝑖𝑠𝑡 (𝑠, 𝐷).

𝑚𝑖𝑛-𝑑𝑖𝑠𝑡 (𝑠, 𝐷) = 𝑑 (𝑠, 𝑠 𝑗 ) 𝑠 .𝑡 .∀ 𝑠 𝑗 , 𝑠𝑘 𝜖 𝐷,𝑑 (𝑠, 𝑠 𝑗 ) ≤ 𝑑 (𝑠, 𝑠𝑘 )

These values are computed for each 𝑠 ∈ 𝑆 ⊂ 𝐷 , but where direct
comparison of 𝑠 to itself is avoided. Similarly, for each 𝑠 ′ ∈ 𝑆 ′,

𝑚𝑖𝑛-𝑑𝑖𝑠𝑡 (𝑠 ′, 𝐷) = 𝑑 (𝑠 ′, 𝑠 𝑗 ) 𝑠 .𝑡 .∀ 𝑠 𝑗 , 𝑠𝑘 𝜖 𝐷,𝑑 (𝑠 ′, 𝑠 𝑗 ) ≤ 𝑑 (𝑠 ′, 𝑠𝑘 )

Our evaluation then considers, for any distance𝑚,

𝑃𝑟 [𝑚𝑖𝑛-𝑑𝑖𝑠𝑡 (𝑠 ′, 𝐷) ≤ 𝑚] ≤ 𝑃𝑟 [𝑚𝑖𝑛-𝑑𝑖𝑠𝑡 (𝑠, 𝐷) ≤ 𝑚]

Probabilities describe the evaluation since sampling 𝑆 and gener-
ating 𝑆 ′ are stochastic processes. For our experiment, we evaluate
empirical distributions. i.e. 𝑃𝑟 [𝑚𝑖𝑛-𝑑𝑖𝑠𝑡 (𝑠, 𝐷) ≤ 𝑚] is estimated as
the proportion of𝑚𝑖𝑛-𝑑𝑖𝑠𝑡 (𝑠, 𝐷) values where𝑚𝑖𝑛-𝑑𝑖𝑠𝑡 (𝑠, 𝐷) ≤ 𝑚.
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Figure 2: Utility metrics. (Left) Distribution of trip distances. (Center) Distribution of locations per user. The distribution for
the randomly generated sample is centered beyond outliers in the real data and not shown. (Right) Proportion of aggregate
time spent in each location. Locations are sorted by aggregate time for the real sample, and shown for the top-100 locations.

Figure 3: Q-Q plot comparing𝑚𝑖𝑛-𝑑𝑖𝑠𝑡 values.

To help evaluate results over the range of𝑚 values, we use Q-Q
plots (Figure 3). The distributions of 𝑚𝑖𝑛-𝑑𝑖𝑠𝑡 values are sorted
and the Q-Q plot matches corresponding𝑚 values for the 𝑆 and 𝑆 ′
against each other, with values for 𝑆 and 𝑆 ′ on the x and y axes, re-
spectively. A 45-degree line represents matching distributions, and
points on or above the line represent where the privacy evaluation
is satisfied. Values closer to the origin are more important, as these
are for smaller𝑚𝑖𝑛-𝑑𝑖𝑠𝑡 values, where privacy risk is higher.

Experiment results nearly track the 45-degree line, implying the
model generates synthetic data that differs from the real data nearly
as much as the real data differs from itself, at the individual level.

5 CONCLUSION AND FUTUREWORK
This work evaluated synthetic data as an alternative to real data, to
offer similar utility while mitigating privacy risks. For evaluation,
a synthetic data sample with home, work labels matching the dis-
tribution of a real sample was used. Yet since the system generates
data with variation, it may be used to generate data for much larger
populations, such as a population based on census data.

Our experiment used LBS data with methods that future work
can extend to other forms of location data. Future work can also test
combining various data sources in model training to avoid common
problems of de-duplicating data [20].

REFERENCES
[1] Gergely Acs and Claude Castelluccia. 2014. A case study: Privacy preserving

release of spatio-temporal density in paris. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 1679–1688.

[2] Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R James, Maxime
Lenormand, Thomas Louail, Ronaldo Menezes, José J Ramasco, Filippo Simini,
and Marcello Tomasini. 2018. Human mobility: Models and applications. Physics
Reports 734 (2018), 1–74.

[3] Vincent Bindschaedler and Reza Shokri. 2016. Synthesizing plausible privacy-
preserving location traces. In 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 546–563.

[4] U.S. Census Bureau. 2019. American Community Survey 2014-2018 5-year Esti-
mates. https://data.census.gov/cedsci/table.

[5] Rui Chen, Gergely Acs, and Claude Castelluccia. 2012. Differentially private
sequential data publication via variable-length n-grams. In Proceedings of the
2012 ACM conference on Computer and communications security. 638–649.

[6] Rui Chen, Benjamin CM Fung, Bipin C Desai, and Nériah M Sossou. 2012. Differ-
entially private transit data publication: a case study on the montreal transporta-
tion system. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. 213–221.

[7] Serdar Çolak, Lauren P Alexander, Bernardo G Alvim, Shomik R Mehndiratta,
and Marta C González. 2015. Analyzing cell phone location data for urban travel:
current methods, limitations, and opportunities. Transportation Research Record
2526, 1 (2015), 126–135.

[8] Thomas M Cover. 1999. Elements of information theory. John Wiley & Sons.
[9] Yves-Alexandre De Montjoye, César A Hidalgo, Michel Verleysen, and Vincent D

Blondel. 2013. Unique in the crowd: The privacy bounds of human mobility.
Scientific reports 3 (2013), 1376.

[10] Ronan Doorley, Alex Berke, Ariel Noyman, Luis Alonso, Josep Frriz Ribo, Vanesa
Arroyo, Marc Pons, and Kent Larson. 2021. Mobility and COVID-19 in Andorra:
Country-scale analysis of high-resolution mobility patterns and infection spread.
IEEE Journal of Biomedical and Health Informatics (2021), 1–1. https://doi.org/10.
1109/JBHI.2021.3121165

[11] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284.

[12] Marco Fiore, Panagiota Katsikouli, Elli Zavou, Mathieu Cunche, Françoise Fessant,
Dominique Le Hello, Ulrich Aivodji, Baptiste Olivier, Tony Quertier, and Razvan
Stanica. 2020. Privacy in trajectory micro-data publishing: a survey. Transactions
on Data Privacy 13 (2020), 91–149.

[13] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. 2008. Under-
standing individual human mobility patterns. nature 453, 7196 (2008), 779–782.

[14] Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850 (2013).

[15] Mehmet Emre Gursoy, Ling Liu, Stacey Truex, and Lei Yu. 2018. Differentially
private and utility preserving publication of trajectory data. IEEE Transactions
on Mobile Computing 18, 10 (2018), 2315–2329.

[16] Xi He, Graham Cormode, Ashwin Machanavajjhala, Cecilia M Procopiuc, and
Divesh Srivastava. 2015. DPT: differentially private trajectory synthesis using
hierarchical reference systems. Proceedings of the VLDB Endowment 8, 11 (2015),
1154–1165.

[17] Shan Jiang, Yingxiang Yang, Siddharth Gupta, Daniele Veneziano, Shounak
Athavale, and Marta C González. 2016. The TimeGeo modeling framework
for urban mobility without travel surveys. Proceedings of the National Academy
of Sciences 113, 37 (2016), E5370–E5378.

[18] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.

[19] Luca Pappalardo and Filippo Simini. 2018. Data-driven generation of spatio-
temporal routines in human mobility. Data Mining and Knowledge Discovery 32,
3 (2018), 787–829.

[20] Feilong Wang, Jingxing Wang, Jinzhou Cao, Cynthia Chen, and Xuegang Jeff Ban.
2019. Extracting trips from multi-sourced data for mobility pattern analysis: An
app-based data example. Transportation Research Part C: Emerging Technologies
105 (2019), 183–202.

[21] Max Woolf. 2019. textgenrnn. https://github.com/minimaxir/textgenrnn

967

https://data.census.gov/cedsci/table
https://doi.org/10.1109/JBHI.2021.3121165
https://doi.org/10.1109/JBHI.2021.3121165
https://github.com/minimaxir/textgenrnn

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

