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BIOLOGY HAS DRAMATICALLY changed in the last two 
decades, enabling the effective engineering of biological 
systems. The genomic revolution,17 which provided the 
ability to sequence a cell’s genetic code (DNA), is the 
primary driver of this dramatic change. One of the most 
recent discoveries and tools enabled by this genomic 
revolution is the ability to precisely edit DNA in vivo 
using CRISPR-based tools.11 Higher-level manifestations 
of the genetic code, such as the production of proteins, 
are known as phenotype (as shown in Figure 1 and 
the accompanying table). The combination of high-
throughput phenotypic data with precision DNA 
editing provides a unique opportunity to link changes 
in the underlying code to phenotype.

Synthetic biology (synbio) aims to design biological 
systems to a specification3 (for example, cells that 

produce a desired amount of biofuel, or 
that react in a specific manner to an ex-
ternal stimulus). To this end, synthetic 
biologists leverage engineering design 
principles to use the predictability of en-
gineering to control complex biological 
systems. These engineering principles 
include standardized genetic parts,  
and the Design-Build-Test-Learn (DBTL) 
cycle, iteratively used to achieve a de-
sired outcome. The synbio DBTL cycle 
adapts the expected four stages to this 
discipline as follows:

1.	 Design: Hypothesize a DNA se-
quence or set of cellular manipulations 
that can achieve a desired design goal.

2.	 Build: Implement the design steps 
on the biological system. This primarily 
involves the synthesis of the DNA frag-
ment and its successful transformation 
into a cell.

3.	 Test: Generate data to check 
how closely the measured phenotype 
achieves the desired goal and evaluate 
the impact of any off-target or unfore-
seen side effects.

4.	 Learn: Leverage the test data to 
learn principles that drive the cycle to 
the desired goals more efficiently than 
might be accomplished by a random 
search. This often includes the diagnosis 
of failures that arise from unforeseen off-
target effects. Artificial intelligence (AI) 
can be used here to inform the next set 
of designs, thereby reducing the number 
of DBTL iterations needed to achieve the 
desired outcome.

More specifically, synbio typically 
involves manipulations at the genomic 
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 key insights
	˽ AI and synbio naturally complement 

each other and have world-changing 
applications for the environment, 
agriculture, medicine, energy,  
and materials.

	˽ AI has begun to make its way into 
various synbio applications, but major 
technological (data, models, metrics) and 
sociological (different cultures) hurdles 
continue to separate the fields.

	˽ The budding interdisciplinary field 
needs more researchers to fully flourish: 
we recommend several community-
wide, strategic efforts to support 
interdisciplinary research.
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the smell of extinct flowers, synthetic hu-
man collagen for cosmetic applications, 
and gene drives to eliminate dengue-
bearing mosquitos. Many believe this 
is just the tip of the iceberg because the 
ability to engineer living beings provides 
seemingly unlimited possibilities, and 
there is a growing level of investment, 
both public and private, in this field8 (see 
Figure 3).

Furthermore, as AI enters a third 
wave, focusing on incorporating context 
into models, its potential to impact syn-
bio increases. It is well known that an 
organism’s genotype is not so much a 
blueprint for a phenotype, but an initial 
condition in a complex, interconnected, 
dynamic system. Biologists have spent 
decades building and curating a large 
set of properties such as regulation, as-
sociation, rate of change, and functions, 
to characterize this complex, dynamical 
system. Additional resources such as 
gene networks, known functional asso-
ciations, protein-protein interactions, 
protein-metabolite interactions, and 
knowledge-driven dynamical models for 
transcription, translation, and interac-
tions provide a rich set of resources to 
enrich AI models with context. Model 
explainability is also critical to uncover 
novel design principles. These models 
provide biologists an opportunity to an-
swer significantly more complex ques-
tions about the biological system and 
build integrative, explainable models 
to expedite discovery. The increase in 
knowledge and resources is clear in the 
number of synbio publications along 
with the commercial opportunities in 
synbio (Figure 3).

AI and Its Current Impact in Synbio
AI has had a limited impact in synbio 
compared with its potential to influ-
ence the synbio field. We have seen 
successful applications of AI, but they 
are still limited to a particular dataset 
and research question. The challenge 
remains to see how generalizable these 
approaches are to broader applications, 
and other datasets. Data mining, statis-
tics, and mechanistic modeling are cur-
rently the primary drivers of computa-
tional biology and bioinformatics in the 
field, and the line between them and AI/
machine learning (ML) is often blurred. 
For example, clustering is a data min-
ing technique that identifies patterns 
and structure in gene expression data, 

level to push a cell to create specific 
products or behave in a certain way

We are a group of AI practitioners 
looking to adapt and apply principles of 
AI to synbio in a variety of applications. 
In this article, we seek to provide other 
AI practitioners with an overview of the 
potential of this domain, some initial 
successes, and the main challenges 
faced when applying AI technologies to 
the synbio domain. Our goal is to mo-
tivate AI practitioners to address these 
challenges and promote involvement 
in a discipline that will significantly 
impact society in the future. There have 
been major breakthroughs in AI when 
large datasets and technology enthusi-
asts have met. Image and natural lan-
guage processing are perfect examples 

of this. We believe biology, and specifi-
cally synbio, provides an unparalleled 
opportunity for breakthroughs in both 
domains.

The Potential of Synbio
Synbio is primed to have a transforma-
tive impact on every activity sector in the 
world: food, energy, climate, medicine, 
and materials29 (see Figure 2). Synbio 
has already produced insulin without 
the need to sacrifice pigs for their pan-
creases (in a previous stage, as genetic 
engineering), synthetic leather, parkas 
made of spider silk that have never seen 
a spider, antimalarial and anticancer 
drugs, meatless hamburgers that taste 
like meat, renewable biofuels, hoppy 
flavored beer produced without hops, 

Figure 1. Omics data embody the high-level manifestations of the cell’s genetic code (DNA).

This genetic code is transcribed into RNA, which is then translated into proteins 
(central dogma of biology). Proteins enable a variety of reactions, among them 
the transformation of metabolites (chemical species) into other metabolites. 
Several reactions are combined into pathways, which carry on vital metabolic 
processes for the existence and survival of the cell. Transcriptomics, 
proteomics, metabolomics, and fluxomics are all examples of omics data.
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Datasets/data types frequently used in biology (not a comprehensive list).

Data Type Description Format

Genomics Underlying code (DNA) that drives 
cellular processes.

DNA sequences and quality scores 
associated with each token in the sequence. 
Often aligned with a reference sequence to 
highlight any potential changes measured.

Transcriptomics The amount of transcript (RNA) created 
from each piece of code.

Transcript sequences and a number that 
indicates their abundance within the 
sample.

Proteomics The amount of decoded product 
(proteins), the main functional units 
of life.

Protein sequences and a number that 
indicates their abundance in the sample.

Metabolomics Set of chemical species involved in all 
the reactions in the cell.

Metabolites (small molecules) and a 
number that indicates their abundance in 
the sample.

Fluxomics Set of all metabolic reactions in a cell. A number that indicates the rate for each 
metabolic reaction in a cell.
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synthesize DNA and transfer it into cells, 
the global impact of this transfer on the 
cellular machinery of the dynamic, living 
organism is not entirely known or cur-
rently predictable. Electrical engineers, 
in contrast, have the tools to “static” de-
sign electronic circuit boards to perform 
a variety of function(s), and not impact 
the board in a detrimental way. The rules 
behind the physics and biology of living 
cells are complex, intertwined, and re-
quire significant effort for discovery. In 
summary:

	˲ Design on Circuit Boards
	˴ Known set of parts to achieve de-

sired circuit output.
	˴ Impact of printed circuit board on 

gates/circuit and vice versa are negligible.
	˴ Qualitative and quantitative models 

of parts and circuit board exist to predict 
circuit performance robustly.

	˲ Design on Living Cells
	˴ Genetic constructs are designed to 

achieve certain response from a cell.
	˴ Impact of living cell on construct 

and vice versa cannot be ignored.
	˴ Models to predict performance must 

account for both host and construct 
dynamics.

AI techniques have been leveraged 
that combine known biophysical, ma-
chine learning, and reinforcement learn-
ing models to effectively predict the 
constructs’ impact on the host and vice 
versa, but there is much room for im-
provement. For example, for machine-
assisted gene circuit design, a variety of 

and these patterns can indicate if the 
engineered modifications lead to a 
toxic outcome for the cell. These clus-
tering techniques can also serve as un-
supervised learning models that find 
structure in unlabeled datasets. These 
classical techniques and novel AI/ML 
approaches in development will have a 
much-expanded role and impact in the 
future of synbio as larger datasets be-
come customarily available. Transcrip-
tomics data volume doubles every seven 
months, and high-throughput work-
flows for proteomics and metabolomics 
are becoming increasingly available.5 
Furthermore, the gradual automation,35 
and miniaturization through microflu-
idics chips14,24 of laboratory work hints 
at a future where data processing and 
analysis are the main productivity mul-
tipliers in synbio. DARPA’s Synergistic 
Discovery and Design (SD2, 2018–2021) 
program was focused on building AI 
models to address this gap. This is also 
evident in some companies operating 
at the state-of-the-art of the field (for 
example, Amyris, Zymergen, or Ginkgo 
Bioworks). AI and synbio intersect in 
a few ways: applying existing AI/ML to 
existing datasets; generating new da-
tasets (for example, the upcoming NIH 
Bridge2AI); and creating new AI/ML 
techniques to apply to new or existing 
data. Although SD2 did some work in 
the last category, much work and poten-
tial remains.

A fundamental challenge in synbio, 

which AI can help surmount, involves 
predicting the impact of bioengineering 
approaches on the host and the environ-
ment.15 Without the ability to predict 
the bioengineering outcome, synbio’s 
goal of engineering cells to a specifica-
tion4 (that is, inverse design) can only be 
achieved through arduous trial-and-er-
ror. AI offers an opportunity to use both 
publicly available and experimental 
data to predict the impacts on the host 
and environment.

Design of genetic constructs for pro-
gramming cells. Many synbio efforts 
have focused on engineering genetic 
constructs/circuits,3 which present very 
different challenges from designing elec-
tronic circuits. The genetic constructs 
are designed to elicit a specific reaction 
from the cell, much like electronic cir-
cuits are designed to provide control of 
an electronic system. Whereas we can 

Figure 2. Synbio can potentially impact 
every activity sector in the world.
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Figure 3. Significant growth in both academic (a) and commercial (b) domains provide rich sources of information, data, and context for the 
application of AI in the synbio field.8 

Figure 3(a) from Shapira et al.33 under Creative Commons License. 
Figure 3(b) used with permission.
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on previous experiments. As such, they 
may represent the largest opportunity 
for AI researchers in the synbio field. 
While automated DBTL loops have been 
demonstrated in liquid-handling robotic 
stations, the scalability, high-throughput 
capabilities, and fabrication flexibil-
ity provided by microfluidic chips may 
provide the final technological leap that 
makes scientist AIs a reality.

Challenges
AI has begun to make its way into vari-
ous synbio applications, but major tech-
nological and sociological hurdles con-
tinue to separate both fields.

Technological challenges. The tech-
nical challenges of applying AI to synbio 
(see Figure 4) are that data is scattered in 
different modalities, difficult to combine, 
unstructured, and often lack the context 
in which they were collected; models re-
quire significantly more data than is of-
ten collected in a single experiment and 
lack explainability and uncertainty quan-
tification; and there are no metrics or 
standards to effectively evaluate model 
performance in the larger design task 
at hand. Furthermore, experiments are 
often designed to explore only positive 
outcomes, complicating or biasing the 
evaluation of the model.

Data challenges. The lack of appropri-
ate datasets remains the first major hur-
dle to merging AI with synthetic biology. 
Applying AI to synthetic biology requires 
large volumes of labeled, curated, high-
quality, contextually rich data from indi-
vidual experiments. Although the com-
munity has made progress in setting up 
databases28 containing various biologi-
cal sequences (even whole genomes) and 
phenotypes, there is a scarcity of labeled 
data. By “labeled data” we mean phe-
notypic data mapped to measurements 
that capture their biological function or 
cellular responses. It is the presence of 
such measurements and labels that will 
drive the maturity of AI/ML and synbio 
solutions to rival human competency, as 
it has done in other fields.

A lack of investment on data engineer-
ing is partially responsible for the lack 
of appropriate datasets. Advancements 
in AI techniques often overshadow the 
computing infrastructure requirements 
that support and ensure its success. The 
AI community refers to this canonical in-
frastructure as the pyramid of needs32 (see 
Figure 5), of which data engineering is an 

AI techniques have been applied. They 
include expert systems, multi-agent sys-
tems, constraint-based reasoning, heu-
ristic search, optimization, and machine 
learning.2,30,38 Sequence-based models 
and graph convolutional networks have 
also gained traction in the domain of 
engineering biological systems. Factor-
graph neural networks27 have been used 
to incorporate biological knowledge 
into deep learning models. Graph con-
volutional networks have been used to 
predict functions of proteins1,39 from 
protein-protein interaction networks. Se-
quence-based convolutional and recur-
rent neural network models have been 
used to identify potential binding sites of 
proteins,1 the expression of genes,36 and 
the design of new biological constructs.12 
Some of the most useful applications of 
AI will be in the development of compre-
hensive models that will reduce the num-
ber of experiments (or designs) that need 
to be conducted (or tested).

Metabolic engineering. In meta-
bolic engineering, AI has been applied 
to almost all stages of the bioengineer-
ing process.22,23,31 For example, artificial 
neural networks have been used to pre-
dict translation initiation sites, anno-
tate protein function, predict synthetic 
pathways, optimize the expression level 
of multiple heterologous genes, predict 
strength of regulatory elements, predict 
plasmid expression, optimize nutrient 
concentration and fermentation condi-
tions, predict enzyme kinetic param-
eters, understand genotype-phenotype 
associations, and predict CRISPR guide 
efficacy. Clustering has been used to 
find secondary metabolite biosynthetic 
gene clusters and identify enzymes that 
catalyze a specific reaction. Ensemble 
approaches have been used to predict 
pathway dynamics, optimal growth tem-
peratures, and find proteins that con-
fer higher fitness in directed evolution 
approaches. Support vector machines 
have been used to optimize ribosome 
binding site sequences and predict 
the activity of CRISPR guide RNAs. The 
most promising metabolic engineering 
stages for the application of AI are: pro-
cess scale-up, a significant bottleneck in 
the field,6,37 and downstream process-
ing (for example, systematic extraction 
of the produced molecule from the fer-
mentation broth).

Experiment automation. AI impact 
has reached well beyond the “Learn” 

phase of the DBTL cycle, in helping to 
automate lab work and recommend-
ing experimental designs. Automation 
is slowly becoming a key practice as the 
most reliable way to obtain the high-
quality, high-volume, low-bias data 
needed to train AI algorithms and en-
able predictable bioengineering.4 Auto-
mation offers the opportunity to rapidly 
transfer and scale complex protocols to 
other labs. As an example, liquid-han-
dling robotic stations35 form the back-
bone of biological foundries and cloud 
labs.20 These foundries have seen their 
capabilities revolutionized by robotics 
and planning algorithms, enabling fast 
iterations through the DBTL cycles. Se-
mantic networks, ontologies, and sche-
mas have revolutionized the representa-
tion, communication, and exchange of 
designs and protocols. These tools have 
enabled rapid experimentation and the 
generation of significantly more data 
in a structured, queryable format. In a 
domain where most context was either 
lost or captured manually in lab note-
books, the promise of AI has forced a 
significant change in the domain to re-
duce the barrier to generate data.

Microfluidics14,24 represent an alter-
native to macroscopic liquid handlers 
that provide higher throughput, less 
reagent consumption, and cheaper scal-
ing. Indeed, microfluidics might be the 
key technology that enables self-driving 
labs,19 which promise to substantially 
accelerate the discovery process by aug-
menting automated experimentation 
platforms with AI. Self-driving labs in-
volve fully automated DBTL cycles in 
which AI algorithms actively search for 
promising experimental procedures by 
hypothesizing about their results based 

Figure 4. Challenges of integrating AI 
techniques with synbio applications.  

Data is often multimodal, difficult to integrate, 
and lacks metadata. Models have been developed 
for leveraging large amounts of data and lack 
explainability and uncertainty quantification. 
Metrics need to be rethought to truly rank the 
available models in a larger context.

Synthetic
Biology
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the “curse of dimensionality” when ap-
plied to data collected in a specific experi-
ment (see Figure 6). For example, a single 
experimentalist can produce genomics, 
transcriptomics, and proteomics data 
for an organism under a particular con-
dition that will provide more than 12,000 
measurements (dimensions). The num-
ber of labeled instances (for example, 
success or failure) for such an experi-
ment is often in the tens to hundreds, at 
most. The dynamics of the system (time 
resolution) are seldom captured for these 
high-dimensional data types. These mea-
surements gaps make driving inferences 
about complex, dynamical systems a sig-
nificant challenge.

Omics data share similarities and 
differences with other data modalities 
such as sequential data, text data, and 
network-based data, but classical ap-
proaches are not always applicable. The 
shared data characteristics include po-
sitional encoding and dependencies, as 
well as complex interaction patterns. Yet 
there are some fundamental differences 
such as: their underlying representa-
tion, context required for meaningful 
analyses, and associated normalizations 
across modalities to make biological 

important component. Data engineering 
encapsulates the experimental planning, 
data collection, structuring, accessing, 
and exploration steps. Successful AI ap-
plication stories involve a data engineer-
ing step that is standardized, consistent, 
and reproducible. While we now can 
collect biological data at unprecedented 
scale and detail,5 this data is often not 
immediately suitable for machine learn-
ing. There are still many hurdles in the 
adoption of community-wide standards 
to store and share measurements, experi-
mental conditions, and other metadata 
that would make them more amenable 
to AI techniques.13,28 Rigorous formaliza-
tion work and consensus is required to 
make such standards rapidly adoptable 
and to promote common metrics of data 
quality evaluation. In short, AI models 
require consistent and comparable mea-
surements across all experiments, which 
prolongs experimental timelines. This 
requirement adds significant overhead 
for the experimentalists who are already 
following complex protocols to make sci-
entific discoveries. Thus, the long-term 
needs of the data collection are often sac-
rificed to meet the tight deadlines often 
imposed on such projects.

This situation often results in sparse 
data collections that represent only a 
small part of the multiple layers that 
form the omics data stack (shown in 
Figure 1). In these cases, data represen-
tation has a significant impact on the 
ability to integrate these siloed datasets 
for comprehensive modeling. Today, 
significant effort is spent across a va-
riety of industry verticals performing 
data cleansing, schema alignment, and 
extract, transform, and load operations 
(ETL) to collect and prepare unruly digi-
tal data into a form suitable for analysis. 
These tasks account for nearly 50% to 
80% of a data scientist’s time, limiting 
their ability to extract insights.26 Deal-
ing with a large variety of data types 
(data multimodality) is a challenge for 
synthetic biology researchers, and the 
complexity of preprocessing activities 
increases dramatically as a function of 
data variety compared to data volume.

Modeling/algorithmic challenges. Many 
of the popular algorithms fueling current 
AI advances (for example, in the comput-
er vision and natural language process-
ing fields) are not robust when it comes to 
analyzing omics data. Traditional appli-
cation of these models often suffers from 

Figure 5. A canonical AI/ML infrastructure can support synbio research. The middle stages are often a focus of attention, but the base is 
crucial and needs significant resource investment.
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synbio (and vice versa). It is our impres-
sion that many impediments stem from 
a lack of coordination and understand-
ing between the very different cultures 
involved. While there are certain initia-
tives that have begun to overcome these 
challenges, it is interesting to note that 
persistent themes remain problematic in 
both academia and industry.

The root of sociological challenges. 
These challenges spring from the need 
to blend expertise from two very differ-
ent groups: computational scientists 
and bench scientists.

Computational and bench scientists 
are trained very differently (see Figure 
7). Computational scientists, by train-
ing, tend to focus on abstractions, be 
enthused about automation and com-
putational efficiency and disruptive ap-
proaches. They naturally lean toward 
task specialization and look for ways to 
hand off repeated tasks to an automated 
computer system. Bench scientists are 
practical, trained in working with con-
crete observations, and prefer explain-
able analyses to accurately describe the 
specific outcome of an experiment.

These two worlds profess different 
cultures, reflected not only in how they 
solve problems, but also which prob-
lems they consider worth solving. For 
example, there is a continuous tension 
regarding the amount of effort devoted 
to building infrastructure that supports 
general research versus aiming to study 

meaningful comparisons. Consequent-
ly, it’s rare to find robust classes of gen-
erative models (akin to Gaussian mod-
els or stochastic block models18) that 
can accurately characterize omics data. 
Furthermore, biological sequences and 
systems represent sophisticated encod-
ings of biological functions, but there 
are few systematic approaches to inter-
pret these encodings in a similar way 
that we interpret semantics or context 
from written text. These different char-
acteristics make it challenging to extract 
insights via data exploration and gener-
ate and verify hypotheses. Engineering 
biology involves the challenge of learn-
ing about a black box system, where we 
can observe input and output, but we 
have limited knowledge about the inner 
workings of the system. Considering the 
combinatorial, large parameter space 
that these biological systems operate 
in, AI solutions that strategically and ef-
ficiently design experiments to probe 
and interrogate biological systems for 
hypothesis generation and verification 
present a tremendous need and oppor-
tunity in this space.19

Lastly, many of the popular AI algo-
rithmic solutions do not explicitly ac-
count for uncertainty and do not display 
robust mechanisms for controlling er-
rors under input perturbations. This fun-
damental gap is particularly critical in 
the synbio space, considering the inher-
ent stochasticity and noise in the biologi-

cal systems we are trying to engineer.
Metrics/evaluation challenges. Stan-

dard AI evaluation metrics based on 
prediction and accuracy are insufficient 
for synbio applications. Metrics such as 
2 for regression models or accuracy for 
classification-based models do not ac-
count for the complexity of the underly-
ing biological system that we are trying 
to model. Additional metrics that quan-
tify the degree to which a model can elu-
cidate the inner workings of the biologi-
cal system and capture existing domain 
knowledge are equally important in this 
field. To this end, AI solutions that in-
corporate principles of interpretability 
and transparency are key in supporting 
iterative and interdisciplinary research. 
Also, the ability to properly quantify un-
certainty requires the creative develop-
ment of novel metrics to gauge the ef-
fectiveness of these approaches.

Metrics for proper experimental de-
sign are also needed. Evaluation and 
validation of models in synbio will at 
times call for additional experiments, 
requiring extra resources. A handful of 
misclassifications or small errors can 
have a drastic impact on the research 
goal. These costs should be integrated 
into objective functions or evaluations 
of the AI models to reflect the real-world 
impact of a misclassification.

Sociological challenges. Sociological 
hurdles can be more challenging than 
technical ones in leveraging AI to benefit 

Figure 6. The curse of dimensionality. 
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Traditional datasets used in deep learning applications consist of millions of 
instances in a high-dimensional space. ImageNet, for example, has more than 
14M images at a resolution of 256x256, which leads to a 65,536-dimensional 
representation of images.9 Omics datasets, on the other hand, typically have 
100s of instances (rows) across an even higher omic-dimensional space that 
can grow beyond 100k dimensions.
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that govern the system. Therefore, an AI 
solution that can enable synbio research 
must be able to describe the mechanism 
that led to the best prediction.

While recent AI techniques based 
on deep learning architectures have 
changed our perspective on how we ap-
proach feature engineering and pattern 
finding, they are still at their infancy in 
terms of their ability to reason and in-
terpret their learning mechanisms. To 
this effect, AI solutions that incorpo-
rate causal reasoning, interpretability, 
robustness, and uncertainty estimation 
requirements have immense potential 
impact in this interdisciplinary area. The 
complexity of biological systems is such 
that AI solutions based purely on brute-
force correlation finding will fail to effi-
ciently characterize the system’s intrin-
sic features. A new class of algorithms 
that smoothly incorporates physics and 
mechanistic models with data-driven 
models is an exciting new research di-
rection. We see some initial positive 
results in climate science and computa-
tional chemistry and hopefully similar 
advancements will follow in the study of 
biological systems.16,25

Synbio can also inspire new AI ap-
proaches, since it provides the tools to 
modify biological systems. Let us not 
forget that biology inspired such sta-
ples of AI as neural networks, genetic 
algorithms, reinforcement learning, 
computer vision, and swarm robotics. 
It would be surprising if biology could 
not provide further inspiration. Indeed, 

a specific research question. The com-
putational scientist favors providing reli-
able infrastructure that can be counted 
on for a variety of projects (for example, 
an automated pipeline for strain con-
struction or a centralized database col-
lecting all relevant data); whereas bench 
scientists tend to focus on the final 
goals (for example, producing a desired 
molecule in commercially meaningful 
amounts), even if that means relying on 
bespoke approaches that are valid only 
for that specific case. In this regard, 
computational scientists like to develop 
mathematical models that explain and 
predict the behavior of the biological 
systems, whereas bench scientists prefer 
producing qualitative hypotheses and 
testing them experimentally as soon as 
possible (at least when working with mi-
croorganisms, since those experiments 
can be completed quickly: 3–5 days). 
Furthermore, the computational scien-
tists can often only get excited and ener-
gized about lofty, blue-sky goals, such as 
bioengineering organisms to terraform 
Mars, writing a compiler of life able to 
create DNA to fulfill a desired specifica-
tion, reengineering trees to adopt a de-
sired shape, bioengineering dragons in 
real life, or substituting scientists by AIs. 
The bench scientists see these lofty goals 
as “hype,” are rather burnt because of 
previous examples of overpromising and 
underdelivering by computational types, 
and would rather only consider goals 
that can be attained using the current 
state of technology.

Addressing sociological challenges. 
The solution to these sociological hur-
dles is to appreciate interdisciplinary 
teams and requirements. Admittedly, 
achieving this inclusive environment 
may be easier in a company (where the 
team sinks or succeeds together) than 
in an academic environment (where 
a graduate student or postdoc pursue 
publication of a few first-author papers 
to claim success, without the need for 
integration with other disciplines).

A possible route for this integra-
tion is creating cross-training courses, 
where bench scientists are trained in 
programming and machine learning, 
and computational scientists are trained 
in experimental work. In the end, both 
communities are bringing something 
valuable, unique, and necessary to the 
table. The sooner this is readily apparent 
to everyone involved, the faster synbio 

can advance. In the long term, we need 
university curriculums that combine the 
teaching of biology and bioengineering 
with automation and math. While sev-
eral initiatives are currently underway, 
they are just a drop in the bucket of the 
needed workforce.

Perspectives and Opportunities
AI can radically enhance synbio and en-
able its full impact by opening a third axis 
in the engineering phase space: physical, 
chemical, and biological. Most obvious-
ly, AI can produce accurate predictions 
in bioengineering outcomes, enabling 
effective inverse design. Furthermore, 
AI can support the scientist in design-
ing experiments and choosing when and 
where to sample, a problem that cur-
rently requires a highly trained expert. 
AI can also support automated search, 
high throughput analysis and hypoth-
esis generation from large data sources 
including historical experimental data, 
online databases, ontologies, and other 
technical material. AI can augment the 
knowledge of the synbio domain expert 
by allowing faster exploration of large 
design spaces and by recommending 
interesting, “outside the box” hypoth-
eses. Synbio presents some unique 
challenges for the current AI solutions 
that, if resolved, will lead to fundamen-
tal advances in both the synbio and AI 
fields. Engineering a biological system is 
intrinsically reliant on the ability to con-
trol the system; this is the ultimate test 
for understanding the fundamental laws 

Figure 7. Computational and bench scientists come from different research cultures that 
must learn to work together to fully benefit from combining AI and synbio.
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Department of Energy (DoE) have fund-
ed research in the domain for years from 
applications of identifying new materi-
als to the production of biofuels. The 
DoE has been the leading organization 
in its investment in applications from 
biofuel production, agriculture, and 
energy conversion.34 The DoD has in-
vested significantly in synthetic biology. 
Among the many DoD programs in the 
field, the DARPA Living Foundries pro-
gram further focused efforts through 
automation. They successfully managed 
to reduce the time and cost to engineer 
organisms 10x. The access, analysis, 
and understanding of the data gener-
ated has led to an explosion in our un-
derstanding of biology, making it more 
accessible and predictable. Another ef-
fort involves the Applied Research for 
the Advancement of Science and Tech-
nology Priorities (ARAP) on developing 
capabilities for Synthetic Biology for 
Military Environments (SBME), funded 
by the Office of the Secretary of Defense 
(OSD) in 2017–2019. This $45 million 
tri-service effort leveraged DoD labora-
tory expertise to use biological systems 
for defense and resulted in long-term 
infrastructure and community resourc-
es for synthetic biology. SBME initiated 
annual Synthetic Biology for Defense 
workshops which resulted in even fur-
ther collaboration with academia and 
industry on synthetic biology efforts. 
Through SBME, each of the Air Force, 
Army, and Navy Research Laboratories 
also mentored a team for the Interna-
tional Genetically Engineered Machine 
(iGEM) Foundations iGEM Competi-
tion, which enables students to address 
challenge problems using synthetic 
biology. Moving forward with commit-
ment to synbio in December 2019, the 
DoD announced the establishment of 
the Biotechnology Community of Inter-
est which will enhance coordination, 
collaboration, and communication 
across the DoD biotechnology research 
and development (R&D) components 
and wider biotechnology community, 
including public-private partnerships 
with academia and industry.10 The 
DoD, as part of the biotechnology mod-
ernization priority, is also currently 
investing in a Bioindustrial Manufac-
turing Innovation Institute to scale bio-
manufacturing processes and biotech-
nologies with industry and academia. 
The services continue to collaborate 

there are many biological 
phenomena that would 
be desirable to emulate 
digitally. Gene regulation, 
for example, involves an 
exquisitely crafted net-
work of interactions that 
allows cells to not only 

sense and react to the environment but 
also to keep the cell alive and stable. 
Keeping homeostasis (the state of steady 
internal, physical, and chemical condi-
tions maintained by living systems) in-
volves producing the right components 
of the cell at the right moment, and at 
the right amount, sensing internal gra-
dients, and carefully regulating the cell’s 
exchange with its environment. Can we 
understand and leverage this capabil-
ity to produce truly self-regulating AIs 
or robots? Another example involves 
emergent properties (that is, proper-
ties exhibited by the system but not by 
its constituent parts). For instance, ant 
colonies behave and react as a single or-
ganism that is much more sophisticated 
that the sum of its parts (the ants). In a 
similar fashion, consciousness (that is, 
sentience or awareness of internal or 
external existence) is a qualitative trait 
that arises from a physical substrate (for 
example, neurons). Swarm robots that 
self-organize and collectively build struc-
tures already exist. Could we use a gener-
al theory of emergence to create hybrids 
of robots and biological systems? Could 
we create consciousness from a very dif-
ferent physical substrate (for example, 
transistors instead of neurons)? A final 
possible example involves self-healing 
and replication: even the least sophisti-
cated example of life exhibits the ability 
to self-repair and reproduce. Could we 
understand the quandaries of this phe-
nomenon to produce self-repairing and 
replicating AIs?

While this kind of biological mimicry 
has been considered before, the beauty 
of synbio lies in providing us with the 
capability to “tinker” with biological sys-
tems to test the models and underlying 
principles of biomimicry. For example, 
we can now tinker with cell gene regula-
tion at a genomic-scale to modify it and 
test what we believe to be the underlying 
reasons for its remarkable resilience and 
adaptability. Or we can bioengineer ants 
and test what kind of ant colony behav-
ior ensues, and how it affects its survival 
rate. Or we can alter cell self-repair and 

self-replication mechanisms and test 
the long-term evolutionary effects on its 
ability to compete.

Furthermore, in cell modeling we 
are very close to a good understanding 
of the involved biological mechanisms. 
While there is little hope that under-
standing how a neural network detects 
the shape of an eye would reveal how 
the brain does the same, that is not the 
case in synbio. Mechanistic models 
are not perfect in their predictions,21 
but produce qualitatively acceptable 
results. Combining these mechanistic 
models with the predictive power of ML 
can help bridge the gap between both 
and provide biological insight into why 
some ML models are more effective at 
predicting biological behavior than 
others. This insight can lead into new 
ML architectures and approaches.

AI can help synbio, and synbio can 
help AI; but it is ultimately the interac-
tion of these two disciplines in a con-
tinuous feedback loop that will create 
possibilities we cannot even fathom 
right now. In the same way Benjamin 
Franklin could not imagine his discov-
ery of electricity would someday enable 
the Internet.

Getting Involved
The interface between AI and synbio is 
a budding interdisciplinary field that 
needs more AI researchers to fully flour-
ish. How can you get involved? We rec-
ommend several community-wide, stra-
tegic efforts to support interdisciplinary 
research in AI-enabled synbio:

	˲ Attendance at and formation of con-
ferences that support standardization 
of data collection and storage and fa-
cilitate sharing of synbio-related bench-
mark data for comparing and evaluating 
AI solutions.

	˲ Democratization and ease of access 
to AI and synbio tools.

	˲ Supporting and requesting tracks 
in conferences in both domains, such 
as SEED’s track on Computational Bi-
ology and Artificial Intelligence, and 
the AAAI symposia on AI and Synthetic 
Biology.

	˲ Identification of canonical synbio 
challenge problems similar to protein 
structure and CASP challenge.7

Furthermore, there is significant 
public funding for research in these 
fields. Public investment from the U.S. 
Department of Defense (DoD) and the 
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through these new initiatives to drive 
the bioeconomy to meet military needs.

The National Science Foundation 
(NSF) and National Institutes of Health 
(NIH) have also begun to define their 
initiatives on synbio. NIH has stood up 
a synbio consortium to have research-
ers identify roadmaps for the applica-
tion of synbio in vaccine development, 
immunotherapy, and other areas of 
research applicable to healthcare ap-
plications. The NSF, on the other hand, 
is taking a broader approach to under-
stand the mechanistic modeling of a 
variety of biological networks, compu-
tational methods, and molecular to sys-
temwide rules in natural or synthetic 
microbial communities that could lead 
to a fundamental understanding of 
these biological systems.

Another approach would be a large 
“moon-shot” project, executed over 10–
20 years, bringing together experimen-
talists, theorists, and computationalists, 
with a strong educational component 
to educate the next generation of prac-
titioners. For example, plants are noto-
riously hard to engineer for a variety of 
reasons, including their long growth 
cycles. A possible project could address 
engineering plants to reduce climate 
change by making plants more resilient 
and increasing the amount of carbon the 
plants sequester.

Finally, private industries in do-
mains ranging from drug discovery to 
materials science, to food and bever-
ages are all turning to synbio for their 
next wave of products. Companies such 
as Amyris, Conagen, Ginkgo Bioworks, 
and Zymergen have embraced the Liv-
ing Foundries vision to engineer and 
automate the design of DNA to rapidly 
loop through the design-build-test-
learn cycle and have cells produce or 
detect an item of interest.	
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