MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Context Matters: Accurately Measuring the
Efficacy of Denial-of-Service Mitigations

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: DelLaughter, Samuel and Sollins, Karen. 2022. "Context Matters: Accurately Measuring
the Efficacy of Denial-of-Service Mitigations.”

As Published: https://doi.org/10.1145/3546096.3546109
Publisher: ACM|Cyber Security Experimentation and Test Workshop
Persistent URL: https://hdl.handle.net/1721.1/146426

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146426
https://creativecommons.org/licenses/by/4.0/

Context Matters: Accurately Measuring the Efficacy of
Denial-of-Service Mitigations

Samuel DeLaughter
samd@mit.edu
Massachusetts Institute of Technology
Cambridge, MA, USA

ABSTRACT

Denial-of-Service (DoS) attacks remain a severe and constant threat
to the Internet. While various mitigation strategies have been devel-
oped and deployed to defend against these attacks, the community
lacks adequate metrics for quantifying their efficacy. Metrics used
to quantify DoS attacks provide a solid starting point, but extending
them to the domain of mitigations is non-trivial. Current metrics
don’t account for a mitigation’s overhead outside periods of attack,
and fail to capture important context — differences in attack rate,
client behavior, network topology, and various other factors can all
dramatically alter the impact of attacks and the efficacy of mitiga-
tions. This paper provides a methodology and novel suite of metrics
designed to enable more meaningful and contextual measurement
of DoS mitigations. To illustrate the benefits of these metrics we
conduct experiments in the DeterLab network testbed measuring
the efficacy of SYN Cookies, a well-known and widely used mitiga-
tion against the ubiquitous TCP SYN flood attack. We show that
this mitigation is highly effective in certain contexts but can signifi-
cantly degrade client quality of service in others. Our goal is to help
device owners and network operators determine which mitigations
are best suited for their particular context, and to help protocol
designers and implementers develop a more DoS-resilient Internet.

CCS CONCEPTS

« Networks — Network performance analysis; Network mea-
surement; Denial-of-service attacks; Network experimentation;
Network simulations; Network performance modeling.

KEYWORDS

denial of service, metrics, measurement, performance analysis, pro-
tocol design

ACM Reference Format:

Samuel DeLaughter and Karen R. Sollins. 2022. Context Matters: Accurately
Measuring the Efficacy of Denial-of-Service Mitigations. In Cyber Security
Experimentation and Test Workshop (CSET 2022), August 8, 2022, Virtual, CA,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3546096.
3546109

This work is licensed under a Creative Commons Attribution International
4.0 License.

CSET 2022, August 8, 2022, Virtual, CA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9684-4/22/08.
https://doi.org/10.1145/3546096.3546109

Karen R. Sollins

sollins@csail.mit.edu
Massachusetts Institute of Technology
Cambridge, MA, USA

1 INTRODUCTION

In a Denial of Service (DoS) attack, malicious actors attempt to
disable or degrade some networked service, typically by exhausting
some set of critical resources on servers, clients, and/or intervening
network devices. The Internet has been vulnerable to such attacks
since its inception, as they were never considered a threat in the
closed designs of the preceding ARPANET and NSFNet [13]. Attacks
have only increased in frequency and severity, with hundreds or
even thousands of unique attacks now being launched every day.

The rise of IoT-enabled botnets has caused a trend toward highly
distributed and extremely high-volume attacks. These "DDoS" floods
first reached the 1 Tb/s threshold in the infamous 2016 Mirai attacks
[24], and Amazon reported the first attack over 2 Tb/s less than four
years later [1]. Kaspersky has reported record-breaking numbers
of DoS attacks in the last two quarters; in Q1 of 2022 alone they
observed 91,052 attacks, surpassing the previous quarter by 1.5x
and surpassing Q1 of 2021 by 4.5x [12]. These trends are incred-
ibly worrying, as our society has become increasingly reliant on
networked services for even its most basic and essential functions.

A wide variety of strategies have been proposed for dealing
with these attacks, including traffic filtering and rate limiting, over-
provisioning, and modifications to network protocols. Due to the
imminence of the threat and the slow pace of standardization, de-
ployment of these mitigations has been largely ad hoc. DoS protec-
tion is a growing billion dollar industry [20], and while providers
have proven remarkably effective at maintaining service the costs
of doing so are poorly understood - users shouldn’t need to pay a
premium for DoS-safe Internet access. Similarly, kernel developers
have implemented non-standard mitigations like SYN Cache and
SYN Cookies with little or no empirical evaluation of their over-
head or efficacy. At the application layer, many websites rely on
mitigations like Cloudflare’s Browser Integrity Check [5] which
adds multiple seconds of latency to an HTTP request, as well as
human-level challenges like CAPTCHA [4] and its successor re-
CAPTCHA [10] which reportedly take the average user 32 seconds
to complete, totaling an estimated 500 years per day of wasted time
[16].

Without proper analysis we have no way of knowing whether the
DoS resilience these mitigations claim to provide actually justifies
the delays and monetary costs they impose. The few attempts that
have been made to conduct such evaluation all suffer from a lack
of adequate metrics. Through our own separate efforts to develop
and measure DoS mitigations we have identified two key factors
that prior work has failed to consider: that a mitigation’s efficacy is
highly context-dependent, and that deploying a mitigation imposes
some amount of overhead which may reduce client quality of service
(QoS) in certain contexts. The term “context” here is intentionally

https://doi.org/10.1145/3546096.3546109
https://doi.org/10.1145/3546096.3546109
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3546096.3546109

CSET 2022, August 8, 2022, Virtual, CA, USA

vague, as there are innumerable variables that may impact the
efficacy of any given mitigation, including but not limited to: the
composition and rate of attack traffic, clients’ usage patterns and
choices of applications, the number of hops between clients and
the server, the location of attackers in the network, the capacity
and latency of network links, the hardware and operating system
used by each device, etc.

This paper presents a novel suite of metrics designed to help
account for these factors, thereby enabling more accurate mea-
surements of DoS mitigations both within and across contexts.
Context-specific metrics can assist device owners and network op-
erators in determining whether a mitigation is worth deploying
in their system, while cross-context metrics can assist protocol de-
signers and Internet architects in determining whether a mitigation
warrants widespread deployment or even standardization as a core
component of the network stack.

To further motivate our proposed metrics we conduct a set of
experiments involving DoS attacks and mitigations in a controlled
network testbed. The goal of these experiments is not to evaluate
any particular attacks or mitigations — rather, we aim to provide a
blueprint for others to conduct such analysis in their own networks,
and to highlight subtleties that existing metrics fail to capture and
corner-cases they fail to handle. We demonstrate that seemingly
minor changes in contextual variables can dramatically alter a mit-
igation’s effects and apparent efficacy. Our hope is that the metrics
we define will enable more robust evaluation of DoS mitigations,
ultimately leading to reduced costs, improved QoS, and a generally
more DoS-resilient Internet.

1.1 Paper Structure

The remainder of this paper is structured as follows. We provide
additional background information on the threat of DoS attacks,
strategies for mitigation, and existing metrics in Section 2, and de-
fine our own metrics in Section 3. Section 4 describes the physical
testbed we use for DoS experimentation and presents results of
experiments designed to showcase our metrics. We discuss limi-
tations of our metrics and potential future work in Section 5, and
conclude with a summary of our findings and recommendations in
Section 6.

2 BACKGROUND

This section provides background information required to under-
stand and motivate our metrics and experiments. We overview the
threat posed by DoS attacks (§2.1), general approaches to mitigating
attacks (§2.2), and current state-of-the-art metrics used to evaluate
DoS attacks (§2.3) and mitigations (§2.4).

2.1 DoS Attacks

The goal of a DoS attack is to deny access to some networked service,
or failing that to degrade the quality of service users experience.
These attacks come in many different varieties, but can be roughly
divided into two main categories: targeted attacks which exploit
vulnerabilities in network protocols and/or bugs in the implementa-
tions of said protocols, and volumetric attacks which overwhelm
servers and network devices with so much traffic that they are

92

DelLaughter and Sollins

forced to drop packets, delay packet handling, close connections,
or otherwise degrade service for legitimate clients.

The boundary between these categories is not perfectly clear.
Some targeted attacks require low-volume communication (such as
those that exploit the TCP retransmission timeout [15]), but many
simply become more damaging at higher volumes. For example,
SYN floods may be considered a targeted attack that exploits the
TCP handshake, forcing a server to allocate state for half-open
connections that will never be used. Yet SYNs are also one of the
most commonly used packet types in high-volume attacks.

We assert that the distinguishing factor between these two mani-
festations of the same attack is the resource they target — a low-rate
SYN flood targets server memory resources, but once the traffic
volume crosses a certain threshold the bottleneck shifts to the band-
width and CPU resources required to receive and forward packets.
A key goal of our metrics is to better understand these tipping
points, so that protocols can be designed and implemented in ways
that preserve constrained resources by leveraging abundant ones.

2.2 DoS Mitigations

Approaches to mitigating DoS attacks also come in many different
varieties, which can be divided into three main categories: traf-
fic filtering (§2.2.1), over-provisioning (§2.2.2), and protocol
changes (§2.2.3). Our metrics can be applied to evaluate mitiga-
tions of any type. Note that we consider efforts to prevent attacks
from being launched (e.g. by detecting/removing malware or hold-
ing responsible individuals legally accountable) as distinct from
efforts to mitigate attacks that are launched. Preventative efforts
are highly valuable but fall outside the scope of this work.

2.2.1 Traffic Filtering. Traffic filtering mitigations attempt to de-
tect malicious packets and divert or drop them before they can
cause harm. This is the ideal approach in theory, but can be difficult
or even impossible in practice. Examining packets requires compu-
tational resources and adds latency to the system, particularly if
deep packet inspection (DPI) is employed. It also suffers from a risk
of both false positives and false negatives. A false positive means
dropping traffic from a legitimate client, effectively causing denial
of service in an attempt to prevent it. False negatives are inevitable,
as there’s always a possibility of some new zero-day attack vector
being exploited before filters can be configured to detect it.

Additionally, some forms of attack are fundamentally indistin-
guishable from legitimate traffic — a malicious SYN typically looks
identical to a regular one. It’s even possible that malware on some
compromised device could attack a networked service while a le-
gitimate process on that device simultaneously tries to access the
same service, precluding any attempts to filter by source address.
Our mitigation metrics can aid in tuning a filter towards more false
positives or false negatives, depending on which bias produces the
optimal QoS for legitimate clients.

2.2.2 Over-provisioning. A common approach to DoS resilience
employed by content delivery network (CDN) operators like Aka-
mai and Cloudflare is to replicate or over-provision a service so
that it can handle spikes in demand, whether they are caused by
malicious floods or a genuine shift in user behavior. This approach

Context Matters: Accurately Measuring the Efficacy of Denial-of-Service Mitigations

has proven highly effective, maintaining service even under mas-
sive Tb/s-scale attacks, but its cost is obvious. Say you normally
need five servers to maintain adequate QoS but provision 50 in case
an attack occurs. You're well prepared for disaster, but spending
ten times what’s likely necessary. This is a difficult and important
trade-off to evaluate — one goal of our metrics is to help determine
how much over-provisioning is suitable for a particular service
based on the expected scale and frequency of attacks.

2.2.3 Protocol Changes. Some approaches to mitigation operate by
modifying network protocols themselves. Notable examples include
SYN Cache and SYN Cookies, which tweak the TCP handshake
process to reduce or delay (respectively) the allocation of server
memory until a client’s source address can be verified [8]. These
interventions have not been incorporated into the TCP standard
but have seen widespread ad hoc deployment, sometimes with a
negative impact on performance or even a loss of interoperability.
Another example is the randomization of initial sequence numbers
in TCP, which has now been in the process of standardization for
over 26 years and counting [2, 9].

This delay may seem excessive, but the standardization process
is long and complex for good reason. Even the most minuscule
modification to or deviation from a specification can have disastrous
unintended consequences. Yet mitigations in this category are often
deployed without thorough empirical analysis, due in large part
to a lack of adequate metrics for quantifying their effects. Even
protocols that are standardized almost invariably lack sufficient
consideration of potential DoS vulnerabilities.

Our hope is that the novel metrics proposed in Section 3 will
assist the IETF and similar organizations in deciding what protocols
and protocol changes to standardize, and assist device owners and
network operators in deciding whether non-compliant mitigations
are worth the risk of deploying. They can also allow us to compare
the DoS-resilience of two disparate protocols or network architec-
tures, potentially motivating migration from IPv4 to IPv6, HTTP
to QUIC, or even TCP/IP to proposed future internet architectures
like Named Data Networking (NDN).

2.3 Existing Attack Impact Metrics

In the simplest terms, a mitigation’s efficacy is the amount by which
it reduces an attack’s damage. Therefore, any mitigation metric
must be defined relative to some attack impact metric. Prior work
by Mirkovic et al. [17-19] makes a strong case for using metrics that
capture client quality of service (QoS) as directly as possible. Since
different client applications have different resource requirements?,
so-called “legacy” metrics like round-trip-time (RTT), throughput,
packet loss, and jitter are not reliable indicators of end user ex-
perience. A more direct approach is to use transaction-oriented
metrics, wherein clients attempt to complete as many sequential
transactions as possible over some period of time. For example,
simple transactions may include: establishing a TCP connection,
performing a DNS lookup, or transferring a file.

The metrics we present in Section 3 all require some method of
quantifying client QoS, but can be constructed equally well from
legacy DoS impact metrics, transaction-oriented metrics, or even

!Real-time audio requires low latency but also low throughput, while high-definition
video streaming requires high throughput but can tolerate higher latency by buffering.

93

CSET 2022, August 8, 2022, Virtual, CA, USA

some weighted combination of multiple metrics. All are equally
usable, but not equally useful. Different QoS metrics will yield
different measurements of mitigation efficacy, and the selection of
an appropriate QoS metric is also context-dependent — ideally it
should be based on a transaction or set of transactions that models
typical behavior of real clients in some context of interest.

2.4 Existing Mitigation Metrics

Existing research into DoS mitigation efficacy is limited, and the
metrics employed are typically a simple side-by-side comparison
of performance with/without a mitigation deployed while under
attack. Other analyses show timeseries data for some QoS metric
and indicate a point in time at which a mitigation is enabled. These
simple analyses may yield interesting insights in specific contexts,
but often ignore mitigation overhead outside periods of attack
as well as key contextual variables, making them insufficient for
decision making about when and where a given mitigation should
be deployed.

For concrete examples we point to the prior work evaluating SYN
Cookies. They are one of the most well-known mitigations against
one of the most common DoS attacks, yet we have found only three
papers analyzing their efficacy, all of which have shortcomings.
First was a 2008 study by Smith and Watrawy comparing different
OS implementations - this is an important contextual variable to
measure, but their analysis failed to consider the mitigation’s over-
head outside of attack, used only a single low-volume attack rate (80
kB/s), and tested on an unrealistic network topology with only two
devices [22]. A 2018 paper by Echevarria et al. measured SYN Cook-
ies’ efficacy in the specific context of network-constrained devices,
with similar issues — no consideration of mitigation overhead, a
single slow attack rate of 200 packets/second, and a topology of just
three devices connected via a single switch [7]. The most thorough
analysis of SYN Cookies to date is presented by Scholz et al. in a
2020 pre-print [21]. They compare efficacy for different attack rates,
client request rates, kernel versions, and even different variants
on the mitigation. We see this sort of cross-context measurement
as a large step in the right direction, but it still leaves important
variables unexplored: they test on a single simple network topology
and measure a maximum attack rate of just 1.4 MB/s.

3 METRICS

This section defines a novel suite of metrics for quantifying DoS
mitigations. We begin with simple, existing metrics and build up
gradually more complex combinations and formulations thereof.
Our starting point in developing these metrics was the observation
that all mitigations impose some amount of overhead to deploy,
and that the balance between that overhead and the reduction
of attack impact is extremely context dependent. To that end we
first present metrics for better describing a mitigation’s efficacy
within a single context in Section 3.1, followed by cross-context
metrics in Section 3.2. The former can be used by device owners and
network operators to determine which mitigations are best-suited
for their specific contexts, while the latter can be used to determine
whether a mitigation warrants widespread deployment or even
standardization as an integral part of a network protocol.

CSET 2022, August 8, 2022, Virtual, CA, USA

3.1 Context-Specific Metrics

This section presents metrics for quantifying the efficacy of a DoS
mitigation within a specific context, with static attack type, client
type, network topology, device hardware, etc. The starting point
for all of our metrics is the selection of some basic indicator of
client QoS. This could be a legacy metric like RTT, throughput,
loss, or jitter, or something more complex. Following prior work
by Mirkovic et al. [17-19] we recommend the use of transaction-
oriented metrics as described in Section 2.3. QoS can then be defined
as either the number of transactions a client can complete in a given
period of time, or inversely as the average time it takes to complete
a single transaction. Since our aim is to maximize QoS, we find the
former framing of transactions-per-second (TPS) more intuitive.

The next step is to run four discrete experiments, to control for
both separate and combined effects of the attack and the mitigation.
We refer to these experiments as follows:

e UB (Unmitigated Baseline): No attack, No mitigation
e UA (Unmitigated Attack): Attack, No mitigation

e MB (Mitigated Baseline): No attack, Mitigation

e MA (Mitigated Attack): Attack, Mitigation

We take measurements of our chosen client QoS metric during
each experiment, and from these four values we can derive several
different metrics for describing attacks and mitigations. First, we
refer to the result of the UB experiment as the baseline QoS - this
represents the ideal scenario. We define the mitigation’s overhead
as UB — MB, the amount by which the mitigation reduces QoS in
the absence of an attack.? We define an attack’s threat as UB —
UA, the amount by which it reduces QoS when no mitigation has
been deployed. We define an attack’s damage as MB — MA, the
amount by which it reduces QoS with the mitigation deployed.
Finally, we define a mitigation’s efficacy (for a specific context) as
the percentage of an attack’s potential threat that the mitigation
prevents:

_ threat — damage
- threat

_ (UB-UA) - (MB - MA)
0= UB-UA

The ability to describe a mitigation’s efficacy with a single nu-
meric value simplifies the process of determining whether a miti-
gation is worth deploying. The definition provided in Equation 1
above is already an improvement over current metrics, as it vitally
incorporates data about the mitigation’s overhead, the baseline QoS,
and the threat posed by the attack. Yet this still only applies to a
single, extremely specific context.

%100 (1)

3.2 Cross-Context Metrics

In this section we extend the efficacy metric defined in Equation 1
above to begin analyzing mitigation efficacy across disparate con-
texts. There are innumerable factors that may constitute a mean-
ingful change in context, including variations in attack type and
rate, client application, network topology, device hardware, etc.. We
divide these factors into two categories which lend themselves to
different forms of analysis: categorical variables and numerical
variables.

2 Any mitigation with overhead < 0 would more accurately be referred to as an
“optimization.”

94

DelLaughter and Sollins

3.2.1 Measuring Across Categorical Variables. Examples of categor-
ical variables include client protocols, device hardware and operat-
ing systems, as well as some topology changes. The simplest way
to evaluate such factors is through a side-by-side comparison of
results from separate sets of the four experiments described above.
For a concrete example, let’s say we want to compare the efficacy
of SYN Cookie implementations in the Linux and BSD kernels. We
run a full suite of experiments (with and without SYN floods being
launched, and with and without SYN Cookies deployed) using a
Linux-based server, then re-run the same experiments with a BSD
server. It may be helpful to see raw data from these two scenarios
side-by-side, or we can compute their difference to make statements
like “the Linux implementation has X% higher overhead than the
BSD implementation” or “the Linux implementation is Y times more
effective than BSD’s”

To generalize across values of a categorical variable we can
assign a weight to each category and compute a weighted average
of efficacy or other context-specific metrics. For example, if Linux,
BSD, and Windows have (respectively) X%, Y%, and Z% of the OS
market share, we might assign their weights as wy = 1XW’ wg = 1—%,0,
and wy = %. We then multiply each of these by the efficacy
observed for the corresponding implementation (E /g/), sum the
result and divide by the sum of the weights to compute a weighted
average of efficacy with respect to OS implementation:

wrEr + wgEp + WWEW

@)

Eos = wr + W + wy
The utility of such analysis is admittedly questionable. For cer-
tain variables it is impossible to enumerate every category, let alone
assign them all reasonable weights. Additionally, the observation
of an extreme outlier or a drastic difference between two categories
is likely to be of more interest than a global average.

3.2.2 Measuring Across Numerical Variables. Numerical variables
are those with a range of values (such as attack rate, client request
frequency, and bottleneck link capacity), such that we can reason
about increases and decreases in value. Our metrics apply equally
to both continuous and discrete numerical variables — we can only
run a finite number of experiments, so continuous variables must
be discretized in practice. Given the robust definition of efficacy in
Equation 1, which crucially accounts for the mitigation’s overhead
and is defined relative to the attack’s actual threat and the baseline
QoS, accurate cross-context analysis becomes surprisingly simple.
A general approach for any numerical variable is to plot a line
graph showing the mitigation’s efficacy as a function of the variable
in question. Simultaneous analysis across two variables can be
illustrated with a heat map or by simply adding additional lines.
This gives us a clear tool for quantifying a mitigation’s efficacy
and its dependence on contextual variables, but doesn’t necessarily
help us understand why such dependencies exist. In some cases,
changes in efficacy may be a direct result of changes in baseline QoS,
attack threat, or mitigation overhead, so a good first step toward
explaining dependencies is to plot line graphs for those metrics
as a function of the contextual variable as well. For example, if in-
creasing the client request rate significantly increases a mitigation’s
overhead, that could explain an inverse correlation between request
rate and efficacy. In other cases the root cause may be less obvious

Context Matters: Accurately Measuring the Efficacy of Denial-of-Service Mitigations

100%

& Effective
(Baseline)

Range

— — JE
-——

1 By
&

&

Overhead Longevity

1
1
1
1 Q (Unmitigated)
1
1
1

—— ((Mitigated)

QoS

0%

0 Attack Rate

Figure 1: A simplified example of how we might expect a
DoS mitigation to change the way QoS depends on attack
rate. This dependency can be defined by some function Q pa-
rameterized by the attack rate r, which morphs to function
Q when a mitigation is deployed. Deploying a mitigation im-
poses some amount of overhead on the system, but hopefully
improves QoS under some effective range of attack rates. A
mitigation may also provide some longevity, increasing the
maximum rate of attack that can be withstood before ser-
vice is denied completely, but under extremely high rates of
attack client QoS will approach zero regardless of the miti-
gation(s) deployed. We define the mitigation’s efficacy with
respect to attack rate as the area of the dark green shaded re-
gion to the bottom right of 7, minus the area of the light red
shaded region to the upper left.

— here we suggest turning to traditional forensic metrics such as
utilization of CPU and memory3, or counts of network errors and
retransmissions.

The rate of attack is a particularly noteworthy numerical variable
which warrants more complex analysis, for two reasons. First, it
has universal importance across all contexts, at least for volumetric
attacks*. We define mitigation efficacy relative to the attack’s threat,
which is expected to be directly correlated with the attack’s rate.
Second, since an attack rate of zero is equivalent to our Baseline
experiments (UB and MB), we can simply compare the results of UA
and MA experiments as a function of attack rate, without needing
to separately account for the mitigation’s overhead.

Consider Figure 1, which shows a simplified example of how
client QoS (depicted as a percentage of the baseline QoS) typically
depends on attack rate (Q), and how a mitigation may alter the
function describing that dependence (Q). There will always be some
rate of attack ry, below which no measurable degradation of QoS
can be observed — here a mitigation’s efficacy is undefined since the

3In our experience, system-wide CPU and memory measurements are rarely insightful.
Ideally measurements should be specific to the processes involved in the experiment —
for memory this means slab- or page-level measurements of memory allocation and
utilization, and to truly understand CPU utilization we recommend measuring the
portion of cycles spent on each individual kernel function. An exceptional resource for
collecting and visualizing these kernel stack traces with the Linux perf tool is made
available by Brendan Gregg [11].

4Certain targeted attacks may only function at a specific (set of) attack rate(s), as
discussed in Section 2.1.

95

CSET 2022, August 8, 2022, Virtual, CA, USA

threat is zero. There is also some rate r,, above which the threat is
so severe that client QoS effectively drops to zero, and a (hopefully
higher) rate 7, at which QoS is zero even with the mitigation in
place (because the system is so congested with attack traffic that
client requests never reach the server). Between the extremes of
re and 7, exists some rate 7, the lowest attack rate for which a
mitigation’s benefits begin to outweigh its overhead.

The mitigation’s efficacy with respect to attack rate is visual-
ized as the area of the dark green shaded region to the bottom right
of 7, minus the area of the light red shaded region to the upper left.
More formally, we can define this as:

H0=£MQHW—AMQ®W 3

We refer to the interval (7,7,) as the mitigation’s effective
range. Ideally a mitigation should only be deployed when attack
rates are in this range — for lower rates the mitigation’s overhead
will make it counter-productive, and for higher rates it will have
no effect. Yet in practice it may be infeasible to toggle a mitigation
on and off precisely when attack rates cross these thresholds, for
two reasons. First, attack traffic may be indistinguishable from
legitimate traffic which makes it impossible to determine the attack
rate — a sudden surge in traffic rates could simply be the result
of a demand spike from legitimate clients. Second, the process of
enabling and disabling a mitigation may be non-trivial, perhaps
requiring a system restart or other configuration change that would
disrupt ongoing connections.

In cases where toggling a mitigation on and off is infeasible,
we need some way to determine whether a mitigation is worth
enabling permanently (or at least for some extended period of time
that sufficiently amortizes the cost of toggling). The first step is
to identify the distribution of attack rates that the server expects
to receive. In most cases this will likely be a long-tail distribution,
with no attack the vast majority of the time, somewhat frequent
low-rate attacks, and very rare instances of extremely high-rate
attacks. This distribution is of course impossible to predict exactly,
but it can be approximated by monitoring traffic patterns over time.
Any such effort should at least yield a better approximation than
the uniform distribution.

After defining this expected distribution, we multiply the two
functions in Figure 1 by it. We then integrate the resulting functions
and take their difference to compute the mitigation’s adjusted effi-
cacy with respect to the expected attack rate. More precisely:
let Q(r) be the function describing QoS with respect to attack rate (r)
without the mitigation deployed; let O(r) be the function describing
QoS with respect to attack rate (r) with the mitigation deployed,;
and let P(r) be the function describing the probability distribution
of attack rates. Then the adjusted efficacy with respect to expected
attack rate distribution is defined as:

EM=A“mmmm—A“mmmm @)

Assuming P(r) is a long-tail distribution as described above, this
formulation will appropriately emphasize the overhead imposed by
the mitigation in the common case where no attack is present, and
de-emphasize benefits the mitigation provides in rare instances of
high-volume floods.

CSET 2022, August 8, 2022, Virtual, CA, USA

This adjusted efficacy is perhaps the best single-value indicator
of whether a mitigation is worth deploying across the contexts
of differing attack rates, but still only applies to a single broader
context (a single network topology, client application, etc.). Af-
ter computing E(r) and/or other complex metrics describing the
mitigation’s relation to attack rate, we can return to our simpler
approaches to cross-context analysis. For instance, how does the
mitigation’s effective range depend on bottleneck link capacity?
How do its # and E(r) values depend on the choice of client appli-
cation? Answering such questions is vital to understanding when
and where a mitigation should be deployed.

4 EVALUATION

This section showcases the metrics we defined in Section 3 through
experimentation. Our goal is to demonstrate why these metrics are
useful and how they can be used in practice. We do not intend to
provide conclusive analysis of any particular mitigations, attacks,
protocols, or network topologies. Section 4.1 describes the physical
infrastructure of the DeterLab testbed on which our experiments are
conducted, including hardware and software specifications of our
test devices. Section 4.2 describes the other aspects of our initial
experimental context, and presents results from our analysis of
SYN Cookies in that context. We then present results showcasing
how context changes can alter the mitigation’s apparent efficacy in
Section 4.3.

4.1 Testbed Environment

Our experiments are all conducted on the DeterLab network testbed.
We chose this setting for two main reasons: safety and realism.
Safety is a result of DeterLab’s sandboxing features — packets des-
tined to the outside Internet are dropped to avoid unintended side-
effects of malicious traffic. DeterLab enables us to conduct realistic
experiments because it provides access to real physical devices
and network links. This yields more accurate measures of DoS at-
tack impact and mitigation efficacy than simulation or emulation
environments because it imposes realistic resource bottlenecks.

The main limitation of using a physical testbed is scalability
- it’s much more expensive to spin up 100 physical servers than
100 virtual machines. DeterLab’s resources are time-shared among
researchers across the globe, so we are limited to a relatively small
number of nodes for our experiments. This precludes us from
launching attacks on the scale of newsworthy real-world distributed
DoS (DDoS) attacks, but we compensate by using a small set of
clients and a commodity server, essentially constructing a micro-
cosm of real Internet activity. A small but accurate test environment
is more valuable than a large inaccurate one, at least for our pur-
poses.

All of the nodes we deploy on DeterLab run on dedicated Mi-
crocloud instances, each of which has an Intel Xeon E3-1260L 2.4
Ghz quad-core processor and 16GB of RAM. All nodes run Ubuntu
18.04LTS with the Linux kernel upgraded to version 5.16.10 (the
latest stable release at the time we started conducting experiments).
Naturally, these hardware and software specifications can have a
tremendous influence on mitigation efficacy. Specification changes
like increasing RAM or the number/speed of CPUs can be con-
sidered mitigations themselves, in the form of over-provisioning

96

DelLaughter and Sollins

Attacker-2

S

lan-0

Httacker‘—‘l\"

e

Bottleneck
Link

Attacker-o

I’Iiddleb§<
,'—'—"'_F
Client-0

/lan—i\\

Sink

Client-1

Figure 2: Our network topology. This image was generated
automatically by DeterLab upon creating our experiment.
We’ve annotated the bottleneck link, which starts at 1 Gb/s
in the initial context but is constrained in later experiments.

discussed in Section 2.2.2. Upgrading to a newer kernel version
may add patches that obviate certain attacks or introduce bugs that
facilitate new ones.

4.2 Context-Specific Analysis

Our analysis begins by selecting an initial context of interest, and a
mitigation we want to measure in that context. For this simple ex-
ample we run two client nodes which each attempt to establish and
then immediately (but cleanly) shut down TCP connections with a
single server. They repeat this process for five minutes, attempting
to complete as many transactions as possible. We deploy three at-
tacker nodes which launch a TCP SYN flood at a combined rate of
approximately 280 Mb/s. Figure 2 shows the network topology of
this initial context. In addition to the three device roles mentioned
above (server, client, and attacker), we also deploy a middlebox
and a sink.

Middleboxes may be used as vantage points for measurement
or to deploy mitigations, but for our purposes it simply performs
standard packet forwarding. However, it also allows us to add a real-
istic bottleneck to the system, which we adjust in our cross-context
analysis in Section 4.3 below. The middlebox has three network
interfaces: one connected to the client LAN, one connected to the
attacker LAN, and one connected to the server via a 1 GB/s du-
plex link with 10ms latency and drop-tail queueing. Consolidating
traffic through this intermediary device before delivering it to the
server more closely resembles a real-world distributed attack than
connecting all devices on a single LAN, or delivering client and
attack traffic directly to separate server interfaces.

The sink is used to preserve realistic effects of the attack’s
backscatter traffic. Our attacker nodes employ source address spoof-
ing, which means SYN-ACK responses generated by the server
have destinations on the public Internet. We need to prevent this
backscatter from actually reaching those destinations, but relying

Context Matters: Accurately Measuring the Efficacy of Denial-of-Service Mitigations

Unmitigated
Baseline

Mitigated
Baseline

Unmitigated
Attack

Mitigated
Attack

0 5 10 15 20 25 30 35 40
QoS (Average Transactions Per Second)

Figure 3: Results of the four primary experiments for our
initial context-specific analysis. The attack is a 280Mb/s SYN
Flood, and the mitigation is SYN Cookies.

on Deter’s built-in sandboxing would drop SYN-ACKs before the
server actually sends them. SYN-ACKs are an important though
often overlooked component of a SYN flood - they consume server
resources to send, as well as network resources en route to their
destination. Our solution is to first route any packets destined to
external IPs towards the sink, where they are then dropped via the
normal mechanism. Placing the sink closer to legitimate clients will
cause SYN-ACKs to share more resources with client connections,
likely leading to reduced QoS. At a minimum, the sink should be
positioned such that attack backscatter traverses any bottleneck
links.

The mitigation we test is SYN Cookies, which prevents TCB state
allocation until the the source address can be validated, upon receipt
of a corresponding ACK. This is primarily designed to mitigate
against spoofing attacks — spoofers cannot receive SYN-ACKs and
therefore cannot echo back the cryptographic cookie they contain.
We toggle SYN Cookies in the Linux kernel using the command
sysctl -w net.ipv4.tcp_syncookies=?, where ? is @ to disable
and 1 to enable.

Our analysis starts with the four experiments described in Sec-
tion 3.1, measuring client QoS with and without both the attack
and the mitigation. The results of these experiments are shown
in Figure 3. The ideal, baseline client QoS is 40.71 transactions
per second (TPS). As expected we see a small amount of overhead
from deploying the mitigation (0.01 TPS), a significant threat posed
by the attack (35.88 TPS), and encouraging mitigation efficacy of
94.09%, with the mitigation reducing actual attack damage to just
2.12 TPS.

4.3 Cross-Context Analysis

Our first step is to measure results across different attack rates.
We accomplish this by simply repeating the experiments described
above with 2, 1, and zero® attacker devices instead of 3. We’ve found
that attempting to rate-limit an attacker in the traffic generation
script itself typically produces inconsistent and/or unacceptably
slow flood rates. If attackers were connected via individual duplex
links we could use DeterLab’s traffic shaping to rate limit them, but
we’ve been unable to rate-limit LAN connections with sufficient
5Tt is not strictly necessary to perform separate zero-attacker experiments since their

U A and M A results should be identical to the U B and M B results from experiments
with one or more attackers.

97

CSET 2022, August 8, 2022, Virtual, CA, USA

40 ~
P30
=)
e SYN Cookies
8 20 —&— Enabled
o Disabled
c
2
o 10

0

0 50 100 150 200 250

Attack Rate (Mb/s)

Figure 4: The impact of attack rate on client QoS in our ini-
tial context, with and without SYN Cookies.

granularity. A detailed analysis should use a much wider range of
attack rates, but our resources are limited and this is merely an
example.

Figure 4 provides these results in the same manner as Figure 1
- with Q and Q corresponding to the lines for SYN Cookies being
disabled and enabled, respectively. Surprisingly, the picture painted
here is even simpler than our contrived example — since overhead
is near zero so is 7, and the effective range extends across the entire
distribution of attack rates measured. This is roughly the extent of
analysis we have observed in prior work — it paints a fairly rosy
picture of SYN Cookies’ efficacy, yet one that is far from complete.
Our maximum attack rate of 280 Mb/s still pales in comparison to
real-world floods, and there are myriad other contextual variables
to evaluate.

We lack the physical resources required to test higher-rate at-
tacks, but we do have the means to induce a precise change in
topological context by constraining the bandwidth of the link be-
tween the server and middlebox. Here DeterLab’s traffic gives us
full control over what values we can test (within the upper bound of
1 GB/s imposed by hardware). We began with a logarithmic distri-
bution, measuring 1, 10, 100, and 1000 Mb/s bottlenecks, and plotted
efficacy as a function of bottleneck capacity for each number of
attackers (1, 2, and 3) to quickly scan for any noticeable impact. We
then ran additional experiments iteratively, testing different values
in each case depending on where more granularity seemed most
needed. Specifically, we added data points in between existing ones
with adjacent x-values and drastically different y-values, as well
as on either side of inflection points. Essentially our goal was to
smooth each curve as much as possible without having to run an
excessive number of experiments. The full set of results is depicted
in Figure 5, which represents over 40 hours of total experimentation
time (not including time spent on setup or data analysis).

We set out to define and motivate metrics and methodologies,
not to draw conclusions about any specific mitigations, but there
are a number of undeniably interesting findings here. First and
most obvious is that the efficacy of SYN Cookies appears to be
severely dependent on the bottleneck link capacity, and drops below
zero at surprisingly high capacities for all attack rates tested with
a worst-case efficacy of -11.2%. We observe counter-productive
effects with bandwidths as high as 400 Mb/s, which is faster than the
connections of many real-world servers. The line between effective

CSET 2022, August 8, 2022, Virtual, CA, USA

N
o

Attackers
1
2
3

N A O O
o ©o o o o o

Efficacy of SYN Cookies (%)

U
N
o

0 200 400 600

Bottleneck Link Capacity (MB/s)

800 1000

Figure 5: The combined impact of attack rate and bottleneck
link capacity on the efficacy of SYN Cookies (as defined in
Equation 1).

and counter-productive contexts can be remarkably thin - in the
2-attacker context we observe 101.67% efficacy with a 450 Mb/s
bottleneck, 60.55% at 425 Mb/s, and -1.2% at 400 Mb/s.

Perhaps our most interesting finding is that any contexts ex-
hibit efficacy over 100%, which indicates that client QoS improved
during the attack, exceeding even the pre-mitigation baseline. At
this time we cannot offer any possible explanation for these results.
The performance gain is small (at most 101.67% efficacy), but it
appeared consistently over multiple hours of testing and even per-
sisted across a full re-deployment onto a different set of physical
devices in DeterLab. We do not observe significant variations in
baseline, overhead, or threat metrics across any of our experiments,
so the underlying cause of these extreme and varied efficacy val-
ues remains unclear. The Internet is an extraordinarily complex
distributed system, in which even the slightest changes can have
drastic and unpredictable results.

5 DISCUSSION

In this section we discuss limitations of our metrics (§5.1) and
potential future work in this domain (§5.2).

5.1 Limitations

The primary limitation of our metrics is that because they average
results over extended periods of time, they may gloss over interest-
ing variations that occur over the course of a single experiment. For
instance, some attacks have a gradual ramp-up that we may want to
exclude or analyze separately. Others send traffic in bursts - in this
case we may want to evaluate how long it takes QoS to return to the
baseline value after a traffic spike, to assess what resources must
be allocated to tolerate bursts of a given frequency and severity. If
bursts follow a cyclic pattern, experiments should should be run for
some multiple of the cycle’s duration. The benefit of averaging re-
sults over time is that it allows us to abstract away details and view
higher-layer trends more cleanly. This is not mutually exclusive
with the more traditional approach of presenting raw time-series
data — both methods have their own benefits and drawbacks and
both may serve as valuable tools for different purposes.

A potential middle-ground would be to include some form of
error bars, confidence intervals, or other statistical analysis in plots

98

DelLaughter and Sollins

of our high-level metrics to illustrate the variability of results. How-
ever, this is not as straightforward a task as it may sound - a single
metric not only averages over time, but also over multiple clients,
multiple trials, and potentially multiple contexts as well. There is
bound to be some variability in results across each of these dimen-
sions, and it is not clear how to combine them in a coherent manner.
As we continue to expand and refine this paper’s metrics in future
work, we will explore ways to incorporate more statistical analysis.

It is also important to note that our metrics require certain data
which are not presently available in all contexts. Perhaps most
challenging to obtain is an accurate distribution of expected attack
rates, which is required for the E(r) metric defined in Section 3.2.
Many ISPs, CDNs, and other network service providers release
periodic whitepapers with aggregated statistics for observed DoS
attacks, as well as occasional press releases following particularly
notable attack incidents, yet external researchers lack access to the
raw packet traces and other fine-grained data from which these
reports are generated. The UCSD Network Telescope operated by
CAIDA [3] captures backscatter traffic from attacks that utilize
randomly spoofed source addresses, but this accounts for only a
small fraction of traffic from a small fraction of attacks and does not
typically include any of the original attack packets themselves, only
the responses they elicit. Though network operators can gain some
benefits from analyzing attack traffic they observe in isolation,
a complete understanding of global attack patterns will require
sharing data across organizations and with third-party researchers.
We understand that for network providers to release raw traffic logs
would pose serious privacy concerns for their users, but even traces
which have been anonymized or filtered to include only malicious
packets would be tremendously useful.

It would also be helpful for the research community to establish
a set of “honeypot” devices which are intentionally allowed to be
infected with malware and used as part of a botnet. This would
provide valuable information on the typical behavior of individual
attackers, most notably: what protocols and specific packet types
they use, whether they attempt source address spoofing, at what
rate they generate traffic, and whether that rate is limited artificially
or by some resource scarcity on the device. This could allow us to
redesign protocols in ways that restrict compromised devices to less
dangerous behaviors. For example, if we observed that attackers
are commonly bandwidth-limited and that the overhead incurred
by attack traffic is primarily per-packet (rather than per-bit), that
could make a case for increasing minimum packet sizes to further
limit flooding rates. Of course, knowingly allowing a device to
participate in a flooding attack would raise serious ethical concerns.
Such honeypot devices would need to be sandboxed in a way that
allows them to receive instructions from a botnet operator and
generate attack traffic for researchers to observe, but prevents that
traffic from actually reaching its target.

Without access to such data (from real-world attackers or their
targets), our metrics must rely on artificially generated attacks in
controlled environments. We implore standards bodies to stress-
test new protocols before deployment. Such tests should consider
well-known attack vectors, as well as randomly generated packet
compositions that may prove dangerous.

Context Matters: Accurately Measuring the Efficacy of Denial-of-Service Mitigations

5.2 Future Work

One essential piece of future work is to expand on our experiments
in Section 4.3, performing a comprehensive analysis of SYN Cookies
to determine where they should be deployed and why they degrade
QoS so heavily in certain contexts. Other protocols that employ a
similar mechanism to mitigate spoofing attacks should also be re-
examined — notable examples include QUIC Retry packets [14] and
the 4-way handshake used by SCTP [23]. Though these are both
standard components of their respective protocols, our methodol-
ogy can be applied by simply framing a change of transport protocol
as a mitigation.

In addition to properly analyzing and comparing currently de-
ployed protocols and mitigations, we encourage those designing
new network protocols and Internet architectures to analyze their
DoS resilience as thoroughly as possible before standardization or
deployment. We hope to work with the IETF to incorporate our
metrics and methodology into their standardization process.

The cases in which we observed efficacy exceeding 100% also
warrant further investigation. Any mechanism that can reliably in-
crease client QoS above the baseline would obviously be extremely
desirable. How a flooding attack could possibly play a beneficial
role in such a mechanism is unfathomable, and yet that is what our
results appear to suggest.

We have made our code and experiment data publicly available
to facilitate reproduction of our results as well as any relevant
future work [6].

6 CONCLUSION

As our results in Section 4.3 clearly demonstrate, context matters
for DoS mitigation. A protocol change or other intervention that
fully mitigates an attack in one environment may be ineffective
or even harmful when deployed elsewhere. We have provided a
detailed methodology and robust metrics for analyzing this context-
dependent behavior, by providing a definition of mitigation efficacy
which accounts for baseline performance, mitigation overhead,
and attack threat. As the threat posed by real-world DoS attacks
continues to rise, we encourage the thorough empirical analysis of
all mitigation strategies to ensure they are deployed in appropriate
contexts.

REFERENCES

[1] AWS Shield. 2020. Threat Landscape Report - Q1 2020. White Paper Q12020.
Amazon Web Services. 9 pages.

[2] Steven M. Bellovin. 1996. Defending Against Sequence Number Attacks. Request
for Comments RFC 1948. Internet Engineering Task Force. https://doi.org/10.
17487/RFC1948

[3] CAIDA. 2018. The UCSD
https://www.caida.org/projects/network_telescope/.

Network Telescope.

99

CSET 2022, August 8, 2022, Virtual, CA, USA

[4] CAPTCHA. 2022. The Official CAPTCHA Site. http://www.captcha.net/.

[5] Cloudflare. 2022. Understanding the Cloudflare Browser Integrity Check.
https://support.cloudflare.com/hc/en-us/articles/200170086-Understanding-the-
Cloudflare-Browser-Integrity-Check.

[6] Samuel DeLaughter and Karen Sollins.

https://github.mit.edu/samd/CSET22.

Juan Jose Echevarria, Pablo Garaizar, and Jon Legarda. 2018. An Experimental

Study on the Applicability of SYN Cookies to Networked Constrained Devices.

Software: Practice and Experience 48, 3 (2018), 740-749. https://doi.org/10.1002/

spe.2510

[8] Wesley M. Eddy. 2007. TCP SYN Flooding Attacks and Common Mitigations. RFC
4987. Internet Engineering Task Force.

[9] Fernando Gont and Steven Bellovin. 2012. Defending against Sequence Number

Attacks. Request for Comments RFC 6528. Internet Engineering Task Force.
https://doi.org/10.17487/RFC6528

] Google. 2022. reCAPTCHA. https://www.google.com/recaptcha/about/.
11] Brendan Gregg. 21. CPU Flame Graphs.

] Alexander Gutnikov, Oleg Kupreev, and Yaroslav Shmelev. 2022. DDoS Attacks
in Q1 2022. White Paper Q12022. Kaspersky Securelink.
IAB, Mark J. Handley, and Eric Rescorla. 2006. Internet Denial-of-Service Con-
siderations. Request for Comments RFC 4732. Internet Engineering Task Force.
https://doi.org/10.17487/RFC4732
[14] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport. Request for Comments RFC 9000. Internet Engineering Task
Force. https://doi.org/10.17487/RFC9000
Aleksandar Kuzmanovic and Edward W. Knightly. 2003. Low-Rate TCP-targeted
Denial of Service Attacks: The Shrew vs. The Mice and Elephants. In Proceedings
of the 2003 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM ’03). ACM, New York, NY, USA, 75-86.
https://doi.org/10.1145/863955.863966
Thibault Meunier. 2021. Humanity Wastes about
per Day on CAPTCHAs. It’s Time to End This
http://blog.cloudflare.com/introducing-cryptographic-attestation-of-
personhood/.
Jelena Mirkovic, Alefiya Hussain, Sonia Fahmy, Peter Reiher, and Roshan K.
Thomas. 2009. Accurately Measuring Denial of Service in Simulation and Testbed
Experiments. IEEE Transactions on Dependable and Secure Computing 6, 2 (April
2009), 81-95. https://doi.org/10.1109/TDSC.2008.73
Jelena Mirkovic, Alefiya Hussain, Brett Wilson, Sonia Fahmy, Peter Reiher,
Roshan Thomas, Wei-Min Yao, and Stephen Schwab. 2007. Towards User-Centric
Metrics for Denial-of-Service Measurement. In Proceedings of the 2007 Work-
shop on Experimental Computer Science (ExpCS °07). Association for Computing
Machinery, New York, NY, USA, 8-es. https://doi.org/10.1145/1281700.1281708
Jelena Mirkovic, Peter Reiher, Sonia Fahmy, Roshan Thomas, Alefiya Hussain,
Stephen Schwab, and Calvin Ko. 2006. Measuring Denial Of Service. In Proceedings
of the 2Nd ACM Workshop on Quality of Protection (QoP "06). ACM, New York,
NY, USA, 53-58. https://doi.org/10.1145/1179494.1179506
[20] Mordor Intelligence. 2022. DDOS Protection Market | 2022
- 27 | Industry Share, Size, Growth - Mordor Intelligence.
https://www.mordorintelligence.com/industry-reports/ddos-protection-market.
Dominik Scholz, Sebastian Gallenmiiller, Henning Stubbe, Bassam Jaber, Mi-
noo Rouhi, and Georg Carle. 2020. Me Love (SYN-)Cookies: SYN Flood Mitiga-
tion in Programmable Data Planes. https://doi.org/10.48550/arXiv.2003.03221
arXiv:2003.03221 [cs]
Craig Smith and Ashraf Matrawy. 2008. Comparison of Operating System Im-
plementations of SYN Flood Defenses (Cookies). In 2008 24th Biennial Sym-
posium on Communications. IEEE, Kingston, ON, Canada, 243-246. https:
//doi.org/10.1109/BSC.2008.4563248

2022. samd/CSET22.

7

[15]

[16

500 Years
Madness.

[17]

(18]

[19]

[21

[22

[23] Randall Stewart. 2007. Stream Control Transmission Protocol. REC 4960. Internet
Engineering Task Force.

[24] Nicky Woolf. 2016. DDoS Attack That Disrupted In-
ternet Was Largest of Its Kind in History, Experts Say.

https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-
mirai-botnet.

https://doi.org/10.17487/RFC1948
https://doi.org/10.17487/RFC1948
https://doi.org/10.1002/spe.2510
https://doi.org/10.1002/spe.2510
https://doi.org/10.17487/RFC6528
https://doi.org/10.17487/RFC4732
https://doi.org/10.17487/RFC9000
https://doi.org/10.1145/863955.863966
https://doi.org/10.1109/TDSC.2008.73
https://doi.org/10.1145/1281700.1281708
https://doi.org/10.1145/1179494.1179506
https://doi.org/10.48550/arXiv.2003.03221
https://arxiv.org/abs/2003.03221
https://doi.org/10.1109/BSC.2008.4563248
https://doi.org/10.1109/BSC.2008.4563248

	Abstract
	1 Introduction
	1.1 Paper Structure

	2 Background
	2.1 DoS Attacks
	2.2 DoS Mitigations
	2.3 Existing Attack Impact Metrics
	2.4 Existing Mitigation Metrics

	3 Metrics
	3.1 Context-Specific Metrics
	3.2 Cross-Context Metrics

	4 Evaluation
	4.1 Testbed Environment
	4.2 Context-Specific Analysis
	4.3 Cross-Context Analysis

	5 Discussion
	5.1 Limitations
	5.2 Future Work

	6 conclusion
	References

