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Abstract: In this themed collection we aim to broadly review some of the critical, recent 

progress in the application of AI/ML to various aspects of computational materials science 

and materials science more broadly. In this themed collection spread across two issues, we 

have assembled a collection of articles from leaders in the broad domain of applying 

AI/ML, which we collectively refer to as ML, in computational materials science. Together 

these articles curate the critical, recent progress in the application of ML to various aspects 

of materials science. These include ML approaches for understanding and driving electron 

microscopy, designing energy materials and the discovery of principles and materials 

relevant to the design of materials for the future, studying crystal nucleation and growth, 

the use of ML to describe force-fields governing material and molecular behavior and other 

topics. 

 

 

The materials science community across academia, national laboratories and industry has 

long benefitted from and contributed to the development of increasingly sophisticated 

quantitative methods. More recently, data-driven approaches for materials science have 

seen a heavy use of Machine Learning (ML) and Artificial Intelligence (AI) based ideas. 

These approaches have made it possible to reveal predictive patterns in the triad of 

structure–property-function relationships across all branches of materials sciences and 

engineering. The synergistic interactions between materials science and data sciences 

continue to flourish with tremendous advances in computing power, software, and 

algorithms, as well as enormous increases in data available from experiment and 

simulation. Perhaps it is hard to say which of the two has expanded more in the last decade 

- the amount of data available through increasingly sophisticated simulations and 

experiments, or, the sophistication of the ML/AI algorithms available to make sense of the 

data. One has also witnessed robust developments where data sciences and materials 

experimentation are no longer two separate entities but instead deeply integrated. In these 

so-called active learning paradigms, data driven approaches are used to guide further 

experiments, often in a closed loop iterative manner. Such autonomous materials discovery 
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paradigms are enabling navigating material space in a high throughput yet efficient and 

controlled manner.  

 

The impact of AI/ML is not limited to just smarter combinatorial design of materials.  It is 

now also possible to train AI and ML models to gain fundamental understanding and  

extract patterns at spatiotemporal scales that were previously impossible with conventional 

computational materials modeling or with the best available theories. Powerful open-

source toolkits for AI/ML model training and architecture selection have also made ML 

more accessible to researchers with diverse training backgrounds. As a result, in 

laboratories across the world, scientists and engineers are identifying ways in which they 

can incorporate AI and ML into their research.  

 

Nevertheless, some key challenges remain in the application of AI and ML to materials 

discovery. While the text-based extraction of prior experimental efforts for data-driven 

models is maturing [1], progress is only just beginning in the systematic analysis of 

experimental images [2-4]. Furthermore, positive publishing bias means that AI models are 

challenged to find good sources of failed experiments. Work has indicated the benefit of 

these failed experiences to inform AI models and that human bias can influence extracted 

predictions[5-6]. Creative strategies have been devised to simulate negative data for 

classification tasks [7]. Within the context of ML for the acceleration of physics based 

modeling, a key outstanding challenge is the quality of the data source. For example, many 

materials prediction models are trained on approximate density functional theory (DFT), 

inheriting the bias of the underlying functional. While ML-derived functionals represent 

one emerging strategy to overcome limitations in DFT [8],  there remains no one-size-fits-

all physics based model that is established to be predictive across materials space. Thus, 

strategies that incorporate the uncertainty of the physics-based method [9] or make 

recommendations [10] about the most suitable method to employ are needed. There is 

indeed early evidence that AI tools can also support experts in their choice of physics-

based methodology. In this issue, we summarize key ways researchers are advancing AI in 

spite of these potential challenges. 

 

AI methods are increasingly useful in interpreting, analyzing and complementing the static 

and dynamic datasets generated from different spectroscopic and microscopic techniques. 

In this connection, Kalinin and colleagues [11] as well and Chan and colleagues [12] 

review the state-of-the-art in how ML can be used to better understand the huge amounts 

of data being generated in electron and scanning probe microscopy techniques. Their 

articles show how such understandings can be complemented with theory, and leveraged 

in a closed loop manner to perform automated microscopy experiments and eventually 

open the path towards direct atomic fabrication with active learning augmented 

microscopy.  

 

The contribution by Takeuchi, Kusne and co-workers [13] looks at yet another aspect of 

how ML and specifically active learning is revolutionizing autonomous materials design. 

They show how ML can be used for autonomous model exploration relevant to materials 

discovery. They also consider the very relevant question of ML related education for 

physical sciences students and report efforts they have undertaken to educate a large 
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number of physical sciences and engineering students in ML. Their efforts have involved 

the very creative development and use of the so-called LEGOLAS education kit – a 

LEGO®* based Low-cost Autonomous Scientist.  

 

Articles from the groups of Viswanathan [14] and Mannodi-Kanakkithodi [15] consider 

the broad question of high throughput materials design using ML. The contribution from 

Viswanathan and co-workers describes an automated workflow named AutoMat for the 

automated discovery of electrochemical materials critical to large-scale electrification. 

AutoMat accelerates the computational steps fundamental to such materials design through 

a variety of advances in theory, software engineering and machine learning.  The 

contribution from Mannodi-Kanakkithodi and group overviews high-throughput 

computations and ML methods for the very important problem of Halide Perovskite 

discovery. They examine specific approaches that make it possible to predict in an 

accelerated manner various material properties and screen through enormous chemical 

spaces. The key approaches they describe involve a tight integration of Density Functional 

Theory (DFT) simulations with ML. 

 

The article by Ceriotti [16] examines very carefully the future of simulations itself. It 

discusses how ML based theoretical methods that will enable molecular simulations with 

quantum level accuracy, yet with the cost of performing classical simulations. The article 

highlights various developments that have made ML based interatomic potentials a viable 

option for materials simulations. At the same time the article also makes a case for how 

more sophisticated electronic structure calculations will be continually needed as we push 

the boundaries of computational materials science and what we aim to achieve through it. 

 

ML methods are starting to automate and revolutionize the fields of crystal structure 

prediction as well as predicting stable polymorphs, their free energies and kinetics. In this 

context, we have submissions from the Day [17] group as well as the groups of Rogal and 

Sarupria [18]. Day and collaborators do a deep dive into the problem of crystal structure 

prediction with machine learning methods. They cover progress made and challenges 

remaining in multiple aspects of crystal structure prediction, including the evaluation of 

accurate energies, mapping the structural landscape and inverse design of molecules given 

a target property in mind.  

 

Fundamental to crystallization is the process of nucleation, which is a prototypical rare 

event that cannot be simulated using classical molecular dynamics as is even with the 

fastest available supercomputers. Rogal and Sarupria present the state-of-the-art in 

performing specialized yet robust molecular simulations that can reach the experimentally 

relevant timescales for nucleation and growth processes. These types of simulations are 

now making it possible to directly observe nucleation in all-atom resolution of generic 

systems, and also gain insight into the reaction coordinate or driving forces behind the 

nucleation. 

 

Arguably deeply connected with the process of crystallization is that of self-assembly,  

albeit often with different length scales and driving forces. This term is loosely used for 

the process in which different systems’ constituents organize themselves into highly 
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ordered structures. Huang and colleagues describe [19] the use of machine learning 

algorithms for the development of kinetic network models (KNMs) that aid interpretation 

of MD simulations. Huang and colleagues describe how KNMs can capture self-assembly 

processes such as crystallization of colloidal particles. They also describe an outlook where 

increasingly deep learning algorithms such as graph neural networks can be exploited to 

understand and interpret these self-assembly events from complex trajectories.  

 

To conclude, the articles these two special issues present an overview of some of the 

challenges the computational and broader materials science community is being able to 

solve with recent AI/ML methods. The articles also discuss numerous open problems and 

avenues for future research, hinting at a scientific discipline which has a vibrant, active 

future ahead. Naturally, we cannot span the entirety of the fields in a limited number of 

articles and thus in no way are these special issues meant to be complete. Just to name a 

few, an important topic we did not cover here is the fair, open and equitable access to data 

for training ML models – we refer to this recent excellent overview instead [20]. A second 

important topic not considered here was the interpretation of AI based models in materials 

science [21]. Widely used theories such as classical nucleation theory or the Allen-Cahn 

equation might have their approximations. However, they provide one not just predictive 

power but also intuition into the underlying physics and chemistry. AI and ML tools 

arguably provide more predictive power than these revered theories, but often this comes 

at the cost of understanding. By developing interpretable AI models perhaps this gap can 

be bridged. We hope the collection of articles will be found useful by the materials science 

community. 
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