
MIT Open Access Articles

Computable PAC Learning of Continuous Features

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ackerman, Nathanael, Asilis, Julian, Di, Jieqi, Freer, Cameron and Tristan, Jean-
Baptiste. 2022. "Computable PAC Learning of Continuous Features."

As Published: https://doi.org/10.1145/3531130.3533330

Publisher: ACM|37th Annual ACM/IEEE Symposium on Logic in Computer Science

Persistent URL: https://hdl.handle.net/1721.1/146425

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146425

Computable PAC Learning of Continuous Features
Nathanael Ackerman

Harvard University

Cambridge, MA 02138, USA

nate@aleph0.net

Julian Asilis

Boston College

Chestnut Hill, MA 02467, USA

julian.asilis@bc.edu

Jieqi Di

Boston College

Chestnut Hill, MA 02467, USA

dij@bc.edu

Cameron Freer

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

freer@mit.edu

Jean-Baptiste Tristan

Boston College

Chestnut Hill, MA 02467, USA

tristanj@bc.edu

ABSTRACT
We introduce definitions of computable PAC learning for binary

classification over computable metric spaces. We provide sufficient

conditions on a hypothesis class to ensure than an empirical risk

minimizer (ERM) is computable, and bound the strong Weihrauch

degree of an ERM under more general conditions. We also give a

presentation of a hypothesis class that does not admit any proper

computable PAC learner with computable sample function, despite

the underlying class being PAC learnable.

KEYWORDS
Computable analysis, PAC learning, VC dimension

ACM Reference Format:
Nathanael Ackerman, Julian Asilis, Jieqi Di, Cameron Freer, and Jean-

Baptiste Tristan. 2022. Computable PAC Learning of Continuous Features.

In 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
(LICS ’22), August 2–5, 2022, Haifa, Israel.ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3531130.3533330

1 INTRODUCTION
The modern statistical learning theory framework for the study

of uniform learnability is the synthesis of two theories. On the

one hand, Vapnik–Chervonenkis (VC) theory [19] is a statistical the-

ory that provides a rate of convergence for a uniform law of large

numbers for estimates of the form
1

n ·
��{i < n : f (Xi) , Yi }

��
,

where (Xi ,Yi) are i.i.d. samples from an unknown probability mea-

sure over X × Y and f : X → Y is a function from a class H of

measurable functions. The rate of convergence is a function of the

complexity of the classH , measured using the concept of VC dimen-
sion. On the other hand, efficient Probably Approximately Correct
(PAC) learnability [18] is a computational theory that defines the

efficient learnability of a function classH in terms of the existence

of a learner, given by an algorithm having polynomial runtime, that

takes an i.i.d. sample S =
(
(Xi ,Yi)

)
i<n from an unknown probabil-

ity measure µ as input and returns a function h ∈ H whose error

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

LICS ’22, August 2–5, 2022, Haifa, Israel
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9351-5/22/08. . . $15.00

https://doi.org/10.1145/3531130.3533330

Pr(h(X) , Y) for (X ,Y) ∼ µ can be bounded with high probability

over the choice of S . The analogous notion of PAC learnability [5],

where the learner is merely required to be measurable in an ap-

propriate sense, rather than efficiently computable, has also been

widely studied.

The synthesis of these two theories culminates with the so-called

fundamental theorem of machine learning [5], which establishes,

under certain broadly-applicable measurability conditions, that a

class of functions is PAC learnable if and only if its VC dimension is

finite. This theory provides a justification for the foundational learn-

ing paradigm of empirical risk minimization and has become the

basis for studying many other learning paradigms and non-uniform

theories of learnability. Note, however, that in this framework the

learner is only required to be a measurable function, and in partic-

ular need not be computable.

Insofar as the goal of studying uniform learning is to determine

when a problem admits supervised learning by some program given

access to training examples, it is important to investigate the sub-

class of learners that are in some sense computable, a natural object
of study intermediate between learners that are efficiently com-

putable and those that are merely measurable. In this direction,

Agarwal et al. [3] proposed a notion of computable learner for com-

putably represented hypothesis classes H on discrete spaces. They

principally consider binary classification in the case where H is a

computably enumerable set of computable functions on a countable

domain, e.g., X = N.
However, many natural problems considered in classical PAC

learning theory have continuous domains, such asRn . In the present
paper, we consider notions of computable learners and hypothesis

classes, without restricting to the discrete setting, e.g., where X is

an arbitrary computable metric space. We do so using the frame-

work of computable analysis [21], and establish upper and lower

bounds on the computability of several standard classes of learners

in our setting.

We now describe the structure of the paper. Next, in Section 1.1,

we describe several other approaches to computability in learn-

ing theory, including [3], and their relation to our work. We then

in Section 3 provide the relevant preliminaries from computabil-

ity theory (including computable metric spaces and Weihrauch

reducibility) and from classical PAC learning theory. In Section 4

we develop the basic concepts of computable learning theory in

our setting, including notions of computability for learners, presen-

tations of hypothesis classes, and sample functions. In Section 5,

for any computably presented hypothesis class, we establish an

https://doi.org/10.1145/3531130.3533330
https://doi.org/10.1145/3531130.3533330

LICS ’22, August 2–5, 2022, Haifa, Israel N. Ackerman, J. Asilis, J. Di, C. Freer, and J. Tristan

upper bound on the strong Weihrauch degree of an empirical risk

minimization (ERM) learner and its parallelization, and we provide

sufficient conditions for an ERM learner to be computable. Finally,

in Section 6 we prove matching lower bounds, via the construction

of a (computable presentation of a) hypothesis class that is PAC

learnable but which has no computable proper PAC learner that

admits a computable sample function.

1.1 Related work
Computability of PAC learners has also been studied by Agarwal

et al. [3], who consider the setting of discrete features and count-
able hypothesis classes. They provide several positive and negative

results on the computability of both proper and improper learners

for various notions of computably presented hypothesis classes,

in both the realizable and agnostic cases. Our results, when we

restrict our setting to discrete spaces, correspond most closely to

their results for so-called recursively enumerably representable (RER)
hypothesis classes. In particular, our Theorem 5.3 can be viewed as

a generalization of [3, Theorem 10].

The related notion of strong computable learning is introduced

and studied by Sterkenburg [17], likewise in the case of discrete

features and countable hypothesis classes. Strong computable learn-

ers are defined by the existence of a computable sample function,

a condition first studied in an earlier version [1] of the present

paper. Furthermore, [17] considers the arithmetical complexity of

learnability alongside its set-theoretic undecidability.

Computability of non-uniform learning, which we do not con-

sider in this paper, has been studied in the discrete setting by Solove-

ichik [16], as well as in [3].

In the present paper (and [3]) when considering a function with

finite codomain (as arises for both learners and presentations of

hypothesis classes), the notion of computable function is such that

for each input, the output is always eventually given. It is also

reasonable to consider settings in which there is a particular value

signaling non-halting, which the computable function may never

identify. This approach is explored by Crook et al. [10], where non-

halting of a learner’s output is signaled by the value ⊥. A related

approach is considered by Calvert [9], who studies PAC learning for

concepts that areΠ0

1
classes on 2

N
, which can be thought of as equiv-

alent to working with computable functions from 2
N
to Sierpiński

space S (i.e., the space {⊥,⊤} with open sets {∅, {⊤}, {⊥,⊤}}),

where the inverse image of ⊤ is the Π0

1
class in question.

The computability of PAC learnability has also been studied by

Wehner [20] and Schaefer [14], who characterize the arithmetical

complexity of deciding finiteness of the VC dimension for various

families of hypothesis classes.

Another interaction between learning theory and computability

is in the setting of “learning in the limit” [12], sometimes called

TxtEx learning. One recent result by Beros [4] in this framework

establishes the Σ0
3
-completeness of this learning problem for certain

computably enumerable hypothesis classes.

2 SUMMARY OF MAIN RESULTS
The field of supervised learning concerns the task of predicting labels
from features given a sample of labeled features S =

(
(xi ,yi)

)
i<n ,

and famously underscores successes in such settings as image

recognition and spam detection. Given a universeX of features and

Y of labels, a learner can be formalized as a function

A : (X × Y)<ω × X → Y sending a sample S and feature x to

its predicted label A(S,x).
The success of a learner A is formulated with respect to a

particular hypothesis class H ⊆ YX
and a family D of probability

measures over X ×Y, by means of the PAC learning paradigm. In

particular, A is said to be a PAC learner forH with respect to D if

there exists a sample functionm : (0, 1)2 → N so that, when trained

on samples of size at leastm(ϵ,δ), with probability at least (1 − δ)
over the choice of sample, A attains error no more than ϵ worse

than any hypotheses in H , when the true underlying distribution

lies in D. The case in which D consists of all measures over X × Y

is referred to as learning in the agnostic case, and the case in which

D is restricted to those measures for which some h ∈ H attains

an error of 0 is referred to as learning in the realizable case (with
respect toH).

In the setting of binary classification, i.e., Y = {0, 1}, the

existence of a PAC learner for a classH (with respect to any family

D of measures) is determined by the VC dimension of H , a com-

binatorial measure of its complexity. The so-called fundamental

theorem of machine learning establishes that, under tame measura-

bility conditions, there exists a PAC learner forH with respect toD
if and only if its VC dimension is finite. Furthermore, it establishes

that in this case, every learner A that is an empirical risk minimizer
(ERM), i.e., for which A(S, ·) minimizes empirical error over H for

every sample S , is indeed a PAC learner forH and any D.
Crucially, the classical fundamental theorem permits learners to

be arbitrary Borel measurable functions, which need not be com-

putable. In order to more faithfully capture the setting of machine

learning, we consider the computability of learners. In this paper,

we investigate to what extent results in classical learning theory

have computable analogues; when computable analogues need not

exist, we quantify how badly noncomputable they can be.

To this end, we study binary classification over domainsX which

are arbitrary computable metric spaces and define a computable
learner to be a learner that is computable as a map of computable

metric spaces. In order to study which classes can be learned by

computable learners, we consider the case where elements of H

are identified by indices bearing some structure. Namely, given an

index space I, we say that a map H : I × X → Y is a presentation
of the underlying hypothesis class

H
† = range

(
i ∈ I 7→ H(i, ·)

)
.

Such a presentation is said to be computable whenI is a computable

metric space and H is computable as a map of computable metric

spaces. We also study the notion of a proper learner for H, i.e., a
map A : (X × Y)<ω → I, which is said to induce the learner A
given by

A
(
(xi ,yi)i ∈[n],x

)
= H

(
A
(
(xi ,yi)i ∈[n]

)
,x
)
.

A proper learner is computable when it is computable as a map of

computable metric spaces.

We now present our primary results, expressed using the

language of represented spaces and strong Weihrauch reducibility

(see Section 3.1 for details).

Computable PAC Learning of Continuous Features LICS ’22, August 2–5, 2022, Haifa, Israel

First, we show that hypothesis classes equipped with computable

presentations always admit an ERM that is computable in the real-

izable case.

Corollary 2.1 (of Theorem 5.3). If H : I × X → Y is a
computable presentation, then there is an ERM for H† that is
computable in the realizable case.

Observe that this result holds even when the hypothesis class

H† has infinite VC dimension (and hence is not PAC learnable). For

classes of finite VC dimension, every ERM learner is a PAC learner

(see Theorem 3.23). Hence when H† has finite VC dimension, the

ERM produced by Corollary 2.1 is a PAC learner.

For learning H in the agnostic case, we characterize the worst-

case noncomputability of ERM learners by bounding the strong

Weihrauch degree of a particular ERM learner as a function of the

index set I. We make use of the limit map limX, which essentially

sends the Cauchy sequences in a computable metric space X to

their limits.

Corollary 2.2 (of Theorem 5.1). If H : I × X → Y is a
computable presentation, then there exists an ERM learner for H†

in the agnostic case that is strongly Weihrauch reducible to limI .

Likewise, when H† has finite VC dimension, this result shows

that we can always find a PAC learner with the stated upper bound.

The parallelization of a function can be thought of as simultane-

ously evaluating countably many instances of the original function.

As such, it is often the more appropriate object of study when

considering the strong Weihrauch reducibility of functions, such

as learners, whose range is finite (as opposed to settings where

infinitely many bits are required to describe the output).

When considering the parallelization of a learner as in Corol-

lary 2.2, the upper bound may increase from limI to limNN but no

further.

Corollary 2.3 (of Corollary 5.2). If H : I × X → Y is a
computable presentation, then there is an ERM for H† whose
parallelization is strongly Weihrauch reducible to limNN .

By a classical result, ERM learners for hypothesis classes of finite

VC dimension are furthermore guaranteed to admit computable

sample functions (see Theorem 3.24). As such, Corollary 2.3 im-

plies that when H† has finite VC dimension, we can always find a

PAC learner A with sample functionm for which the pair (Â,m) is

strongly Weihrauch reducible to limNN , written (Â,m) ≤sW limNN ,

where Â denotes the parallelization of A.
We are able to show that the corresponding bound for proper

learners is tight.

Corollary 2.4 (of Theorem 6.1). There is a computable presen-
tation H such that for every proper learner A that induces a PAC
learner for H† and every sample functionm for the induced learner,
limNN ≤sW (Â,m).

When considering the computability of an algorithm that

requests samples (of a given size) and outputs hypotheses with

a desired error and failure probability, one must consider the com-

putability of not just a learner, but also of an accompanying sample

function. Even though ERMs for classes of finite VC dimension

admit computable sample functions, this is not the case in general.

We exhibit a computable PAC learner A that does not admit any

computable sample function.

Corollary 2.5 (of Theorem 4.12). There exists a computable
PAC learner A for a hypothesis class H and collection of measures D
such that any sample functionm for A is noncomputable.

Corollary 2.5 provides a concrete example of how one must

take into account the computability of sample functions as well as

learners, when studying the hardness of learning problems.

3 PRELIMINARIES
This section provides a brief treatment of the computability theory

and classical learning theory that form the starting point of our

study.

We begin by recalling several pieces of notation. For a set I , we
write (si)i ∈I to denote an I -indexed sequence. For n ∈ N, write
[n] to denote the set {0, 1, . . . ,n − 1}. We write f ↾U to denote the

restriction of a function f : X → Y to a subdomainU ⊆ X .

For a topological space X, we write X<ω
for the space

∐
i ∈N X

i

of finite sequences of points inX, endowedwith its natural topology

as the coproduct of product spaces. An extended metric space is
a set X equipped with a distance function d : X × X → R ∪ {∞}

satisfying the usual metric axioms (where ∞ + r = ∞ for any

r ∈ R ∪ {∞}). (Note that as a special case, any metric space is also

an extended metric space.)

3.1 Computable metric spaces and Weihrauch
reducibility

We next describe certain key notions of computability and

computable analysis, including the notions of computable met-

ric spaces and computable functions between them. (In this paper,

points in computable metric spaces will be allowed to have distance

∞.) For more details and several equivalent formulations of the

basic notions, see, e.g., [7, Section 4]. We then describe the notion

of Weihrauch reducibility; for more details, see [6].

Recall that a partial function f from N to N is said to be

computable if there is some Turing machine that halts on input

n (encoded in binary) precisely when f is defined on n, and in

this case produces (a binary encoding of) f (n) as output. We fix a

standard encoding of Turing machines and write {e} to denote the

partial function that the program encoded by e ∈ N represents. We

write {e}(n) ↓ to mean that the partial function {e} is defined on

n, i.e., that the program encoded by e halts on input n, and write

{e}(n)↑ otherwise.
In this paper, it will be convenient to take oracles to be elements

of NN rather than 2
N
. For f ∈ NN we write {e}f to denote the

partial function defined by an oracle program encoded by e using f
as an oracle. Because we are using oracles in NN, we will define the

Turing jump to yield a function rather than a set. Given f ∈ NN, the
Turing jump of f , written f ′, is defined to be the characteristic

function of {e ∈ N : {e}f (0) ↓}. By convention, we write ∅′ for

the characteristic function of the halting set {e ∈ N : {e}(0)↓}.
A subset of N is computable if its characteristic function is a

total computable function, and is computably enumerable (c.e.)
if it is the domain of a partial computable function (equivalently,

LICS ’22, August 2–5, 2022, Haifa, Israel N. Ackerman, J. Asilis, J. Di, C. Freer, and J. Tristan

either empty or the range of a total computable function). We

will also speak of more elaborate finitary objects (such as sets of

finite tuples of rationals) as being computable or c.e. when they are

computable or c.e., respectively, under a standard encoding of the

objects via natural numbers.

For concreteness, we will use the notion of a presentation of a

real when defining computable metric spaces, but note that this

could also be formulated using represented spaces, as defined later

in the section. An extended real is an element of R ∪ {∞}. A

presentation of an extended real is a sequence of rationals (qi)i ∈N
such that if there is some ℓ ∈ N for which qℓ+1 < qℓ + 1, then for

all j,k ∈ N with j < k we have

��qℓ0+j − qℓ0+k
�� < 2

−j
, where ℓ0 is

the least such ℓ. If no such ℓ exists, we say that the sequence is a

presentation of∞. If there is such an ℓ, we say that the sequence is

a presentation of the real limi→∞ qi . We say that an extended real

is computable if it has a computable presentation. A computable
real is an element of R admitting a computable presentation as an

extended real.

We say that a sequence (ti)i ∈N in an extended metric space

X = (X ,d) is a rapidly converging Cauchy sequence when for

all i < j we have d(ti , tj) < 2
−i
.

Definition 3.1. A computable metric space is a triple

X = (X ,dX, (s
X
i)i ∈N) such that

(1) (X ∪ S,dX) is a separable extended metric space, where

S = {sX : i ∈ N},
(2) (sXi)i ∈N, called the sequence of ideal points of X, enumer-

ates a dense subset of (X ∪ S,dX),
(3) X , called the underlying set of X, is dense in

(X ∪ S,dX), and
(4) dX, called the distance function, is such that

dX(s
X
i , s
X
j) is a computable extended real, uniformly in i and j .

An element x ∈ X is said to be a computable point of X if there is

a computable function f : N→ N such that (sXf (i))i ∈N is a rapidly

converging Cauchy sequence that converges to x . We will omit the

superscripts and subscripts when they are clear from context.

Note that in many papers, computable metric spaces are not

allowed to take the value ∞. Further, in some papers (e.g., [8, Defi-

nition 2.1] and [7, Definition 7.1]), the notion of computable metric

space is defined only in the case where the set S of ideal points is a

subset of X , while in others (e.g., [13, Definition 2.4.1]) computable

metric spaces are also required to be complete metric spaces.

Example 3.2. The setR of real numbers forms a computablemetric

space under the Euclidean metric, when equipped with the set Q
of rationals as ideal points under its standard enumeration (qi)i ∈N.
Its computable points are precisely the computable reals.

Note that in general, the ideal points of a computable metric

space are not required to be in its underlying set, as illustrated by

the following example.

Example 3.3. The set of irrational numbers forms a computable

metric space under the Euclidean metric, again equipped with

(qi)i ∈N as the sequence of ideal points. The computable points

of this computable metric space are the computable irrational num-

bers.

The two spaces in the next example will be key in many of our

constructions.

Example 3.4. Baire space, written NN, is the computable metric

space consisting of countably infinite sequences of natural num-

bers, with ideal points those sequences having only finitely many

nonzero values (ordered lexicographically), and where dNN is the

ultrametric on the countably infinite product of {0, 1}, i.e.,

dNN
(
(si)i ∈N, (ti)i ∈N

)
= 2

− inf i∈N(si,ti).

Cantor space, written 2
N
, is the computable metric subspace of NN

consisting of binary sequences.

Let π0 and π1 be computable maps from N to N such that

i 7→ (π0(i),π1(i)) is a computable bijection of N with N × N.
When X and Y are computable metric spaces, we write X × Y

to denote the computable metric space with underlying set X × Y ,
with sequence of ideal points

(
(sXπ0(i)

, sYπ1(i)
)
)
i ∈N, and where(

(X ∪ SX) × (Y ∪ SY),dX×Y
)

is the product extended metric space of

(
X ∪ SX,dX

)
and(

Y ∪ SY,dY
)
.

We let X<ω
be the coproduct

∐
n∈N

∏
i ∈[n] X, i.e., the space

whose underlying set consists of finite sequences of elements of

X , whose ideal points are finite sequences of ideal points in X , and

where the distance function satisfies

dX<ω
(
(xi)i ∈[n], (yi)i ∈[m]

)
=


max

i ∈[n]
dX(xi ,yi) ifm = n;

∞ otherwise.

Note that this agrees with the definition as a topological space:

the extended metric space X<ω
indeed has topology that of the

coproduct topology for the sequence (Xn)n∈N of extended metric

spaces considered as a sequence of topological spaces.

Definition 3.5. Suppose X = (X ,dX) and Y = (Y ,dY) are

extended metric spaces and Z ⊆ X . We say a map f : X → Y
is continuous on Z if for all open sets U ⊆ Y , there is an open set

V ⊆ X such that f −1(U) ∩ Z = V ∩ Z . In other words, f restricted

to Z is continuous as a map from the extended metric space that X

induces on Z to Y.

Definition 3.6. Let X and Y be computable metric spaces with

ideal points (si)i ∈N and (ti)i ∈N respectively, and suppose Z ⊆ X .
Suppose f :W → Y is a map where Z ⊆W ⊆ X . We say that f is

computable onZ if for all (j,q) ∈ N×Q there is a set Φj,q ⊆ N×Q
such that

• f −1(B(tj ,q)) ∩ Z =
(⋃

(k,p)∈Φj,q B(sk ,p)
)
∩ Z , and

• the set {(j,q,k,p) : (k,p) ∈ Φj,q } is c.e.

This definition captures the notion that the partial map f is

continuous on its restriction to Z and has a computable witness to

this continuity.

Observe that a computable function from NN to a computable

metric space Y can be thought of as a program on an oracle Turing

machine that takes the input on its oracle tape, and outputs a

“representation” of a point in Y. The notion of a represented space is
one way of making this notion precise. For more details, see [6].

Computable PAC Learning of Continuous Features LICS ’22, August 2–5, 2022, Haifa, Israel

Definition 3.7. A represented space (X ,γ) is a set X along with

a surjection γ from a subset of NN onto X . When the choice of γ is

clear from context, we call γ the representation of X .

Definition 3.8. Suppose X = (X ,dX, (s
X
i)i ∈N) is a computable

metric space. Define CSX ⊆ NN to be the collection of functions

f : N → N for which

(
sXf (i)

)
i ∈N is a rapidly converging Cauchy

sequence whose limit is in X . The represented space induced by
X is defined to be (X ,γX), where

γX : CSX → X

assigns each function f the value limi→∞ sXf (i).

Intuitively, a realizer of a function д takes a description of an

input x to a description of the corresponding output д(x), where
these descriptions are given in terms of representations.

Definition 3.9. Suppose (X ,γX) and (Y ,γY) are represented spaces,
and let д : X → Y be a map. A realizer of д is any function

G : dom(γX) → dom(γY) such that γY ◦G = д ◦ γX .
A realizer is computable if it is computable on dom(γX) (con-

sidered as a partial map between computable metric spaces NN and

NN).

The notion of strong Weihrauch reducibility aims to capture the

intuitive idea that one function is computable given the other

function as an oracle, along with possibly some computable pre-

processing and post-processing, where access to the original in-

put is permitted only in pre-processing. (The weaker notion of

Weihrauch reducibility, in which the input may be used again in

post-processing, also arises in computable analysis, but in this paper

we are able to show that all of the relevant reductions are strong.)

Definition 3.10. Let (Xi ,γXi) and (Yi ,γYi) be represented spaces

for i ∈ {0, 1}, and suppose that f : X0 → Y0 and д : X1 → Y1 are
functions. LetF andG be the sets of realizers of f andд respectively.
We say that f is strongly Weihrauch reducible to д, and write

f ≤sW д, when there are computable functions H and K , each from

some subset of NN to NN, such that for everyG ∈ G there exists an

F ∈ F satisfying F = H ◦G ◦ K . We say that f and д are strongly
Weihrauch equivalent, and write f ≡sW д, when f ≤sW д and

д ≤sW f .

Note that strong Weihrauch reducibility is usually described in

the more general setting of partial multifunctions. Here we will

only need single-valued functions with explicitly defined domains,

and Definition 3.10 coincides with the standard one in this situation.

The following important map describes the problem of comput-

ing limits on a represented spaceX induced by a computable metric

space X. (Note that elsewhere in the literature, limX is typically

referred to as limX .)

Definition 3.11. Suppose X is a computable metric space, and let

(X ,γX) be the represented space it induces. The limit map limX is

the partial function from XN to X that assigns every convergent

Cauchy sequence in X its limit (and is undefined elsewhere).

One can view limNN as playing a role in Weihrauch reducibility

analogous to the role played by the halting problem ∅′ with respect

to Turing reducibility. For more details, see [6, §11.6].

It will also be useful to introduce the notion of a rich space, which

bears a relation to limNN and is informally a space that computably

contains the real numbers.

Definition 3.12. A computable metric space X is rich if there

is some computable map ι : 2N → X that is injective and whose

partial inverse ι−1 is also computable.

Lemma 3.13 ([6, Proposition 11.6.2]). If X and Y are rich spaces,
then limX ≡sW limY. In particular, limX ≡sW limNN .

This implies that limNN is maximal (under ≤sW) among limit

operators.

Corollary 3.14. Let X be a computable metric space. Then
limX ≤sW limNN .

Proof. Let V be the space X
∐
NN, and note that

limX ≤sW limV. BecauseV is rich, limV ≡sW limNN by Lemma 3.13.

□

Wewill also work with the Turing jumpmap J : NN → NN, given
by z 7→ z′, which is strongly Weihrauch equivalent to limNN .

Lemma 3.15 ([6, Theorem 11.6.7]). limNN ≡sW J.

Although limNN ≡sW J, in general limI is weaker. In Section 5

we will establish our upper bounds in terms of limI for appropriate

computable metric spaces I, while in Section 6 we will establish a

bound using the operator J.

Strong Weihrauch reductions to the parallelization of a function

allow one to ask for countably many instances of the function to

be evaluated. This concept will be important in Sections 5 and 6, as

we explain following Theorem 5.1.

Definition 3.16. Let f : X → Y be a map between represented

spaces. The parallelization of f is the map f̂ : XN → YN defined

by f̂
(
(xi)i ∈N

)
=
(
f (xi)

)
i ∈N.

Observe that for any map f between represented spaces,

f ≤sW f̂ . We will need the following standard fact.

Lemma 3.17 ([6, Theorem 11.6.6]).
�
limNN ≡sW limNN .

3.2 Learning theory
We now consider the traditional framework for uniform learnability,

formulated for Borel measurable hypotheses. A learning problem

is determined by a domain, label set, and hypothesis class, as we

now describe.

(i) a domain X of features that is a Borel subset of some com-

plete separable extended metric space X,
(ii) a label set Y that is a complete separable extended metric

space, and

(iii) a hypothesis classH consisting of Borel functions from X

to Y.

We will say that any Borel function from X to Y is a

hypothesis; note that such a map is sometimes also called a

predictor, classifier, or concept. In this paper, we will only

consider problems in binary classification, i.e., where Y = {0, 1},

considered as a metric space under the discrete topology.

Let D be a Borel measure on X ×Y. The true error, or simply

error, of a hypothesis h ∈ H with respect to D is the probability

LICS ’22, August 2–5, 2022, Haifa, Israel N. Ackerman, J. Asilis, J. Di, C. Freer, and J. Tristan

that (x ,h(x)) disagrees with a randomly selected pair drawn from

D, i.e.,

LD (h) = D
(
{(x ,y) ∈ X × Y | y , h(x)}

)
.

The empirical error of a hypothesis h on a tuple

S =
(
(x1,y1), . . . , (xn ,yn)

)
∈ (X × Y)n of training examples

is the fraction of pairs in S on which h misclassifies the label of a

feature, i.e.,

LS (h) =

∑n
i=1 |h(xi) − yi |

n
.

Traditionally, one thinks of a learner as a map which takes finite

sequences of (X × Y)<ω and returns a hypothesis, i.e., an element

of YX
. We would then like to define a computable learner as a

learner which is computable as a map between computable metric

spaces. Unfortunately, here we encounter the obstruction that YX

is not, in general, an extended metric space. We overcome it by

instead considering a learner as the “curried” version of a map from

(X × Y)<ω to YX
, i.e., as a map (X × Y)<ω × X → Y. In this

manner, we will be able to consider learners which are computable

as maps between computable metric spaces.

Definition 3.18. A learner is a Borel measurable function

A : (X × Y)<ω × X → Y. For notational convenience, for

S ∈ (X × Y)<ω we let Ã(S) : X → Y be the function defined by

Ã(S)(x) = A(S,x).

The goal of a learnerA is to return a hypothesis h that minimizes

the true error with respect to an unknown Borel distribution D

on X × Y. The learner does so by examining a D-i.i.d. sequence

S =
(
(x1,y1), . . . , (xn ,yn)

)
. Notably, the learner cannot directly

evaluate LD ; it is guided only by the information contained in the

sample S , including evaluations of LS . However, as it is ignorant of
D, the learner does not know how faithfully LS approximates LD .

The most central framework for assessing learners with respect

to hypothesis classes is that of PAC learning (see, e.g., [15, Chap-

ter 3]). In the setting of efficient PAC learning [15, Definition 8.1],

one further requires that the learning algorithm be polynomial-

time in the reciprocal of its inputs ϵ and δ , to be described in the

following definition.

Definition 3.19. Let D be a collection of Borel distributions on

X × Y and let H be a hypothesis class. A learner A is said to PAC
learnH with respect to D (or is a learner forH with respect to D)
if there exists a functionm : (0, 1)2 → N, called a sample function,
that is non-increasing on each coordinate and satisfies the following

property: for every ϵ,δ ∈ (0, 1) and every Borel distributionD ∈ D,
a finite i.i.d. sample S from D with |S | ≥ m(ϵ,δ) is such that, with

probability at least (1−δ) over the choice of S , the learnerA outputs

a hypothesis Ã(S) with

LD (Ã(S)) ≤ inf

h∈H
LD (h) + ϵ . (†)

(Observe that (†) is a Borel measurable condition, as

LD (Ã(S)) =
∫
1A(S,x),yD(dx ,dy).) The minimal such sample

function for A is its sample complexity. When there is some

learner A that learnsH with respect to D, we say thatH is PAC
learnable with respect to D (via A).

In the case where D consists of all Borel distributions on X ×Y,

we say that H is agnostically PAC learnable and that A is an

agnostic PAC learner forH . In the case where D consists of the

class of Borel distributions D on X × Y for which LD (h) = 0 for

some h ∈ H , we say that H is PAC learnable in the realizable
case and that A PAC learnsH in the realizable case.

Remark 3.20. Some sources use “sample complexity” to refer

to a property of hypothesis classes H , defined as the pointwise

minimum of all ofH ’s PAC learners’ sample complexities (in the

sense of Definition 3.19). The learner-dependent definition will

be more appropriate for our purposes, in which, for instance, the

distinction between computable and noncomputable learners is of

central importance.

We will see shortly in Theorem 3.23 that a class that is PAC learn-

able in the realizable case must also be agnostically PAC learnable

(possibly via a different learner with worse sample complexity).

Definition 3.21. A learner E is an empirical riskminimizer (or
ERM) for H , if for all finite sequences S ∈ (X × Y)<ω , we have

Ẽ(S) ∈ argminh∈H LS (h).

Definition 3.22. The VC dimension ofH is

sup

{
|C | : C ⊆ X and {h↾C : h ∈ H} = {0, 1}C

}
.

When {h↾C : h ∈ H} = {0, 1}C , we say thatH shatters the set C .

We now state the relevant portions of the fundamental

theorem of learning theory in our setting (binary classification with

0-1 loss), which holds for hypothesis classes satisfying the mild

technical assumption of universal separability [5, Appendix A]. This

condition is satisfied for any hypothesis class having a computable

presentation (see Definition 4.2), as is the case for all hypothesis

classes considered in this paper.

Theorem 3.23 ([15, Theorem 6.7]). LetH be a hypothesis class
of functions from a domain X to {0, 1}. Then the following are
equivalent:

1. H has finite VC dimension.
2. H is PAC learnable in the realizable case.
3. H is agnostically PAC learnable.
4. Any ERM learner is a PAC learner forH , over any family of

measures.

Because of the equivalence between conditions 2 and 3, we will

say that a hypothesis classH is PAC learnable (without reference to
a class of distributionsD, and without mentioning agnostic learning

or realizability) when any of these equivalent conditions hold. Note

that while every agnostic PAC learner for H is in particular a PAC

learner for H in the realizable case, the converse is not true; when

we speak of a PAC learner for H without mention of D, we will
mean the strongest such instance, namely that it is an agnostic PAC

learner for H .

Furthermore, there exists a connection between the VC dimen-

sion of a PAC learnable class and the sample functions of its ERM

learners.

Theorem 3.24 ([15, Chapter 28]). LetH be a hypothesis class
of functions from a domain X to {0, 1} with finite VC dimension d .
Then its ERM learners are PAC learners with sample functions

m(ϵ,δ) = 4

32d

ϵ2
· log

(
64d

ϵ2

)
+

8

ϵ2
·
(
8d log(ϵ/d) + 2 log(4/δ)

)
.

Computable PAC Learning of Continuous Features LICS ’22, August 2–5, 2022, Haifa, Israel

4 NOTIONS OF COMPUTABLE LEARNING
THEORY

As described before Definition 3.18, the notion of learner we con-

sider in this paper is the curried version of the standard one, in

order to allow for it to be a computable map between computable

metric spaces. We now make use of this, to define when a learner

is computable and when a hypothesis class is computably PAC

learnable.

Definition 4.1. By a computable learner we mean a learner

A : (X × Y)<ω × X → Y which is computable as a map of com-

putable metric spaces. We say a hypothesis classH is computably
PAC learnable if there is a computable learner that PAC learns it.

It will also be important to have a computable handle on

hypothesis classes themselves. As such, we will primarily consider

hypothesis classes as collection of hypotheses endowed with (not

necessarily unique) indices. This information is collected up into a

presentation of the class.

Definition 4.2. A presentation of a hypothesis class is a Borel
measurable function H : I × X → Y. We call I the index space.
Let H̃ : I → YX

be the function defined by H̃(i)(x) = H(i,x). We

write H† to denote the underlying hypothesis class, i.e., range(H̃).

We say that H presents the class H† and that a hypothesis is an

element of H when it is in H†.

Definition 4.3. A presentation H : I × X → Y of a hypothesis

class is computable if I is a computable metric space and H is

computable as a map of computable metric spaces.

Classically, a proper learner for a hypothesis classH is usually

regarded simply as a learner which happens to always produce

hypotheses in the class H . This is a key notion, about which we

will want to reason computably.

In our setting, to study the computability of proper learning, it

will be valuable to consider the case in which the elements of H

are identified by indices bearing additional structure, and thus to

consider learners that identify hypotheses in H by such indices,

using a presentation H. Consequently, and in contrast to the classi-

cal setting, we take proper learners to be slightly different objects

than ordinary learners. Our proper learners map samples to indices,

rather than mapping samples and features to labels. We then can de-

fine a computable proper learner to be simply a proper learner that

is computable (similarly to Definition 4.1 of a computable learner).

Definition 4.4. LetH : I×X → Y be a presentation of a hypothe-

sis class. A proper learner for H is a map

A : (X × Y)<ω → I. If the map A defined by

A((xi ,yi)i ∈[n],x) = H(A(xi ,yi)i ∈[n],x)

is a PAC learner for H†, then A is a proper PAC learner for H, and
we call A the learner induced by A (as a proper learner for H). If

H is a computable presentation, we say that a proper learner A for

H is computable when it is computable as a map of computable

metric spaces.

Note that the learner A induced by a computable proper PAC

learner for H in Definition 4.4 is a computable learner for H†, as

we have required both A and H to be computable. Intuitively, H

is computably properly PAC learnable if there is a computable

function which takes in finite sequences of elements of X × Y and

outputs the index of an element of H, and where the corresponding

learner PAC learns H†.

Definition 4.5. Given a hypothesis class H , define

ΦH ⊆ (X×Y)<ω to be the set of those finite sequences (xi ,yi)i ∈[n]
for which

{
(x1,y1), . . . , (xn ,yn)

}
is a subset of the graph of h for

some h ∈ H , i.e.,⋃
h∈H

∐
n∈N

{
(x ,h(x)) : x ∈ X

}n
.

Recall that the realizable case restricts attention to measures D

for whichD-i.i.d. sequences are almost surely in the graph of some

element ofH . In particular, for any such D and n ∈ N, the product
measureDn

is concentrated on ΦH∩(X×Y)n . Note, however, that

ΦH itself will not in general be Borel, even though every element

ofH is a Borel map. Yet, in the following definition, ΦH plays only

the role of a subdomain on which the computability of learners

in the realizable case is considered, and thus its measure-theoretic

properties are of no consequence.

Definition 4.6. Let H be a hypothesis class. Then a learner A for

H is computable in the realizable case for H if it is

computable on ΦH × X as a function between computable metric

spaces (X ×Y)<ω ×X andY. A proper learner A for a computable

presentation H of H is computable in the realizable case if A

is computable on ΦH as a function between computable metric

spaces (X × Y)<ω and I.

Note that it is possible to have a noncomputable learner for

H which is nevertheless computable in the realizable case forH .

However, all computable learners for H are computable in the

realizable case forH .

It will be important to impose computability constraints on sam-

ple functions as well as learners.

Definition 4.7. A sample functionm : (0, 1)2 → N is computable
if uniformly in n ∈ N there are computable sequences of rationals

(ℓn,i)i ∈N, (rn,i)i ∈N, (tn,i)i ∈N, and (bn,i)i ∈N such that

• Un ⊆ m−1(n) for every n ∈ N, and
• the closure of the set

⋃
n∈NUn is (0, 1)2,

where for each n we defineUn =
⋃
i ∈N(ℓn,i , rn,i) × (tn,i ,bn,i).

Given a computable PAC learner and a computable sample

function for this learner, one can produce an algorithm that, given

an error rate and failure probability, outputs a hypothesis having

at most that error rate with at most the stated failure probability. If

the computable learner is an ERM, then by Theorem 3.24 it has a

computable sample function, and so one obtains such an algorithm.

On the other hand, we will see in Theorem 4.12 that not every com-

putable PAC learner (for a given hypothesis class H and class of

distributions D) admits a computable sample function (with respect

toH and D).

4.1 Countable hypothesis classes
Suppose thatX is countable and discrete. Requiring that a learnerA
be computable is then tantamount to asking that the maps

x 7→ A(S,x) be uniformly computable as S ranges over (X ×Y)<ω .

By collecting up this data, such a computable learner A can be

LICS ’22, August 2–5, 2022, Haifa, Israel N. Ackerman, J. Asilis, J. Di, C. Freer, and J. Tristan

encoded as a computable map from N to N. In a similar fashion, a

computable presentation of a hypothesis class could be encoded by

a single computable map from N to N.
The paper [3] studies computable PAC learning in the setting

where X = N, a countable discrete metric space. As such, they

are able to work with the encodings of these simplified notions of

computable learners and presentations of hypothesis classes, as we

have just sketched.

4.2 Examples
To illustrate these definitions, we now describe two examples —

one a very basic one in this formalism, and the other a standard

example from learning theory.

4.2.1 “Apply” function. Let the index space I be 2
N
and the sample

space X be N. We define the “apply” presentation of the hypothesis

class 2
N
to be the map H : I × X → {0, 1} where H(x ,n) = x(n).

Note that while H is computable, there is no single Turing degree

which bounds every hypothesis in H† = 2
N
. In particular, this

example demonstrates that the notion of computable hypothesis

class that we consider is fundamentally more general than the corre-

sponding notion in [3], which considers only countable collections

of hypotheses.

4.2.2 Decision stump. Recall the decision stump problem from

classical learning theory defined by X = R, Y = {0, 1}, and

H = {1>c : c ∈ R}. In the realizable case, the learning prob-

lem amounts to estimating the true cutoff point c from a sample

S = (xi ,yi)i ∈[n] for which yi = 1 if and only if xi > c . It is well-
known to be PAC learnable in the realizable case via the following

algorithm:

1. If S has negatively labeled examples (i.e., (xi ,yi)withyi = 0),

then setm to be the maximal such xi . Otherwise, setm to

be the minimal feature among positively labeled examples.

2. Return 1>m .

In particular, this implements an ERM learner forH in the realizable

case. Further, as H has VC dimension 1, it is a PAC learner for

H in the realizable case by the equivalence of clauses 1 and 4 in

Theorem 3.23.

The classical algorithm does not give rise to a computable learner

in the sense of Definition 3.18, however, as 1>m cannot be com-

puted from S . In particular, undecidability of equality for real num-

bers obstructs such a computation from being performed over R.
In order to more sensibly cast the problem in a computable setting,

we restrict focus to cutoff points located at computable reals and

take the noncomputable reals as the domain set X.

Now consider the computable presentation Hstep :

Rc × (R \ Rc) → {0, 1} of a hypothesis class with index set the

computable reals Rc , given by Hstep(c,x) = 1>c (x). Its underlying

hypothesis class H
†
step
= {1>c : c ∈ Rc } consists of computable

functions (whose domains are R \ Rc), thus proper learners have a
chance of success. Nevertheless, the classical algorithm fails:m will

reside in X, and thus 1>m will be noncomputable as a function on

X (even when one has access tom).

Wewill exhibit a proper learnerAstep forHstep that is computable

in the realizable case and whose induced learner is an ERM. Fix a

computable enumeration (qi)i ∈N of Q and uniformly enumerate a

computable presentation of each as a computable real.

Algorithm 4.8 (Algorithm Astep). Given a sample S , output the
first qj ∈ (qi)i ∈N for which the empirical error of 1>qj is 0.

Proposition 4.9. Astep is a proper learner for Hstep that is
computable in the realizable case and whose induced learner is an
ERM.

Proof. Observe that the sequence of functions (1>qi)i ∈N is

uniformly computable on X = R \ Rc . The empirical error of

each 1>qi can be computed exactly on any sample (and hence

compared with 0). The loop terminates upon reaching a rational

qj that separates the sample S , one of which must exist for any S
under consideration in the realizable case. □

Corollary 4.10. Astep is a computable proper PAC learner in the
realizable case for Hstep.

Proof. By Proposition 4.9, Astep is a computable proper learner

in the realizable case for Hstep, whose induced learner is an ERM.

The class H
†
step

has VC dimension 1, and so by the equivalence of

clauses 1 and 4 in Theorem 3.23, the learner induced by Astep is a

PAC learner in the realizable case. □

In fact, we will see shortly in Theorem 5.3 that Corollary 4.10 is

an instance of a more general result, namely that all classes with

computable presentations have computable ERM learners in the

realizable case.

4.3 Computable learners with noncomputable
sample functions

Theorem 4.12 shows that even when a hypothesis class H and

class of distributions D admit some computable PAC learner with

a computable sample function, not all computable learners forH

with respect to D must have a computable sample function.

Therefore, when investigating the computability of

algorithms for outputting a hypothesis (with the desired error rate

and failure probability), we must consider the computability of a

pair consisting of a PAC learner and sample function, not merely

the PAC learner alone.

The intuition behind the proof of Theorem 4.12 is that we can

enumerate those programs that halt, and whenever thenth program
to halt does so, we then coarsen all samples of size n up to accuracy

2
−s
, where s is the size of the program. Consequently, for each

desired degree of accuracy, we eventually obtain answers that are

never coarsened beyond that accuracy. On the other hand, knowing

how many samples are needed for a given accuracy allows us to

determine a point past which we never again coarsen to a given

level. This then lets us deduce when a given initial segment of the

halting set has stabilized.

Definition 4.11. For M ∈ N, let DM be the collection of Borel

probability distributions D over (R \ Rc) × {0, 1} such that

(i) LD (h) = 0 for some element h of Hstep, and

(ii) D is absolutely continuous (with respect to Lebesgue

measure) and has a probability density function bounded by

M .

Computable PAC Learning of Continuous Features LICS ’22, August 2–5, 2022, Haifa, Israel

Theorem 4.12. For eachM ∈ N, there is a learnerA onX = R\Rc
and Y = {0, 1} such that

• A is computable in the realizable case with respect to H†
step

,

• A is a PAC learner for H†
step

over DM , and
• ∅′ is computable from any sample function for A (as a learner
for H†

step
over DM).

Proof. Define α : Q × N → Q by α(q, ℓ) = ⌊2ℓq⌋/2ℓ , and let

c : (X × Y)<ω → Q be such that c(S) is the rational q of least

index attaining zero empirical error on S if one exists, and 0 other-

wise. Hereafter, we will additionally demand that the computable

enumeration of Q employed by c be one which enumerates
1
⁄3 first.

Define c∗ : (X × Y)<ω × N → Q by c∗(S,n) = α(c(S),n), i.e., the
previous decision stump learner discretized to accuracy 2

−n
.

Let (ek)k ∈N be a computable enumeration without repetition of

all e ∈ N for which {e}(0)↓. For S ∈ (X ×Y)<ω , write len(S) for its
length. DefineA : (X×Y)<ω ×X → Y byA(S,x) = hc∗(S,e

len(S))(x).

In other words, we discretize the decision stump algorithm to accu-

racy 2
−e

len(S)
. Note that because limk ek = ∞, we can find arbitrarily

good approximations as we increase the sample size, even if (as we

will show) we cannot compute how large such samples must be.

Note that A is computable in the realizable case. Further, for

every r ∈ N there is an i ∈ N such that er ∗ > i for all r∗ ≥ r .
Then for every integer ℓ > 0, there is an n ∈ N such that whenever

len(S) > n, the set

U =
{
x : Hstep(Astep(S),x) , A(S,x)

}
is contained in an interval of length 2

−ℓ
.A is thus a PAC learner for

H
†
step

overDM , as the loss incurred byA onU is bounded uniformly

over DM by 2
−ℓ ·M .

Letm(ϵ,δ) be a sample function for A and consider n ∈ N. We

will compute the function ∅′ restricted to the set [n] = {0, . . . ,n−1}.

Fix any rational δ ∈ (0, 1), and set mn = m(2−(n+2),δ). Suppose
there is some i > mn such that ei < n. Then given a sample S of

size i , the function A(S, ·) will discretize c(S) to an accuracy below

2
−n

. This would cause A to incur a true loss of at least 2
−n

on the

distribution which is uniform on features in [0, 1] and takes labels

according to 1>1/3, as α(1/3,k) ≤ 1/3−2−(k+2), a contradiction. Hence

i ≤ mn whenever ei < n. We can therefore determine membership

in {ek : k ∈ N} ∩ [n], and hence can compute ∅′ restricted to

[n]. □

5 UPPER BOUNDS ON THE COMPUTABILITY
OF LEARNERS

We now study upper bounds on the computability of learners, for

a hypothesis class with a computable presentation. For the rest

of the paper, we remain in the setting of binary classification, i.e.,

Y = {0, 1}.

For any computable presentation of a hypothesis class, we

establish a concrete upper bound, depending only on the index

space, for how computable some ERM must be.

Theorem 5.1. Suppose H : I × X → Y is a computable presenta-
tion of a hypothesis class. Then there is a proper learner for H that is
strongly Weihrauch reducible to limI , and is such that the learner it

induces is an ERM for H†. In particular, there is an ERM for H† that
is strongly Weihrauch reducible to limI .

Proof. Fix a sample S = (xi ,yi)i ∈[n]. To invoke limI , we

introduce a procedure for approximating an input

z = (zi)i ∈N ∈ IN. In particular, we approximate z using the se-

quence (zk)k ∈N, with each zk ∈ IN taking the form

zk =
(
z1k , . . . , z

k−1
k , zkk , z

k
k , . . .

)
,

i.e., constant after the (k − 1)th term.

z
j
k is computed as follows, for j ∈ [k]:

1. Take balls around the xi and around the first j ideal points

of I, all of radius 2−k . In addition, calculate which value is

taken by yi ∈ {0, 1}.

2. For each of the first j ideal points of I, use H to

determine whether the balls around the xi and the ideal

point suffice to calculate a well-defined empirical error with

respect to S .
3. If none of the first j ideal points induce a well-defined empiri-

cal error, set z
j
k to be the first ideal point of I. Otherwise, set

z
j
k to be the first ideal point which attains minimal empirical

error among the first j ideal points.

As H is continuous, and as there are only finitely many possible

empirical errors, ifw ∈ I is such that H̃(w) has minimal empirical

error with respect to S , then there must be an open ball aroundw
where all elements of the ball give rise to a function with the same

minimal empirical error (with respect to S). In particular, there must

be an ideal point c such that H̃(c) has minimal empirical error with

respect to S . Therefore z = (z
j
j)j ∈N converges to the ideal point

with minimal index among those that give rise to minimal empirical

error with respect to S . Calling limI on z thus is a proper learner

whose induced learner for H† is an ERM, as desired. □

When comparing the relative computational strength of two

maps f and д, the notion of д being “more complex” than f can

be intuitively thought of as the statement that one can compute f
when given access to д. This is made precise using the formalism

of strong Weihrauch reducibility, in which a single application of f
must be computed using a single application of д (possibly along

with some uniform pre- and post-processing). In some situations, it

is useful to be able to use multiple applications ofдwhen computing

an application of f ; this capability is formalized using the notion of

parallelization (see Definition 3.16). For those familiar with classical

computability theory, working with strong Weihrauch reductions

to the parallelization more closely resembles Turing reductions, as

opposed tom-reductions.

When considering learners on continuum-sized metric spaces, it

is important to study the parallelization of the learner, and not just

the learner itself, for reasons we now describe. Because we have

chosen for a learner to be a map from (X × Y)<ω × X to {0, 1} (as

opposed to a map from (X ×Y)<ω to {0, 1}X), a single application

of a learner can only return a single bit of information about its

input. In contrast, limNN is a map fromNN toNN for which a single

application contains countably many bits of information. As such,

when comparing a learner to limNN , it is somewhat artificial to

allow only a single application of the learner. We can overcome this

LICS ’22, August 2–5, 2022, Haifa, Israel N. Ackerman, J. Asilis, J. Di, C. Freer, and J. Tristan

obstacle by instead considering the parallelization of the learner,

i.e., by allowing ourselves to simultaneously ask countably many

questions of the learner, rather than a single one.

In considering the parallelization, the upper bound may increase

from limI to limNN , but no further.

Corollary 5.2. Suppose H : I × X → Y is a computable
presentation of a hypothesis class. Then there is a proper learner
for H whose parallelization is strongly Weihrauch reducible to limNN ,
and is such that the learner it induces is an ERM for H†. In particular,
there is an ERM for H† whose parallelization is strongly Weihrauch
reducible to limNN .

Proof. Let A be the proper learner constructed in the proof of

Theorem 5.1, which satisfies A ≤sW limI . By Corollary 3.14, we

have limI ≤sW limNN , so that A ≤sW limNN .

Observe that strong Weihrauch reductions are preserved under

parallelization, and so Â ≤sW
�
limNN . Finally, we have

�
limNN ≡sW

limNN by Lemma 3.17. □

In Section 6 we provide matching lower bounds on the

parallelization of proper learners.

We now show in Theorem 5.3 that in the setting of Theorem 5.1,

there is always an ERM that is computable in the realizable case.

Theorem 5.3 can be viewed as a generalization of [3, Theorem 10].

Theorem 5.3. Suppose H : I × X → Y is a computable
presentation of a hypothesis class. Then there is a proper learner for H
that is computable in the realizable case, and is such that its induced
learner is an ERM for H† that is computable in the realizable case. In
particular, there is an ERM for H† that is computable in the
realizable case.

Proof. Suppose S ∈ ΦH† . There is somew ∈ I such that H̃(w)

has empirical error 0 with respect to S . Because there are only

finitely many possible values of the empirical error with respect

to S , there must be some open ball B around w such that for all

elements w∗ ∈ B, the function H̃(w∗) has empirical error 0 with

respect to S . In particular, there must be some ideal point c in this

ball. Therefore the algorithmwhich searches through all ideal points

and returns the first to attain an empirical error 0 with respect to

S will eventually halt. This algorithm is a proper learner that is

computable in the realizable case, and its induced learner is an ERM

for H† that is computable in the realizable case. □

Remark 5.4. The algorithms in Theorems 5.1 and 5.3 would have

failed had Y not been computably discrete, in which case verify-

ing that a hypothesis incurs an empirical error of 0 would not be

computable. When Y = {0, 1}, as in this paper, the predictions of

hypotheses on features can be deduced exactly, allowing for pre-

cise computation of empirical errors. If Y = R, in contrast, then

predictions of hypotheses h take the form (qk − 2
−k ,qk + 2

−k)

for qk ∈ Q and chosen k ∈ N, amounting to the information that

h(x) ∈ (qk − 2
−k ,qk + 2

−k).

Some such intervals allow one to conclude that h(x) , y, namely

when y < (qk − 2
−k ,qk + 2

−k), and thus that h does not attain an

empirical error of 0. Yet no such interval allows one to conclude

that h(x) = y for even a single example (x ,y) if y may take any real

value, much less that h attains an empirical error of 0 across an

entire sample.

5.1 Applications
We now apply techniques from the proof of Theorem 5.3 to concrete

settings where we have more information about the structure of

the hypothesis class.

The restricted setting of computability in the realizable case,

as in Theorem 5.3, provides a stopping criterion for detecting a

hypothesis in H† attaining minimal empirical risk on S , thereby
eliminating the need for limI . A similar criterion would arise if

the size of the restriction of a (computably presented) class H

to a given sample S could be known in advance. In such a case,

one could walk through the ideal points of I as in the proof of

Theorem 5.3 until all such behaviors on S are encountered, subse-

quently returning one which attains the minimal empirical error.

Theorem 5.5. Suppose H : I × X → Y is a computable
presentation of a hypothesis class, and that for all finite U ⊆ X,
the size of {h↾U : h ∈ H†} can be computed, uniformly in U . Then
an ERM learner for H† is computable.

Proof. Let n ∈ N. Define Hn : I × Xn → Yn
to be the map

where Hn (w, (x j)j ∈[n]) = (H(w,x j))j ∈[n]. Note that this is a contin-
uous function, and hence for allw ∈ I and for every u ∈ Xn

there

is an ideal point c such that Hn (w,u) = Hn (c,u).
SupposeU ⊆ X is finite. We then have��{h↾U : h ∈ H†)}

�� = ��{H̃(c)↾U : c is an ideal point of I
}��.

In particular, by searching through all the ideal points of I we

realize all behavior (restricted to U) that occurs in H̃. So, from��{h↾U : h ∈ H†}
��
we can compute ideal points ofI realizing all such

behavior. From this it is straightforward to choose an ideal point

which minimizes the empirical error on any sample (xi ,yi)i ∈[m]

where {xi : i ∈ [m]} = U . □

It has been shown in [11] that the computability condition of

Theorem 5.5 is enjoyed by maximum classes, i.e., those which

achieve the bound of the Sauer–Shelah lemma. We can thus

conclude computable PAC learnability for such maximum classes.

Corollary 5.6. IfH : I×X → Y is a computable presentation of
a hypothesis class, and H† is a maximum class of finite VC dimension,
then it is computably PAC learnable.

6 LOWER BOUNDS ON THE
COMPUTABILITY OF LEARNERS

We now provide a converse to Corollary 5.2 by establishing a lower

bound on the computability of a proper PAC learner and a sample

function for it.

Let B be the proper learner produced by Corollary 5.2. Because

B induces an ERM, it is a proper PAC learner with computable

sample function r (by Theorem 3.24). Hence (B̂, r) ≤sW limNN .

Theorem 6.1 (in the case where sample functions are computable)

provides a converse.

Computable PAC Learning of Continuous Features LICS ’22, August 2–5, 2022, Haifa, Israel

Theorem 6.1. There is a hypothesis class that is PAC learnable but
which admits a computable presentation H such that
limNN ≤sW (Â,m) whenever A is a proper PAC learner for H andm
is a sample function for the PAC learner for H† that A induces.

Proof. Let X be the product of computable metric spaces N and

NN, and define the index space I to be{
(e, z) ∈ N × NN : {e}z (0)↓

}
with distance inherited from X and ideal points of the form (e, z)
where z has only finitely many nonzero values, ordered by when

the respective programs with oracles halt on input 0.

Given (e0, z0), (e1, z1) ∈ X, we write (e0, z0) ∼ (e1, z1) when
(a) e0 = e1 and (b) {e0}

z0 (0) ↓ if and only if {e1}
z1 (0) ↓, with

program e0 with oracle z0 taking the same number of steps to

halt on input 0 as does e1 with oracle z1 (when they both halt).

Define H : I × X → {0, 1} by

H
(
(e0, z0), (e1, z1)

)
=

{
1 (e0, z0) ∼ (e1, z1);

0 otherwise.

Note thatH is computable because {e0}
z0 (0)↓ for every (e0, z0) ∈ I.

First we show that H† shatters no set of size 2, so that it has

VC dimension 1 and hence is PAC learnable by Theorem 3.23. Let

(e0, z0), (e1, z1) ∈ X be distinct. If there exists an h ∈ H† with

h(e0, z0) = 1 and h(e1, z1) = 0, then there is some k such that

the program e0 with oracle z0 halts on input 0 in exactly k steps

but either e0 , e1 or the program e1 with oracle z1 does not halt

on input 0 in exactly k steps. But then there is no д ∈ H† with

д(e0, z0) = 1 and д(e1, z1) = 1. Therefore H† does not shatter the

set {(e0, z0), (e1, z1)}.
Now suppose that A : (X × Y)<ω → I is a proper PAC learner

for H, let A be the induced PAC learner for H†, and let m be a

sample function for A (as a PAC learner for H†). We will show that

J ≤sW (Â,m). Then by Lemma 3.15, we will have limNN ≤sW (Â,m).

Let z ∈ NN. We aim to uniformly compute z′ using A,m, and

z. First we preprocess. Calculate k = m(ϵ,δ) for any choice of

ϵ,δ ∈ (0, 1) and construct the sequence Se,z =
(
((e, z), 1)k

)
e ∈N.

Then, apply Â to obtain a sequence (ℓe , se)e ∈N.
Now consider the measure D(e,z) which places a pointmass on

((e, z), 1). Because A is a PAC learner, we have

Pr

S∼Dk
(e,z)

(��LD(e,z) (A(S)) − min

w ∈I
LD(e,z) (H̃(w))

�� < ϵ
)
> 1 − δ .

Therefore, as D(e,z) is a pointmass, we have��LD(e,z) (A(Se,z)) − min

w ∈I
LD(e,z) (H̃(w))

�� < ϵ .

Again because A is a PAC learner and D(e,z) is atomic, we have an

equivalence between the following statements:

(1) A(Se,z)(e, z) = 1.

(2) LD(e,z) (A(Se,z)) = 0.

(3) LD(e,z) (H̃(w)) = 0 for somew ∈ I.

(4) H(w, (e, z)) = 1 for somew ∈ I.

In particular, (3) ⇒ (2) because Dk
(e,z) concentrates mass on S(e,z),

so otherwise A would be guaranteed to incur a loss of 1 > ϵ

when trained on samples drawn from Dk
(e,z), contradicting the PAC

condition onm(ϵ,δ).
Now note that if {e}z (0) ↓, then there is a w = (e, z) ∈ I such

that H(w, (e, z)) = 1; by the previous equivalence, this implies that

A(Se,z)(e, z) = 1.

We are now equipped to post-process and calculate z′(n). If n ,
ℓn , then A(Sn,z)(n, z) = 0 and, via ¬(1) ⇒ ¬(4) in the equivalence,

{n}z (0)↑, meaning z′(n) = 0.

Otherwise, n = ℓn . First compute {n}sn (0). This computation is

guaranteed to halt, by definition of I and the fact that A is a proper

learner. Let t be the number of steps it took to halt. Next run {n}z

on input 0 for t steps. If it halts within t steps, then {n}z (0)↓ and
so z′(n) = 1. If {n}z has not halted on input 0 within t steps, then
A(Sn,z)(n, z) = 0 and the equivalence again implies that {n}z (0)↑,
meaning z′(n) = 0. □

Theorem 6.1 establishes that for computably presented

hypothesis classes (of finite VC dimension), in general there is

no computable procedure for PAC learning the hypothesis class

from samples.

ACKNOWLEDGMENTS
The authors would like to thank CalebMiller for valuable discussion

on the topic, particularly in helping refine the notion of computable

PAC learning and in describing the computable algorithm for the

decision stump.

The authors would also like to thank the anonymous reviewers,

whose comments and suggestions improved the presentation.

An extended abstract [2] announcing related results in a different

setting was presented at the Eighteenth International Conference

on Computability and Complexity in Analysis (July 26–28, 2021),

and an earlier version [1] of the present paper was posted on the

arXiv in November, 2021.

This material is based upon work supported by the National

Science Foundation under grant no. CCF-2106659. Freer’s work

is funded in part by financial support from the Intel Probabilistic

Computing Center.

REFERENCES
[1] Nathanael Ackerman, Julian Asilis, Jieqi Di, Cameron Freer, and Jean-Baptiste

Tristan. 2021. On Computable Learning of Continuous Features. arXiv e-print
2111.14630 (2021). arXiv:2111.14630

[2] Nathanael Ackerman, Julian Asilis, Jieqi Di, Cameron Freer, and Jean-Baptiste

Tristan. 2021. On the Computable Learning of Continuous Features. In Eighteenth
International Conference on Computability and Complexity in Analysis. http://cca-

net.de/cca2021/

[3] Sushant Agarwal, Nivasini Ananthakrishnan, Shai Ben-David, Tosca Lechner,

and Ruth Urner. 2020. On Learnability with Computable Learners. In Proceedings
of the 31st International Conference on Algorithmic Learning Theory (ALT) (PMLR,
Vol. 117). 48–60. http://proceedings.mlr.press/v117/agarwal20b.html

[4] Achilles A. Beros. 2014. Learning theory in the arithmetic hierarchy. Journal of
Symbolic Logic 79, 3 (2014), 908–927. https://doi.org/10.1017/jsl.2014.23

[5] Anselm Blumer, A. Ehrenfeucht, David Haussler, and Manfred K. Warmuth. 1989.

Learnability and the Vapnik–Chervonenkis Dimension. Journal of the ACM 36, 4

(1989), 929–965. https://doi.org/10.1145/76359.76371

[6] Vasco Brattka, Guido Gherardi, and Arno Pauly. 2021. Weihrauch Complexity in

Computable Analysis. In Handbook of Computability and Complexity in Analysis,
Vasco Brattka and Peter Hertling (Eds.). Springer, 367–417. https://doi.org/10.

1007/978-3-030-59234-9_11

[7] Vasco Brattka, Peter Hertling, and Klaus Weihrauch. 2008. A tutorial on

computable analysis. In New Computational Paradigms. Springer, 425–491.
https://doi.org/10.1007/978-0-387-68546-5_18

https://arxiv.org/abs/2111.14630
http://cca-net.de/cca2021/
http://cca-net.de/cca2021/
http://proceedings.mlr.press/v117/agarwal20b.html
https://doi.org/10.1017/jsl.2014.23
https://doi.org/10.1145/76359.76371
https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1007/978-0-387-68546-5_18

LICS ’22, August 2–5, 2022, Haifa, Israel N. Ackerman, J. Asilis, J. Di, C. Freer, and J. Tristan

[8] Vasco Brattka and Gero Presser. 2003. Computability on subsets of metric spaces.

Theoretical Computer Science 305, 1-3 (2003), 43–76. https://doi.org/10.1016/

S0304-3975(02)00693-X

[9] Wesley Calvert. 2015. PAC learning, VC dimension, and the arithmetic hierarchy.

Archive for Mathematical Logic 54, 7-8 (2015), 871–883. https://doi.org/10.1007/

s00153-015-0445-8

[10] Tonicha Crook, Jay Morgan, Arno Pauly, and Markus Roggenbach. 2021. A Com-

putability Perspective on (Verified) Machine Learning. arXiv e-print 2102.06585
(2021). arXiv:2102.06585

[11] Sally Floyd and Manfred Warmuth. 1995. Sample compression, learnability, and

the Vapnik–Chervonenkis dimension. Machine Learning 21, 3 (1995), 269–304.

https://doi.org/10.1023/A:1022660318680

[12] E. Mark Gold. 1967. Language identification in the limit. Information and Control
10, 5 (1967), 447–474. https://doi.org/10.1016/S0019-9958(67)91165-5

[13] MathieuHoyrup and Cristóbal Rojas. 2009. Computability of probabilitymeasures

and Martin-Löf randomness over metric spaces. Information and Computation
207, 7 (2009), 830–847. https://doi.org/10.1016/j.ic.2008.12.009

[14] Marcus Schaefer. 1999. Deciding the Vapnik–Červonenkis Dimension is Σ
p
3
-

complete. J. Comput. System Sci. 58, 1 (1999), 177–182.
[15] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding Machine Learning:

From Theory to Algorithms. Cambridge University Press. https://doi.org/10.1017/

CBO9781107298019

[16] David Soloveichik. 2008. Statistical Learning of Arbitrary Computable Classifiers.

arXiv e-print 0806.3537 (2008). arXiv:0806.3537

[17] Tom F. Sterkenburg. 2022. On characterizations of learnability with computable

learners. arXiv e-print 2202.05041 (2022). arXiv:2202.05041
[18] L. G. Valiant. 1984. A Theory of the Learnable. Communications of the ACM 27,

11 (1984), 1134–1142. https://doi.org/10.1145/1968.1972

[19] V. N. Vapnik and A. Ya. Chervonenkis. 1971. On the Uniform Convergence of

Relative Frequencies of Events to their Probabilities. Theory of Probability and its
Applications 16, 2 (1971), 264–280. https://doi.org/10.1137/1116025

[20] S. Wehner. 1990. Zur Komplexität des Numerierens. PhD thesis. Universität

Karlsruhe.

[21] Klaus Weihrauch. 2000. Computable analysis: An introduction. Springer. https:

//doi.org/10.1007/978-3-642-56999-9

https://doi.org/10.1016/S0304-3975(02)00693-X
https://doi.org/10.1016/S0304-3975(02)00693-X
https://doi.org/10.1007/s00153-015-0445-8
https://doi.org/10.1007/s00153-015-0445-8
https://arxiv.org/abs/2102.06585
https://doi.org/10.1023/A:1022660318680
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1016/j.ic.2008.12.009
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/CBO9781107298019
https://arxiv.org/abs/0806.3537
https://arxiv.org/abs/2202.05041
https://doi.org/10.1145/1968.1972
https://doi.org/10.1137/1116025
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9

	Abstract
	1 Introduction
	1.1 Related work

	2 Summary of main results
	3 Preliminaries
	3.1 Computable metric spaces and Weihrauch reducibility
	3.2 Learning theory

	4 Notions of computable learning theory
	4.1 Countable hypothesis classes
	4.2 Examples
	4.3 Computable learners with noncomputable sample functions

	5 Upper bounds on the computability of learners
	5.1 Applications

	6 Lower bounds on the computability of learners
	Acknowledgments
	References

