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ABSTRACT

We consider the problem of clustering mixtures of mean-separated

Gaussians in high dimensions. We are given samples from amixture

of 𝑘 identity covariance Gaussians, so that the minimum pairwise

distance between any two pairs of means is at least Δ, for some

parameter Δ > 0, and the goal is to recover the ground truth clus-

tering of these samples. It is folklore that separation Δ = Θ(
√︁
log𝑘)

is both necessary and sufficient to recover a good clustering (say

with constant or 1/poly(𝑘) error), at least information theoreti-

cally. However, the estimators which achieve this guarantee are

inefficient. We give the first algorithm which runs in polynomial

time, and which almost matches this guarantee. More precisely, we

give an algorithm which takes polynomially many samples and

time, and which can successfully recover a good clustering, so long

as the separation is Δ = Ω(log1/2+𝑐 𝑘), for any 𝑐 > 0. Previously,

polynomial time algorithms were only known for this problem

when the separation was polynomial in 𝑘 , and all algorithms which

could tolerate poly log𝑘 separation required quasipolynomial time.

We also extend our result to mixtures of translations of a distri-

bution which satisfies the Poincaré inequality, under additional

mild assumptions. Our main technical tool, which we believe is

of independent interest, is a novel way to implicitly represent and

estimate high degree moments of a distribution, which allows us to

extract important information about high-degree moments without

ever writing down the full moment tensors explicitly.
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· Theory of computation → Unsupervised learning and clus-

tering.
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1 INTRODUCTION

Gaussian mixture models are some of the most popular generative

models in both theory and practice. A 𝑘-Gaussian mixture modelM
(henceforth 𝑘-GMM) is a distribution specified by 𝑘 non-negative

mixing weights𝑤1, . . . ,𝑤𝑘 which sum to 1, and 𝑘 component Gaus-

sians 𝑁 (𝜇1, Σ1), . . . , 𝑁 (𝜇𝑘 , Σ𝑘 ), and is given by the probability den-

sity function

M =

𝑘∑︁

𝑖=1

𝑤𝑖𝑁 (𝜇𝑖 , Σ𝑖 ) .

In other words, to draw a sample fromM, we select the 𝑖-th com-

ponent with probability 𝑤𝑖 , and then draw an independent sam-

ple from 𝑁 (𝜇𝑖 , Σ𝑖 ). An important special case of this model is the

isotropic (also sometimes referred to as spherical) case, where Σ𝑖 = 𝐼

for all 𝑖 = 1, . . . , 𝑘 .

One of the most important and well-studied problems for GMMs

and isotropic GMMs in particular is clustering. Given 𝑛 independent

samples 𝑋1, . . . , 𝑋𝑛 drawn from an unknown 𝑘-GMM, the goal of

clustering is to recover a partition of the data points into 𝑘 parts

𝑆1, . . . , 𝑆𝑘 so that (a) almost all the points in every cluster are drawn

from the same component Gaussian, and (b) for every component,

there is some cluster which contains almost all of the samples

drawn from it. Of course, not every isotropic GMM is clusterable:

for instance, if two components are identical, then it is information-

theoretically impossible to detect which component a sample came

from, and so recovering a good clustering is also impossible. In the

isotropic setting, a necessary and sufficient condition for the GMM

to be clusterable is some amount of mean separation, namely, that𝜇𝑖 − 𝜇 𝑗

2
≥ Δ for all 𝑖 ≠ 𝑗 , for some parameter Δ.

The question then becomes: how small can we take Δ so that we

can still cluster? For simplicity, for the remainder of this section,

let us assume that 𝑤𝑖 ≥ 1/poly(𝑘) for all 𝑖 = 1, . . . , 𝑘 , that is, all

the components have a nontrivial amount of weight. Information-

theoretically, it is well-known (see e.g. [40]) that Δ = Θ(
√︁
log𝑘)

separation is necessary and sufficient to achieve a clustering which

correctly clusters more than an 1 − 𝜖 fraction of the points with

high probability, for all 𝜖 > 0. Unfortunately, all known efficient

algorithms for clustering at this separation rely on brute force

methods, and run in exponential time.

If we restrict our attention to efficient estimators, the state of

affairs is a bit more complicated. In fact, for over 20 years, the small-

est separation that polynomial time algorithms could tolerate was

Δ = Ω(𝑘1/4) [44]. It was not until recently that three concurrent

papers [21, 26, 31] gave algorithms which could handle separation

Δ = Ω(𝑘𝛾 ) with runtime and sample complexity 𝑂 (𝑑poly(1/𝛾 ) ). In
particular, whenever the separation is some fixed polynomial in

𝑘 , these algorithms run in polynomial time. Unfortunately, if we

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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wish to achieve the optimal separation of Ω(
√︁
log𝑘)Ðor indeed,

any polylogarithmic amount of separationÐthese algorithms would

require quasipolynomial time and sample complexity.

The barrier at quasipolynomial time. These algorithms all get

stuck at quasipolynomial time when Δ = Θ(poly log𝑘) for the
same reason. Fundamentally, all current algorithmic approaches to

this problem rely on the following geometric identifiability fact:

Given enough samples from an isotropic 𝑘-GMM with

separation Δ = Ω(𝑘𝛾 ), then any sufficiently large sub-

set of samples whose empirical 𝑡 = Θ(1/𝛾) moments

approximately match those of a Gaussian along all pro-

jections must essentially recover one of the true clusters.

Algorithmically, this amounts to finding a subset of points whose

empirical 𝑡-th moment tensor is close to that of a Gaussian in the

appropriate norm. Since this results in a hard optimization problem

whenever 𝑡 > 2, these algorithms often solve some suitable relax-

ation of this using something like the Sum of Squares hierarchy.

But, as the separation decreases, the algorithms must match more

and more moments. In particular, to achieve Δ = Θ(poly log𝑘),
one must set 𝑡 = poly log𝑘 , that is, one must match polylogarith-

mically many moments. However, even writing down the degree

𝑡 = poly log𝑘 moment tensor requires quasipolynomial time, and

guaranteeing that the empirical moment tensor concentrates re-

quires quasipolynomially many samples. As a result, the aforemen-

tioned algorithms all require quasipolynomial time and sample

complexity, as they need to not only write down the moment ten-

sor, but perform some fairly complex optimization tasks on top of

it.

On the flip side, there is no concrete reason for pessimism ei-

ther. While there are lower bounds against large classes of effi-

cient algorithms for clustering mixtures of arbitrary Gaussians,

see e.g. [10, 20], none of these apply when the components are

isotropic. In particular, this leaves open the appealing possibility

that one could even cluster down to separation Δ = Θ(
√︁
log𝑘) in

polynomial time. Stated another way, the question becomes:

Can we cluster any clusterable mixture of isotropic

Gaussians in polynomial time?

1.1 Our Results

In this paper, we (almost) resolve this question in the affirma-

tive. Namely, for all constants 𝑐 > 0, we give an algorithm which

takes polynomially many samples and time, and which can clus-

ter with high probability, so long as the separation satisfies Δ =

Ω(log1/2+𝑐 𝑘). In other words, our algorithm can almost match the

information theoretically optimal separation, up to sub-polylogarithmic

factors. Our main theorem is:

Theorem 1.1 (informal, see Theorem 2.5, Corollary 2.6). Let 𝑐 > 0

be fixed but arbitrary. LetM be a mixture of 𝑘 isotropic Gaussians

with minimum mixing weight lower bounded by 1/poly(𝑘), and min-

imum mean separation at least Δ = Ω(log1/2+𝑐 𝑘). Then, there is an
algorithm which, given samples 𝑋1, . . . , 𝑋𝑛 ∼ M for 𝑛 = poly(𝑘,𝑑),
outputs a clustering which is correct for all of the points, with high

probability. Moreover, this algorithm runs in time poly(𝑑, 𝑘).
We briefly remark that we can handle arbitrary mixing weights

as well, but for simplicity we only state the theorem here in the

more natural regime where all the mixing weights are not too

small. We also remark that a simple corollary of this is that we

can also estimate the parameters of M to good accuracy in poly-

nomial time. In fact, by using our algorithm as a warm start for

the method proposed in [40], we can achieve arbitrarily good accu-

racy for parameter estimation, in polynomial time. It is known that

Δ = Ω(
√︁
log𝑘) is also necessary to achieve nontrivial parameter

estimation with polynomially many samples [40], so our results

for parameter estimation are also almost-optimal, in terms of the

separation that they handle. We note that our formal theorems are

actually stated for parameter estimation, rather than clustering,

however, in light of [40], these two problems are equivalent in the

regime we consider.

Our main technique (as we will discuss in more detail later)

extends to beyond Gaussians, and in fact also allows us to cluster

any mixture of translations of a distribution D, so long as this

distribution satisfies the Poincaré inequality, under a mild technical

condition. Recall that a distribution D over R𝑑 is said to be 𝜎-

Poincaré if for all differentiable functions 𝑓 : R𝑑 → R, we have

Var
𝑋∼D

[𝑓 (𝑋 )] ≤ 𝜎2 · E
𝑋∼D

[
∥∇𝑓 (𝑋 )∥22

]
.

This condition is widely studied in probability theory, and is sat-

isfied by many natural distribution classes. For instance, isotropic

Gaussians are 1-Poincaré, and any isotropic logconcave distribution

is𝜓 -Poincaré, where𝜓 is the value of the KLS constant (see e.g. [43]

for an overview of the KLS conjecture).

In fact, the family of Poincaré distributions is the most general

family of distributions for which the previously mentioned Sum

of Squares-based methods for clustering are known to work. For

any well-separated mixture of 1-Poincaré distributions, [31] shows

that one can recover the same guarantees as mentioned above: if

the minimum mean separation is Δ = Ω(𝑘𝛾 ), then their algorithm

successfully clusters the points in time 𝑂 (𝑑poly(1/𝛾 ) ). As before,
when the separation is polylogarithmic, the runtime and sample

complexity of their method is once again quasipolynomial.

We show that one can improve the runtime and sample complex-

ity to polynomial time, under two additional assumptions: first, the

mixture must consist of translated versions of the same Poincaré

distribution which we can get samples from, and second, the max-

imum and minimum separations between any two components

must be polynomially related. More concretely, we show:

Theorem 1.2 (informal, see Theorem 2.3, Corollary 2.4). Let 𝑐 > 0

be fixed but arbitrary. Let D be a fixed distribution with mean zero

over R𝑑 which is 1-Poincaré. Let M be a mixture of 𝑘 distributions

where each component is of the form 𝜇𝑖+D. Assume that theminimum

mixing weight in this distribution is at least 1/poly(𝑘), and moreover,

assume that

min
𝑖≠𝑗

𝜇𝑖 − 𝜇 𝑗

2
≥ Ω(log1+𝑐 𝑘)

max
𝑖≠𝑗

𝜇𝑖 − 𝜇 𝑗

2
≤ poly

(
min
𝑖≠𝑗

𝜇𝑖 − 𝜇 𝑗

2

)
.

Then, there is an algorithm which, given samples 𝑋1, . . . , 𝑋𝑛 ∼ M
and samples 𝑧1, . . . , 𝑧𝑛 ∼ D for𝑛 = poly(𝑘,𝑑), outputs a clustering of
𝑋1, . . . , 𝑋𝑛 which is correct for all of the points, with high probability.

Moreover, this algorithm runs in time poly(𝑑, 𝑘).
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Remark. Note that we only need the samples from D. We do not

need to actually know the distribution or access the p.d.f.

We note that separation Ω(log𝑘) is optimal for general Poincaré

distributions, as Poincaré distributions include some distributions

with exponential tails, for which Ω(log𝑘) separation is necessary

to cluster. Thus, the separation that we require is almost optimal

for general Poincaré distributions. We also note that one immedi-

ate consequence of this theorem, alongside Chen’s recent break-

through result [13] for KLS that 𝜓 ≤ exp(𝐶
√︁
log𝑑 log log𝑑) for

some universal constant 𝐶 , and a simple application of PCA, is

that we can cluster a mixture of translates of an isotropic logcon-

cave distribution in polynomial time, as long as the separation is

Ω(exp(𝐶
√︁
log𝑘 log log𝑘)).

1.2 Our Techniques

In this section, we describe how our techniques work at a high

level. Our goal will be to devise a method which can, given samples

𝑋,𝑋 ′ ∼ M, detect whether or not 𝑋 and 𝑋 ′ are from the same

components or from different ones.

We first make the following reduction. Notice that if M is a

mixture with separation Δ, then (𝑋 − 𝑋 ′)/
√
2 can be thought of as

a sample from the difference mixture M ′. This is a mixture with(𝑘
2

)
+ 1 components, each with covariance 𝐼 . It has one component

with mean zero, and the means of the remaining components all

have norm at least Δ/
√
2. Moreover, given𝑋,𝑋 ′ ∼ M, we have that

𝑋 − 𝑋 ′ is drawn from the mean zero component of the difference

mixture if and only if 𝑋,𝑋 ′ were drawn from the same component

in the original mixture. Thus, to check if two samples from the

original mixture 𝑋,𝑋 ′ are from the same component, it suffices

to be able to detect, given a sample from the difference mixture,

whether or not this sample comes from the mean zero component

or not.

In the remainder of this section, in a slight abuse of notation,

we will let M denote the difference mixture, we will assume it has

𝑘 components with nonzero mean, and we will assume that all

nonzero means of the difference mixture have norm at least Δ. We

will henceforth refer to the components with nonzero mean as the

nonzero components of the mixture. This reparameterization of the

problem only changes things by polynomial factors, which do not

impact our qualitative results.

1.2.1 Rough clustering via implicit moment tensors. The main con-

ceptual contribution of our paper is a novel way to implicitly access

degree 𝑡 = 𝑂 (log𝑘/log log𝑘) moment information with polynomi-

ally many samples and time. We do so by carefully constructing an

implicitly maintained projection map from R𝑑
𝑡
down to a subspace

of dimension 𝑘 , which still preserves meaningful information about

the nonzero components. For now, let us first focus on the case

where the maximum norm of any mean in the difference mixture

is upper bounded by poly(Δ), or equivalently, the maximum sepa-

ration between any two components in the original mixture is at

most polynomially larger than the minimum separation.

Low rank estimators for Hermite polynomials. Central to our

methods is the 𝑡-th Hermite polynomial tensor, a classical object

in probability theory, which we denote ℎ𝑡 : R
𝑑 → R𝑑𝑡 . These are

explicit polynomials, and are the natural analog of the univariate

Hermite polynomials to high dimensions. A well-known fact about

the Hermite polynomial tensor is that

E
𝑋∼𝑁 (𝜇,𝐼 )

[ℎ𝑡 (𝑋 )] = 𝜇⊗𝑡 . (1)

Throughout the introduction, we will treat all tensors as flattened

into vectors in R𝑑
𝑡
(in a canonical way) e.g. we view the RHS of

the above as a vector in R𝑑
𝑡
. One simple but important implication

of (1) is that

E
𝑋∼M

[ℎ𝑡 (𝑋 )] =
𝑘∑︁

𝑖=1

𝑤𝑖𝜇
⊗𝑡
𝑖 . (2)

This fact will be crucial for us going forward.

However, a major bottleneck for algorithmically using the Her-

mite polynomial tensors is that we cannot write down ℎ𝑡 (𝑋 ) in
polynomial time when 𝑡 gets large, e.g. when 𝑡 = Ω(log𝑘/log log𝑘),
which is the regime we will require.

To get around this, we will use a modification of the Hermite

polynomial tensors that can still be used to estimate the RHS of (2)

but can also be easily manipulated implicitly. In particular, we will

construct a random polynomial 𝑅𝑡 : R
𝑑 → R𝑑𝑡 i.e. we can imagine

𝑅𝑡 is actually a polynomial in 𝑥 whose coefficients are randomly

chosen. The polynomial 𝑅𝑡 satisfies two key properties.

(1) 𝑅𝑡 (𝑥) is an unbiased estimator for ℎ𝑡 (𝑥) with bounded vari-

ance i.e. for a fixed 𝑥 , E[𝑅𝑡 (𝑥)] = ℎ𝑡 (𝑥) where the expecta-
tion is over the random coefficients of 𝑅𝑡 .

(2) For any choice of the randomness in the coefficients, the

polynomial 𝑅𝑡 (𝑥) can be written as a sum of polynomially

many rank-1 tensors i.e. tensors of the form

𝑣 = 𝑣1 ⊗ . . . ⊗ 𝑣𝑡 , where 𝑣𝑖 ∈ R𝑑 for all 𝑖 = 1, . . . , 𝑡 .

Note that the first property implies that

E
𝑅𝑡 ,𝑋∼𝑁 (𝜇,𝐼 )

[𝑅𝑡 (𝑋 )] = 𝜇⊗𝑡 , and E
𝑅𝑡 ,𝑋∼M

[𝑅𝑡 (𝑋 )] =
𝑘∑︁

𝑖=1

𝑤𝑖𝜇
⊗𝑡
𝑖 .

(3)

The second property is the main motivation behind the definition

of 𝑅𝑡 , as it implies that we can have efficient, but restricted access

to it. The key point is that if our algorithm can be implemented

with techniques that only require accesses to rank-1 tensors, we

can implicitly access 𝑅𝑡 in polynomial time.

Implicitly finding the span of the tensorized means. Motivated by

the above discussion, our goal will be to find a projection matrix

Π : R𝑑
𝑡 → R𝑘 with the following properties:

(1) Efficient application If 𝑣 ∈ R𝑑𝑡 is a rank-1 tensor, then Π𝑣

can be evaluated in polynomial time.

(2) Zero component is small If𝑋 ∼ 𝑁 (0, 𝐼 ), then ∥Π𝑅𝑡 (𝑋 )∥2 <

𝑘50 with high probability.

(3) Nonzero components are large If 𝑋 ∼ M is a sample

from a nonzero component of the difference mixture, then

∥Π𝑅𝑡 (𝑋 )∥2 ≥ 𝑘100 with high probability.

Given such a projection map, our clustering procedure is straight-

forward: given two samples 𝑋,𝑋 ′ from the original mixture, we

apply the projection map to many copies of 𝑅𝑡 ((𝑋 − 𝑋 ′)/
√
2), and

cluster them in the same component if and only if their projected

norm is small on average. We show that the above properties, as

1250



STOC ’22, June 20ś24, 2022, Rome, Italy Allen Liu and Jerry Li

well as some facts about the concentration of 𝑅𝑡 , imply that this

clustering algorithm succeeds with high probability, assuming we

have access to Π.

It thus remains how to construct Π. In fact, there is a natural

candidate for such a map. Let 𝜇1, . . . , 𝜇𝑘 denote the means of the

nonzero components, and let

𝑆𝑡 = span
({
𝜇⊗𝑡𝑖

}𝑘
𝑖=1

)
.

If we could find the projection Γ𝑡 : R𝑑
𝑡 → R𝑘 onto the subspace

𝑆𝑡 , it can be verified that this projection map would satisfy Condi-

tions (2) and (3).1

Moreover, there is a natural estimator for this subspace. In par-

ticular (3) implies that E[𝑅2𝑡 (𝑋 )] rearranged as a 𝑑𝑡 × 𝑑𝑡 matrix in

a canonical way is exactly

𝑘∑︁

𝑖=1

𝑤𝑖
(
𝜇⊗𝑡𝑖

) (
𝜇⊗𝑡𝑖

)⊤
.

Notice that this matrix is rank 𝑘 , and moreover, the span of its

nonzero eigenvectors is exactly 𝑆𝑡 . Consequently, if we could es-

timate this quantity, then find the projection onto the span of the

top 𝑘 eigenvectors, we would be done.

As alluded to earlier, the difficulty is that doing this naively

would not be efficient; writing down any of these objects would

take quasipolynomial time. Instead, we seek to find an implicit

representation of Γ𝑡 with the key property that it can be applied to

rank-1 tensors in polynomial time.

We will do so by iteratively building an approximation to this

subspace. Namely, we give a method which, given a good approx-

imation to Γ𝑠−1 : R𝑑
𝑠−1 → R𝑘 which can be efficiently applied to

flattenings of rank-1 tensors, constructs a good approximation to

Γ𝑠 with the same property. We do so by obtaining a good approxi-

mation to the 𝑑𝑘 × 𝑑𝑘 sized matrix

𝑀𝑠 =

𝑘∑︁

𝑖=1

𝑤𝑖

(
𝜇𝑖 ⊗ Γ𝑠−1𝜇

⊗(𝑠−1)
𝑖

) (
𝜇𝑖 ⊗ Γ𝑠−1𝜇

⊗(𝑠−1)
𝑖

)⊤
. (4)

Notice that𝑀𝑠 has rank 𝑘 , and moreover, the span of its 𝑘 largest

eigenvectors is equal to the span of
{
𝜇𝑖 ⊗ Γ𝑠−1𝜇

⊗(𝑠−1)
𝑖

}𝑘
𝑖=1

. There-

fore, if we let Π𝑠 : R
𝑑𝑘 → R𝑘 denote the projection onto the span

of the 𝑘 largest eigenvectors of𝑀𝑠 , then one can easily verify that

Γ𝑠 = Π𝑠 (𝐼 ⊗ Γ𝑠−1) . (5)

Moreover, if Γ𝑠−1 can be efficiently applied to flattenings of rank-1

tensors in R𝑑
𝑠−1

, then the form of (5) immediately implies that Γ𝑠
can also be applied efficiently to flattenings of rank-1 tensors in

R
𝑑𝑠 .

It remains to demonstrate how to efficiently approximate 𝑀𝑠 ,

given Γ𝑠−1. There is again a fairly natural estimator for this ma-

trix. Namely, each component of the sum in (4) can be formed by

rearranging the length-(𝑑𝑘)2 vector
(𝐼 ⊗ Γ𝑠−1)⊗2 𝜇⊗2𝑠𝑖 = E

𝑅2𝑠 ,𝑋∼𝑁 (𝜇𝑖 ,𝐼 )

[
(𝐼 ⊗ Γ𝑠−1)⊗2 𝑅2𝑠 (𝑋 )

]
.

1Here and throughout the introduction, we will assume for simplicity of exposition

that the vectors 𝜇⊗𝑠1 , . . . , 𝜇⊗𝑠
𝑘

are linearly independent, for all 𝑠 = 1, . . . , 𝑡 , so that 𝑆𝑠
is always a 𝑘-dimensional subspace, for all 𝑠 = 1, . . . , 𝑡 . In general, our algorithms
work even if they are not linearly independent, and will always find a subspace which
contains 𝑆𝑡 , which will suffice for our purposes.

into a 𝑑𝑘 × 𝑑𝑘 sized matrix in the canonical way. In particular,

this implies that the overall matrix is the rearrangement of the

length-(𝑑𝑘)2 vector
𝑘∑︁

𝑖=1

𝑤𝑖 (𝐼 ⊗ Γ𝑠−1)⊗2 𝜇⊗2𝑠𝑖 = E
𝑅2𝑠 ,𝑋∼M

[
(𝐼 ⊗ Γ𝑠−1)⊗2 𝑅2𝑠 (𝑋 )

]
(6)

into a 𝑑𝑘 × 𝑑𝑘 sized matrix in the canonical way. Since 𝑅2𝑠 is a

sum of polynomially many rank-1 tensors, and by our inductive

hypothesis, Γ𝑠−1 can be efficiently applied to rank-1 tensors, we can

efficiently estimate the right hand side of (6), given samples from

M.

Putting it all together, this allows us to approximate𝑀𝑠 efficiently

given Γ𝑠−1, which, by (5), gives us the desired expression for Γ𝑠 .

Iterating this procedure gives us a way to estimate Γ𝑡 as a sequence

of nested projection maps, i.e.

Γ𝑡 ≈ Π𝑡 (𝐼 ⊗ Π𝑡−1 (𝐼 ⊗ . . .)) ,
where we can compute Π1, . . . ,Π𝑡 efficiently, given samples from

M. This form allows us to evaluate Γ𝑡 efficiently on any flattening

of a rank-1 tensor, thus satisfying Condition (1), and we previously

argued that Γ𝑡 satisfies Conditions (2) and (3). Combining all of these

ingredients gives us our clustering algorithm, when the minimum

and maximum separations are at most polynomially separated.

Implicit moment tensors for Poincaré distributions. So far, we

have only discussed how to do this implicit moment estimation for

isotropic Gaussians. It turns out that all of the quantities discussed

above have very natural analogues for any Poincaré distribution.

For instance, given any Poincaré distribution D with zero mean,

there is an explicit polynomial tensor we call the D-adjusted poly-

nomial 𝑃𝑡,D (see Section 4) that essentially satisfies all the same

properties that we needed above. If we use these polynomials in-

stead of the Hermite polynomial tensor, it turns out that all of these

proofs directly lift to any Poincaré distribution. In fact, in the actual

technical sections, we directly work with arbitrary Poincaré distri-

butions, as everything is stated very naturally there. The resulting

clustering algorithm immediately gives us Theorem 2.3.

Sample complexity. Previous approaches always needed to es-

timate high degree moment tensors, and as a result, their sample

complexity was quasipolynomial. While we may also need to esti-

mate fairly high degree polynomials, notice that all quantities that

we will deal with will be polynomially bounded. This is because we

can terminate our procedure at any 𝑡 which satisfies Conditions (2)

and (3). Therefore, all the quantities that we need are polynomially

large. As a result, one can verify that the polynomials we construct

will also only ever have polynomially large range, with high proba-

bility. Therefore, all quantities we need to estimate can be estimated

using polynomially many samples. We defer the detailed proofs

outlined in this discussion to Sections 4, 5, 6 and 7. Note that in

those sections, we work with a general Poincaré distribution but

the outline follows the description here.

1.2.2 Fine-grained clustering for Gaussians. We now discuss how

to handle general mixtures of isotropic Gaussians, without any

assumption on the maximum separation. The problem with ap-

plying the implicit moment estimation method outlined above to

this general setting is that the signal from the components in the
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difference mixture with relatively small mean will be drowned out

by the signal from the components with much larger norm. Conse-

quently, we can reliably cluster points from the components with

large mean, but we could obtain an imperfect clustering for some

components with somewhat smaller mean, and we will be unable

to detect components with very small mean.

To overcome this, we devise a recursive clustering strategy. One

somewhat simple approach is as follows. We first use our rough

clustering algorithm described above to find a łsignal directionž

𝑣 ∈ R𝑑 . This direction will have the property that there is a pair

of well-separated means along this direction. Thus, if we project

the data points on this direction, and take only points which lie

within a randomly chosen small interval on this interval, we can

guarantee that with reasonable probability, we only accept points

from at most half of the components of the mixture. Of course, after

restricting to this interval, the resulting distribution is no longer

a mixture of Gaussians. However, if we consider the projection of

these accepted points to the subspace orthogonal to 𝑣 , the resulting

distribution will again be a mixture of fewer isotropic Gaussians.

We can then recurse on this mixture with fewer components. Here,

we are crucially using the fact that isotropic Gaussians remain

isotropic Gaussians after slicing and projecting orthogonally.

While this strategy described above, when implemented care-

fully, would work down to Δ = poly(log𝑘), it would not be able to

achieve the nearly optimal separation in Theorem 2.5. To achieve

the nearly optimal separation, there are several more technical

details that need to be dealt with and thus there will be several

additional steps in the algorithm. Due to space constraints, the

fine-grained clustering steps are omitted here and deferred to the

full version.

1.3 Related Work

The literature on mixture modelsÐand Gaussian mixture models

in particularÐdates back to seminal work of Pearson [38] and is

incredibly vast. For conciseness, we will focus only on the most

related papers here. Our results are most closely related to the

aforementioned line of work on studying efficient algorithms for

clustering and parameter estimation under mean-separation con-

ditions [5, 14, 15, 19, 21, 26, 31, 40, 44]. However, none of these

algorithms can handle polylogarithmic separation in polynomial

time.

We also note that a number of papers also generalize from mix-

tures of Gaussians to mixtures of more general classes of distri-

butions [3, 26, 31, 32, 36]. These algorithms fall into two classes:

either they require separation which is at least Ω(𝑘1/2) or even
larger, but they can handle general subgaussian distributions, or

they require more structure on the higher moments of the dis-

tribution, but they can tolerate much less separation. The most

general condition under which the latter is known to work is the

condition commonly referred to as certifiable hypercontractivity,

which roughly states that the Sum-of-Squares hierarchy can certify

that the distribution has bounded tails. While there is no complete

characterization of what distributions satisfy this condition, the

most general class of distributions for which it is known to hold is

the class of Poincaré distributions [31], which is also the class of

distributions we consider here.

Another line of work focuses on parameter estimation for mix-

tures models without separation conditions [7, 19, 25, 30, 37]. These

papers typically make much weaker assumptions on the compo-

nents, namely, that they are statistically distinguishable, and the

goal is to recover the parameters of the mixture, even in settings

where clustering is impossible. However, typically, these algorithms

incur a sample complexity and runtime which is exponential in

the number of components; indeed, [25] demonstrate that this is

tight, even in one dimension, when the Gaussians can have different

variances.

To circumvent this, researchers have also considered the easier

notion of proper or semi-proper learning, where the goal is to out-

put a mixture of Gaussians which is close to the unknown mixture

in statistical distance. A learning algorithm is said to be proper if

its output is a mixture of 𝑘 Gaussians, where 𝑘 is the number of

components in the true mixture, and semi-proper if it outputs a mix-

ture of 𝑘 ′ ≥ 𝑘 Gaussians. While the sample complexity of proper

learning is polynomial in all parameters, all known algorithms still

incur a runtime which is exponential in 𝑘 , even in the univariate

setting [2, 6, 16, 22, 34]. When the hypothesis is only constrained

to be semi-proper, polynomial time algorithms are known in the

univariate setting [9, 18, 33], but these do not extend to high dimen-

sional settings. In the more challenging high dimensional regime,

a remarkable recent result of [19] demonstrate that for a mixture

of isotropic Gaussians, one can achieve semi-proper learning with

quasipolynomial sample complexity and runtime. They do this by

explicitly constructing a small cover for the candidate means, by

techniques inspired by algebraic geometry.

An even weaker goal that has been commonly considered is

that of density estimation, where the objective is to output any

hypothesis which is close to the unknown mixture in statistical

distance. Efficient (in fact, nearly optimal) algorithms are again

known for this problem in low dimensions, see e.g. [1, 11, 12, 18],

but as was the case with proper learning, these techniques do not

extend nicely to high dimensional settings.

An alternate assumption that has been considered in the litera-

ture is that the means satisfy some algebraic non-degeneracy as-

sumptions. For instance, such assumptions are satisfied in smoothed

analysis settings [4, 8, 23, 29]. Often in these settings, access to con-

stant order moments suffice (e.g. 3rd or 4th moments), although we

note that [8] is a notable exception. In contrast, we do not make

any non-degeneracy assumptions, and our methods need to access

much higher moments.

We also mention a line of work studying the theoretical behavior

of the popular expectation-maximization (EM) algorithm for learn-

ing mixtures of Gaussians [15, 17, 46]. However, while the above

works can prove that the dynamics of EM converge in limited set-

tings, it is known that EM fails to converge in general, even for

mixtures of 3 Gaussians [17, 45].

Finally, we note that our work bears some vague resemblance to

the general line of work that uses spectral-based methods to speed

up Sum-of-Squares (SoS) algorithms. Spectral techniques have been

used to demonstrate to speed up SoS-based algorithms in various

settings such as tensor decomposition [27, 28, 35, 41] and refuting

random CSPs [39]. Similarly, it has been observed that in some

settings, SoS-based algorithms can be sped up, when the SoS proofs

are much smaller than the overall size of the program [24, 42]. Our
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algorithm shares some qualitative similarities with some of these

approachesÐfor instance, it is based on a (fairly complicated) spec-

tral algorithm. However, we do not know of a concrete connection

between our algorithm and this line of work. It is possible, for

instance, that our algorithm could be interpreted as extracting a

specific randomized polynomially-sized SoS proof of identifiability,

but we leave further investigations of this to future work.

2 FORMAL PROBLEM SETUP AND OUR

RESULTS

In this section, we formally define the problems we consider, and

state our formal results. For the remainder of this paper, we will

always let ∥·∥ denote the ℓ2 norm.

2.1 Clustering Mixtures of Poincare

Distributions

The general problem that we study involves clustering mixtures of

Poincare distributions. We begin with a few definitions.

Definition 2.1 (Poincare Distribution). For a parameter 𝜎 , we say

a distribution D on R𝑑 is 𝜎-Poincare if for all differentiable functions

𝑓 : R𝑑 → R,

Var
𝑧∼D

[𝑓 (𝑧)] ≤ 𝜎2 E
𝑧∼D

[∥∇𝑓 (𝑧)∥2] .

Definition 2.2. Let D be a distribution on R𝑑 . We use D(𝜇1) for
𝜇1 ∈ R𝑑 to denote the distribution obtained by shifting D by the

vector 𝜇1.

We assume that there is some 𝜎-Poincare distribution D on

R
𝑑 that we have sample access to. Since everything will be scale

invariant, it will suffice to focus on the case 𝜎 = 1. For simplicity

we assume thatD has mean 0 (it is easy to reduce to this case since

we can simply estimate the mean of D and subtract it out). We also

assume that we have sample access to a mixture

M = 𝑤1D(𝜇1) + · · · +𝑤𝑘D(𝜇𝑘 )

where the mixing weights 𝑤1, . . . ,𝑤𝑛 and means 𝜇1, . . . , 𝜇𝑘 are

unknown. We will assume that we are given a lower bound on the

mixing weights𝑤min. We consider the setting where there is some

minimum separation between all pairs of means 𝜇𝑖 , 𝜇 𝑗 so that the

mixture is clusterable. In the proceeding sections, when we say

an event happens with high probability, we mean that the failure

probability is smaller than any inverse polynomial in 𝑘, 1/𝑤min.

Our main theorem is stated below.

Theorem 2.3. Let D be a 1-Poincare distribution on R𝑑 . Let

M = 𝑤1D(𝜇1) + · · · +𝑤𝑘D(𝜇𝑘 )

be a mixture of translated copies ofD. Let𝑤min, 𝑠 be parameters such

that 𝑤𝑖 ≥ 𝑤min for all 𝑖 and
𝜇𝑖 − 𝜇 𝑗

 ≥ 𝑠 for all 𝑖 ≠ 𝑗 . Let 𝛼 =

(𝑤min/𝑘)𝑂 (1) be some desired accuracy ( that is inverse polynomial)
2. Assume that

𝑠 ≥ (log(𝑘/𝑤min))1+𝑐

2If 𝑑 is much larger than 𝑘 and we wanted inverse polynomial accuracy like 1/𝑑
then we can simply decrease the parameter 𝑤min (and then we would need separation
log(𝑑𝑘) instead of log𝑘)

for some 0 < 𝑐 < 1. Also assume that

max
𝜇𝑖 − 𝜇 𝑗

 ≤ 𝑠𝐶

for some 𝐶 . There is an algorithm that takes

𝑛 = poly((𝑘𝑑/(𝑤min𝛼))𝐶/𝑐 )
samples from M and D and runs in poly(𝑛) time and with high

probability, outputs estimates

𝑤1, . . . ,𝑤𝑘 , 𝜇1, . . . , �̃�𝑘

such that for some permutation 𝜋 on [𝑘],
|𝑤𝑖 − �𝑤𝜋 (𝑖) | ≤ 𝛼,

𝜇𝑖 − �𝜇𝜋 (𝑖)
 ≤ 𝛼

for all 𝑖 .

Remark. If we could remove the assumption
𝜇𝑖 − 𝜇 𝑗

 ≤ 𝑠𝐶 , then
we would get a complete polynomial time learning result. Still, our

learning algorithm works in polynomial time for mixtures where

the maximum separation is polynomially bounded in terms of the

minimum separation.

An immediate consequence of Theorem 2.3 is that we can cluster

samples from the mixture with accuracy better than any inverse

polynomial.

Corollary 2.4. Under the same assumptions as Theorem 2.3, we

can recover the ground-truth clustering of the samples with high

probability i.e. we output 𝑘 clusters 𝑆1, . . . 𝑆𝑘 such that for some per-

mutation 𝜋 on [𝑘], the set 𝑆𝜋 (𝑖) consists precisely of the samples from

the component D(𝜇𝑖 ) for all 𝑖 .

2.2 Clustering Mixtures of Gaussians

In the case where the distribution D in the setup in Section 2.1

is a Gaussian, we can obtain a stronger result that works in full

generality, without any assumption about the maximum separa-

tion. The result for Gaussians also works with a smaller separation

of (log(𝑘/𝑤min))1/2+𝑐 which, as mentioned before, is essentially

optimal for Gaussians.

Theorem 2.5. Let M = 𝑤1𝑁 (𝜇1, 𝐼 ) + · · · +𝑤𝑘𝑁 (𝜇𝑘 , 𝐼 ) be an un-

known mixture of Gaussians in R𝑑 such that 𝑤𝑖 ≥ 𝑤min for all 𝑖

and
𝜇𝑖 − 𝜇 𝑗

 ≥ (log(𝑘/𝑤min))1/2+𝑐 for some constant 𝑐 > 0. Then

for any desired (inverse polynomial) accuracy 𝛼 ≥ (𝑤min/𝑘)𝑂 (1)

given 𝑛 = poly((𝑑𝑘/(𝑤min𝛼))1/𝑐 ) samples and poly(𝑛) runtime,

there is an algorithm that with high probability outputs estimates

{𝜇1, . . . , �̃�𝑘 } and {𝑤1, . . . ,𝑤𝑘 } such that for some permutation 𝜋 on

[𝑘], we have
|𝑤𝑖 − �𝑤𝜋 (𝑖) |,

𝜇𝑖 − �𝜇𝜋 (𝑖)
 ≤ 𝛼

for all 𝑖 ∈ [𝑘].

Again, once we have estimated the parameters ofM, it is easy to

cluster samples fromM into each of the components with accuracy

better than any inverse polynomial.

Corollary 2.6. Under the same assumptions as Theorem 2.5, with

high probability, we can recover the ground-truth clustering of the

samples i.e. we output 𝑘 clusters 𝑆1, . . . 𝑆𝑘 such that for some permu-

tation 𝜋 on [𝑘], the set 𝑆𝜋 (𝑖) consists precisely of the samples from

the component 𝑁 (𝜇𝑖 , 𝐼 ) for all 𝑖 .
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Note that throughout this paper, we do not actually need to know

the true number of components 𝑘 . All of the algorithms that we

write will work if instead of the number of components being 𝑘 ,

the number of components is upper bounded by 𝑘 i.e. we only need

to be told an upper bound on the number of components. In fact,

we can simply use 1/𝑤min as the upper bound on the number of

components.

2.3 Organization

In Section 3, we introduce basic notation and prove a few basic

facts that will be used later on.

Clustering Test: In Sections 4 - 7, we develop our key clustering

test i.e. we show how to test if two samples are from the same

component or not. Note that throughout these sections, when we

work with a mixture

M = 𝑤1D(𝜇1) + · · · +𝑤𝑘D(𝜇𝑘 ) ,

this will correspond to the łdifference mixture" of the mixture that

we are trying to learn and thus our goal will be to test whether a

sample came from a component with 𝜇𝑖 = 0 or 𝜇𝑖 far from 0.

In Section 4, we discuss how to construct estimators for the mo-

ments of a Poincare distribution that can be manipulated implicitly.

In the end, we construct a random polynomial 𝑅𝑡 such that

E
𝑥∼D(𝜇)

[𝑅𝑡 (𝑥)] = 𝜇⊗𝑡

and such that 𝑅𝑡 can be written as the sum of polynomially many

rank-1 tensors (see Corollary 4.9). In Section 5, we describe our

iterative projection technique and explain how it can be used to

implicitly store and apply a projection map Γ : R𝑑
𝑡 → R

𝑘 in

polynomial time to rank-1 tensors. In Section 6, we combine the

techniques in Section 4 and Section 5 to achieve the following: given

samples from

M = 𝑤1D(𝜇1) + · · · +𝑤𝑘D(𝜇𝑘 )

we can find a 𝑘 ×𝑑𝑡 projection matrix Γ𝑡 (where 𝑡 ∼ log𝑘/log log𝑘)
whose row span essentially contains all of 𝜇⊗𝑡1 , . . . 𝜇⊗𝑡

𝑘
(see Lemma

6.5). Finally, in Section 7, we use the projection map computed in

the previous step and argue that if 𝑥 ∼ D(0) then ∥Γ𝑡𝑅𝑡 (𝑥)∥ is

small and if 𝑥 ∼ D(𝜇𝑖 ) for 𝜇𝑖 far from 0, then ∥Γ𝑡𝑅𝑡 (𝑥)∥ is large
with high probability. Thus, to test a sample 𝑥 , it suffices to measure

the length of ∥Γ𝑡𝑅𝑡 (𝑥)∥.

Main Result for Mixtures of Poincare Distributions: In Section 8,

we prove Theorem 2.3, our main result for mixtures of Poincare

distributions. It will follow fairly easily from the guarantees of the

clustering test in Section 7.

Main Result for Mixtures of Gaussians: Proving our main result

for mixtures of Gaussians requires some additional work although

all of the machinery from Sections 4 - 7 can still be used. Roughly,

the two additional ingredients are

(1) Quantitatively stronger versions of the bounds in Sections

4 - 7 that exploit special properties of Gaussians in order to

get down from log1+𝑐 𝑘 to log1/2+𝑐 𝑘 separation

(2) A recursive clustering procedure that allows us to eliminate

the assumption about the maximum separation.

Due to space constraints these parts are omitted here and deferred

to the full version. While the additional pieces require working

through many technical details, the core of our learning algorithm

is still built from the machinery in Sections 4 - 7.

3 PRELIMINARIES

We now introduce some notation that will be used throughout the

paper. We use 𝐼𝑛 to denote the 𝑛 × 𝑛 identity matrix. For matrices

𝐴, 𝐵 we define 𝐴 ⊗kr 𝐵 to be their Kronecker product. This is to

avoid confusion with our notation for tensor products. For a tensor

𝑇 , we use flatten(𝑇 ) to denote the flattening of 𝑇 into a vector. We

assume that this is done in a canonical way throughout this paper.

3.1 Manipulating Tensors

We will need to do many manipulations with tensors later on so

we first introduce some notation for working with tensors.

Definition 3.1 (Tensor Notation). For an order-𝑡 tensor, we index its

dimensions {1, 2, . . . , 𝑡}. For a partition of [𝑡] into subsets 𝑆1, . . . , 𝑆𝑎
and tensors 𝑇1, . . . ,𝑇𝑎 of orders |𝑆1 |, . . . , |𝑆𝑎 | respectively we write

𝑇
(𝑆1)
1 ⊗ · · · ⊗ 𝑇 (𝑆𝑎)

𝑎

to denote the tensor obtained by taking the tensor product of𝑇1 in the

dimensions indexed by 𝑆1, 𝑇2 in the dimensions indexed by 𝑆2, and so

on for 𝑇3, . . . ,𝑇𝑎 .

Definition 3.2. For a vector 𝑥 (viewed as an order-1 tensor), we will

use the shorthand 𝑥⊗𝑆 to denote (𝑥⊗ |𝑆 |) (𝑆) (i.e. the product of copies
𝑥 in dimensions indexed by elements of 𝑆). For example,

𝑥⊗{1,3} ⊗ 𝑦⊗{2,4}
= 𝑥 ⊗ 𝑦 ⊗ 𝑥 ⊗ 𝑦 .

Definition 3.3 (Tensor Slicing). For an order-𝑡 tensor 𝑇 , we can

imagine indexing its entries with indices (𝜂1, . . . , 𝜂𝑡 ) ∈ [𝑑1] × · · · ×
[𝑑𝑡 ] where 𝑑1, . . . , 𝑑𝑡 are the dimensions of 𝑇 . We use the notation

𝑇𝜂𝑎1=𝑏1,...,𝜂𝑎𝑗 =𝑏 𝑗

to denote the slice of 𝑇 of entries whose indices satisfy the constraints

𝜂𝑎1 = 𝑏1, . . . , 𝜂𝑎 𝑗 = 𝑏 𝑗 .

Definition 3.4 (Unordered Partitions). We use 𝑍𝑡 (𝑆) to denote all
partitions of 𝑆 into 𝑡 unordered, possibly empty, parts.

Remark. Note the partitions are not ordered so {{1}, {2}} is the
same as {{2}, {1}}.

Definition 3.5. For a collection of sets 𝑆1, . . . , 𝑆𝑡 , we define

C({𝑆1, . . . , 𝑆𝑡 })
to be the number of sets among 𝑆1, . . . , 𝑆𝑡 that are nonempty.

Definition 3.6 (Symmetrization). Let 𝐴1, . . . , 𝐴𝑛 be tensors such

that 𝐴𝑖 is an order 𝑎𝑖 tensor having dimensions 𝑑 × · · · × 𝑑︸       ︷︷       ︸
𝑎𝑖

for some

integers 𝑎1, . . . , 𝑎𝑛 . We define
∑︁

𝑠𝑦𝑚

(𝐴1 ⊗ · · · ⊗ 𝐴𝑛) =
∑︁

𝑆1∪···∪𝑆𝑛=[𝑎1+···+𝑎𝑛 ]
𝑆𝑖∩𝑆 𝑗=∅
|𝑆𝑖 |=𝑎𝑖

𝐴
(𝑆1)
1 ⊗ · · · ⊗ 𝐴(𝑆𝑛)

𝑛 .

In other words, we sum over all ways to tensor 𝐴1, . . . , 𝐴𝑛 together to

form a tensor of order 𝑎1 + · · · + 𝑎𝑛 .
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3.2 Properties of Poincare Distributions

Here we state a few standard facts about Poincare distributions that

will be used later on.

Fact 3.7. Poincare distributions satisfy the following properties:

• Direct Products: If D1 and D2 are 𝜎-Poincare distributions

then their product D1 × D2 is 𝜎-Poincare

• Linear Mappings: If D is 𝜎-Poincare and 𝐴 is a linear map-

ping then the distribution 𝐴𝑥 for 𝑥 ∼ D is 𝜎 ∥𝐴∥op-Poincare
• Concentration: If D is 𝜎-Poincare then for any 𝐿-Lipchitz

function 𝑓 and any parameter 𝑡 ≥ 0, we have

Pr
𝑧∼D

[|𝑓 (𝑧) − E[𝑓 (𝑧)] | ≥ 𝑡] ≤ 6𝑒−𝑡/(𝜎𝐿) .

The following concentration inequality for samples from a Poincare

distribution is also standard.

Claim 3.8. Let D be a distribution in R𝑑 that is 1-Poincare. Let

0 < 𝜖 < 0.1 be some parameter. Given 𝑛 ≥ (𝑑/𝜖)8 independent

samples 𝑧1, . . . , 𝑧𝑛 ∼ D, with probability at least 1 − 2−𝑑/𝜖 , we have

𝑧1 + · · · + 𝑧𝑛

𝑛
− E

𝑧∼D
[𝑧]

 ≤ 𝜖 .

3.3 Basic Observations

Before we begin with the main proofs of Theorem 2.3 and Theorem

2.5, it will be useful to make a few simple reductions that allow us

to make the following simplifying assumptions:

• Means Polynomially Bounded: For all 𝑖 , we have
𝜇𝑖 − 𝜇 𝑗

 ≤
𝑂 ((𝑘/𝑤min)2), and

• Dimension Not Too High:We have 𝑑 ≤ 𝑘 .
Reducing to the case when the above assumptions hold is straight-

forward and omitted due to space constraints. The reductions work

in both settings (general Poincare distributions and Gaussians) so

in future sections, we will be able to work assuming that the above

properties hold.

4 MOMENT ESTIMATION

We will now work towards proving our result for Poincare distri-

butions. A key ingredient in our algorithm will be estimating the

moment tensor of a mixtureM i.e. for an unknown mixture

M = 𝑤1D(𝜇1) + · · · +𝑤𝑘D(𝜇𝑘 )

we would like to estimate the tensor

𝑤1𝜇
⊗𝑡
1 + · · · +𝑤𝑘𝜇

⊗𝑡
𝑘

for various values of 𝑡 using samples from M. Naturally, it suffices

to consider the case where we are given samples from D(𝜇) for
some unknown 𝜇 and our goal is to estimate the tensor 𝜇⊗𝑡 . For
our full algorithm, we will need to go up to 𝑡 ∼ log𝑘/log log𝑘
but of course for such 𝑡 , our estimate has to be implicit because

we cannot write down the full tensor in polynomial time. In this

section, we address this task by constructing an unbiased estima-

tor with bounded variance that can be easily manipulated implicitly.

We make the following definition to simplify notation later on.

Definition 4.1. For integers 𝑡 and a distribution D, we define the

tensor

𝐷𝑡,D = E
𝑧∼D

[𝑧⊗𝑡 ] .

We will drop the subscript D when it is clear from context.

4.1 Adjusted Polynomials

First, we just construct an unbiased estimator for 𝜇⊗𝑡 (without

worrying about making it implicit). This estimator is given in the

definition below.

Definition 4.2. LetD be a distribution onR𝑑 . For 𝑥 ∈ R𝑑 , define the
polynomials 𝑃𝑡,D (𝑥) for positive integers 𝑡 as follows. 𝑃0,D (𝑥) = 1

and for 𝑡 ≥ 1,

𝑃𝑡,D (𝑥) = 𝑥⊗𝑡 −
∑︁

𝑠𝑦𝑚

𝐷1,D ⊗ 𝑃𝑡−1,D (𝑥)

−
∑︁

𝑠𝑦𝑚

𝐷2,D ⊗ 𝑃𝑡−2,D (𝑥) − · · · − 𝐷𝑡,D .
(7)

We call 𝑃𝑡,D the D-adjusted polynomials and will sometimes drop

the subscript D when it is clear from context.

Through direct computation, we can verify that the D-adjusted

polynomials indeed give an unbiased estimator for 𝜇⊗𝑡 when given

samples from D(𝜇).

Claim 4.3. For any 𝜇 ∈ R𝑑 ,

E
𝑧∼D(𝜇)

[𝑃𝑡,D (𝑧)] = 𝜇⊗𝑡 .

4.2 Variance Bounds for Poincare Distributions

In the previous section, we showed that theD-adjusted polynomials

give an unbiased estimator for 𝜇⊗𝑡 . We now show that they also

have bounded variance when D is Poincare. This will rely on the

following claim which shows that the D-adjusted polynomials

recurse under differentiation.

Claim 4.4. Let D be a distribution on R𝑑 . Then

𝜕𝑃𝑡,D (𝑥)
𝜕𝑥𝑖

=

∑︁

sym

𝑒𝑖 ⊗ 𝑃𝑡−1,D (𝑥)

where we imagine 𝑥 = (𝑥1, . . . , 𝑥𝑑 ) so 𝑥𝑖 is the 𝑖th coordinate of 𝑥 and

𝑒𝑖 = (0, . . . , 1︸  ︷︷  ︸
𝑖

, . . . , 0)

denotes the 𝑖th coordinate basis vector.

Now, by using the Poincare property, we can prove a bound on

the variance of the estimator 𝑃𝑡,D (𝑥).

Claim 4.5. Let D be a distribution on R𝑑 that is 1-Poincare. Let

𝑣 ∈ R𝑑𝑡 be a vector. Then

E
𝑧∼D(𝜇)

[
(
𝑣 · flatten(𝑃𝑡,D (𝑧))

)2] ≤ (∥𝜇∥2 + 𝑡2)𝑡 ∥𝑣 ∥2 .
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4.3 Efficient Implicit Representation

In the previous section, we showed that for 𝑥 ∼ D(𝜇) for unknown
𝜇, 𝑃𝑡,D (𝑥) gives us an unbiased estimator of 𝜇⊗𝑡 with bounded

variance. Still, it is not feasible to actually compute 𝑃𝑡,D (𝑥) in
polynomial time because we cannot write down all of its entries

and there is no nice way to implicitly work with terms such as𝐷𝑡,D
that appear in 𝑃𝑡,D (𝑥). In this section, we construct a modified

estimator that is closely related to 𝑃𝑡,D (𝑥) but is also easy to work

with implicitly because all of the terms will be rank-1 i.e. of the

form 𝑣1 ⊗ · · · ⊗ 𝑣𝑡 for some vectors 𝑣1, . . . , 𝑣𝑡 ∈ R𝑑 . Throughout
this section, we will assume that the distribution D that we are

working with is fixed and we will drop it from all subscripts as

there will be no ambiguity.

Roughly, the way that we construct this modified estimator is

that we take multiple variables 𝑥1, . . . , 𝑥𝑡 ∈ R𝑑 . We start with

𝑃𝑡 (𝑥1). We then add various products

𝑃𝑎1 (𝑥1) ⊗ · · · ⊗ 𝑃𝑎𝑡 (𝑥𝑡 )
to it in a way that when expanded as monomials, only the lead-

ing terms, which are rank-1 since they are a direct product of the

form 𝑥
⊗𝑎1
1 ⊗ · · · ⊗ 𝑥⊗𝑎𝑡𝑡 , remain. If we then take 𝑥1 ∼ D(𝜇) and

𝑥2, . . . , 𝑥𝑡 ∼ D, then Claim 4.3 will immediately imply that the ex-

pectation is 𝜇⊗𝑡 . The key properties are stated formally in Corollary

4.9, Corollary 4.10 and Corollary 4.11.

The following polynomial and its properties will be the key in

our construction.

Definition 4.6. For 𝑥1, . . . , 𝑥𝑡 ∈ R𝑑 , define the polynomial

𝑄𝑡 (𝑥1, . . . , 𝑥𝑡 )

=

∑︁

𝑆1∪···∪𝑆𝑡=[𝑡 ]
|𝑆𝑖∩𝑆 𝑗 |=0

(−1)C{𝑆1,...,𝑆𝑡 }
( 𝑡−1
C{𝑆1,...,𝑆𝑡 }−1

)
(
𝑃 |𝑆1 | (𝑥1)

) (𝑆1)
⊗ . . .

⊗
(
𝑃 |𝑆𝑡 | (𝑥𝑡 )

) (𝑆𝑡 )
.

(8)

Lemma 4.7. All nonzero monomials in 𝑄𝑡 either have total degree 𝑡

in the variables 𝑥1, . . . , 𝑥𝑡 or are constant.

Now, we can easily eliminate the constant term by subtracting

off 𝑄 (𝑥𝑡+1, . . . , 𝑥2𝑡 ) for some additional variables 𝑥𝑡+1, . . . , 𝑥2𝑡 and
we will be left with only degree-𝑡 terms. It will be immediate that

the degree-𝑡 terms are all rank-1 and this will give us an estimator

that can be efficiently manipulated implicitly.

Definition 4.8. For 𝑥1, . . . , 𝑥2𝑡 ∈ R𝑑 , define the polynomial

𝑅𝑡 (𝑥1, . . . , 𝑥2𝑡 ) = −𝑄𝑡 (𝑥1, . . . , 𝑥𝑡 ) +𝑄𝑡 (𝑥𝑡+1, . . . , 𝑥2𝑡 ) .

Corollary 4.9. We have the identity

𝑅𝑡 (𝑥1, . . . , 𝑥2𝑡 ) =
∑︁

𝑆1∪···∪𝑆𝑡=[𝑡 ]
|𝑆𝑖∩𝑆 𝑗 |=0

(−1)C{𝑆1,...,𝑆𝑡 }−1
( 𝑡−1
C{𝑆1,...,𝑆𝑡 }−1

) ·

(
𝑥
⊗𝑆1
1 ⊗ · · · ⊗ 𝑥⊗𝑆𝑡𝑡 − 𝑥⊗𝑆1𝑡+1 ⊗ · · · ⊗ 𝑥⊗𝑆𝑡2𝑡

)
.

Corollary 4.9 gives us a convenient representation for working

implicitly with 𝑅𝑡 (𝑥1, . . . , 𝑥2𝑡 ). We now show why this polynomial

is actually useful. In particular, we show that for 𝑥1 ∼ D(𝜇) and
𝑥2, . . . , 𝑥2𝑡 ∼ D, 𝑅𝑡 (𝑥1, . . . , 𝑥2𝑡 ) is an unbiased estimator of 𝜇⊗𝑡

and furthermore that its variance is bounded. These properties will

follow directly from the definitions of 𝑅𝑡 , 𝑄𝑡 combined with Claim

4.3 and Claim 4.5.

Corollary 4.10. We have

E
𝑧1∼D(𝜇),𝑧2,...,𝑧2𝑡∼D

[𝑅𝑡 (𝑧1, . . . , 𝑧2𝑡 )] = 𝜇⊗𝑡

and for fixed 𝑧1, we have

E
𝑧2,...,𝑧2𝑡∼D

[𝑅𝑡 (𝑧1, . . . , 𝑧2𝑡 )] = 𝑃𝑡 (𝑧1) .

Corollary 4.11. Let D be a distribution that is 1-Poincare. We have

E
𝑧1∼D(𝜇)

𝑧2,...,𝑧2𝑡∼D

[
flatten(𝑅𝑡 (𝑧1, . . . , 𝑧2𝑡 ))⊗2

]
⪯ (20𝑡)2𝑡 (∥𝜇∥2𝑡 + 1)𝐼𝑑𝑡 .

where recall 𝐼𝑑𝑡 denotes the 𝑑
𝑡 -dimensional identity matrix.

5 ITERATIVE PROJECTION

In this section, we explain our technique for implicitly working

with tensors that have too many entries to write down. Recall that

we would like to estimate the moment tensor

𝑤1𝜇
⊗𝑡
1 + · · · +𝑤𝑘𝜇

⊗𝑡
𝑘

for

𝑡 ∼ log(𝑘/𝑤min)
log log(𝑘/𝑤min)

.

However doing this directly requires quasipolynomial time (because

there are quasipolynomially many entries). Roughly, the way we

get around this issue is by, iteratively for each 𝑡 , computing a 𝑘-

dimensional subspace that contains the span of 𝜇⊗𝑡1 , . . . , 𝜇⊗𝑡
𝑘

. We

then only need to compute the projection of𝑤1𝜇
⊗𝑡
1 + · · · +𝑤𝑘𝜇

⊗𝑡
𝑘

onto this subspace. Of course, the subspace and projection need

to be computed implicitly because we cannot explicitly write out

these expressions in polynomial time.

5.1 Nested Projection Maps

At a high level, to implicitly estimate the span of 𝜇⊗𝑡1 , . . . , 𝜇⊗𝑡
𝑘

, we

will first estimate the span of 𝜇⊗𝑡−11 , . . . , 𝜇⊗𝑡−1
𝑘

and then bootstrap

this estimate to estimate the span of 𝜇⊗𝑡1 , . . . , 𝜇⊗𝑡
𝑘

. Since we cannot

actually write down the span even though it is 𝑘-dimensional (be-

cause the vectors have super-polynomial length), we will store the

span implicitly through a sequence of projections. We explain the

details below.

Definition 5.1 (Nested Projection). Let 𝑐0 = 1 and 𝑐1, . . . , 𝑐𝑡 be pos-

itive integers. Let Π1 ∈ R𝑐1×𝑑𝑐0 ,Π2 ∈ R𝑐2×𝑑𝑐1 , . . . ,Π𝑡 ∈ R𝑐𝑡×𝑑𝑐𝑡−1
be matrices. Define the 𝑐𝑡 × 𝑑𝑡 nested projection matrix

ΓΠ𝑡 ,...,Π1
= Π𝑡 (𝐼𝑑 ⊗kr (Π𝑡−1 (𝐼𝑑 ⊗kr · · · ))) .

It is not hard to verify (see below) that when Π1, . . . ,Π𝑡 are

projection matrices then ΓΠ𝑡 ,...,Π1
is as well.

Claim 5.2. Let 𝑐0 = 1 and 𝑐1, . . . , 𝑐𝑡 be positive integers. Let Π1 ∈
R
𝑐1×𝑑𝑐0 ,Π2 ∈ R𝑐2×𝑑𝑐1 , . . . ,Π𝑡 ∈ R𝑐𝑡×𝑑𝑐𝑡−1 be matrices whose rows

are orthonormal. Then ΓΠ𝑡 ,...,Π1
has orthonormal rows.

1256



STOC ’22, June 20ś24, 2022, Rome, Italy Allen Liu and Jerry Li

Note that in our paper, Π1, . . . ,Π𝑡 will always have orthonormal

rows so ΓΠ𝑡 ,...,Π1
always does as well. This fact will often be used

without explicitly stating it. The key point about the construction

of ΓΠ𝑡 ,...,Π1
is that instead of storing a full 𝑐𝑡 × 𝑑𝑡 -sized matrix,

it suffices to store the individual matrices Π1, . . . ,Π𝑡 which are

all polynomially sized. The next important observation is that for

certain vectors 𝑣 ∈ R𝑑𝑡 that are łrank-1" i.e. those that can be

written in the form

𝑣 = flatten(𝑣𝑡 ⊗ · · · ⊗ 𝑣1) ,
the expression ΓΠ𝑡 ,...,Π1

𝑣 can be computed efficiently. This is shown

in the following claim.

Claim 5.3. Let 𝑐0 = 1 and 𝑐1, . . . , 𝑐𝑡 be positive integers. Let Π1 ∈
R
𝑐1×𝑑𝑐0 ,Π2 ∈ R𝑐2×𝑑𝑐1 , . . . ,Π𝑡 ∈ R𝑐𝑡×𝑑𝑐𝑡−1 be matrices. Let 𝑣 ∈ R𝑑𝑡

satisfy 𝑣 = flatten(𝑣1 ⊗ · · · ⊗ 𝑣𝑡 ) for some 𝑣1, . . . , 𝑣𝑡 ∈ R𝑑 . Then in

poly(𝑑, 𝑡,max(𝑐𝑖 )) time, we can compute ΓΠ𝑡 ,...,Π1
𝑣 .

Proof. We will prove the claim by induction on 𝑡 . For each

𝑡 ′ = 1, 2, . . . , 𝑡 , we compute

ΓΠ𝑡′ ,...,Π1
flatten(𝑣𝑡 ′ ⊗ · · · ⊗ 𝑣1) .

The base case of the induction is clear. To do the induction step,

note that

ΓΠ𝑡′+1,...,Π1
flatten(𝑣𝑡 ′+1 ⊗ · · · ⊗ 𝑣1)

= Π𝑡 ′+1flatten
(
𝑣𝑡 ′+1 ⊗

(
ΓΠ𝑡′ ,...,Π1

flat(𝑣𝑡 ′ ⊗ · · · ⊗ 𝑣1)
) )
.

It is clear that this computation can be done in poly(𝑑, 𝑡,max(𝑐𝑖 ))
time so iterating this operation completes the proof. ■

Throughout our paper, we will only compute nested projections

of the above form so it will be easy to verify that all steps can be

implemented in polynomial time.

6 IMPLICITLY ESTIMATING THE MOMENT

TENSOR

In this section, we combine the iterative projection techniques

from Section 5 with the estimators from Section 4 to show how to

implicitly estimate the moment tensor given sample access to the

distribution D and the mixture

M = 𝑤1D(𝜇1) + · · · +𝑤𝑘D(𝜇𝑘 ) .
By implicitly estimate, we mean that we will compute projection

matrices Π𝑡 , . . . ,Π1 such that the row-span of ΓΠ𝑡 ,...,Π1
essentially

contains all of the flattenings of 𝜇⊗𝑡1 , . . . , 𝜇⊗𝑡
𝑘

.

It will be convenient to make the following definitions.

Definition 6.1. For a mixtureM = 𝑤1D(𝜇1) + · · · +𝑤𝑘D(𝜇𝑘 ), we
use𝑇𝑡,M to denote the tensor𝑤1𝜇

⊗𝑡
1 + · · · +𝑤𝑘𝜇

⊗𝑡
𝑘

. We may drop the

subscriptM and just write 𝑇𝑡 when it is clear from context.

Definition 6.2. For a mixture M = 𝑤1D(𝜇1) + · · · + 𝑤𝑘D(𝜇𝑘 ),
we define 𝑀2𝑠,M to be the tensor 𝑇2𝑠,M rearranged (in a canonical

way) as a 𝑑𝑠 × 𝑑𝑠 square matrix. Again, we may drop the subscript

M when it is clear from context.

We define 𝜇max = max(1, ∥𝜇1∥ , . . . , ∥𝜇𝑘 ∥). We do not assume

that we know 𝜇max in advance. However, the reduction in Section

3.3 means that it suffices to consider when 𝜇max is polynomially

bounded. Also we can assume 𝑑 = 𝑘 i.e. the dimension of the under-

lying space is equal to the number of components. This is because

we can use the reduction in Section 3.3 and if 𝑑 < 𝑘 , then we can

simply add independent standard Gaussian entries in the remaining

𝑘 − 𝑑 dimensions.

We now describe our algorithm for implicitly estimating the mo-

ment tensor. For the remainder of this section, we will only work

with a fixed mixtureM so we will drop it from all subscripts e.g. in

Definitions 6.1 and 6.2. At a high level, we will recursively compute

a sequence of projection matrices Π1 ∈ R𝑘×𝑑 ,Π2, . . . ,Π𝑠 ∈ R𝑘×𝑑𝑘 .
Our goal will be to ensure that ΓΠ𝑠 ,...,Π1

(which is a 𝑘 × 𝑑𝑠 matrix)

essentially contains the flattenings of 𝜇⊗𝑠1 , . . . , 𝜇⊗𝑠
𝑘

in its row span.

To see how to do this, assume that we have computedΠ𝑠−1, . . . ,Π1

so far. By the inductive hypothesis, ΓΠ𝑠−1,...,Π1
tells us a𝑘-dimensional

subspace that essentially contains the flattenings of 𝜇⊗𝑠−11 , . . . , 𝜇⊗𝑠−1
𝑘

.

Thus, we trivially have a 𝑑𝑘 dimensional subspace, given by the

rows of
(
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)
that must essentially contain all of the

flattenings of 𝜇⊗𝑠1 , . . . , 𝜇⊗𝑠
𝑘

. It remains to reduce from this 𝑑𝑘 di-

mensional space back to a 𝑘-dimensional space. However, we can

now write everything out in this 𝑑𝑘-dimensional space and simply

run PCA and take the top-𝑘 singular subspace. Our algorithm is

described in full below.

Algorithm 1 Iterative Projection Step

Input: Samples 𝑧1, . . . , 𝑧𝑛 from unknown mixture

M = 𝑤1D(𝜇1) + · · · +𝑤𝑘D(𝜇𝑘 )
Input: integer 𝑡 > 0

Split samples into 𝑡 sets 𝑆1, . . . , 𝑆𝑡 of equal size

Let Π1 = 𝐼𝑑 (recall 𝑘 = 𝑑)

for s = 2, . . . , t do

Run Estimate Moment Tensor using samples 𝑆𝑠 to get

approximation 𝐴2𝑠 ∈ R𝑑𝑘×𝑑𝑘 to

𝐴2𝑠 =
(
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)
𝑀2𝑠

(
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)𝑇

Let Π𝑠 ∈ R𝑘×𝑑𝑘 have rows forming an orthonormal basis of

the top 𝑘 singular subspace of 𝐴2𝑠

Output: (Π𝑡 , . . . ,Π1)

Algorithm 2 Estimate Moment Tensor

Input: Samples 𝑧1, . . . , 𝑧𝑛 from unknown mixture

M = 𝑤1D(𝜇1) + · · · +𝑤𝑘D(𝜇𝑘 )
Input: Integer 𝑠 > 0

Input:Matrices Π𝑠−1 ∈ R𝑘×𝑑𝑘 , . . . ,Π2 ∈ R𝑘×𝑑𝑘 ,Π1 ∈ R𝑘×𝑑
for i = 1,2, . . . , n do

Independently draw samples 𝑥1, . . . , 𝑥4𝑠−1 from D
Compute the (𝑘𝑑)2-dimensional vector (recall Definition 4.8)

𝑋𝑖 = ((𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1
) ⊗kr (𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

))
flatten (𝑅2𝑠 (𝑧𝑖 , 𝑥1, . . . , 𝑥4𝑠−1)) .

Let 𝐾𝑖 be the rearrangement of 𝑋𝑖 into a square 𝑑𝑘 × 𝑑𝑘-
dimensional matrix

Output: 𝐴 = (𝐾1 + · · · + 𝐾𝑛)/𝑛
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The main algorithm, Algorithm 1, computes the projection matri-

ces Π1, . . .Π𝑠 following the outline above. As a subroutine, it needs

to estimate the matrix𝐴2𝑠 . This is done in Algorithm 2 which relies

on the results in Section 4, namely Corollary 4.10 and Corollary

4.11.

6.1 Efficient Implementation

A naive implementation of Algorithm 1 requires 𝑑𝑡 time, which is

too large. However, in this section, we show that we can implement

all of the steps more efficiently using only poly(𝑛𝑑𝑘, 𝑡𝑡 ) time.

Remark. We will later show that it suffices to consider

𝑡 ∼ 𝑂
(

log(𝑘/𝑤min)
log log(𝑘/𝑤min)

)

so this runtime is actually polynomial in all parameters that we need.

Claim6.3. Algorithm 1 can be implemented to run in poly(𝑛,𝑑, 𝑘, 𝑡𝑡 )
time.

Proof. Follows easily from Claim 5.3. ■

6.2 Accuracy Analysis

Now, we analyze the correctness of Algorithm 1 namely that the

span of the rows of the matrix ΓΠ𝑡 ,...,Π1
indeed essentially contain

all of 𝜇⊗𝑡1 , . . . , 𝜇⊗𝑡
𝑘

. To simplify notation, we make the following

definition.

Definition 6.4. For all 𝑠 , we define the matrix

𝐴2𝑠 =
(
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)
𝑀2𝑠

(
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)𝑇
.

Remark. Note that in the execution of Algorithm 1, 𝐴2𝑠 is intended

to be an estimate of 𝐴2𝑠 .

The main result that we will prove is stated below. Note that

this lemma does not require any assumptions about minimum

mixing weights or means in the mixture. Instead, it simply says

that the subspace spanned by the rows of ΓΠ𝑠 ,...,Π1
essentially con-

tains flatten(𝜇⊗𝑠𝑖 ) for all componentsD(𝜇𝑖 ) with mean and mixing

weight bounded away from 0.

Lemma 6.5. Let D be a distribution on R𝑑 that is 1-Poincare and

letM = 𝑤1D(𝜇1) + · · · +𝑤𝑘D(𝜇𝑘 ) be a mixture of translations of

D. Let𝑤∗, 𝜖 > 0 be parameters. Assume that the number of samples

satisfies

𝑛 ≥
(
𝑡𝑡 𝜇𝑡max𝑘𝑑

𝑤∗𝜖

)𝐶

for some sufficiently large universal constant𝐶 . Then with probability

at least 1 − 𝑛−0.2, in the execution of Algorithm 1, the following

condition holds: for all 𝑖 ∈ [𝑘] such that ∥𝜇𝑖 ∥ ≥ 1 and𝑤𝑖 ≥ 𝑤∗, we
have ΓΠ𝑠 ,...,Π1

flatten(𝜇⊗𝑠𝑖 )
 ≥ (1 − 𝑠𝜖) ∥𝜇𝑖 ∥𝑠

for all 𝑠 = 1, 2, . . . , 𝑡 .

Remark. The parameter 𝜖 represents the desired accuracy and the

parameter 𝑤∗ is a weight cutoff threshold where we guarantee to

recover łsignificant" components whose mixing weight is at least𝑤∗.

Roughly, the proof of Lemma 6.5 will involve following the out-

line at the beginning of this section but quantitatively tracking the

errors more precisely. Before we prove Lemma 6.5, we first prove a

preliminary claim that our estimation error
𝐴2𝑠 −𝐴2𝑠


𝐹
is small.

Claim 6.6. Assume that for a fixed integer 𝑠 , Algorithm 2 is run with

a number of samples

𝑛 ≥
(
𝑠𝑠𝜇𝑠max𝑘𝑑

𝑤∗𝜖

)𝐶

for some sufficiently large universal constant𝐶 . Then with probability

at least 1 − 𝑛−0.4, its output 𝐴2𝑠 satisfies𝐴2𝑠 −𝐴2𝑠


𝐹
≤ 0.5𝑤∗𝜖2 .

Proof. Recall that we are trying to estimate 𝐴2𝑠 which is a

𝑑𝑘 ×𝑑𝑘 matrix. It will suffice for us to obtain a concentration bound

for our estimate of each entry and then union bound. Recall that in

Algorithm 2, we estimate𝐴2𝑠 by averaging𝐾1, . . . , 𝐾𝑛 . By Corollary

4.10, we have that

E[𝐾𝑖 ] = 𝐴2𝑠 (9)

so our estimator is unbiased. Next, observe that each entry of 𝐾𝑖 ,

say 𝐾𝑖 [𝑎, 𝑏] where 1 ≤ 𝑎, 𝑏 ≤ 𝑑𝑘 can be written as

𝐾𝑖 [𝑎, 𝑏] = 𝑣 · flatten(𝑅2𝑠 (𝑧𝑖 , 𝑥1, . . . , 𝑥4𝑠−1))
where 𝑣 ∈ R𝑑2𝑠

is some unit vector (this is by Claim 5.2). By Corol-

lary 4.11, we have

E

[
(𝐾𝑖 [𝑎, 𝑏] −𝐴2𝑠 [𝑎, 𝑏])2

]
≤ E[𝐾𝑖 [𝑎, 𝑏]2] ≤ (20𝑠)2𝑠 (𝜇2𝑠max + 1)

where the first inequality above is true by (9). Since our final es-

timate is obtained by averaging over 𝑛 independent samples, we

have

E

[
(𝐴2𝑠 [𝑎, 𝑏] −𝐴2𝑠 [𝑎, 𝑏])2

]
≤ (20𝑠)2𝑠 (𝜇2𝑠max + 1)

𝑛
.

Thus, with probability at least 1 − 𝑛−0.5, we must have
���𝐴2𝑠 [𝑎, 𝑏] −𝐴2𝑠 [𝑎, 𝑏]

��� ≤ (20𝑠)2𝑠 (𝜇2𝑠max + 1)
√
𝑛

≤ 0.5𝑤∗𝜖2

𝑑𝑘

where the last inequality holds as long as we choose 𝑛 sufficiently

large. Union bounding the above over all entries (there are only

(𝑑𝑘)2 entries to union bound over) and ensuring that𝑛 is sufficiently

large, we get the desired bound. ■

Now we are ready to prove Lemma 6.5.

Proof of Lemma 6.5. We will prove the claim by induction on

𝑠 . The base case for 𝑠 = 0 is clear. Now let 𝑖 ∈ [𝑘] be such that

∥𝜇𝑖 ∥ ≥ 1 and𝑤𝑖 ≥ 𝑤∗. Define the vector 𝑣𝑖,𝑠 ∈ R𝑑𝑘 as

𝑣𝑖,𝑠 = flatten
(
𝜇𝑖 ⊗ ΓΠ𝑠−1,...,Π1

flatten(𝜇𝑠−1𝑖 )
)
.

Note that this allows us to rewrite the matrix 𝐴2𝑠 as

𝐴2𝑠 = 𝑤1 (𝑣1,𝑠 ⊗ 𝑣1,𝑠 ) + · · · +𝑤𝑘 (𝑣𝑘,𝑠 ⊗ 𝑣𝑘,𝑠 ) .
Let 𝑢𝑖,𝑠 be the projection of 𝑣𝑖,𝑠 onto the orthogonal complement

of Π𝑠 . Note that

𝑢𝑖,𝑠 · 𝑣𝑖,𝑠 =
𝑢𝑖,𝑠

2 .
Thus, we must have

𝑢𝑇𝑖,𝑠𝐴2𝑠𝑢𝑖,𝑠 ≥ 𝑤𝑖

𝑢𝑖,𝑠
4 .
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On the other hand, note that𝐴2𝑠 has rank at most 𝑘 . Assuming that

the hypothesis of Claim 6.6 holds, the 𝑘 + 1st singular value of 𝐴2𝑠

has size at most𝑤∗𝜖2. Thus,

𝑢𝑇𝑖,𝑠𝐴2𝑠𝑢𝑖,𝑠 ≤ 0.5𝑤∗𝜖2
𝑢𝑖,𝑠

2 .

Finally, using the hypothesis of Claim 6.6 again, we must have
���𝑢𝑇𝑖,𝑠 (𝐴2𝑠 −𝐴2𝑠 )𝑢𝑖,𝑠

��� ≤ 0.5𝑤∗𝜖2
𝑢𝑖,𝑠

2 .

Putting the previous three inequalities together, we deduce that we

must have

𝑤𝑖

𝑢𝑖,𝑠
4 ≤ 𝑤∗𝜖2

𝑢𝑖,𝑠
2

which implies
𝑢𝑖,𝑠

 ≤ 𝜖 . Also, the induction hypothesis implies

that
ΓΠ𝑠−1,...,Π1

flatten(𝜇𝑠−1𝑖 )
 ≥ (1 − (𝑠 − 1)𝜖) ∥𝜇𝑖 ∥𝑠−1

and thus 𝑣𝑖,𝑠
 ≥ (1 − (𝑠 − 1)𝜖) ∥𝜇𝑖 ∥𝑠 .

Finally, note that
ΓΠ𝑠 ,...,Π1

flatten(𝜇𝑠𝑖 )
 =

𝑣𝑖,𝑠 − 𝑢𝑖,𝑠
 ≥ (1 − (𝑠 − 1)𝜖) ∥𝜇𝑖 ∥𝑠 − 𝜖

≥ (1 − 𝑠𝜖) ∥𝜇𝑖 ∥𝑠 .

This completes the inductive step. Finally, it remains to note that

the overall failure probability can be bounded by union bounding

over all applications of Claim 6.6 and is clearly at most 𝑛−0.2 as long
as we choose 𝑛 sufficiently large. This completes the proof. ■

7 TESTING SAMPLES USING IMPLICIT

MOMENTS

Nowwe show how to use the projection maps Π𝑡 , . . . ,Π1 computed

by Algorithm 1 to test whether a sample came from a component

with mean close to 0 or mean far away from 0. Roughly, given a

sample 𝑧, the test simply works by computing 𝑅𝑡 (𝑧, 𝑧1, . . . , 𝑧2𝑡−1)
for 𝑧1, . . . , 𝑧2𝑡−1 ∼ D and computing

ΓΠ𝑡 ,...,Π1
flatten(𝑅𝑡 (𝑧, 𝑧1, . . . , 𝑧2𝑡−1))

 .

We output Far if the above is larger than some threshold and oth-

erwise we output Close. For technical reasons, we will actually

average over multiple independent draws for 𝑧1, . . . , 𝑧2𝑡−1 ∼ D.

Roughly, the intuition for why this test works is as follows. Note

that if 𝑧 ∼ D then by Corollary 4.10,

E

[
ΓΠ𝑡 ,...,Π1

flatten(𝑅𝑡 (𝑧, 𝑧1, . . . , 𝑧2𝑡−1))
]
= 0

and if we control the variance using Corollary 4.11, then we can

upper bound the length with reasonable probability. On the other

hand if 𝑧 ∼ D(𝜇𝑖 ) for some 𝜇𝑖 with large norm, then

E

[
ΓΠ𝑡 ,...,Π1

flatten(𝑅𝑡 (𝑧, 𝑧1, . . . , 𝑧2𝑡−1))
]
= ΓΠ𝑡 ,...,Π1

flatten(𝜇⊗𝑡𝑖 )

and since the algorithm in the previous section can ensure that 𝜇⊗𝑡𝑖
is essentially contained in the row span of ΓΠ𝑡 ,...,Π1

, the RHS above

has large norm. The details of our algorithm for testing samples

are described below.

Algorithm 3 Test Samples

Input: Projection matrices Π𝑡 , . . . ,Π2 ∈ R𝑘×𝑑𝑘 ,Π1 ∈ R𝑘×𝑑
Input: Sample 𝑧 ∈ R𝑑 to test

Input: Threshold 𝜏 , desired accuracy 𝛿

Set 𝑛 = ((103𝑡)𝑡/𝛿)3
for 𝑖 = 1, 2, . . . , 𝑛 do

Draw samples 𝑧1, . . . , 𝑧2𝑡−1 ∼ D
Let 𝐴𝑖 = ΓΠ𝑡 ,...,Π1

flatten(𝑅𝑡 (𝑧, 𝑧1, . . . , 𝑧2𝑡−1))
Set 𝐴 = (𝐴1 + · · · +𝐴𝑛)/𝑛
if ∥𝐴∥ ≥ 𝜏 then

Output: Far

else

Output: Close

7.1 Analysis of Test Samples

Now we analyze the behavior of Algorithm 3. The key properties

that the test satisfies are summarized in the following two lemmas.

Lemma 7.2 say that with 1 − 𝛿 probability the test will successfully

output Far for samples from a component with mean far from 0 and

Lemma 7.1 says that with 1−𝛿 probability, the test will successfully
output Close for samples from a component with mean 0.

Note that Lemma 7.2 requires that the row span of ΓΠ𝑡 ,...,Π1

essentially contains flatten(𝜇⊗𝑡𝑖 ) (which can be guaranteed by Al-

gorithm 1 and Lemma 6.5). Lemma 7.1 actually does not require

anything about Π𝑡 , . . . ,Π1 (other than the fact that they are actually

projections).

Lemma 7.1. Let D be a distribution that is 1-Poincare. Let 𝑡 ∈ N
and 0 < 𝛿 < 0.01 be some parameters. Let Π𝑡 , . . . ,Π2 ∈ R𝑘×𝑑𝑘 ,Π1 ∈
R
𝑘×𝑑 be any matrices whose rows are orthonormal. Let 𝜏 be some

parameter satisfying 𝜏 ≥ (20𝑡)𝑡𝑘/𝛿 . Let 𝑧 ∼ D. Then with proba-

bility at least 1 − 𝛿 , Algorithm 3 run with these parameters outputs

Close where the randomness is over 𝑧 and the random choices within

Algorithm 3.

Lemma 7.2. Let D be a distribution that is 1-Poincare. Let 𝑡 ∈ N
and 0 < 𝛿 < 0.01 be some parameters. Let 𝑧 ∼ D(𝜇𝑖 ) where ∥𝜇𝑖 ∥ ≥
104 (log 1/𝛿 + 𝑡). Let 𝜏 be some parameter satisfying 𝜏 ≤ (0.4 ∥𝜇𝑖 ∥)𝑡 .
Assume that the matrices Π𝑡 , . . . ,Π2 ∈ R𝑘×𝑑𝑘 ,Π1 ∈ R𝑘×𝑑 satisfy

that ΓΠ𝑡 ,...,Π1
flatten(𝜇⊗𝑡𝑖 )

 ≥ (1 − 𝑡𝜖) ∥𝜇𝑖 ∥𝑡 .
where

𝜖 <

𝛿

(10𝑡 ∥𝜇𝑖 ∥)4𝑡
.

Then with probability at least 1 − 𝛿 , Algorithm 3 run with these

parameters outputs Far (where the randomness is over 𝑧 and the

random choices within Algorithm 3).

Remark. Note that we will want to run the test with some inverse

polynomial failure probability i.e. 𝛿 = poly(𝑘/𝑤∗) for some weight

threshold𝑤∗. In order to be able to combine Lemma 7.1 and Lemma

7.2 meaningfully, we need

(0.4 ∥𝜇𝑖 ∥)𝑡 ≥ (20𝑡)𝑡𝑘/𝛿 .
If ∥𝜇𝑖 ∥ ≥ (log(𝑘/𝑤∗))1+𝑐 for some constant 𝑐 > 0 then setting 𝑡 ∼
𝑂
(
𝑐−1 log(𝑘/𝑤∗)/log log(𝑘/𝑤∗)

)
ensures that the above inequality

is true. Note that for this setting, 𝑡𝑡 = poly(𝑘/𝑤∗) (where we treat
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𝑐 as a constant) and thus we will be able to ensure that our overall

runtime is polynomial.

8 LEARNING MIXTURES OF POINCARE

DISTRIBUTIONS

We are now ready to prove Theorem 2.3, our full result for mixtures

of Poincare distributions. Let D ′
= (D − D)/

√
2 i.e. D ′ is the

distribution of the difference between two independent samples

from D scaled down by
√
2. The

√
2 scaling ensures that D ′ is

1-Poincare by Fact 3.7. Note that we can take pairwise differences

between samples to simulate access to the mixture

M ′
= (𝑤2

1 + · · · +𝑤2
𝑘
)D ′ +

∑︁

𝑖≠𝑗

𝑤𝑖𝑤 𝑗D ′((𝜇𝑖 − 𝜇 𝑗 )/
√
2) .

We will run Algorithm 1 and Algorithm 3 for the distribution D ′

and mixture M ′. Note that the test in Algorithm 3 will test for a

pair of samples say 𝑧, 𝑧′, from components D(𝜇𝑖 ),D(𝜇 𝑗 ) of the
original mixture, whether

𝜇𝑖 − 𝜇 𝑗
 is large or zero. Running this

test between all pairs of samples will let us form clusters of samples

that correspond to each of the components. We begin with a lemma

that more precisely specifies the guarantees of this test and then

Theorem 2.3 will follow easily from it.

Lemma 8.1. Let D be a 1-Poincare distribution on R𝑑 . Let

M = 𝑤1D(𝜇1) + · · · +𝑤𝑘D(𝜇𝑘 )

be a mixture of translated copies of D. Let𝑤∗, 𝑠, 𝛿 be parameters and

assume that 𝑠 ≥ (log𝑘/(𝑤∗𝛿))1+𝑐 for some 0 < 𝑐 < 1. Also assume

that

max
𝜇𝑖 − 𝜇 𝑗

 ≤ min((𝑘/(𝑤∗𝛿))2, 𝑠𝐶 )

for some𝐶 . There is an algorithm that takes𝑛 = poly((𝑘𝑑/(𝑤∗𝛿))𝐶/𝑐 )
samples fromM and D and runs in poly(𝑛) time and achieves the

following testing guarantees: for a pair of (independent) samples

𝑧 ∼ D(𝜇𝑖 ), 𝑧′ ∼ D(𝜇 𝑗 ),
• If 𝑖 = 𝑗 and𝑤𝑖 ≥ 𝑤∗ then with probability 1 − 𝛿 the output is

accept

• If𝑤𝑖 ,𝑤 𝑗 ≥ 𝑤∗ and
𝜇𝑖 − 𝜇 𝑗

 ≥ 𝑠 then with probability 1 − 𝛿
the output is reject

where the randomness is over the samples 𝑧, 𝑧′ and the random choices

in the algorithm.

Using Lemma 8.1, it is not difficult to prove Theorem 2.3.

Proof of Theorem 2.3. Recall by the reduction in Section 3.3

that we may assume 𝑑 ≤ 𝑘 and that
𝜇𝑖 − 𝜇 𝑗

 ≤ 𝑂 ((𝑘/𝑤min)2) for
all 𝑖, 𝑗 . Now we will do the following process to estimate the means

of the components.

(1) Draw a sample 𝑧 ∼ M
(2) Take𝑚 = (𝑘/(𝑤min𝛼))10

2
samples 𝑧1, . . . , 𝑧𝑚 ∼ M

(3) Use Lemma 8.1 with parameters

𝑤∗
= 𝑤min, 𝛿 = (𝑤min𝛼/𝑘)10

4

to test the pair of samples 𝑧, 𝑧𝑖 for all for all 𝑖 ∈ [𝑚]
(4) Let 𝑆 ⊂ [𝑚] be the set of all 𝑖 that areAccepted and compute

𝜇 = 1
|𝑆 |

∑
𝑖∈𝑆 𝑧𝑖

We first argue that if 𝑧 is a sample from D(𝜇𝑖 ) for some 𝑖 , then

with 1 − (𝑤min𝛼/𝑘)10
2
probability, the procedure returns 𝜇 such

that ∥𝜇 − 𝜇𝑖 ∥ ≤ 0.1𝛼 . This is because by the guarantees of Lemma

8.1, with probability at least 1 − (𝑤min𝛼/𝑘)10
3
the test will accept

all samples from among 𝑧1, . . . , 𝑧𝑚 that are from the component

D(𝜇𝑖 ) and reject all of the others. Also, with high probability, there

will be at least (𝑘/(𝑤min𝛼))99 samples from the component D(𝜇𝑖 )
so by Claim 3.8 and union bounding all of the failure probabilities,

we have that if 𝑧 is a sample fromD(𝜇𝑖 ) then ∥𝜇 − 𝜇𝑖 ∥ ≤ 0.1𝛼 with

probability at least 1 − (𝑤min𝛼/𝑘)10
2
.

Now it suffices to repeat the procedure in steps 1 − 4 for 𝑙 =

(𝑘/(𝑤min𝛼))10
2
independent samples 𝑧 ∼ M. This gives us a list

of means say 𝑆 = {𝜇1, . . . , 𝜇𝑙 }. The previous argument implies that

most of these estimates will be close to one of the true means and

that all of the true means will be represented. To ensure that with

high probability we output exactly one estimate corresponding

to each true mean and no extraneous estimates, we do a sort of

majority voting.

We will inspect the estimates in 𝑆 one at a time and decide

whether to output them or not. Let𝑇 be the set of estimates that we

will output. Note that 𝑇 is initially empty. Now for each 𝑖 , let 𝑆𝑖 be

the subset of {𝜇1, . . . , 𝜇𝑙 } consisting of all means with
𝜇 𝑗 − 𝜇𝑖

 ≤
0.2𝛼 . If |𝑆𝑖 | ≥ 0.9𝑤min𝑙 and 𝜇𝑖 is not within 𝛼 of any element of 𝑇

then add 𝜇𝑖 to 𝑇 . Otherwise do nothing.

We claim that with high probability, this procedure returns one

estimate corresponding to each true means and nothing extraneous.

First, with high probability there will be no extraneous outputs

because if say 𝜇𝑖 is at least 0.5𝛼 away from all of the true means,

then with high probability we will have |𝑆𝑖 | < 0.9𝑤min𝑙 . Now it is

also clear that with high probability we output exactly one estimate

corresponding to each true mean (since 𝑙 is sufficiently large that

with high probability we get enough samples from each component).

Thus, with high probability, the final output will be a set of means

that are within 𝛼 of the true means up to some permutation. Once

we have learned the means, we can learn the mixing weights by

simply taking fresh samples fromM and clustering since with high

probability, we can uniquely identify which component a sample

came from. This completes the proof. ■

The clustering guarantee in Corollary 2.4 follows as an immedi-

ate consequence of Theorem 2.3.

Proof of Corollary 2.4. Let the estimated means computed

by Theorem 2.3 for 𝛼 = (𝑤min/𝑘)10 be 𝜇1, . . . , �̃�𝑘 . Now for all

𝑗1, 𝑗2 ∈ [𝑘] with 𝑗1 ≠ 𝑗2, let

𝑣 𝑗1 𝑗2 =
𝜇 𝑗1 − 𝜇 𝑗2𝜇 𝑗1 − 𝜇 𝑗2

 .

Now given a sample 𝑧 from M, we compute the index 𝑗 such that

for all 𝑗1, 𝑗2, we have

|𝑣 𝑗1 𝑗2 · (𝜇 𝑗 − 𝑧) | ≤ (log(𝑘/𝑤min))1+0.5𝑐 .

Note that by the guarantees of Theorem 2.3, there is a permutation

𝜋 such that
�𝜇𝜋 (𝑖) − 𝜇𝑖

 ≤ 𝛼 for all 𝑖 . If 𝑧 is a sample from D(𝜇𝑖 ),
then by the tail bound in Fact 3.7, with high probability the unique

index 𝑗 that satisfies the above is exactly 𝑗 = 𝜋 (𝑖) and thus, we

recover the ground truth clustering with high probability. ■

1260



STOC ’22, June 20ś24, 2022, Rome, Italy Allen Liu and Jerry Li

9 LEARNING MIXTURES OF GAUSSIANS

See the full version.

ACKNOWLEDGMENTS

This work was partially done during an internship at Microsoft

Research. This work was supported in part by an NSF Graduate

Research Fellowship and a Fannie and John Hertz Foundation Fel-

lowship.

REFERENCES
[1] Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. 2017. Sample-

optimal density estimation in nearly-linear time. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1278ś1289.

[2] Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, and Ananda Theertha Suresh.
2014. Near-optimal-sample estimators for spherical gaussian mixtures. arXiv
preprint arXiv:1402.4746 (2014).

[3] Dimitris Achlioptas and Frank McSherry. 2005. On spectral learning of mixtures
of distributions. In International Conference on Computational Learning Theory.
Springer, 458ś469.

[4] Joseph Anderson, Mikhail Belkin, Navin Goyal, Luis Rademacher, and James
Voss. 2014. The more, the merrier: the blessing of dimensionality for learning
large Gaussian mixtures. In Conference on Learning Theory. PMLR, 1135ś1164.

[5] Sanjeev Arora and Ravi Kannan. 2005. Learning mixtures of separated nonspher-
ical Gaussians. The Annals of Applied Probability 15, 1A (2005), 69ś92.

[6] Hassan Ashtiani, Shai Ben-David, Nicholas JA Harvey, Christopher Liaw, Abbas
Mehrabian, and Yaniv Plan. 2018. Nearly tight sample complexity bounds for
learning mixtures of Gaussians via sample compression schemes. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems.
3416ś3425.

[7] Mikhail Belkin and Kaushik Sinha. 2015. Polynomial learning of distribution
families. SIAM J. Comput. 44, 4 (2015), 889ś911.

[8] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan.
2014. Smoothed analysis of tensor decompositions. In Proceedings of the forty-
sixth annual ACM symposium on Theory of computing. 594ś603.

[9] Aditya Bhaskara, Ananda Suresh, and Morteza Zadimoghaddam. 2015. Sparse
solutions to nonnegative linear systems and applications. In Artificial Intelligence
and Statistics. PMLR, 83ś92.

[10] Matthew Brennan, Guy Bresler, Samuel B Hopkins, Jerry Li, and Tselil Schramm.
2020. Statistical query algorithms and low-degree tests are almost equivalent.
arXiv preprint arXiv:2009.06107 (2020).

[11] Siu-On Chan, Ilias Diakonikolas, Rocco A Servedio, and Xiaorui Sun. 2014. Effi-
cient density estimation via piecewise polynomial approximation. In Proceedings
of the forty-sixth annual ACM symposium on Theory of computing. 604ś613.

[12] Siu-On Chan, Ilias Diakonikolas, Rocco A Servedio, and Xiaorui Sun. 2014. Near-
optimal density estimation in near-linear time using variable-width histograms.
arXiv preprint arXiv:1411.0169 (2014).

[13] Yuansi Chen. 2021. An almost constant lower bound of the isoperimetric co-
efficient in the KLS conjecture. Geometric and Functional Analysis 31, 1 (2021),
34ś61.

[14] Sanjoy Dasgupta. 1999. Learning mixtures of Gaussians. In 40th Annual Sympo-
sium on Foundations of Computer Science (Cat. No. 99CB37039). IEEE, 634ś644.

[15] Sanjoy Dasgupta and Leonard J Schulman. 2007. A probabilistic analysis of EM
for mixtures of separated, spherical Gaussians. Journal of Machine Learning
Research 8 (2007), 203ś226.

[16] Constantinos Daskalakis and Gautam Kamath. 2014. Faster and sample near-
optimal algorithms for proper learning mixtures of gaussians. In Conference on
Learning Theory. PMLR, 1183ś1213.

[17] Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. 2017. Ten
steps of EM suffice for mixtures of two Gaussians. In Conference on Learning
Theory. PMLR, 704ś710.

[18] Luc Devroye and Gábor Lugosi. 2001. Combinatorial methods in density estimation.
Springer Science & Business Media.

[19] Ilias Diakonikolas and Daniel M Kane. 2020. Small covers for near-zero sets
of polynomials and learning latent variable models. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 184ś195.

[20] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. 2017. Statistical query
lower bounds for robust estimation of high-dimensional gaussians and gaussian
mixtures. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 73ś84.

[21] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. 2018. List-decodable
robust mean estimation and learning mixtures of spherical Gaussians. In Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing.
1047ś1060.

[22] Jon Feldman, Ryan O’Donnell, and Rocco A Servedio. 2008. Learning mixtures
of product distributions over discrete domains. SIAM J. Comput. 37, 5 (2008),
1536ś1564.

[23] Rong Ge, Qingqing Huang, and Sham M Kakade. 2015. Learning mixtures of
gaussians in high dimensions. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing. 761ś770.

[24] Venkatesan Guruswami and Ali Kemal Sinop. 2012. Faster SDP hierarchy solvers
for local rounding algorithms. In 2012 IEEE 53rd Annual Symposium on Foundations
of Computer Science. IEEE, 197ś206.

[25] Moritz Hardt and Eric Price. 2015. Tight bounds for learning a mixture of two
gaussians. In Proceedings of the forty-seventh annual ACM symposium on Theory
of computing. 753ś760.

[26] Samuel B Hopkins and Jerry Li. 2018. Mixture models, robustness, and sum of
squares proofs. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing. 1021ś1034.

[27] Samuel B Hopkins, Tselil Schramm, and Jonathan Shi. 2019. A robust spectral
algorithm for overcomplete tensor decomposition. In Conference on Learning
Theory. PMLR, 1683ś1722.

[28] Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. 2016.
Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and
planted sparse vectors. In Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing. 178ś191.

[29] Daniel Hsu and Sham M Kakade. 2013. Learning mixtures of spherical gaussians:
momentmethods and spectral decompositions. In Proceedings of the 4th conference
on Innovations in Theoretical Computer Science. 11ś20.

[30] Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. 2010. Efficiently
learning mixtures of two Gaussians. In Proceedings of the forty-second ACM
symposium on Theory of computing. 553ś562.

[31] Pravesh K Kothari, Jacob Steinhardt, and David Steurer. 2018. Robust moment
estimation and improved clustering via sum of squares. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing. 1035ś1046.

[32] Amit Kumar and Ravindran Kannan. 2010. Clustering with spectral norm and
the k-means algorithm. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science. IEEE, 299ś308.

[33] Jerry Li, Allen Liu, and Ankur Moitra. 2021. Sparsification for Sums of Exponen-
tials and its Algorithmic Applications. arXiv preprint arXiv:2106.02774 (2021).

[34] Jerry Li and Ludwig Schmidt. 2017. Robust and proper learning for mixtures
of gaussians via systems of polynomial inequalities. In Conference on Learning
Theory. PMLR, 1302ś1382.

[35] Tengyu Ma, Jonathan Shi, and David Steurer. 2016. Polynomial-time tensor
decompositions with sum-of-squares. In 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS). IEEE, 438ś446.

[36] Dustin G Mixon, Soledad Villar, and Rachel Ward. 2017. Clustering subgaussian
mixtures by semidefinite programming. Information and Inference: A Journal of
the IMA 6, 4 (2017), 389ś415.

[37] Ankur Moitra and Gregory Valiant. 2010. Settling the polynomial learnability
of mixtures of gaussians. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science. IEEE, 93ś102.

[38] Karl Pearson. 1894. Contributions to the mathematical theory of evolution.
Philosophical Transactions of the Royal Society of London. A 185 (1894), 71ś110.

[39] Prasad Raghavendra, Satish Rao, and Tselil Schramm. 2017. Strongly refuting
random csps below the spectral threshold. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing. 121ś131.

[40] Oded Regev and Aravindan Vijayaraghavan. 2017. On Learning Mixtures of
Well-Separated Gaussians. arXiv:1710.11592 [cs.DS]

[41] Tselil Schramm and David Steurer. 2017. Fast and robust tensor decomposition
with applications to dictionary learning. In Conference on Learning Theory. PMLR,
1760ś1793.

[42] David Steurer and Stefan Tiegel. 2021. SoS degree reduction with applications to
clustering and robust moment estimation. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM, 374ś393.

[43] Yin Tat Lee and Santosh S Vempala. 2018. The Kannan-Lovász-Simonovits
Conjecture. arXiv e-prints (2018), arXivś1807.

[44] Santosh Vempala and Grant Wang. 2004. A spectral algorithm for learning
mixture models. J. Comput. System Sci. 68, 4 (2004), 841ś860.

[45] CF Jeff Wu. 1983. On the convergence properties of the EM algorithm. The
Annals of statistics (1983), 95ś103.

[46] Ji Xu, Daniel Hsu, and Arian Maleki. 2016. Global analysis of expectation maxi-
mization for mixtures of two gaussians. arXiv preprint arXiv:1608.07630 (2016).

1261

https://arxiv.org/abs/1710.11592

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work

	2 Formal Problem Setup and Our Results
	2.1 Clustering Mixtures of Poincare Distributions
	2.2 Clustering Mixtures of Gaussians
	2.3 Organization

	3 Preliminaries
	3.1 Manipulating Tensors
	3.2 Properties of Poincare Distributions
	3.3 Basic Observations

	4 Moment Estimation
	4.1 Adjusted Polynomials
	4.2 Variance Bounds for Poincare Distributions
	4.3 Efficient Implicit Representation

	5 Iterative Projection
	5.1 Nested Projection Maps

	6 Implicitly Estimating the Moment Tensor
	6.1 Efficient Implementation
	6.2 Accuracy Analysis

	7 Testing Samples Using Implicit Moments
	7.1 Analysis of Test Samples

	8 Learning Mixtures of Poincare Distributions
	9 Learning Mixtures of Gaussians
	Acknowledgments
	References

