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Affect-aware socially assistive robotics (SAR) has shown great potential for augmenting interventions for
children with autism spectrum disorders (ASD). However, current SAR cannot yet perceive the unique and
diverse set of atypical cognitive-affective behaviors from children with ASD in an automatic and personal-
ized fashion in long-term (multi-session) real-world interactions. To bridge this gap, this work designed and
validated personalized models of arousal and valence for children with ASD using a multi-session in-home
dataset of SAR interventions. By training machine learning (ML) algorithms with supervised domain adapta-
tion (s-DA), the personalized models were able to tradeoff between the limited individual data and the more
abundant less personal data pooled from other study participants. We evaluated the effects of personaliza-
tion on a long-term multimodal dataset consisting of four children with ASD with a total of 19 sessions, and
derived inter-rater reliability (IR) scores for binary arousal (IR = 83%) and valence (IR = 81%) labels between
human annotators. Our results show that personalized Gradient Boosted Decision Trees (XGBoost) models
with s-DA outperformed two non-personalized individualized and generic model baselines not only on the
weighted average of all sessions, but also statistically (p < .05) across individual sessions. This work paves the
way for the development of personalized autonomous SAR systems tailored toward individuals with atypical
cognitive-affective and socio-emotional needs.

CCS Concepts: • Human-centered computing→ Empirical studies in HCI; • Applied computing→
Computer-assisted instruction; • Computer systems organization→ Robotics;

Additional Key Words and Phrases: Human-robot interaction, socially assistive robotics, autism spectrum
disorders, personalized machine learning, affective computing
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1 INTRODUCTION

Within human-robot interaction (HRI), the field of socially assistive robotics (SAR) has
emerged at the intersection of assistive robotics and socially interactive robotics [22]. Its cen-
tral focus is to provide effective assistance and interventions through intelligent interactions with
users [22, 37], while also respecting socio-emotional needs of various users. As research in SAR is
shifting from constrained laboratory settings toward real-world environments such as in-home in-
terventions, it is critical for SAR systems to be able to perceive the user’s emotional (i.e., affective)
cues in order to provide naturalistic affect-aware interactions and interventions [6, 41]. Toward
this end, recent research has shown that affect-aware SAR tutors have the potential to address
the imbalance between cognitive and affective awareness found in contemporary robot-assisted
teaching systems [52]. However, existing SAR systems still lack the ability to elicit, perceive, and
appropriately respond to user affect in a personalized fashion so that interventions can be tailored
towards individual cognitive and affective needs along the learning process [56].

Both the promise and the challenges of SAR for personalized affect awareness are particularly
amplified in the context of children with autism spectrum disorders (ASD). ASD affects 1 in
64 children in the United States and has a male-to-female ratio of 4:1 [14]. Traditionally, thera-
pists design interventions by using static toys as tools to induce open-ended and engaging inter-
actions [31]. More recently, research has shown success in adopting SAR tutors as a means of
providing more effective interventions for children with ASD [49], due to their interactive and
engaging nature as well as the robots’ repetitive behaviors [48]. However, every child with ASD
has a unique profile of strengths, challenges, and autism-specific characteristics [53]. The lack of
personalized affect awareness hinders the ability of existing SAR tutors to perceive and respond to
the unique and atypical cognitive-affective behaviors. Therefore, there is a need for affect-aware
SAR tutors that can enable personalized SAR interventions for each child with ASD, with the goal
of achieving positive cognitive and affective learning outcomes in the long-term.

Affect-aware SAR tutors need to be able to perceive a diverse set of cognitive-affective states
in long-term interventions. For instance, engagement is an important metric for evaluating the
effectiveness of SAR tutors. For this reason, most prior work has focused on applying supervised
machine learning (ML) to enable robot perception of engagement directly from users’ behavioral
data (e.g., a child’s vocalizations, facial and body expressions, and autonomic physiology data such
as heart rate) [29, 43, 46]. However, ideal SAR tutors still need to perceive a more diverse set of
cognitive-affective states, such as confusion and frustration, in order to facilitate cognitive learn-
ing [33]. Although the two-dimensional framework for describing arousal and valence has been
extensively studied in HRI, computational models for arousal and valence for children with ASD
have only been studied in single-session, laboratory settings [43]. Such settings pose many limi-
tations; the feasibility of modeling children’s valence and arousal needs further investigation in
real-world conditions and over a longer period of time.

Personalized affect-aware SAR for children with ASD needs to be designed and validated in long-
term multi-session interventions in order to adequately capture and model children’s emotional
expressions to target stimuli (e.g., different learning activities as part of an intervention). Although
prior work has focused on personalized robot perception for ASD, the methods are only trained
and validated on single-session in-lab datasets. For example, Javed et al. [30] collected a dataset
of five children with ASD in a single-session study, and evaluated/trained ML models in a child-
specific manner (the models were trained/tested on the non-overlapping data of the same child).
Such child-specific models suffer from the limited amount of data collected from each individual,
as they are unable to leverage data from other participants during training. In another single-
session study, Rudovic et al. [43] proposed a personalized perception of affect deep networks
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(PPA-nets), where the model personalization was achieved by the tuning of the network layers
to each child’s culture, gender, and individual characteristics. However, it is difficult to generalize
about the longer-term effects of the personalization since all of the data were collected in a single
day-long session. Therefore, to better approximate longer-term use contexts, the impact of model
personalization for affect awareness needs be evaluated on multi-session recordings of children’s
interactions with SAR.

This article proposes a novel approach to modeling personalization that is specifically tailored to
multiple sessions of child-robot interactions of children with ASD in long-term in-home interven-
tions. The sessions included in the dataset are a part of our month-long in-home deployments of
SAR interventions with children with ASD. Specifically, the multi-session child data in this study
were used to devise personalized ML models for the estimation of children’s cognitive-affective
states in terms of their valence and arousal levels, as described in Section 2.1. The model person-
alization is attained by using the notion of supervised domain adaptation—an ML approach that
leverages a small portion of supervised data to learn to adapt generic (population-level) models to
each individual. The contributions of this work are summarized as follows:

• A Novel Set of Arousal-Valence Annotations. This article introduces a novel set of arousal-
valence annotations to our previously reported multi-session real-world dataset of SAR in-
terventions [29]. We annotated 19 sessions of SAR interventions from 4 children with ASD,
and derived inter-rater reliability (IR) scores for binary arousal (IR = 83%) and valence
(IR = 81%) labels between human annotators. To the best of our knowledge, this is the first
work of its kind that enabled research into the longitudinal modeling of arousal-valence be-
havioral cues of children with ASD using machine learning. More details can be found in
Section 3.1.

• Modeling Arousal/Valence in Long-Term Intervention. This article is the first to propose a de-
sign and validation of a computational models of arousal and valence from children with
ASD on a multi-session real-world dataset of SAR interventions. Although prior work has
analyzed arousal and valence in typically developing user populations where individual
differences are less pronounced, no prior work to our knowledge has attempted to model
valence and arousal from multi-session data of children with ASD. Specifically, we found
that the generic XGBoost classifier (our baseline) outperformed the other model candi-
dates (Feed-forward NNs, LogReg, SVM, and KNN) and achieved a 90% AUROC score for
arousal and 83% AUROC score for valence across all sessions data. We also found that addi-
tional body pose features helped to significantly improve the overall model performance
in predicting arousal and valence labels. The results per child participant are found in
Section 5.3.

• Long-Term Model Personalization. By using the notion of the supervised domain adap-

tation (s-DA) based on loss-reweighting [11], we designed and validated the models for
long-term model personalization from the data of multi-session interventions for children
with ASD. We demonstrate that personalized models with s-DA significantly outperform
their non-personalized counterparts (i.e., the individualized and generic models) in terms
of the AUROC curve (with specific improvements over individualized models: arousal: +5%,
valence +4%; and generic models: arousal: +2%, valence +3%). We show that these improve-
ments are statistically significant across all four participants (p < .05). We also show that the
performance boost of personalized models was driven by an improved performance on the
challenging negative class (low arousal/valence), while maintaining similar performance on
the positive class (high arousal/valence). Results of the effects of model personalization are
found in Section 5.
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• Session-Based Model Evaluation. Different from previous works that report the results in a
traditional manner on single-session datasets, due to the nature of our data, we introduce a
session-based model evaluation to capture more fine-grained performance of the models on
our multi-session HRI dataset. Instead of adapting the percentage-based model evaluation
methods used in past work [29], we propose chronological train-test splits based on the
recorded sessions; therefore, our method follows the same temporal dependence as real-
world deployments of such a system. Consequently, this allows us to better quantify the
effects of model personalization and its impact on performance in unseen sessions of the
test participant. Results of session-based model evaluation method are found in Section 4.2.

Our experimental evaluations show the importance of model personalization and gains in terms
of arousal-valence estimation accuracy on multi-session data. Building upon our prior work on
modeling engagement [29], this is the first time that such long-term personalized model design
and session-based evaluations have been performed on arousal-valence data of children with ASD
across multiple-sessions and as part of in-home interventions. This has important implications
for the design of future robot companions and tutors for children with ASD, paving the way for
new personalized robot technologies for autism therapy and more effective long-term learning
activities for all users.

2 RELATED WORK

This section overviews background work relevant to the main contribution areas of this article:
affect-aware SAR tutors (Section 2.1), personalization for assisting ASD therapy (Section 2.2), and
model evaluation for HRI (Section 2.3).

2.1 Affect-Aware SAR Tutors

A significant body of SAR research has shown that autonomous SAR tutors enhance cognitive
learning gains of children with ASD in a variety of settings [18, 28]. However, those tutoring
systems are limited in their ability to autonomously perceive and respond to atypical affective
behaviors of children with ASD [29], hindering their ability to personalize toward the specific
needs of each child [27, 29, 43]. Previous research has studied perception of basic affective states
(fear, anger, happiness, sadness, disgust, and surprise) [10], but child participants rarely experience
fear or disgust during the learning process [21, 24]. In contrast, Kort et al. [33] addressed the
interplay of affect and learning by modeling cognitive-affective states (engagement, confusion,
frustration, etc.) that children with ASD naturally experience in the context of learning, using
either a categorical or dimensional approach.

Categorical approaches map affective states experienced during learning onto a set of basic
cognitive-affective states such as engagement, confusion, frustration, boredom, or delight [20].
Since user engagement is considered to be a particularly important metric for evaluating the ef-
fectiveness of SAR contexts, robot perception of user engagement has become a crucial capability
of autonomous SAR systems [52]. This is especially true for educational SAR tutors that must pro-
mote high user engagement levels in order to helps users achieve the desired cognitive learning
gains [52]. Consequently, the majority of prior work on developing affect-aware SAR tutors has
focused on modeling user engagement [29].

Most previous studies have trained and evaluated supervised ML classifiers on multimodal
datasets for perception of engagement in HRI interactions. Castellano et al. [9] and Sanghvi et al.
[47] trained supervised engagement classifiers with hand-crafted social, physiological, or task-
based interaction features. To automate this manual feature engineering process, Rudovic et al.
[45] proposed a novel deep reinforcement learning architecture for estimation of engagement
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directly from raw video data, where high-dimensional features were automatically extracted using
a pre-trained convolutional neural network (CNN), ResNet. However, due to the unique chal-
lenges of the atypical cognitive-affective behaviors of children with ASD, it is unclear how these
models, trained and validated on a typically developing population, would generalize to children
with ASD.

To further enable research on engagement of children with ASD, most previous studies col-
lected multimodal datasets from single-session laboratory HRI studies. For instance, Rudovic et al.
[44] collected a multimodal dataset from single-session HRI interventions with children with ASD
from different cultural background (Japan and Europe). Based on that dataset, Rudovic et al. [43, 46]
proposed a personalized deep learning framework to model engagement intensity of children with
ASD that achieved an average agreement of 60% with human experts while estimating user engage-
ment on a continuous scale from -1 to 1. In another single-session study, Javed et al. [30] trained a
CNN to model user social engagement. The proposed CNN-based model achieved the accuracy of
78%, but it did not outperform the accuracy of tree-based random forest models (81%), indicating
that simpler models may work better in this setting.

Recently, Jain et al. [29] demonstrated the feasibility of modeling user engagement in our more
challenging long-term, in-home SAR deployment using the dataset also used in this work (but
without model personalization; see Section 2.3 for more details on differences from our work). The
authors found that Gradient Boosted Decision Trees (XGBoost) outperformed feed-forward
neural networks and achieved approximately 90% accuracy for binary classification of user en-
gagement [29]. However, despite this recent progress in modeling user engagement of children
with ASD, engagement-aware SAR tutors are still unable to address the diverse cognitive-affective
needs of children with ASD during the learning process, such as confusion and frustration that can
be directly analyzed from the arousal/valence dimensions of affect that we tackle in this work. Al-
though promoting improved engagement does help child participants to achieve higher cognitive
learning gains [52], Lepper and Chabay [35] showed that expert human tutors tend to devote the
same amount of attention to child participants’ emotional goals as they do to cognitive learning
gains. Therefore, it is important for affect-aware SAR tutors to have the ability to perceive and
respond to not just engagement but a diverse range of cognitive-affective states of children with
ASD.

Dimensional approaches map different cognitive-affective states onto a two-dimensional coordi-
nate system consisting of perceived child participant valence and arousal, as shown in Figure 1 [33].
Furthermore, Kort et al. [33] categorized these cognitive-affective states into four major learning
phases: (1) interested and curious about learning a new topic; (2) confused or puzzled by the learn-
ing topic; (3) frustrated or disengaged about some misconceptions; and (4) help-seeking for hints or
fresh research. They suggested that autonomous tutoring systems should ideally first determine
the child participant’s cognitive-affective states, and then provide feedback based on that state
to help the child participant be positively guided in the learning cycle in order to achieve both
cognitive and emotional learning gains, as illustrated in Figure 1(B).

Although a large body of HRI research has studied emotion recognition using this two-
dimensional framework [19, 25], very few studies have designed computational models for arousal
and valence from children with ASD [43, 56]. Rudovic et al. [43] modeled arousal and valence for
children with ASD on a scale from -1 to 1 in a single-session in-lab study. However, due to the lim-
itations of single-session studies in laboratory settings, the feasibility of modeling the children’s
valence and arousal requires further investigation in the real-world conditions and over a longer
period of time. To this end, in this article we address the long-term, in-home SAR interventions for
children with ASD. To our knowledge, this is the first time that the modeling of affective states of
children with ASD has been attempted in real-world conditions. Toward that goal, we used a novel
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Fig. 1. A: Based on Kort et al. [33], two-dimensional arousal and valence framework for cognitive-affective
states. States with positive valence (more pleasurable) are on the right; states with negative valence (more
unpleasant) are on the left. Similarly, states with positive arousal (more constructive learning activity) are
at the top; states with negative arousal (no learning activity) are at the bottom. B: Ideal circular flow of
cognitive-affective states [33].

long-term dataset of arousal and valence collected from month-long in-home deployments of SAR
tutors with children with ASD [15]. Using this multi-session dataset, we demonstrate the feasi-
bility of modeling arousal and valence of children with ASD in long-term in-home interventions,
while showcasing the potential of using a two-dimensional approach to model a more diverse set
of cognitive-affective states.

2.2 Personalization in ASD

Personalization of the learning process is important for delivering effective educational interven-
tions and is therefore a key feature of SAR tutors [16, 23]. This is particularly true in the ASD
context since children with autism tend to have atypical and diverse ways of expressing their
cognitive-affective states [53]. To address this heterogeneity of the user population, past work
has focused on studying the atypical behavioral patterns of children with ASD, and personalized

modeling methods have been developed in the ASD context.
The work on HRI and SAR for autism is informed by the extensive research on ASD in develop-

mental psychology and related fields [7, 26]. It is well established that every child with ASD has
a unique profile of strengths, challenges, and specific autism characteristics [53]. This diversity
makes it necessary to personalize SAR interventions to meet the unique needs of each child
with ASD. Furthermore, past work found that children with ASD had a wide variety of reactions
to robots and levels of ability to perform academic tasks [50], also highlighting the need for
personalization.

Personalization has been studied extensively in SAR for ASD. While past work explored person-
alizing the robot action selection [16, 36, 51], this work focuses on studying the model personal-
ization for robot perception of affect. Javed et al. [30] collected individual datasets for each child
with ASD based on a single-session study. Separate models were trained and evaluated using each
participant’s dataset. However, this individual modeling approach did not leverage data from other
participants for model training. To improve on this, in another single-session study, Rudovic et al.
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[43] proposed a deep learning network, where personalization of the network was achieved using
the demographic information (culture and gender), followed by individual network layers for each
child. The personalized model outperformed the non-personalized baseline. However, due to the
limitation of single-session study, the training and test sets were randomly sampled from the same
session for each participant. Therefore, the observed improvement of personalized models is likely
the result of the temporal dependence of instances between training and test sets. As suggested in
the work, to eliminate the possible correlation between training and test sets, multi-session long-
term studies need to be conducted, so the model can be evaluated on the next session to further
validate the impact of model personalization.

Toward that end, we trained and evaluated our models on a multi-session dataset collected from
month-long in-home deployments with four children with ASD. By applying supervised domain
adaptation techniques for personalization, this article shows that long-term personalized models
outperform non-personalized baseline models. This article further validates the need for long-term
personalization of robot perception for children with ASD.

2.3 Model Evaluation for HRI

Due to the nature of our dataset, the design of the model evaluation scheme is critical for properly
assessing the model’s performance. Consequently, we first describe traditional evaluation proto-
cols and then ours. Traditional methods for model evaluation differ in how the training and test sets
are selected and how evaluation experiments are conducted. Model evaluation aims to estimate the
accuracy induced by supervised ML algorithms so as to be able to determine the best-performing
model during model selection [32]. Work on affect-aware SAR tutors in ASD has primarily focused
on two model evaluation methods: holdout and cross-validation.

Holdout methods partition the data into training and test sets based on a percentage parameter
(e.g., 80% training data to 20% testing data). Cross-validation methods split the available data into k
mutually exclusive subsets. For each experiment, one of thek subsets is used as the test set with the
other k −1 subsets combined to form the training set. Similar to holdout methods, cross-validation
methods commonly use random sampling to assign instances from the available data into each
subset [32].

Recent work has used randomly sampled holdout or cross-validation for model evaluation. For
instance, Rudovic et al. [43] applied the randomly sampled cross-validation method to evaluate su-
pervised ML models trained on a dataset collected from a single-session study involving children
with ASD for user engagement and affect [43]. Sanghvi et al. [47] and Lala et al. [34] performed ran-
domly sampled stratified 10-fold cross-validation to evaluate the performance of engagement clas-
sifiers trained with different model candidates. More recently, Javed et al. [30] also used randomly
sampled cross-validation for every subject’s individual dataset to design individualized models for
detecting engagement [30].

However, due to the temporal nature of SAR deployments, as shown in Figure 2, randomly
sampled model evaluation methods used in past works are impractical for two major reasons. First,
since SAR deployments obtain labeled training data chronologically before the testing data, model
evaluation should also follow this temporal relationship to obtain accurate estimation of model
performance. Random sampling violates this temporal relationship and possibly leads to having
data from late in the interaction being assigned to the training set, and data from earlier in the
interaction being assigned to the test set. Secondly, participant body pose and facial expressions
are highly correlated for data instances that happen close in time. Therefore, with random sampling
from the same single-session dataset, the training and test sets also become correlated, leading the
model evaluation process to overestimate the model performance [29].
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Fig. 2. The weaknesses of model evaluation methods applied in prior work. Left: (1) With random sampling
from the same single-session dataset, the training set, and test set can become correlated, leading the model
evaluation process to overestimate model performance; (2) Randomly sampled cross-validation method also
tends to violate the temporal relationship between data instances. This possibly leads to having data from
chronologically later in the interaction being assigned to the training set, and data from earlier in the inter-
action being assigned to the test set. Right: (1) In the chronologically sampled holdout method, more of the
overall data assigned to training data leads to less testing data, so model performance cannot be correctly
estimated in all data instances, especially if the chronologically earlier data have substantial variance from
later data; (2) Since long-term SAR deployments obtain each session chronologically possibly on different
days, the model can only be trained on the earlier sessions and tested on the next deployed session on an-
other day. Since this percentage-based method is likely to split the first half of a session as the training set
and the second half as a test set, the model evaluation process violates the temporal dependence between
sessions and leads to overestimating model performance. More details are discussed in Section 2.3.

To address the temporal nature of SAR datasets, Jain et al. [29] applied a chronologically sam-
pled holdout method for model evaluation, where an early subset of the data was used for training
and the remaining subset was used for testing. As illustrated in Figure 2, the work defined an early

subset of the data as the first X% of a user’s data sorted chronologically. The evaluation experi-
ments were conducted by varying the percentage of data used for training from the first 10% to
the first 90% of a user’s data, in increments of 10%. The study successfully demonstrated the feasi-
bility of recognizing user disengagement in real-world SAR settings. However, despite following
the temporal relationship between data instances within each individual session, this method is
still not practical for multi-session model evaluation. First, in this chronologically sampled hold-
out method, more of the overall data assigned to training data leads to less available testing data,
so the method cannot accurately capture model performance in all data instances, especially if
chronologically earlier data have substantial variance with later data. In addition, since long-term
SAR deployments obtain each session of deployment chronologically, possibly on different days,
the model can only be trained on the earlier sessions and tested on the next deployed session on
another day. Since this percentage-based method is likely to split the first half of a session as the
training set and the second half as the test set, the model evaluation process violates the temporal
dependence between sessions and leads to overestimating model performance. To address these
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Fig. 3. System setup for the month-long in-home deployments. This article introduces a novel set of arousal-
valence annotations to our previously reported multi-session real-world dataset of SAR interventions [29].
To the best of our knowledge, this is the first work of its kind that enabled research into the longitudinal
modeling of arousal-valence behavioral cues of children with ASD using machine learning.

limitations, we introduce a session-based model evaluation method that follows the temporal depen-

dence both across sessions and across data instances, so that the model evaluation process is able to

estimate the real-world results of multi-session SAR deployments for children with ASD. More details

on the proposed evaluation protocol can be found in Section 4.2 and Figure 6.

3 DATA COLLECTION AND PREPROCESSING

The insights of this work result from a novel long-term dataset of arousal and valence data from

children with ASD collected in our month-long in-home deployments of SAR tutors [29]. In those
deployments, each child participant with ASD interacted with a SAR tutor over many sessions
by playing educational math games on a tablet, as shown in the Figure 3. Based on each child’s
cognitive performance, the SAR tutor provided both verbal and expressive feedback to promote
the child’s social and math skill development.

3.1 Participants

The average age of the participants whose data were used for this work was 4.58 ± 0.23 years old;
75% were male and 25% female, reflecting ASD rates in the recruited population. As discussed in our
previous work [29], the study was approved by the Institutional Review Board of the University of
Southern California (UP-16-0075(v)). Informed consent forms were obtained from the children’s
caregivers. The child participants had a clinical diagnoses of ASD in mild to moderate ranges
according to the Diagnostic and Statistical Manual of Mental Disorders [2]. The details about the
SAR tutor and intervention design can be found in our previous publications [17, 38].

Due to the challenges of our month-long in-home data collections and the limitations of human
annotation, four participants with sufficient and qualified data were selected to train and eval-
uate the personalized cognitive-affective models proposed in this study. Specifically, Participant
1 had five annotated sessions (total: 2hrs:8min:11sec); Participant 2 had six annotated sessions
(total: 2hrs:8min:46sec); Participant 3 had four annotated sessions (total: 2hrs:16min:48sec); and
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Participant 4 had four annotated sessions (total: 1hr:42min:35sec). As discussed in our previous
work [29], data collected before and after the interventions were truncated for each session to
only include the child-robot interaction between the first and last game in the dataset. Moreover,
in this work, we also exclude trivial frames of disengagement where participants left the recorded
view, so that the models can be trained/evaluated on the relevant portion of the data. The details
about the final number of instances for each session and participant before applying the window-
ing technique can be found in Table 2 in the Appendix.

3.2 Feature Extraction

The feature space of our multimodal dataset consists of 115 visual (body pose and face) features,
6 audio features, and 16 game performance features. As discussed in our previous work [29], the
features were extracted using open-source libraries feasible for closed-loop use. The facial fea-
tures extracted using OpenFace [3] included: (a) eye gaze direction; (b) facial expressions; (c) face
detection confidence value; and (d) facial keypoint position. Praat [4] was used to extract pitch,
frequency, intensity, and harmonicity features from the recorded audio. Game performance fea-
tures derived from the SAR system recording included: (a) challenge level and type of game being
played; (b) number of games played in the session; (c) elapsed time in a session, game, and since the
robot last talked; and (d) number of incorrect responses. Additionally, in this work, we also used
OpenPose [8] to extract body pose features including the number of people in the environment
and keypoint positions for participant’s body, feet, hands, and face.

3.3 Definitions of Arousal and Valence

To enable modeling of a diverse set of cognitive-affective user states, this work demonstrates
the feasibility of modeling arousal and valence of children with ASD in long-term in-home in-
terventions. We specifically aim to detect negative cognitive-affective states, so necessary feed-
back or guidance can be provided to support the child’s learning process. For this reason, our
work focuses on training ML models to classify negative behaviors from the rest of the behaviors
(positive/neutral). Each participant’s arousal and valence were annotated as binary labels (posi-
tive/neutral or negative) following established practices and standard definitions from the litera-
ture (e.g., [25], [39], and [43]). In this work, the valence label refers to whether the child’s emotion
toward the SAR tutor is positive/neutral (1) or negative (0). The arousal label refers to whether
the active level of the child’s interaction with the SAR tutor is positive/neutral (1) or negative (0).
Full specifications of positive, neutral, and negative arousal and valence used in this study are
found in Table 3. Because the difference between neutral and positive behaviors can be small or
ambiguous, this binary definition of arousal/valence helps to ensure high-quality human anno-
tation for negative arousal/valence, and to avoid low inter-rater reliability across annotators. In
addition, as shown in our previous work [29], temporal patterns in sequences of predicted binary
labels can also provide information about more fine-grained arousal/valence levels. For example, a
4-second sequence of binary labels with 25% positive arousal/valence predictions indicates dif-
ferent arousal/valence levels from a 4-second sequence of binary labels with 75% positive
arousal/valence predictions. This more fine-grained temporal pattern can then be used to guide
the SARs’ feedback action selection process. The lead author of this work annotated the labels
of arousal and valence for the four participants. To confirm the absence of annotation bias, three
additional annotators independently annotated 20% of the data for both valence and arousal labels.
Inter-rater reliability scores were derived using Fleiss’ Kappa, and a reliability of 81% and 83% were
achieved for valence and arousal, respectively, between the primary and verifying annotators. The
detailed information about the class distribution of negative arousal/valence labels can be found
in Table 2 in the Appendix. As shown, we observed class imbalance in our multi-session dataset,
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Fig. 4. Multimodal early fusion. Multimodal features were extracted using open-source libraries (Open-
Face [3], OpenPose [8], Praat [4], and ROS [42]) that could be used in a closed-loop systems, and then
pre-processed using sliding window and standardization methods.

and the severity of the imbalance varies across different participants. This also supports the need
for personalizing the models to each participant’s unique cognitive-affective behaviors.

3.4 Data Preprocessing

As shown in Figure 4, we first performed early fusion of features from different modalities and
pre-processed the dataset. After we concatenated features from different modalities, we obtained
the raw multimodal dataset with a shape of T ×M , where T is the total number of frames and M
is the total number of multimodal features. To address the uncertainty of extracted features for
each individual frame, we applied a 3-second window with a 1-second shift to the raw multimodal
dataset (i.e., 0 to 3 seconds, 1 to 4 seconds, 2 to 5 seconds, etc.). This 3-second window size was
determined by the empirical observations of window size of participants’ affective behaviors from
our annotations. As discussed in our previous work [29], within each window, the means and vari-
ances of continuous features were derived and added to the new dataset. For discrete features, a
feature indicating whether features changed in the window was derived and added to the new
dataset along with the means of the discrete features. This sliding window method also addressed
the occasional frame drops in OpenFace and OpenPose that caused missing data. In cases when
the participants were partially or completely out of the recorded frames, and OpenFace’s or Open-
Pose’s features were also shown as missing (NaN), the values of these features were approximated
by using the maximum value of the feature after standardization. Moreover, since the multimodal
features were on different time scales, all data instances in both the training set and test set method
were standardized to have zero mean and unit variance based on the means and variances of the
training set [29].

3.5 Model Selection for Arousal/Valence

We tested a collection of supervised ML model candidates during the model selection process. Past
work has shown that tree-based XGBoost and Deep Neural Network (DNN) perform better than
other model candidates for modeling user engagement [29, 30, 43]. Consequently, we implemented
XGBoost and DNN as the potential model candidates. Moreover, we also implemented Support

Vector Machine (SVM) and K-Nearest Neighbor (KNN) as baseline models for comparison.
Because of large variances across sessions for each participant typical for ASD, hyperparameter
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tuning strategies such as grid search tend to overfit to the training data, so we used default hy-
perparameters for the model candidates. As discussed in our previous work [29], we implemented
the ML models using the open-source libraries shown as follows: Scikit-learn verion 0.22.1 [40],
XGBoost version 0.90 [12], TensorFlow version 1.15.0 [1], and Keras version 2.2.4 [13].

4 METHODS

We introduce a personalized modeling method with supervised domain adaptation (s-DA) for train-
ing personalized cognitive-affective models for children with ASD in long-term interventions. To
validate the effects of long-term personalization, we introduce the session-based model evaluation

method to evaluate the personalized models by comparing them with two non-personalized base-
lines: individualized (participant-dependent) and generic (participant-independent) models. In this
section, we describe these methods, describe the training and evaluation of the personalized models
for arousal and valence of children with ASD, and further demonstrate the feasibility of modeling
their cognitive-affective states in long-term in-home interventions.

4.1 Personalization with Supervised Domain Adaptation

As discussed in our previous work [29], two major baseline methods have been used to train
cognitive-affective models in long-term interventions: (1) individualized models trained only on
available individual data; and (2) generic models trained only on available data from other par-
ticipants. For individualized modeling, since participant-specific data are likely to be limited and
imbalanced, individualized models are prone to overfitting. On the other hand, generic models are
participant-independent, thus it is more challenging for such models to account for the hetero-
geneity in the data from the ASD population. We used both the generic and individualized models
as baselines, and compared with our personalized modeling to explore the effects of the model
personalization.

Our personalized modeling is achieved by using s-DA to obtain the optimal personalized
cognitive-affective models for each child with ASD. By applying domain adaptation via loss

reweighting [11], as described below, our method is able to trade off between the limited indi-
vidual data and the more abundant but less personal data pooled from other participants, so that
the best-performed personalized model can be obtained for each participant.

Loss reweighting is an instance-based method for supervised domain adaptation that adjusts the
loss function of a classifier to weigh the relative importance of target and source datasets [11]. In
our personalized modeling method, shown in Figure 5, data from other participants are used as the
source domain, and the individual data from the test child participant with ASD are considered
the target domain. By performing a hyper-parameter search with 5-fold cross-validation on the
target individual data for the optimal weight α between the source and target domains, the loss
reweighting s-DA technique searches for the optimal personalized model h that minimizes the α-
error ϵα (h). By adopting the optimized implementation of loss reweighting (Chen et al. [11]), this
can formally be expressed as:

ϵ̂α (h) = αϵ̂T (h) + (1 − α )ϵ̂S (h), (1)

where α-error ϵα (h) is a linear combination of the source domain (other participants’ data) error
ϵ̂T (h) and the target domain (individual data) error ϵ̂S (h) for a given α ∈ [0, 1]. In the case of our
multi-session data, we generalize the loss re-weighting function from Equation (1) by accounting
for its dependence on the sessions that accumulate over time as:

ϵ̂α,k (h) = αϵ̂T ,k (h) + (1 − α )ϵ̂S,k (h), where k ∈ {1, . . . ,K }, (2)

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 4, Article 39. Publication date: September 2022.



Toward Personalized Affect-Aware Socially Assistive Robot Tutors 39:13

Fig. 5. Loss Reweighting. Loss reweighting is an instance-based method for supervised domain adaptation
that adjusts the loss function of a classifier to weigh the relative importance of target and source datasets [11].
It was applied in concert with personalized modeling to obtain the optimal personalized model for each child
participant with ASD.

Fig. 6. A Comparison of Modeling Methods. Left: individualized models are trained only on available indi-
vidual data. Center: generic models are trained only on available data from other participants. Right: person-
alized models with s-DA are trained on available data from both the test data and other participants’ data
with the re-weighted loss function.

where the session index k is used to denote the data accumulated from all previous sessions up
to session k . In this way, the personalized cognitive-affective models are gradually adapted to the
target child’s affective behaviors, while more individual data being included in a session-by-session
fashion. Figure 6 provides a comparison of our approach to other modeling methods.

4.2 Session-Based Model Evaluation

We introduce a session-based model evaluation to estimate the performance of the newly intro-
duced models for multi-session data from SAR deployments for children with ASD. As discussed
in Section 4.2, randomly sampled and percentage-based model evaluation methods used in past
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work are not suitable for multi-session SAR deployments. This work performs chronological train-
test splits based on sessions; therefore, our method follows the same temporal dependencies both
across sessions and across data instances as found in real-world deployments.

One round of session-based model evaluation for different modeling methods is illustrated in
Figure 6. For each round, one out of the total N participants is chosen to be the current test partic-
ipant (P ), and the data of the other N − 1 participants are available for training. In each round, if
there are S sessions collected in the dataset for test participant P , S − 1 experiments are then con-
ducted chronologically for that test participant. For example, the current test participant illustrated
in Figure 6 has a total of five sessions, four experiments are conducted for that test participant. For
each experiment, the train-test split is then based on P ’s sessions and follows the same pattern
of real-world deployments. For example, in the first experiment of individualized modeling, we
assume that we have already obtained and annotated the first session of the test participant. This
first session is used as the training set and the second session is used as the test set. In the next
experiment of individualized modeling, the second session of the test participant is treated as if the
deployment has completed and the data from the second session have been annotated. The model
is then retrained on the union of the first and second sessions and tested on the third session. This
process continues until every session except the first has been used as the test set. With N different
participants, N rounds of experiments are conducted with different participants serving as the test
participant for each round.

Similarly, with different training data, generic models and personalized models with s-DA can
also be evaluated in the same fashion, as illustrated in Figure 6. Since all modeling methods are
tested on the same set of sessions, the model evaluation can be kept consistent across different mod-
eling methods. The final result is derived by averaging the models’ performance in a weighted
fashion on all tested sessions for each participant and comparing the performance between dif-
ferent modeling methods and model candidates. AUROC was used as the single-value metric to
evaluate the overall performance of ML models on the binary classification of arousal and valence
scores [5]. Likewise, F1 scores were used to evaluate the models’ performance on both the positive
and negative classes of arousal and valence.

5 RESULTS

5.1 Effect of Model Personalization with s-DA

We trained and evaluated the personalized models with s-DA with the aim of enabling automatic
perception of arousal and valence of children with ASD during multi-session SAR interventions.
As discussed in Section 4, to obtain the optimal personalized models during training, the s-DA tech-
nique, used for our model personalization, enables the tradeoff between the limited individual data
and the more abundant data pooled from other participants. The effects of personalization were
further validated by comparison with two baseline models: (1) individualized models trained only
on available individual data; and (2) generic models trained only on data from other participants.

As detailed in Section 4.2, for each round of experiments, one of the four participants was cho-
sen to be the current test participant, and data from the other three participants were considered
to have been already obtained from deployments and available for training. Within each round,
different modeling methods were trained and evaluated on the same sessions of the test participant
using the session-based model evaluation method.

5.1.1 Analysis of Participants. Table 1 reports models’ AUROC scores of each experiment
round with different test participant (P-1 to P-4) for both arousal and valence, so that we
can compare the performance of the personalized models and the two baseline (individualized
and generic) models. In addition, the weighted average AUROC scores of the four rounds of
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Table 1. Comparison of AUROC Scores of Personalized and Baseline XGBoost Models

Task Test Participant-ID IND [29] GEN [29] Our Approach: PER (s-DA)

Arousal

P-1 0.84 0.91 0.91

P-2 0.90 0.90 0.91

P-3 0.90 0.91 0.92

P-4 0.85 0.90 0.93

wAVE 0.87 0.90 0.92

Valence

P-1 0.79 0.82 0.84

P-2 0.85 0.86 0.88

P-3 0.84 0.83 0.87

P-4 0.81 0.87 0.87

wAVE 0.82 0.83 0.86

Personalized (PER) Models with s-DA Outperformed Both the Individualized (IND) and Generic (GEN)
Models on the Weighted Average (wAVE), and Always Performed at Least as Well as the Baseline Models
Across Individual Participants and Tasks.

Fig. 7. ROC Curves of Personalized and Baseline XGBoost Models. Personalized (PER) models with s-DA out-
performed both the individualized (IND) and generic (GEN) models using the metric of Area Under Receiver
Operating Characteristic Curve (AUROC).

experiments for both arousal and valence are also reported to further examine the overall effects
of the personalization.

Individually, personalized models outperformed the baseline models in six out of eight rounds
of experiments across different test participants and tasks, and also performed at least as well
as the baseline models in the other two rounds of experiments. As shown in Figure 7, overall,
personalized models outperformed the best baseline models by approximately 2% for arousal and
3% for valence on a wAVE of the four test participants. More specifically, personalized models with
s-DA achieved a 92% AUROC score for arousal and an 86% AUROC score for valence. The ROC
curves show that our personalized models consistently outperform both model alternatives.

Moreover, as can be seen from Figure 8, personalized models especially outperformed baseline
models on the negative class, while maintaining the same performance as the baseline models on
the positive class (see also Section 6.1). For the negative class, personalized models achieved 2%
and 11% improvements for valence over individualized and generic models, respectively, and also
achieved 5% improvements in F1 score for arousal over both baseline models. On the other hand,

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 4, Article 39. Publication date: September 2022.



39:16 Z. Shi et al.

Fig. 8. Effect of Model Personalization with s-DA. (1) Personalized (PER) models with s-DA significantly out-
performed the baseline models in AUROC not only on the weighted average but also across individual tested
sessions; (2) This performance boost of personalized models was driven by statistically higher performance
for the negative class (p < .05) across individual sessions, while maintaining performance on the positive class
(no statistical difference).

for the positive class, personalized models performed as the best baseline models on each task.
Overall, personalized models achieved 90% (arousal) and 89% (valence) in F1 score for the positive
instances, and 74% (arousal) and 60% (valence) in F1 score for the negative instances. This gap in
performance between the two classes is due to the class imbalance against the negative class of
arousal and valence. This is discussed in more details in Section 5.2.

5.1.2 Analysis of Sessions. We also conducted one-sided Wilcoxon signed-rank tests to validate
whether the effects of personalization for individual participants on the weighted average also ex-
tend to the individual sessions. As detailed in Figure 8, for both arousal and valence in AUROC,
the one-sided Wilcoxon signed-rank tests validated that personalized models with s-DA also sig-
nificantly (p < .05) outperformed the two baseline models across sessions in AUROC, while there
was no significant difference between individualized and generic models despite the difference in
the weighted average.

Furthermore, Wilcoxon signed-rank tests also validated that the performance boost of per-
sonalized models was driven by statistically higher performance for the negative class (p < .05)
in F1 scores across individual sessions, while maintaining performance on the positive class
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Table 2. Session-by-Session Effects of Personalization with s-DA in AUROC

Task Model
Test Participant

P-1 P-2 P-3 P-4
S-1 S-2 S-3 S-4 wAVE S-1 S-2 S-3 S-4 S-5 wAVE S-1 S-2 S-3 wAVE S-1 S-2 S-3 wAVE

Arousal
IND 0.72 0.94 0.95 0.92 0.84 0.83 0.93 0.91 0.93 0.95 0.90 0.81 0.95 0.97 0.90 0.74 0.93 0.93 0.85
GEN 0.90 0.94 0.94 0.94 0.91 0.88 0.91 0.91 0.89 0.94 0.90 0.85 0.95 0.94 0.91 0.89 0.88 0.93 0.90

PER (s-DA) 0.90 0.95 0.94 0.93 0.91 0.85 0.93 0.93 0.93 0.96 0.91 0.86 0.96 0.94 0.92 0.91 0.93 0.93 0.93

Valence
IND 0.60 0.84 0.92 0.81 0.79 0.70 0.92 0.89 0.95 0.90 0.85 0.74 0.92 0.96 0.84 0.73 0.88 0.88 0.81
GEN 0.67 0.94 0.77 0.88 0.82 0.76 0.96 0.87 0.90 0.90 0.86 0.73 0.89 0.93 0.83 0.86 0.85 0.93 0.87

PER (s-DA) 0.70 0.91 0.90 0.86 0.84 0.80 0.97 0.89 0.95 0.91 0.88 0.79 0.91 0.96 0.87 0.80 0.90 0.92 0.87

Personalized (PER) models with s-DA were ble to trade off between the alternating performance of individualized (IND)
and generic (GEN) models, thus helping PER models with s-DA to outperform the baseline models not only on the
weighted average but also statistically across sessions.

(no statistical difference). More specifically, in AUROC, the Wilcoxon signed-rank tests found
significantly higher AUROC for personalized over generic models (arousal: Z = 2.101, p = .018,
r = .384; valence: Z = 1.931, p = .027, r = .353), and for personalized over individualized models
(arousal: Z = 1.988, p = .023, r = .363; valence: Z = 2.556, p = .005, r = .467). However, there was no
significant difference in AUROC between generic and individualized models (arousal: Z = 0.227,
p = .41, r = .041; valence: Z = 0.909, p = .166, r = .182). For F1 scores of both negative and positive
classes, the detailed results of Wilcoxon signed-rank tests can be found in the Appendix A.1.

In addition, for each individual session, personalized models with s-DA were able to trade off
between the alternating performance of individualized and generic models, so it helped person-
alized models with s-DA to outperform the baseline models not only on the weighted average
but also statistically across sessions. As can be noted from Table 2, the better-performed baseline
model alternated between individualized and generic models, explaining the insignificant differ-
ence between individualized and generic models. As discussed in Section 4, by taking advantage
of individual data and data from other participants, personalized models achieved the best perfor-
mance among the model candidates in the majority of test sessions. In the rest of the sessions,
personalized models still consistently performed close to the better-performed baseline model.
This further explains the significant increases from individualized/generic to personalized mod-
els across both participants and sessions. Finally, for the majority of the sessions/participants, the
main increase in performance by the personalized models happens after adding the data of the
first session of the target participant to the training set. After this, the performance trend remains
relatively constant. This is the case for all but P-2, where we see a drop in the performance after
the data from session 2 are added. This indicates that not all data from every session/participant
are relevant for improving the model’s performance in future sessions. One way to handle this is
to learn how to select the most informative data and include only those in the adaptation set for
model personalization. Various approaches have been proposed to tackle this issue by using the
notion of Active/Reinforcement Learning (e.g., see [45]); this is outside of the scope of this work
and will be explored in future work.

5.2 Class and Data Distribution

As detailed in Figures 9(A) and 9(B), for both arousal and valence, we observed class imbalance in
our multi-session dataset, helping to explain the less accurate performance of models on negative
classes. Across different test participants with ASD, arousal and valence varied considerably from
each other. From all instances of valence and arousal, average percentage of negative arousal for
each child participant ranged from 22.7% to 35.4% with the standard deviation of 6%, and average
percentage of negative valence ranged from 14% to 27% with the standard deviation of 10%.

This variance between participants further supports the need for personalizing the models to
each participant’s unique cognitive-affective behaviors. Within each participant, different sessions
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Fig. 9. Class and Data Distribution. A: Percentage of negative arousal out of all arousal instances for each
session of all participants. B: Percentage of negative valence out of all arousal instances for each session of
all participants. C: Visualization of the data distribution for each participant using the T-distributed t-SNE.
D: Visualization of the data distribution for each domain of data within Participant 4 (Cluster 1: Instances
without the majority of the OpenFace and OpenPose features; Cluster 2: Instances without the majority of
the OpenFace features; Cluster 3: Instances with the majority of the features).

also had substantial variance, highlighting the challenges of personalization in long-term in-home
settings. The standard deviation between sessions of each participant ranged from 5% to 14% for
arousal, and from 5% to 15% for valence.

To better interpret the data distribution, this work also visualized the feature space of different
participants using the T-distributed Stochastic Neighbor Embedding (t-SNE), a commonly
used unsupervised dimensionality reduction technique. As shown in Figure 9(C), across different
participants, high variance was observed as expected between the feature space of each participant.
Within each participant, substantial variances were also observed in the feature space. For P-4,
instead of clustering together, the data are located in smaller clusters separated from one another.
This is consistent with our observations from annotation indicating that P-4 was more likely to
move around during the interaction in the in-home environment compared to other participants.

Figures 9(C) and 9(D) shows that the extreme clusters (clusters 1 and 2) consist of instances
where the participants were partially out of the recorded frames. Specifically, cluster 2 consists
of instances where OpenFace failed to detect the majority of the facial features and only part of
the body pose features were extracted. For cluster 1 (Figure 9(C)), both OpenFace and OpenPose
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Table 3. Results of Different Model Candidates

Test Participant Task KNN SVM LogReg NN XGBoost

wAVE
Arousal 0.76 0.86 0.86 0.84 0.90

Valence 0.70 0.74 0.79 0.78 0.83

Tree-based XGBoost models were the most successful among the supervised ML model
candidates we evaluated.

failed to detect the majority of the features from the recorded frames. The data instances in these
two extreme clusters were mostly classified as negative arousal or valence. This is intuitive, since
the models treated the missing features as negative behavioral cues of participants’ arousal and
valence. We could have removed these negative instances to make modeling less challenging, as
we did when the child was completely missing from the camera-view. Instead, we left those exam-
ples as they correspond to the partially observed data that still provide a proxy for the negative
valence/arousal, since the participants are not showing positive valence/arousal toward the inter-
action with the robot.

Moreover, we also visualized the feature space of different data domains (data from other partic-
ipants, individual data, and test data). As shown in Figure 9(D), in the main cluster (cluster 3), the
distribution of the available individual data closely resembles the distribution of the test data. This
further supports the importance of leveraging individual data and the value of personalization
with s-DA.

5.3 Alternative Modeling Approaches

From our initial model selection, we found that the tree-based XGBoost outperformed all the other
model candidates when trained with the generic modeling method. In addition to its better per-
formance, XGBoost also offers superior interpretability and requires less hyper-parameter tuning
compared to the second best-performed NN. As shown in Table 3, we also trained and tested the
following model candidates with the generic modeling method: K-Nearest Neighbors (KNN), Sup-
port Vector Machines (SVM), Logistic Regression (LogReg), Neural Networks (NN), and Gradient
Boosted Decision Trees (XGBoost). Due to the challenges of the noisy and high-dimensional na-
ture of the data we used, KNN performed poorly on both tasks (arousal: drop of 14%; valence:
drop of 13%). LogReg was also not able to account for the highly nonlinear dependencies in the
data (arousal: drop of 4%; valence: drop of 4%). On the other hand, the non-linear kernel method
(SVM) also failed to achieve similar performance as XGBoost due to the absence of the hierarchi-
cal structure (arousal: drop of 4%; valence: drop of 9%). Finally, despite being hierarchical, NN had
limited success because of the amount of data collected and the class imbalance (arousal: drop of
6%; valence: drop of 5%).

Our modality selection found that additional body pose features helped to improve the overall
model performance in predicting arousal and valence labels. In our prior work [29], body pose
features were dropped from the final set of multimodal features, because they did not significantly
contribute to the task of engagement modeling. However, in this work, as shown in Table 4, the
multimodal models trained with body pose features extracted by OpenPose significantly outper-
formed the models proposed in our prior work [29]. This also indicates that the focus of engage-
ment modeling may be mostly on the visual attention of the participants, which correlates mainly
with participants’ head pose and gaze. On the other hand, the task of modeling arousal and valence
requires an understanding of a more holistic view of the participants’ cognitive-affective behaviors,
so body pose features including keypoint positions for participant’s body, feet, and hands would
also be needed for better model performance.
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Table 4. Performance Comparison Between Multimodal Models Trained without and
with Body Pose Features

Test Participant Task
All Modalities without

Body Pose [29]
All Modalities

(Our Approach)
Statistical Analysis of

Sessions: p value

wAVE
Arousal 0.89 0.92 p = .001***

Valence 0.83 0.86 p = .017*

Multimodal models trained with additional body pose features significantly outperformed the baseline multimodal
models from [29] in AUROC not only on the weighted average but also across individual tested sessions (p < .05).

We also explored the personalized modeling method with a unsupervised domain adapta-

tion (u-DA) technique called CORrelation ALignment (CORAL) [54]. CORAL minimizes the
domain shift (in our case, each child participant is seen as a different domain) by aligning the
second-order statistics of source and target distributions, without requiring any target labels [54].
As detailed in Table 1 in Appendix, the personalized models with u-DA performed poorly com-
pared to the personalized models with s-DA (arousal: drop of 15%; valence: drop of 15%). This
suggests that unsupervised domain adaptation methods such as CORAL may not be suitable for
the noisy and nonstationary data typical for long-term interventions. Our future work will further
explore this insight.

6 DISCUSSION

Personalized robot perception of arousal and valence from children with ASD is an important HRI
research goal previously unexplored in the context of long-term in-home SAR interventions. By
introducing a novel multi-session dataset, this work is the first to train and evaluate personalized
ML models of arousal and valence in this challenging context. This section focuses on discussing
the major contributions and findings of this work in the following two areas: effect of personaliza-
tion in long-term interventions (Section 6.1) and limitations and future work (Section 6.2). These
contributions aim to inform the design of more affect-aware and personalized HRI, so that the ef-
fectiveness of SAR can be further improved to augment both the emotional and cognitive learning
gains of children with ASD.

6.1 Personalized Affect-Aware SAR in Long-Term Interventions

One of the main goals of this work was to demonstrate the feasibility of personalized cognitive-
affective models in long-term HRI interventions for children with ASD. The results of this work
suggest that supervised domain adaptation can effectively personalize ML models to better per-
ceive the negative cognitive-affective behaviors of children with ASD. As shown in Section 5,
personalized models with s-DA outperformed the best baseline models in AUROC on weighted
average across each participant for both tasks. In particular, personalized models improved the
predictions of negative arousal and valence when compared to the baseline models. Personalized
models achieved 2% and 11% improvements in F1 score for negative valence over individualized
and generic models, and also achieved 5% improvements in F1 score for negative arousal over both
the baseline models. This is particularly important because the purpose of our cognitive-affective
models is to detect negative behaviors, so that corresponding feedback can be provided to help the
child user be positively guided. Since the data imbalance and unique atypical negative affective
behaviors from children with ASD further increased the challenges for perceiving negative affect,
both baseline models performed worse on the negative class than the positive class. Therefore,
personalized models with s-DA effectively improved the models’ capability to perceive the unique
negative arousal and valence of each child participant.
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One-sided Wilcoxon signed-rank tests further validated that the better performance of person-
alization for individual participants on the weighted average also extended to the individual ses-
sions. Statistically, personalized models with s-DA also significantly (p < .05) outperformed the
two baseline models across sessions in AUROC, while there was no significant difference between
individualized and generic models despite the difference in the weighted average. This indicates
that, with our dataset, it did not matter which method we chose between these two baselines;
this may not hold for other datasets. However, for the dataset reported here, personalized mod-
els with s-DA were able to trade off between the strengths of both individualized and generic
models.

The other main finding of this work is demonstrating the challenges of personalized affect
awareness in a long-term real-world HRI setting due to the high variances and class imbalance.
As detailed in Figure 9, we observed class imbalance in our long-term dataset, which caused the
models to perform worse on the negative instances than the positive ones. This is expected since
negative affective behaviors happened less frequently in our dataset than positive or neutral be-
haviors. Second, due to the unconstrained nature of the in-home setting, the more varied body
movements and behaviors of the child participants resulted in more frequent failures of OpenFace
or OpenPose capture of features. Therefore, the feature space was complex and challenging due
to the substantial variances within each test participant. Due to the variances across sessions for
each test participant, the variance between validation and test data further increase the challenges
of long-term personalization.

Compared to the other alternative model candidates, XGBoost outperformed other supervised
ML model candidates. This correlates with past findings for modeling engagement [29, 30] and
expectations given the advantages of a heirarchical gradient boosted structure of XGBoost to
perform on constrained datasets. Despite the recent success of deep learning, the challenging
nature of the HRI study led to smaller amounts of noisy data with high class imbalance result-
ing in poorer NN performance. This work suggests that tree-based XGBoost is more suitable for
real-world HRI dataset using constructed features extracted from libraries such as OpenFace and
OpenPose. Furthermore, we also explored a naive instance-based unsupervised domain adaptation
method called CORAL [54], and our results show that supervised domain adaptation had great ad-
vantages over CORAL. For this reason, we excluded those comparisons from the analysis reported
here.

6.2 Limitations and Future Work

The major limitations of this work come from the challenging nature of real-world HRI deploy-
ments for children with ASD in long-term interventions. The highly resource-intensive nature of
conducting in-home deployments and collecting human annotations makes it difficult to obtain
large-scale high-quality datasets of cognitive-affective behaviors from children with ASD. At the
same time, the quality and scale of an annotated dataset is crucial for effectively training ML mod-
els such as NN-based approaches. In addition, the class imbalance of our dataset led to worse per-
formance on negative arousal and valence. Despite the improvements from model personalization,
the performance on negative affect still needs to be improved to enable effective interventions with
robot feedback to help children users to be positively guided. Lastly, the high variance and noise in
our autism dataset further challenges personalization. As discussed in Figure 9, the unconstrained
in-home setting contributes to the high variance and noise in the dataset within each participant.
Moreover, such data properties are expected from ASD datasets, since it is well known that every
child with ASD has a unique profile of autism characteristics [53]. Because both the source and
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target domain data in this work are collected from different children with ASD, this also potentially
led to higher variance both within and across domains (and children participants).

One direction for future work is to explore annotation-efficient methods for model personaliza-
tion so that the same modeling performance can be achieved more efficiently in terms of time an
expense with fewer manual annotations. As we found in this work, not all the data from every
session/participant are relevant for improving model performance in the future deployed sessions.
This suggests that the amount of human annotations can be potentially reduced by selectively
annotating the most informative personal data instances. Prior work has proposed to tackle this
problem by applying Active/Reinforcement Learning [45]. This is outside of the scope of this work,
but we plan to explore it in the future.

Another promising approach is to continue using supervised domain adaptation with larger,
more balanced and constrained datasets as source domains. For example, instead of using data from
other children with ASD as the source domain, a more general dataset collected from typically
developing children in a laboratory setting could potentially be used as the source domain. By
keeping the target domain as the data from the target child with ASD, this method may allow
personalized ML models to be trained more efficiently and effectively.

Finally, u-DA remains a promising approach for personalized modeling with limited human an-
notation of the target domain data, despite our findings for CORAL. Preliminary work has shown
that u-DA has great potential to successfully train personalized affective labels with no human
annotation in the target domain [57]. However, most of the u-DA techniques have only been val-
idated on unimodal (e.g., vision-only) datasets in constrained settings [55]. Consequently, open
research questions remain as to how to effectively train personalized affective models with multi-
modal datasets involving children in unstructured settings like homes.

6.3 Conclusions

This work developed and validated personalized models for robot perception of arousal and va-
lence from children with ASD in the previously unexplored context of a long-term in-home set-
ting. Our motivation was to design personalized cognitive-affective models to perceive the unique
cognitive-affective behaviors of each child with ASD. When deployed, these models should enable
personalized interventions to help each child to be positively guided in the learning cycle and
achieve improved cognitive and emotional learning gains.

We introduced a novel long-term multimodal dataset of arousal and valence collected from
month-long in-home deployments of SAR tutors with children with ASD. Based on this dataset,
we trained models with supervised domain adaptation (loss reweighting) to trade off between the
limited individual data (target domain) and the more abundant generic data pooled from other
participants (source domain). The models were also validated using a session-based method that
follows the temporal dependence across sessions and data instances, so that the model evaluation
process is able to estimate the real-world results of multi-session SAR deployments for children
with ASD. The results showed that personalized models outperformed non-personalized (individ-
ualized and generic) models in both weighted average and statistically (p < .05) across individual
sessions. Personalized models especially improved the predictions of negative arousal and valence
when compared to the baseline models. Our research demonstrates the potential of using super-
vised domain adaptation to improve the personalized affect awareness of SAR tutors with children
with ASD in long-term interventions. We hope to inform the future development of personalized
affect-aware robot tutors tailored towards individuals with atypical cognitive-affective needs such
as children with ASD.
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A APPENDIX

A.1 Wilcoxon Signed-Rank Tests for F1 Scores of Negative and Positive Classes

For the predictions of negative classes, Wilcoxon signed-rank tests also indicated significant in-
creases in F1 score for negative arousal/valence between personalized and generic models (arousal:
Z = 1.761, p = .039, r = .321; valence: Z = 2.499, p = .006, r = .456), and in F1 score for nega-
tive arousal/valence between personalized and individualized models (arousal: Z = 1.874, p = .03,
r = .342; valence: Z = 2.215, p = .013, r = .404). Similar to the prior AUROC results, there was also
no significant increases in F1 scores for negative arousal/valence indicated between generic and
individualized models (arousal: Z = 0.454, p = .325, r = .083; valence: Z = 1.193, p = .116, r = .218).

For the predictions of positive classes, except that personalized models significantly outper-
formed individual models for arousal, there were no significant increases between different mod-
eling methods. Wilcoxon signed-rank tests indicated significant increases in F1 scores for positive
arousal between personalized and individualized models (Z = 1.647, p = .05, r = .301). However,
no significant increases were indicated in F1 scores for positive valence between personalized and
individualized models (Z = 0.511, p = .305, r = .093), in F1 scores for positive arousal/valence be-
tween personalized and generic models (arousal: Z = 0.682, p = .248, r = .124; valence: Z = 1.533,
p = .063, r = .280), and in F1 scores for positive arousal/valence between individualized and generic
models (arousal: Z = 0.852, p = .197, r = .156; valence: Z = 0.398, p = .345, r = .073).

A.2 Table of Comparison between Supervised and Unsupervised Domain Adaptation

Table 1. Comparison between Supervised and Unsupervised
Domain Adaptation

Task Test Participant-ID PER (s-DA) PER (u-DA)

Arousal

P-5 0.91 0.81
P-7 0.92 0.76
P-9 0.92 0.77
P-17 0.92 0.73

wAVE 0.92 0.77

Valence

P-5 0.84 0.72
P-7 0.88 0.77
P-9 0.87 0.66
P-17 0.87 0.73

wAVE 0.86 0.71
Personalized models with u-DA performed poorly comparing to the
personalized models with s-DA (Arousal: drop of 15%; Valence: drop of 15%).
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A.3 Table of Number of Instances and Class Distribution for Each Session

and Participant

Table 2. Number of Instances and Class Distribution for Each Session and Participant

Participants Sessions Number of Instances Negative Arousal Negative Valence

P-0

S-0 35,941 4% 2%
S-1 38,851 31% 7%
S-2 47,510 29% 17%
S-3 30,143 19% 15%
S-4 38,011 30% 28%

Total 190,456 23% 14%

P-2

S-0 60,437 25% 16%
S-1 25,387 27% 14%
S-2 13,223 34% 26%
S-3 28,417 28% 22%
S-4 25,538 22% 14%
S-5 17,653 19% 19%

Total 170,655 25% 18%

P-3

S-0 22,547 34% 33%
S-1 94,092 17% 19%
S-2 59,177 43% 43%
S-3 3,603 9% 11%

Total 179,419 28% 29%

P-4

S-0 27,823 26% 30%
S-1 48.298 32% 32%
S-2 50.032 28% 28%
S-3 12.550 56% 57%

Total 138.703 31% 32%
Number of Instances: The number of instances for each session of every participant before applying the
windowing technique; Negative Arousal/Valence: The percentage of negative arousal/valence out of all
arousal/valence instances for each session of every participant.
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A.4 Table of the Annotation Criteria

Table 3. Arousal/Valence Annotation Criteria

Level Label Definition

Positive Arousal The child performs a high level of interactive activities with the
socially assistive robot (SAR) system. The child is engaged with the
robot and showing clear, visible signs of physical activities (e.g., hand
clapping, talking to the robot, touching the tablet/robot, and actively
playing with the robot).

Neutral Arousal The child performs a low level of interactive activities with the SAR
system. The child shows no clear, visible signs of physical activity with
the robot, but seems calm, thinking, and engaged with the SAR system.

Negative Arousal The child performs no interactive activity with the SAR system (e.g.,
looking away, not showing interest in the interaction with the robot,
seeking help from the parents, discussing the game or puzzle with
parents, playing with toys, bored, sleepy).

Positive Valence The child shows clear positive emotions toward the SAR system (e.g.,
laughing or smiling with the robot, showing signs of happiness or joy
such as clapping or celebrating).

Neutral Valence The child shows no clear, visible signs of pleasant or unpleasant
emotions (e.g., calm and engaged with the robot, seeking help from
parents, thinking and working with the robot).

Negative Valence The child shows clear and visible negative emotions and disinterest
toward the SAR system (e.g., being unhappy or frustrated, showing
confusion or dissatisfaction, visibly upset, rubbing eyes, putting hands
in front of the face or shaking head to show dissatisfaction and
embarrassment, looking away and showing disinterest (not seeking
help), asking to play with toys instead of the SAR system).

Arousal and valence were annotated as binary labels (positive/neutral or negative) for each participant following
standard definitions grounded in established practices from emotion science, automated affect recognition, and
human-robot interaction [25, 39, 43].
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