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Subcubic Equivalences Between Graph Centrality Problems, APSP
and Diameter”

AMIR ABBOUD, IBM Almaden Research Center, USA
FABRIZIO GRANDONI, IDSIA, USI-SUPSI, Switzerland
VIRGINIA VASSILEVSKA WILLIAMS, MIT, USA

Measuring the importance of a node in a network is a major goal in the analysis of social networks, biological systems,
transportation networks etc. Different centrality measures have been proposed to capture the notion of node importance.
For example, the center of a graph is a node that minimizes the maximum distance to any other node (the latter distance is
the radius of the graph). The median of a graph is a node that minimizes the sum of the distances to all other nodes. Informally,
the betweenness centrality of a node w measures the fraction of shortest paths that have w as an intermediate node. Finally,
the reach centrality of a node w is the smallest distance r such that any s-t shortest path passing through w has either s or ¢
in the ball of radius r around w.

The fastest known algorithms to compute the center and the median of a graph, and to compute the betweenness or reach
centrality even of a single node take roughly cubic time in the number n of nodes in the input graph. It is open whether these
problems admit truly subcubic algorithms, i.e. algorithms with running time O(n>~9) for some constant & > 0.

We relate the complexity of the mentioned centrality problems to two classical problems for which no truly subcubic
algorithm is known, namely All Pairs Shortest Paths (APSP) and Diameter. We show that Radius, Median and Betweenness
Centrality are equivalent under subcubic reductions to APSP, i.e. that a truly subcubic algorithm for any of these problems
implies a truly subcubic algorithm for all of them. We then show that Reach Centrality is equivalent to Diameter under
subcubic reductions. The same holds for the problem of approximating Betweenness Centrality within any finite factor.
Thus the latter two centrality problems could potentially be solved in truly subcubic time, even if APSP required essentially
cubic time.

On the positive side, our reductions for Reach Centrality imply an improved O(Mn®)-time algorithm for this problem in
case of non-negative integer weights upper bounded by M, where w is fast matrix multiplication exponent.

CCS Concepts: « Theory of computation — Graph algorithms analysis.

Additional Key Words and Phrases: fine-grained complexity, subcubic reductions, APSP, radius, median, diameter, between-
ness centrality, reach centrality

1 INTRODUCTION

Identifying the importance of nodes in networks is a major goal in the analysis of social networks (e.g., cita-
tion networks, recommendation networks, or friendship circles), biological systems (e.g., protein interaction
networks), computer networks (e.g., the Internet or peer-to-peer networks), transportation networks (e.g., pub-
lic transportation or road networks), etc. A variety of graph theoretic notions of node importance have been

“A preliminary version of this paper appeared in SODA 2015. This version corrects some subtle technical bugs.
IThe O notation suppresses poly-logarithmic factors in n and M.
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proposed, among the most relevant ones: betweenness centrality [25], graph centrality [36], closeness centrality
[54], and reach centrality [35].

The graph centrality of a node w is the inverse of its maximum distance to any other node. The closeness
centrality of w is the inverse of the total distance of w to all the other nodes. The reach centrality of w is the
maximum distance between w and the closest endpoint of any s-t shortest path passing through w. Informally,
the betweenness centrality of w measures the fraction of shortest paths having w as an intermediate node.

In this paper we study four fundamental graph centrality computational problems associated with the men-
tioned centrality measures. Let G = (V, E) be an n-node m-edge (directed or undirected) graph, with integer
edge weights w : E — {0,..., M} for some M > 1. Though we focus here on non-negative weights, part of our
results can be extended to the case of directed graphs with possibly negative weights and no negative cycles. Let
dg (s, t) denote the distance from node s to node t, and let us use d(s, t) instead when G is clear from the context.

o The Radius problem is to compute R* := min,-cy max,ev d(r*,v) (radius of the graph).
e The Median problem is to compute Med := min,cy Y ,ey d(m*, v).
o The Reach Centrality problem (for a given node b) is to compute

RC(b) = max {min{d(s, b),d(b,t)}}.
tEV:
d(s.t)=d(s.b)+d(b.t)

o The Betweenness Centrality problem (for a given node b) is to compute the number BC(b) of shortest paths
that have b as an intermediate node?.

All of these notions are related in one way or another to shortest paths. In particular, we can solve the first three
problems by running an algorithm for the classical All-Pairs Shortest Paths problem (APSP) on the underlying
graph and doing a negligible amount of post-processing. The same holds for Betweenness Centrality by assuming
that shortest paths are unique by a simple algorithm. This was recently extended to the case of (possibly) non-
unique shortest paths in unweighted graphs [12]. Part of our results for Betweenness Centrality assume the
uniqueness of shortest paths. Using the best known algorithms for APSP [61], this leads to a slightly subcubic
(by an n° factor) running time for the considered problems, and no faster algorithm is known.

Each of these problems however only asks for the computation of a single number. It is natural to ask, is
solving APSP necessary? Could it be that these problems admit much more efficient solutions? In particular, do
they admit a truly subcubic® algorithm?

Besides the fundamental interest in understanding the relations between such basic computational problems
(can Radius be solved truly faster than APSP?), these questions are well motivated from a practical viewpoint. As
evidence to the necessity of faster algorithms for the mentioned centrality problems, we remark that some papers
presenting algorithms for Betweenness Centrality [8] and Median [37] have received more than a thousand
citations each.

1.1 Approach

The techniques of this paper fall within the realm of fine-grained complexity (see [58] for a survey on the topic).
A refinement of NP-hardness, the fine-grained approach strives to prove, via “fine-grained” reductions, that im-
proving on a given upper bound for a computational problem B would yield breakthrough algorithms for many
other famous and well-studied problems. At high-level, the idea is to consider two problems A and B for which
the fastest known algorithms have running times O(a(n)) and O(b(n)) (here n is a size parameter such as the
number of nodes in a graph), respectively. Typically A is a problem that is widely believed to need a(n)'~°")
time. The approach then uses special reductions to transform an instance of A to instances of B, so that if there

2 Another slightly different definition of the problem is used in the literature, this is discussed later.
3We recall that a truly subcubic algorithm is an algorithm with running time O (n3~%) for some constant & > 0.
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were an algorithm for B with running time O(b(n)!~¢) for some ¢ > 0, then composing this algorithm with the
reduction would yield an algorithm for A running in time O(a(n)!~%) for § > 0. Since A is widely believed to not
have such an algorithm, this can be used as evidence that a O(b(n)'~¢) time algorithm for problem B is unlikely
to exist (or at least very hard to find). When a(n) = b(n) = n®, a reduction of the above kind is called a subcubic
reduction [64] from A to B. We say that two problems A and B are equivalent under subcubic reductions if there
exists a subcubic reduction from A to B and from B to A. In other terms, a truly subcubic time algorithm for one
problem implies a truly subcubic time algorithm for the other and vice versa.

In this paper we will also consider randomized reductions of the above type. In more detail, there exists a
Monte-Carlo subcubic reduction with success probability p from A to B if, given a truly subcubic algorithm for
B, we can solve A in truly subcubic time and the answer is correct with probability at least p. If p > 1 —1/n°(M),
the above Monte-Carlo reduction is a high probability one. Equivalence under such Monte-Carlo reductions is
defined similarly.

Vassilevska Williams and Williams [64] introduced this approach to the realm of graph algorithms to show the
subcubic equivalence between APSP and a list of seven other problems, including: deciding if an edge-weighted
graph has a triangle with negative total weight (Negative Triangle), deciding if a given matrix defines a metric,
and the Replacement Paths problem [33, 34, 53, 59, 62]. Other examples of this approach [1; 3, 48] include the
famous results on 3-SUM hardness starting with the work of Gajentaan and Overmars [26]. More recently, the
fine-grained approach has gained popularity. The main prototypical hard problems used are CNF-SAT, APSP and
3SUM, but also some others such as k-Clique and more. Many incredibly diverse problems are now known to
have fine-grained reductions from these prototypical hard problems. See the survey by Vassilevska Williams [58].

In this paper we exploit both APSP and Diameter as our prototypical problem and prove a collection of sub-
cubic equivalences with the above graph centrality problems. Recall that the Diameter problem is to compute
the largest distance in the graph. There is a trivial subcubic reduction from Diameter to APSP and, although no
truly subcubic algorithm is known for Diameter, finding a reduction in the opposite direction is one of the big
open questions in this area: can we compute the largest distance faster than we can compute all the distances?

1.2 Subcubic equivalences with APSP

Our first main result is to show that Radius, Median and Betweenness Centrality are equivalent to APSP under
subcubic reductions. Therefore, we add three relevant problems to the list of APSP-hard problems [64] and if
any of these problems can be solved in truly subcubic time then all of them can.

THEOREM 1.1. Radius is equivalent to APSP under subcubic reductions.
THEOREM 1.2. Median is equivalent to APSP under subcubic reductions.

THEOREM 1.3. Betweenness Centrality (with unique shortest paths) is equivalent to APSP under high probability
Monte-Carlo subcubic reductions.

We remark that, in the proof of Theorem 1.3, randomization is used only to guarantee the uniqueness of
shortest paths in the reduction from APSP to Betweenness Centrality. In particular, dropping the uniqueness
requirement, the same reduction would be deterministic. However, the converse reduction would not work as
we mentioned earlier since the number of alternative shortest paths could be exponentially large.

Unfortunately, this is strong evidence that a truly subcubic algorithm for computing these centrality mea-
sures is unlikely to exist (or at least very hard to find) since it would imply a huge and unexpected algorithmic
breakthrough.

We find the APSP-hardness result for Radius quite interesting since, prior to our work, there was no good
reason to believe that Radius might be a truly harder problem than Diameter. Indeed, in terms of approximation
algorithms, any known algorithm to approximate the diameter can be converted to also approximate the radius

ACM Trans. Algor.



4 « A.Abboud, F. Grandoni, V. Vassilevska Williams

in undirected graphs within the same factor [4, 7, 14, 52]. Furthermore, the exact algorithms for Diameter and
Radius in graphs with small integer weights are also extremely similar [17]. The same holds for the lower bounds
on fast approximation algorithms for Radius and Diameter in sparse graphs [2, 52].

1.3 Subcubic equivalence between Reach Centrality and Diameter

Our second main result is to show that Reach Centrality and Diameter are equivalent under subcubic reductions.
THEOREM 1.4. Diameter and Reach Centrality are equivalent under subcubic reductions.

On the positive side, it is within the realm of possibility that Diameter is a truly easier problem than APSP,
which would imply the same for Reach Centrality. On the negative side, Theorem 1.4 shows that finding a
subcubic algorithm for Reach Centrality is as hard as finding a subcubic algorithm for Diameter - a big open
problem.

As a consequence of the tightness of our reductions, namely not only the number of nodes but also the largest
absolute weight is roughly preserved, we also obtain a faster algorithm for Reach Centrality in directed graphs
with small integer weights.

THEOREM 1.5. There exists an O(Mn®) time algorithm for Reach Centrality in directed graphs.

Above w € [2,2.373) [16, 19, 27, 28, 63] denotes fast matrix multiplication exponent. The previous best algorithm
for small integer weights, which is based on the solution of APSP, takes time O(M®73?1n2-52%) [66].

1.4 Approximation algorithms

An approximate value of the mentioned graph centrality measures might be sufficiently good in practice. This
is indeed the topic of several empirical works on Betweenness Centrality [6, 9, 29]. Furthermore, there are
practically fast shortest paths algorithms based on reach centrality [30, 31, 35]: these algorithms can be adapted to
work with approximate values of the reach centrality as well. In this paper we formally study the approximability
of the mentioned problems.

In more detail, given a quantity X (e.g., a graph centrality measure), an a-approximation algorithm computes
a quantity x such that 2X < x < aX for some a > 1 (& is the approximation factor). A polynomial-time
approximation scheme (PTAS) for a given measure X is an algorithm that, given an input parameter ¢ > 0,
computes a 1 + ¢ approximate solution x in the above sense. Furthermore, the running time is polynomial for
every fixed constant ¢ > 0. Our high-level goal is to design fast a-approximation algorithms with a as close
to 1 as possible. It is known how to solve APSP within a multiplicative error (1 + ¢) in time O(n®) for any
constant ¢ [65]. This provides truly subcubic (1 + ¢) approximation algorithms for Radius and Median. However,
this approach does not help with Reach/Betweenness Centrality, since in those measures almost shortest paths
are irrelevant. Here we present some negative and (conditionally) positive results on the approximability of the
latter two problems.

We define the Approximate Betweenness Centrality problem as the problem of computing an a-approximation
of BC(b) for some finite @ > 0. The Approximate Reach Centrality problem is defined analogously. We present
reductions from Approximate Reach/Betweenness Centrality to the following Positive Betweenness Centrality
problem: determine whether there exists some shortest path using b as an intermediate node. To the best of
our knowledge, the latter problem was not studied before and it might be of independent interest. We show that
Positive Betweenness Centrality is equivalent to Diameter (under subcubic reductions), while the corresponding
All-Nodes version (where we solve the problem for all possible b) is equivalent to APSP! This explains why it has
been difficult to develop approximation algorithms for Betweenness Centrality and Reach Centrality that are at
the same time fast and provably accurate.

ACM Trans. Algor.
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Fig. 1. The main subcubic reductions considered in this paper. Dashed arrows correspond to trivial reductions. All the
remaining reductions are given in this paper, excluding the one from APSP to Negative Triangle which is taken from [64].

On the positive side, we show that a truly subcubic algorithm for Diameter implies a truly subcubic Monte-
Carlo PTAS for Betweenness Centrality. Analogously to the case of Reach Centrality, this gives some more hope
that a truly subcubic PTAS for Betweenness Centrality exists, however such algorithm is probably not easy to
find. Part of the mentioned reductions are summarized in Figure 1.

1.5 SETH Hardness

We consider the problem of solving Approximate Reach/Betweenness Centrality in sparse graphs. Here we can
prove, again passing through Positive Betweenness Centrality, that O(m?™¢) time algorithms do not exist unless
the Strong Exponential Time Hypothesis (SETH) fails. Our reduction can be adapted to the stronger Orthogonal
Vector Conjecture (OVC).

1.6 Related Work

APSP is among the best studied problems in Computer Science. If the edge weights are non-negative, one can
run Dijkstra’s algorithm [21] from every source node, and solve the problem in time O(mn + n? log n) (by imple-
menting Dijkstra’s algorithm with Fibonacci heaps [24]). Johnson [43] showed how to obtain the same running
time in the case of negative weights also (but no negative cycles). Pettie [49] improved the running time to
O(mn + n?log log n) and together with Ramachandran to O(mnlog a(m, n)) [50]. If the graph is undirected and
the edge weights are integers fitting in a word, one can solve the problem in time O(mn) in the word-RAM
model [57]. In dense graphs the running time of these algorithms is O(n®). Slightly subcubic algorithms were
developed as well, starting with the work of Fredman [23]. Following a long sequence of improvements (among

others, [11, 38]), Williams [61] obtained an algorithm with running time Oo(n?/ ZQ(‘/@)). Faster algorithms are
known for small integer weights bounded in absolute value by M: in undirected graphs APSP can be solved in
O(Mn®) time [56] and in directed graphs in O(n? (Mn)ﬁ) time [66]. The result for the directed case can be
refined to O(M%752,2-529) using fast rectangular matrix multiplication [39].

As we already mentioned, for general edge-weights the fastest known algorithms for Diameter and Radius
solve APSP (hence taking roughly cubic time). In the case of directed graphs with small integer weights bounded
by M there are faster, O(Mn®) time algorithms (see [17] and the references therein). Faster approximation algo-
rithms are known. Aingworth et al. [4] showed how to compute a (roughly) 3/2 approximation of the diameter
in time O(m+/n+n?). The same approximation factor and running time can be achieved for Radius in undirected
graphs [7]. The running time for both Radius and Diameter was reduced to O(m+/n) by Roditty and Vassilevska
Williams [52] (see also [14] for a refinement of the approximation factor). The authors also show that a 3/2 — ¢
approximation for Diameter running in time O(m? ) (for any constant ¢ > 0) would imply that the Strong

ACM Trans. Algor.
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Exponential Time Hypothesis (SETH) of [40] fails, thus showing that improving on the 3/2-approximation fac-
tor while still using a fast algorithm would be difficult. A similar hardness result for Radius was shown in [2]
under the Hitting Set Conjecture. Under SETH, there is no better than 5/3 approximation for Diameter in time
O(m??7¢) [5]. See also [10] for related results on Diameter and Radius. Upper and lower bounds on fast ap-
proximation algorithms to compute the Eccentricity of all nodes are given in [2, 5, 10, 14]. Some more recent
fine-grained complexity results on the fast approximability of diameter are given in [18].

The notion of betweenness centrality was introduced by Freeman in the context of social networks [25], and
since then became one of the most important graph centrality measures in the applications. For example, this
notion is used in the analysis of protein networks [20, 42], social networks [47, 51], sexual networks [45], and
terrorist networks [15, 44]. From an algorithmic point of view, betweenness centrality was used to identify a
highway-node hierarchy for routing in road networks [55]. Brandes’ algorithm [8] computes the betweenness
centrality of all nodes in time O(mn+n?log n). This result is based on a counting variant of Dijkstra’s algorithm.
We remark that [8], similarly to other papers in the area, neglects the bit complexity of the counters which store
the number of pairwise shortest paths. This is reasonable in practice since the maximum number N of alternative
shortest paths between two nodes tends to be small in many of the applications. By considering also N, the
running time grows by a factor of O(log N) = O(nlogn). Indeed, in some applications one can even assume
that shortest paths are unique (as we do in some parts of this paper). The uniqueness of shortest paths is either
a consequence of tie breaking rules (Canonical-Path Betweenness Centrality problem [29]), or can be enforced by
perturbing edge weights [30]. Chan et al. [12] obtain a O(n®) time algorithm for the case of non-unique shortest
paths in unweighted graphs. The running time to compute the exact betweenness centrality can be prohibitive
in practice for very large networks even assuming the uniqueness of shortest paths. For this reason, some work
was devoted to the fast approximation of the betweenness centrality of all nodes [6, 9, 29]. Those works are
based on random pivot-sampling techniques. They do not provide any theoretical bound on the approximation
factor: this is not surprising a posteriori, in view of our APSP-hardness results. In contrast, our results suggest a
candidate way to obtain a provably fast and accurate algorithm for Approximate Betweenness Centrality (for a
single node). Our approach deviates substantially from [6, 9, 29] for small values of the betweenness centrality.

The Reach Centrality notion was introduced by Gutman [35] in the framework of practically fast algorithms
to solve the Single-Source Shortest Paths problem. In particular, the values RC () can be used to filter out some
nodes during an execution of Dijkstra’s algorithm. The notion of Reach Centrality is also used in other works
on the same topic [30, 31].

Eppstein and Wang [22] consider the problem of approximating the closeness centrality of all nodes. They
present a random-sampling-based O((m + nlogn) losgzn) time algorithm which w.h.p. computes estimates within
an additive error eD*, where D* is the diameter of the graph. The same problem is investigated in [9] from an
experimental point of view. The Median problem was also studied in a distance-oracle query model [13, 32, 41].

1.7 Preliminaries and Notation

W.lo.g. we assume that the considered graph G = (V,E) is connected, hence m > n — 1. We make the usual
assumption that the nodes of the considered graph are labelled with integers between 0 and n — 1, and where
needed we implicitly assume that n is lower bounded by a sufficiently large constant. For two nodes u,v € V,
by uv we indicate either an undirected edge between u and v or an edge directed from u to v. The interpretation
will be clear from the context.

For a given node w € V, we let Rad(w) := max,ey {d(w,v)} (eccentricity of w) and Med(w) = Y,y d(w,0). A
node w minimizing Rad(w) and Med(w) is a center and a median of the graph, respectively. By BCs ; (b) we denote
the number of shortest s-t paths that have b as an internal node. In particular BCs s(b) = BC;(b) = BCp,(b) = 0.

ACM Trans. Algor.
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Furthermore, BC;;(b) € {0, 1} in the case of unique shortest paths. Notice that BC(b) = Y ,cy BCs(v)*. In the

, o . . ot (B)
literature the betweenness centrality is sometimes defined differently as BC(b) = X cv—(p},s2¢ U;t , where
o5+ is the number of distinct shortest paths from s to ¢, and o5,(b) is the number of such paths that use node

Os,t (b)
o

st

b as an intermediate node. Here when o5, = 0 (hence o5,;(b) = 0), is assumed to be 0. Notice that this is
equivalent to our definition in the case of unique shortest paths.

We remark that, in our subcubic reductions, it would be sufficient to preserve (modulo poly-logarithmic fac-
tors) the number n of nodes only. However, whenever possible, we will also try to preserve (in the same sense)
also m and M. In many cases we obtain extremely tight reductions that even allow us to obtain new faster al-
gorithms, as is the case with Reach Centrality via our tight reduction to Diameter. In some claims we assume
that a T(n, m) time, T (n, M) time, or T (n, m, M) time algorithm for some problem is given. In all those claims we
implicitly assume that those running times are polynomial functions of the input parameters lower bounded by
Q(m). This way, one has that O(m) + T(0(n), O(m), O(M)) = O(T(n, m, M)) and similarly for T(O(n), O(M))
and T(O(n), O(m)). We will use this fact multiple times along the paper. We remark that this is without loss of
generality since all the considered problems admit a polynomial-time algorithm in the mentioned parameters,
and a lower bound of Q(m) is implied by the input size.

Throughout this paper, with high probability (w.h.p.) means with probability at least 1 — 1/n°.

In some reductions involving Betweenness Centrality we will need to enforce the uniqueness of shortest paths.
This can be enforced w.h.p. using the Isolation Lemma from [46]°.

LEMMA 1.6 (IsOLATION LEMMA [46]). Consider a set system (U, S) over a universe U of h elements. Let us assign
an integer weight w(i) € {1,...,q} chosen uniformly and independently at random to each i € U and define the
weight of each set S € S as w(S) = X;es w(i). Then there exists a unique set of minimum weight with probability
at least 1 — h/q.

CoROLLARY 1.7. Let G = (V, E) be a directed or undirected graph with edge weightsw : E — {0, ..., M} and let
¢ > 5 be an integer. Consider the random weight functionw’ : E — {1,...,n+n*IM} given by w’(e) = n“*'w(e)+
r(e), where eachr(e) € {1,...,n°} is chosen independently and uniformly at random (random perturbation). Then
with probability at least 1 —1/n* all shortest paths induced on G by weights w’ are unique. Furthermore any such
path is deterministically also.a shortest path w.r.t. weights w.

Proor. Consider the directed case, the undirected one being analogous (with slightly better bounds). We first
observe that deterministically any shortest path for (G, w’) has to be a shortest path also for (G, w). Indeed, any
such shortest path of length W in (G, w) has length at most (n— 1)n¢ + n“*!W in (G, w’), while any non-shortest
path would have length at least 1 + n°*!(W + 1) in (G, w’).

For each pair of distinct nodes (a, b), we consider the set system (E, Sg;) where Sy, is the set of shortest a-b
pathsin (G, w) (interpreted as subsets of edges), of (common) length W. By the previous observation, any shortest
a-b pathin (G, w’) must belong to S;p. Define r(S) = 3,5 r(e) foreach S € S,p. The Isolation Lemma 1.6 implies
that there exists exactly one S € S, with minimum r(S) with probability at least 1 — |E|/n® > 1 —1/n°"2. Since
w/(S) = n'W + r(S) deterministically for each S € S, this implies that there exists exactly one shortest path
in 8yp (hence in G) according to weights w” with the same probability. The claim follows by applying the union
bound over the possible pairs (a, b). ]

4We remark that the s-t pairs are ordered, in particular in undirected graphs shortest s-t paths are counted twice.
>In [46] the lemma is stated in a slightly less general form, but the proof extends trivially.
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2 SUBCUBIC EQUIVALENCE WITH APSP

In this section we prove the subcubic equivalence between APSP and the following problems: Radius, Median and
Betweenness Centrality. As mentioned in the introduction, reducing these problems to APSP is fairly straight-
forward and here we will focus on the opposite reductions.

We exploit Negative Triangle as an intermediate sub-problem: determine whether a given undirected graph
G = (V,E), with integer edge weights w : E — {-M, ..., M}, contains a triangle whose edges sum to a negative
number; such a triangle is called a negative triangle. The latter problem was shown to be equivalent to APSP
under subcubic reductions in [64].

LEMMA 2.1. [64] Negative Triangle and APSP (in directed or undirected graphs) are equivalent under subcubic
reductions.

In order to simplify our proofs, we assume that the input instance of Negative Triangle satisfies the following

properties:

(1) Path lengths are even. This can be achieved by multiplying the weights by a factor of 2.

(2) Any two nodes are connected by a path containing at most 2 edges. This can be achieved by adding a
dummy node r, and n edges of weight 2M between r and any other node. Observe that no new negative
triangle is created this way.

(3) By appending at most n + 1 leaf nodes to r with edges of cost 2M; we can assume w.l.o.g. that n is a power
of 2.

These reductions can be performed in linear time, they increase the number of nodes by O(n), the number of
edges by O(n), and the maximum absolute weight by a factor of 2. Therefore, any algorithm with (polynomial
and at least linear in m) running time O(T(n, m, M)) for the modified instance, can be used to solve the original
instance in time O(m + T(O(n), m + O(n), 2M)) = O(T(n, m, M)). A similar claim holds for T(n, m) and T(n, M).

Combining the reductions below with Lemma 2.1 proves Theorem 1.3.

2.1 Betweenness Centrality

We start with the reduction to Betweenness Centrality. We obtain slightly different results assuming that the
algorithm for Betweenness Centrality works on general instances or only under the restriction that shortest
paths are unique. Later when we talk about the case of non-unique shortest paths, we mean that the shortest
paths might not be unique.

LEMMA 2.2. Given a T(n, m) time algorithm for Betweenness Centrality in directed or undirected graphs in the
case of non-unique (resp., unique) shortest paths, there exists a deterministic (resp., high probability Monte-Carlo)
O(T(n, m)) time algorithm for Negative Triangle.

Proor. Let (G = (V,E),w) be the input instance of Negative Triangle (reduced as described above). Let
n = 2K1 be the number of nodes of G, for some non-negative integer k. We initially consider the case of non-
unique shortest paths.

We start with the simpler directed case (see also Figure 2). We construct a weighted directed graph (G’, w’)
as follows. Graph G’ contains four sets of nodes I, J, K, and L (layers). Each layer contains a copy of each node
v € V. Let oy be the copy of v in I, and define analogously vy, vk and vr. Let Q = ©(M) be a sufficiently large
integer. For each edge uv € E, we add to G’ the edges vy, ujvk, and ugoy, and assign to those edges weight
20+w(uv). We add to G’ a dummy node b, and edges urb and buy for any v € V, of weight 3Q — 1 and 30Q,
respectively. We also add to G’ two sets of nodes Z = {z,...,2x} and O = {0, ...,0x}. For any v € V, we add
the following edges of weight 30 — 1 to G’. Let 0%, 0!, .. ., o* be a binary representation of v (interpreted as an
integer between 0 andn—1 = ok+1 _ 1). Foreach j = 0,...,k, we add edges v7z; and ojur. ifo/ =0, and edges vj0;
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Fig. 2. Reduction from Negative Triangle to Betweenness Centrality (partially drawn). Full and dashed gray edges have
weight 30 — 1 and 3Q, respectively. The pair 0, 0, does not contribute to BC(b) (since 0 belongs to a negative triangle) while
the pair 31,31, does contribute to BC(b) (since 3 does not belong to any negative triangle).

and z;ju; otherwise. We also add edges 0;z; and z;o; of weight 3Q — 1 for j = 0,..., k. Observe that k = O(logn),
hence there are O(nlogn) edges of the latter type.

On (G’, w’) we compute BC(b), and output YES to the input Negative Triangle instance if and only if BC(b) <
n. Let us prove the correctness of this reduction. The only paths passing through b are of the form sj, b, t; and
have weight 6Q — 1. For s #'t, there must exist a node w € Z U O such that s;, w, t; is a path of cost 6Q — 2.
Therefore, the only pairsof nodes that can contribute to BC(b) are of the form (sy, s ). The shortest path of type
s1,07, WK, S;, has weight at most 6Q — 2 if s belongs to a negative triangle, and at least 6Q otherwise. Therefore
BC, 5, (b) = 1if s does not belong to any negative triangle, and BCs, 5, (b) = 0 otherwise. The correctness follows.

In the undirected case, we use the same weighted graph (G’, w’) as before, but removing edge directions
(and leaving one copy of parallel edges). The rest of the reduction is as before, with the difference that now the
answer is YES if and only if BC(v) < 2n (the extra factor 2 here is due to the fact that there are potentially
2n shortest paths passing through b). Proving correctness requires a slightly more complicated case analysis.
Consider any pair s,t € V — {b}. Suppose (s,t) ¢ (I X L) U (L X I). Then any s-t path passing through b costs at
least 2(3Q — 1) + (2Q — M). On the other hand, any s € ZU O can reach any ¢ € Z U O within distance 2(3Q — 1),
and any ¢t € I U J U K U L within distance 3Q — 1 + 2(2Q + M). If s,t € I U J U K U L, there exists an s-t path
of length at most 3(2Q + M). It remains to consider the case that s = s; € I and ¢t = t; € L. The path s;, b, t
has cost 6Q — 1. If s # ¢, analogously to the directed case there exists w € Z U O such that s, w, t1, is a path of
weight 6Q — 2. We can conclude that, like in the directed case, the only pairs which can contribute to BC(b) are
of the form (sy, sz ). The shortest path of the form s, v, w, ;. has weight at most 6Q — 2 if s belongs to a negative
triangle, and at least 6Q otherwise. Any other path avoiding b contains at least 4 edges, and therefore costs at
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least 4(2Q — M). We can conclude that BCs, 5, (b) = 1 if s is not contained in a negative triangle of (G, w), and
BC, 5, (b) = 0 otherwise. The correctness follows.

It remains to consider the case of unique shortest paths. Observe that in the above reduction shortest paths are
not necessarily unique. The latter property can however be enforced w.h.p. by modifying weights as in Corollary
1.7. Notice that this randomized reduction gives the right answer (at least) whenever shortest paths are unique,
hence this happens w.h.p. Since weights increase by a polynomial factor in n, while n and m are asymptotically
preserved, the running time is O(T (n, m)) as required. ]

We remark that in the reduction in Lemma 2.2 the blow up of the weights happens only when we need to
enforce the uniqueness of shortest paths. In particular, if we had a O(T(n, m, M)) time algorithm for the variant
of Betweenness Centrality not requiring such uniqueness, this would imply a O(T(n, m, M)) time algorithm for
Negative Triangle.

Proor oF THEOREM 1.3. One direction is obtained by chaining Lemmas 2.1 and 2.2: The other direction is
trivial: simply solve APSP and count (in O(n?) total time) how many pairs (s, t), s,t € V = {b}, satisfy d(s,t) =
d(s,b) +d(b,t). m|

2.2 Radius

Our reduction from Negative Triangle to Radius is similar to the one in Lemma 2.2). Consider the same construc-
tion when we remove the node b from the graph. The key observation is that a node s; has distance at most
6Q — 2 to every node t; (including s;) if and only if s is in a negative triangle in G. Intuitively, this allows us to
show that an algorithm distinguishing between radius 6Q —2and radius 6Q — 1 can solve Negative Triangle. To
complete the reduction we need to make sure that s; is close to every node in the graph (not only nodes in part
L) and that the center can only lie in part I.

LEMMA 2.3. Given aT(n, m, M) time algorithm for Radius in directed or undirected graphs, there exists a O(T(n, m, M))
time algorithm for Negative Triangle.

Proor. Let (G = (V,E), w) be the considered instance of Negative Triangle (modified as described before).
We start with the directed case (see also Figure 3). Let Q = ©(M) be a sufficiently large integer. We construct a
directed weighted graph (G’, w’) as follows. Similarly to the proof of Lemma 2.2, graph G’ contains four copies
I, ], K, and L of the node set V' (layers). Let vx be the copy of v € V in layer X. For each edge uv € E, we add
to G’ edges ujvj, ujog, and ugoy, of weight Q + w(vu). We also add to G’ two sets of nodes Z = {z, ..., zx} and
O =oy, - .., 0x}. We add edges incident to nodes Z U O in the same way as in Lemma 2.2, using edges of cost Q.
In more detail, let 0%, 0, ..., o* be the binary representation of node v: we add the edges v7z; and oju if v/ =0,
and the edges vro; and z;jo; otherwise. We also add edges zj0; and 0;z; of weight Q for all j = 0,..., k. Finally,
we add nodes x and y, and for any v € V we add edges vyx, xvy, and xv; of weight Q, and edges v;y of weight
30 - 1.

We compute the radius R* of (G’, w’), and output YES to the input instance of Negative Triangle if and only
if R* < 3Q — 1. The running time of the algorithm is O(m+T(O(n),0(m+n logn), O(M))) = O(T (n,m, M)). Let
us prove its correctness. We first observe that the center r* of the graph belongs to I U {x} since the other nodes
cannot reach any node in I. Observe that d(x, y) = 4Q — 1. On the other hand, any node s; is at distance at most
2Q tonodesin ZUOU JU {x} U (L —{s.}), at most 2Q + 2M to nodes in K (using the copy r; of the root node r),
and exactly 3Q — 1 to node y. Note also that, if s belongs to a negative triangle, there exists an s;-s; path of the
form sy, vy, wg, s; with length at most 3Q — 2. Otherwise one shortest s;-s; path passes trough nodes in Z U O
and has length 3Q. We can conclude that the center of the graph belongs to I, and that the corresponding radius
is upper bounded by 3Q — 1 if and only if there exists a negative triangle in (G, w).
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Fig. 3. Reduction from Negative Triangle to Radius. Only edges in the shortest path tree from 0y are illustrated. The full
and dashed gray edges have weight Q and 3Q — 1, respectively.

In the undirected case we use precisely the same construction, but removing edge directions (and leaving only
one copy of parallel edges). The algorithm is analogous as well as its running time analysis. Its correctness can
also be proved analogously. In more detail, similarly to the directed case, nodes in I can reach any other node
within distance at most 3Q + 3M. Since d(y,x) = 4Q—1,and d(s,y) > (30 —-1)+(Q - M) fors ¢ I U {y}, we can
conclude that r* € I. Also in this case, for any node s, its maximum distance to any other node is d(sr, y) = 3Q0—1

if s belongs to a negative triangle; and d(sy, sp) > 3Q otherwise. ]
ProoFr oF THEOREM 1.1. One direction is trivial, and the other is given by Lemmas 2.1 and 2.3. O
2.3 Median

The reduction to Median is based on a rather different approach.

LEMMA 2.4. Given aT(n, M) time algorithm for Median in undirected or directed graphs, there exists a O(T(n, M))
time algorithm for Negative Triangle.

ProoF. Let (G = (V,E), w) be the given instance of Negative Triangle. First, consider the directed case (see
also Figure 4). We create a weighted directed graph (G’, w’). Graph G’ contains five copies A, B, B’,C,C’ of V.
With the usual notation, v4 is the copy of v in A and similarly for the other sets. Let Q = ©(M) be a large enough
integer. For any pair of nodes u, v, we add the edges usvp of weight Q + w(uv), uavp of weight Q — w(uv), ugoc
of weight 2Q — w(uv), ugvc of weight 2Q + w(uv), and ugvc of weight Q + w(uv). In this construction, when
uov ¢ E (including the special case u = v), we simply assume w(uv) = 2M. Furthermore, we add a dummy node
r, and edges rva and var of weight Q/4 for any v € V.

In this graph we compute the median value Med, and output YES to the input instance of Negative Triangle
if and only if Med < Q/4 + (n — 1)Q/2 + 6nQ. The running time of the algorithm is O(m + T(O(n), O(M))) =
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Fig. 4. Reduction from Negative Triangle to Median (partially drawn). Gray edges have weight Q/4. The path 04, 1p, 2¢ is
shorter than the path 04, 2¢: this corresponds to a negative triangle.

O(T (n, M)). Let us show its correctness. Let d(-) denote distances in G’. The median node has to be in A U {r}
since the remaining nodes cannot reach r. Recall that, for a node w, Med(w) = Y,y d(w,v). Note that

Med(r) > n %+(%+Q)+(%+Q—M)+(%+2Q—M)+(%+2Q)

%+(n—l)%+6nQ.

In the first inequality above we lower bounded the distances to nodes in A, B, B, C and C’ with Q/4, Q/4 + Q,
Q/4+Q—-M,Q/4+20Q — M, and Q/4 + 2Q, resp. In the second inequality above we used the assumption that Q
is sufficiently larger than M. On the other hand, for any node vy4,

29
IQTI —2Mn >

Med(v4) =

=d(va,7) + Zvd(m, ) + Zv(d(vA, up) +d(va,up)) + va(m, uc) +d(va, ucr))
:§ #(n- 1)§ . Z; (Q +w(ou) + Q — w(ow)) + u;um, uc) +2Q + w(ou)))
=§ +(n- 1)§ +2n0+ I;WA, uc) +2Q + w(ou)))

s% +(n— 1)% +6nQ.
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Therefore the median is in A. In the last inequality we upper bounded d(v4, uc) with w’(vauc) = 2Q — w(vu).
Here a strict inequality holds if there exists a third node zg such that w’(vazg) +w’(zpuc) < w’'(vauc). However
this can happen only if vu € E, since otherwise w’(vauc) = 20-2M < w’(vazp) + w’(zpuc). Note also that,
if either vz ¢ E or zu ¢ E, then w’(vazp) + w'(zpuc) = 20+M > w’(vauc). Therefore we can conclude that
the strict inequality holds if and only if there exists a triangle {v, z,u} in G such that Q+w(vz) + Q+w(zu) <
2Q — w(ovu), i.e. a negative triangle. The claim follows.

Consider next the undirected case. We construct the same weighted graph (G’, w’) as in the directed case,
but removing edge directions (and leaving one copy of parallel edges). The rest of the algorithm is as in the
directed case, and the running time remains O(T (n, M)). In order to prove correctness, we need a slightly more
complicated case analysis. Like in the directed case, Med(va) < Q/4+ (n—1)Q/2+6nQ, where a strict inequality
holds if and only if v belongs to a negative triangle. For any ug € B,

Med(ug) = (Q - M+ Q/4) +2n(Q — M) + n(2Q — 2M) + n(3Q — 2M)
=(7n+5/4)Q — (6n+ 1)M.

Similarly

Med(up) = (9n+5/4)Q — (Tn+ 1)M,

Med(uc) = (10n+9/4)Q — (9n+2)M
and

Med(uc) > (12n+9/4)Q — (8n+ 1) M.
Furthermore,

Med(r) > nQ/4+2n(5Q/4 — M) +n(9/4Q — 2M) + n(9/4Q — M)
= (29n/4)Q — 5nM.
We can conclude that the median is in A. The correctness follows. |
Proor oF THEOREM 1.2. One direction is trivial, and the other is given by Lemmas 2.1 and 2.4. ]

Finally, we also prove a similar reduction for the following All-Nodes Median Parity problem: compute Med(v)
(mod 2) for all nodes v.

LEmMMA 2.5. Given a T(n, M) time algorithm for the All-Nodes Median Parity problem in a directed or undirected
graph, there exists a O(T(n;M)) time algorithm for Negative Triangle.

Proor. Let (G = (V,E),w) be the considered instance of Negative Triangle. Let us start with the directed
case. Let Q = ©(M) be a sufficiently large even integer. Similarly to the proofs of Lemmas 2.2 and 2.3 and with a
similar notation, we construct a four layer weighted directed graph (G’, w’) with layers I, J, K, and L, and edges
oruy, vyjug, and vguy of weight 2Q + w(ovu) for any uv € E. We also introduce a fifth copy B of V, and for any
vp € B we add edges vjup and vgvy of weight 3Q and 3Q — 1, respectively. We also add edges v;up of weight
3Q+3M + 2 for any u # v. Finally, we add a node r, and edges v;r and roy of weight Q for all v € V. Observe that
the edges of type vgvy, are the only edges of odd weight (by the preprocessing of the Negative Triangle instance).

In this graph we compute Med(v) (mod 2) forallv € V(G’) and we output YES to the input Negative Triangle
instance if and only if Med(v;) (mod 2) = 0 for some v; € I (i.e., some Med(vy) is even). The running time is
O(T(0(n), 0(M))) = O(T(n, M)). Let us prove correctness. Consider any v; € I. Any node is reachable from
oy, hence Med(vy) is finite. Any path of type v;,u’,ur, u # v, cannot be a shortest path since it has length
60 + 3M + 2 — 1 while there exists a vj-u; path of length at most 6Q + 3M avoiding B. Therefore the unique
candidate shortest path of odd weight is vy, v’, v1, of length 6Q — 1. However, by the usual argument, this is not
a shortest path if v is contained in some negative triangle. The claim follows.
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In the undirected case we can use the same graph (G’, w’), but removing edge directions (and leaving one
copy of parallel edges). The rest of the algorithm is the same and its analysis is analogous to the directed case.
mi

COROLLARY 2.6. Given a truly subcubic algorithm for All-Nodes Median Parity, there exists a truly subcubic
algorithm for APSP.

3 SUBCUBIC EQUIVALENCE BETWEEN REACH CENTRALITY AND DIAMETER

In this section we show that Diameter is equivalent to Reach Centrality under subcubic reductions. We start
with the simple reductions from Diameter.

LEmMA 3.1. Given a T(n,m) time algorithm for Reach Centrality in directed or undirected graphs, there is a
O(T(n,m)) time algorithm for Diameter in the same graph class.

Proor. Let (G = (V, E), w) be the input instance of Diameter, and let M be the largest integer weight. Consider
first the directed case. Let G’ be an auxiliary graph consisting of a copy of G plus a dummy node b and edges
ob and bo for all v € V. For each integer D € [1, (n — 1)M], we define an auxiliary weight function w’(D) on
the edges of G” which is D/2 for the edges incident on b and identical to w on the remaining edges. Observe
that in (G’, w'(D)) any pair of nodes s, t € V is connected by a path of length D using b. We identify the largest
value D’ of D such that RC(b) > D/2 for the Reach Centrality instance induced by (G’, w’(D)): this is done via
a binary search over D € [1, (n— 1)M], and using the Reach Centrality algorithm given in the claim. The output
value of the diameter is D’. For the sake of presentation, in the above reduction we tolerate fractional weights
for odd D: this can be trivially avoided by initially multiplying all weights w by a factor of 2, considering even
values of D only, and finally outputting D’/2.

The running time of the algorithm is O((m+T(n+1,2n+m)) log(nM)) = O(T(n,m)). Let (s*, t*) be a witness
pair for the diameter D*. In any execution where D* > D, there exists a shortest s*-¢* path using node b and
hence the answer is RC(b) > D/2. In any other execution (where D* < D), any shortest s-t path avoiding b has
length at most D* < D — 1 while passing through b would cost at least D (thus the answer is RC(b) = 0). The
correctness of the algorithm follows.

For the undirected case, we use the same auxiliary weighted graph, but without edge directions (and leaving
one copy of parallel edges). The algorithm is the same. The running time is O((m+T(n+1,n+m)) log(nM)) =
O(T(n, m)). Similarly to the directed case, in any execution where D is upper bounded by the diameter D*, there
exists a shortest s*-t* path using node b, hence RC(b) > D/2. In the remaining executions no shortest path uses
b, hence RC(b) = 0. O

Now, we present the more tricky reduction to Diameter. The following very efficient reduction completes the
equivalence between Diameter and Reach Centrality in directed graphs, and implies directly Theorem 1.5.

LEmMA 3.2. Given a T(n,m, M) time algorithm for Diameter in directed graphs, there is a O(T(n,m, M)) time
algorithm for Reach Centrality in directed graphs.

Proor. Let (G = (V, E), w, b) be the input instance of Reach Centrality. Observe that RC(b) is upper bounded
by one half of the diameter of G, hence in particular RC(b) < (n — 1)M/2. We show how to determine whether
RC(b) > K for a given integer parameter 0 < K < (n— 1)M/2 in O(T(n, m, M)) time. The value of RC(b) can
then be determined via binary search with an extra factor of O(log(nM)) = O(1) in the running time.

Observe that, if the answer is YES, there must be two nodes s,t € V — {b} such that some shortest s-t path
passes through b, K+ M > d(s,b) > K,and K+ M > d(b,t) > K. We construct an instance (G’, w’) of Diameter
as follows. We add to G’ a copy of G. Furthermore, we add a set of nodes A that contains a node v4 for each
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node v € V such that K+ M > d(v,b) > K. Symmetrically, we add a set of nodes B that contains a node vp for
each node v € V such that K + M > d(b,v) > K. We also add edges v40 and vop of weight K + M — d(v, b) and
K + M — d(b,v), respectively. Note that the weight of the latter edges is in [1, M] by construction. Finally, we
add a directed path P = vy, ..., 04, ¢ = [(2K + 2M — 2) /M, whose edge weights are chosen arbitrarily in [1, M]
so that the length of P is exactly 2K +2M — 2. For every v € V, we add edges v, and v40 of weight zero. We also
add edges avy of weight 1 and vga of weight 0 for any a € A. Symmetrically, we add edges v4b of weight 1 and
bvy of weight 0 for any b € B.

We compute the diameter D* of (G, w’) and output that RC(b) > K if and only if D* > 2K 4+ 2M. The running
time of the algorithm is O(m + T(O(n), O(m + n), M)) = O(T (n, m, M)). Consider its correctness. The distance
between any two nodes in G U P is at most 2K + 2M — 2. The distance between any node in G U P and any other
node is at most 2K + 2M — 1. The distance between any node in B and any other node is at most 2K + 2M — 1.
The distance between any node in A and any node in G U P U A is at most 2K + 2M — 1.

Consider next any pair s4 € A and tg € B. An s4-tg path using P would cost at least 2K + 2M. A shortest s4-1p
path avoiding P costs 2K + 2M — d(s,b) — d(b,t) + d(s,t) < 2K + 2M, where the equality holds if and only if b
is along some shortest s- path. Therefore D* < 2K + 2M and the equality holds if and only if there exists a pair
(sa,tg) € AX Bsuch that d(s,t) = d(s,b) +d(b,t), ie.if and only if RC(b) > K. The correctness follows. m]

PrOOF OF THEOREM 1.5. It follows from Lemma 3.2 by exploiting the O(Mn®) time algorithm for Diameter in
directed graphs in [17]. m]

Notice that Lemma 3.2 works only for directed graphs. In the next section we will prove the following reduc-
tion which works also for undirected graphs at a cost of not preserving asymptotically the edge weights.

LeEMMA 3.3. Given a T(n,m) time algorithm for Diameter in directed or undirected graphs, there is a O(T(n, m))
time algorithm for Reach Centrality in the same graph class.

Theorem 1.4 directly follows.

ProoF oF THEOREM 1.4. One direction is implied by Lemma 3.1 and the other by Lemma 3.3. ]

4  APPROXIMATION OF REACH AND BETWEENNESS CENTRALITY

In this section we present our results about the approximability of Reach and Betweenness Centrality. A key
idea in our approach is to consider the following Positive Betweenness Centrality problem, which might be of
independent interest: determine whether, for a given node b, there exists some shortest path using b as an
intermediate node. We let PosBC(b) denote the answer to this problem (YES or NO).

The following two lemmas show that Approximate Betweenness and Reach Centrality are at least as hard as
Positive Betweenness Centrality under subcubic reductions.

LeEMMA 4.1. Given a T (n, m) time algorithm for Approximate Betweenness Centrality in the case of non-unique
(resp., unique) shortest paths, there exists a deterministic (resp., high probability Monte-Carlo) O(T(n,m)) time
algorithm for Positive Betweenness Centrality with non-unique (hence unique) shortest paths.

Proor. Let us initially modify the edge weights of the input Positive Betweenness Centrality instance as
follows. We first multiply edge weights by 3n. Then we add 1 to the weights of edges incident to b (considering
both ingoing and outgoing edges for directed graphs), and we add 3 to all other edges. Let w’ be the new edge
weights. Observe that any shortest path w.r.t. w’ is also a shortest path w.r.t. w by an argument similar to
Corollary 1.7. In more detail, let W be the length of an a-c shortest path for some pair of distinct nodes a and
¢ w.r.t. w. The same path w.r.t. w’ has length at most 3(n — 1) + 3nW, while any non-shortest a-c path w.r.t. w
would have length at least 1 + 3n(W + 1) w.r.t. w’.
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Let PosBC’(b) be the answer to the Positive Betweenness Centrality instance induced by the weights w’. We
claim that PosBC’(b) = PosBC(D) (i.e., the two instances are equivalent). Indeed, if PosBC(b) = NO it must be
PosBC’(b) = NO since, as said before, we are not creating alternative shortest paths using b with weights w’.
Suppose instead PosBC(b) = YES. This implies that w.r.t. weights w there exists a shortest path P, say from u to
v, that goes through b, where u, v, b are all distinct. Consider the nodes right before and after b on P, call them
a and c. Here again a, b, ¢ are all distinct. Let W be the length of the abc path. With weights w’ any a-c path
avoiding b would cost at least 3nW + 3, while abc costs 3nW + 2 only. Thus all shortest a-c paths w.r.t. w’ pass
trough b. In particular, PosBC’(b) = YES.

If the given algorithm for Approximate Betweenness Centrality works in the case of non-unique shortest
paths or the input instance of Positive Betweenness Centrality has unique shortest paths, we simply apply that
algorithm with weights w’” and return NO if and only if the approximate value is 0. The claim on the running
time holds trivially. Let BC’(b) be the value of BC(b) w.r.t. weights w’. If PosBC’(b) = NO, then BC'(b) = 0
since the initial modification of the weights does not create new shortest paths. Hence the approximate solution
must be 0. Otherwise by construction necessarily BC’(b) > 0, hence the approximate value must be positive.
The correctness follows.

Otherwise, we first randomly perturb the weights w’ of the input Positive Betweenness Centrality instance as
in Corollary 1.7. Let w” be the perturbed weights. Next assume that shortest paths are unique w.r.t. weights w”’,
which happens w.h.p., and let BC” (b) be the value of BC(b) w.r.t. weights w”’. Then we apply the approximation
algorithm for Betweenness Centrality and declare PosBC’(b) = NO if and only if the approximate value is 0.
Clearly the running time is as in the claim since m and n are preserved, while the largest edge weight is increased
by a polynomial factor in n. By the above arguments, if PosBC’(b) = NO it must be the case that BC"’(b) = 0 since
the perturbation from Corollary 1.7 does not create alternative shortest paths using b. Hence the approximate
algorithm would return 0. Otherwise, there will be some pair (g, ¢) such that all shortest a-c paths w.r.t. weights
w’ use node b, hence one such path will cause BC” (b) > 0. Therefore the approximation algorithm has to return
a positive value. ]

LEmMA 4.2. Given a T(n, m) time algorithm for Approximate Reach Centrality, there is a O(T (n, m)) time algo-
rithm for Positive Betweenness Centrality with non-unique shortest paths.

Proor. By definition RC(b) > min{d(b, b),d(b,b)} = 0 and RC(b) > 0 implies PosBC(b) = YES. However,
due to 0 weights, it might still be that RC(b) = 0 and PosBC(b) = YES. To avoid this issue we build weights w’
exactly as in the proof of Lemma 4.1. Recall that, with the same notation, PosBC’(b) = PosBC(b). Furthermore,
PosBC’(b) = YES if and only if there exists some pair of nodes (a, ¢), with a, b, ¢ all distinct, such that all shortest
a-c paths use node b. Let RC’(b) denote the value of RC(b) w.r.t. weights w’.

We apply the approximation algorithm for Reach Centrality to the resulting instance, and return PosBC(b) =
NO if and only if the answer is 0. The running time satisfies the claim since m and n are preserved, while
the largest edge weight is increased by a polynomial factor in n. For the correctness, observe that PosBC'(b) =
PosBC(b) = NO implies that RC’(b) = 0, hence the approximation algorithm has to return 0. Otherwise, since all
weights are at least 1, the mentioned pair (a, c) guarantees that RC’(b) > 1, hence the approximation algorithm
has to return a positive value. O

4.1 Some Results on Positive Betweenness Centrality

A simple observation is that on unweighted graphs, Positive Betweenness Centrality is asking whether there is
an in-neighbor x of b and an out-neighbor y of b such that xy ¢ E, and therefore can be solved in O(m) time.
We next show that, on weighted graphs, Positive Betweenness Centrality and Diameter are equivalent under
subcubic reductions.
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Fig. 5. (Left) Reduction from Diameter to Positive Betweenness Centrality in directed graphs. Gray edges have weight
D/2, where D is a guess of the diameter. (Middle) Reduction from Positive Betweenness Centrality to Diameter in directed
graphs. Here D is a proper upper bound on the diameter. Notice that the preprocessing involving the dummy node r is not
illustrated in the figure. (Right) Reduction from the Negative Triangle instance of Figure 2 to All-Nodes Positive Between-
ness Centrality in directed graphs (partially drawn). Gray edges have weight 3Q. One has BC(3p) > 0 and BC(0p) = 0 since
node 3 does not belong to a negative triangle while node 0 does it.

THEOREM 4.3. Diameter and Positive Betweenness Centrality with non-unique shortest paths are equivalent under
subcubic reductions.

Theorem 4.3 follows directly from the next two lemmas.

LEMMA 4.4. Given a T(n,m) time deterministic (resp. high probability Monte-Carlo) algorithm for Positive Be-
tweenness Centrality with non-unique shortest paths in directed or undirected graphs, there is a deterministic (resp.
high probability Monte-Carlo) O(T (n, m)) time algorithm for Diameter in the same graph class.

Proor. Let us focus on the deterministic case, the other case being analogous. This proof is similar in spirit
to the proof of Lemma 3.1. Let (G = (V, E), w) be the input instance of Diameter, where M is the largest integer
weight. Consider first the directed case (see also Figure 5). Let D be an integer in [1, (n — 1)M]. Let (G’, w’(D))
denote the auxiliary weighted graph consisting of a copy of (G, w) plus a dummy node b and dummy edges vb
and bo of weight® D/2 for any v € V. Observe that any pair of nodes s, € V is connected by a path of length
D using b. By performing a binary search on D and solving each time the resulting instance (G’, w’(D), b)
of Positive Betweenness Centrality, we determine the largest value D’ of D such that the answer is YES (i.e.,
BC(b) > 0). The output value of the diameter is D’.

The running time of the algorithm is O((m+T(n+1, 2n+m)) log(nM)) = O(T(n, m)). Let (s*, t*) be a witness
pair for the diameter D*. In any execution where D* > D, there exists a shortest s*-¢t* path using node b and
hence the answer is YES. In any other execution (where D* < D), any shortest s-t path avoiding b has length at
most D* < D — 1 while passing through b would cost at least D (thus the answer is NO). The correctness of the
algorithm follows.

For the undirected case, we use the same auxiliary weighted graph, but without edge directions (and leaving
one copy of parallel edges). The algorithm and its analysis are analogous to the directed case. ]

LeEMMA 4.5. Given a T (n, m, M) time algorithm for Diameter in directed or undirected graphs, there is a O(T(n, m, M))
time algorithm for Positive Betweenness Centrality with non-unique (hence unique) shortest paths in the same graph
class.

SFractional weights can be avoided similarly to the proof of Lemma 3.1.
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Proor. Let (G, w, b) be the input instance of Positive Betweenness Centrality. Observe that the answer is YES
if and only if there exists a shortest path of the form s, b, t.

Let us consider the directed case first. By adding a dummy node » and dummy edges vr and rv of weight M for
any v € V — {b}, we can assume that the diameter of G is at most D = 3M (w.L.o.g., b has at least one in-neighbor
and one out-neighbor). Note that we did not introduce new paths of the form s, b, t. Furthermore, the new graph
has n + 1 nodes, m + 2n edges, and maximum weight M. Hence a O(T(n, m, M)) time algorithm for the modified
instance implies the same running time for the original one.

We construct an instance (G’, w’) of Diameter as follows (see also Figure 5). Initially G’ = G. We add a copy
A of V. Let v be the copy of v € V. For every v € V, we add edges v40 and vv4 of weight D + 1 — w(vb) and
D + 1 — w(bo), respectively. If edges vb or bv are missing (including the case v = b), we set the weight of the
corresponding edges v4v and vva, respectively, to 0. Observe that edge weights are O(M).

In this graph we compute the diameter D* and output YES to the input Positive Betweenness Centrality
instance if and only if D* > 2D + 2. The running time of the algorithm is O(m + T(O(n),0(m),0(M))) =
O(T(n, m, M)). Consider a witness pair s*, t* for the value of the diameter. Since edges of type v4v and vu, have
non-negative weight, we can assume w.l.o.g. that s* = s4 € Aand t* = t4 € A.If both edges sb and bt are missing,
one has D* = dg (s, t) < D. If exactly one of the mentioned edges is missing, say bt, one has D* = D+1-w(sb)+
ds(s,t) < 2D + 1. Finally, if both edges are present, one has D* = 2(D + 1) =w(sb) — w(bt) + dg(s, t) < 2D + 2,
where equality holds if and only if s, b, ¢ is a shortest path. In particular, if there exists a shortest path of the
mentioned type, D* = 2D + 2 and otherwise D* < 2D + 1. The correctness follows.

By simply removing edge directions (and leaving one copy of parallel edges) in the above construction, one
obtains the claim in the undirected case. m]

We can exploit the above equivalence to derive (indirectly) the equivalence between Diameter and Reach
Centrality in both directed and undirected graphs (recall that we showed this equivalence only in directed graphs,
see Lemma 3.2).

LEmMMA 4.6. Given a T(n, m) time algorithm for Positive Betweenness Centrality with non-unique shortest paths
in directed or undirected graphs, there is a O(T(n, m)) time algorithm for Reach Centrality in the same graph class.

ProoOF. Let (G, w, b) be the input instance of Reach Centrality. We show how to determine whether RC(b) > K
for a given parameter K in O(T(n, m)) time. The value of RC(b) can then be determined via binary search with
an extra factor of O(log(nM)) = O(1) in the running time.

Let us consider the directed case first. We compute the shortest path distances from and to b in G. Next
we construct an auxiliary weighted graph (G’, w’) as follows. We let G’ initially contain a copy of G — {b} =
G[V — {b}], plus an isolated node b. Next, for any v € V — {b}, we add an edge vb of weight d(v, b) if and only
if d(v,b) > K. Symmetrically, we add an edge bv of weight d(b, v) if and only if d(b,v) > K.

We solve the Positive Betweenness Centrality instance (G’, w’, b) and output that RC(b) > K if and only if
the answer is YES. The running time of the algorithm is O(m + T(n, m + 2n)) = O(T(n, m)). Let us prove its
correctness. Suppose that RC(b) > K and let (s, t) be a witness pair of that. Then s, b, t is a shortest s-f path in
G’ and therefore the answer to the Positive Betweenness Centrality instance is YES. Vice versa, suppose that
the answer to the Positive Betweenness Centrality instance is YES, i.e. there exists a shortest s-t path passing
through b. This implies that there exists a shortest path of the form s’, b, t’. Observe that the shortest paths not
involving node b are the same in G and G’. Therefore there exists a shortest s’-t" path in G’ passing through b.
Since by construction dg (s, b),dc(b,t") > K, the pair (s’,t") witnesses that RC(b) > K.

The claim in the undirected case follows from the same reduction, but removing edge directions (and leaving
only one copy of parallel edges). ]
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Lemma 3.3 directly follows.
Proor ofF LEmMMA 3.3. It follows by chaining Lemmas 4.5 and 4.6. ]

Another interesting observation about Positive Betweenness Centrality is that although solving it for a single
node b is equivalent to Diameter under subcubic reductions, the all-nodes version of the problem (where one
wants to determine whether BC(b) > 0 for all nodes b) is actually at least as hard as APSP.

LEmMA 4.7. Given a T(n, m, M) time algorithm for All-Nodes Positive Betweenness Centrality with non-unique
shortest paths in directed or undirected graphs, there is a O(T(n, m, M)) time algorithm for Negative Triangle.

ProoF. Let (G, w) be the input instance of Negative Triangle. Consider first the directed case (see also Figure
5). We create a directed weighted graph (G’, w’) as follows. Graph G’ contains five copies I, J, K, L and B of the
node set V. With the usual notation vx is the copy of node v € V in set X. Let Q = ©(M) be a sufficiently large
integer. For every edge uv € E we add the edges ujvy, ujok, uxor, to G and set their weight to 2Q0+w(uv). We
also add edges ujup and uguy, for every node u in G and set the weight of these edges to 3Q.

The algorithm solves the All-Nodes Positive Betweenness Centrality problem on (G’, w”) in time O(T (n, m, M)),
and outputs YES to the input Negative Triangle instance if and only if BC(ug) > 0 for some ug € B. To show
correctness, observe that the only path through up is from u; to uy and it has weight 6Q, while every path of
type uy, vy, wg, ur, corresponds to a triangle {u, v, w} in G and the weight of the path equals the weight of the
triangle plus 6Q. The claim follows.

The same construction, without edge directions, proves the claim for undirected graphs. O

CoROLLARY 4.8. Given a truly subcubic algorithm for All-Nodes Approximate Reach Centrality or for All-Nodes
Approximate Betweenness Centrality with non-unique shortest paths, there exists a truly subcubic algorithm for
APSP.

Proor. In case of strictly positive weights, a truly subcubic algorithm for All-Nodes Approximate Reach Cen-
trality or for All-Nodes Approximate Betweenness Centrality with non-unique shortest paths directly implies
a truly subcubic algorithm for All-Nodes Positive Betweenness Centrality with non-unique shortest paths (the
answer for a node b is YES if and only if the associate approximate value is strictly positive). Notice that in
the reduction of Lemma 4.7 all weights are positive, hence this implies a truly subcubic algorithm for Negative
Triangle. The claim follows by the subcubic equivalence between Negative Triangle and APSP [64]. ]

4.2 A PTAS for Betweenness Centrality

In this section we prove the subcubic equivalence between Approximate Betweenness Centrality and Diameter.

THEOREM 4.9. Diameter and Approximate Betweenness Centrality with unique shortest paths are equivalent un-
der subcubic high probability Monte-Carlo reductions.

The main result in this section is the proof of the following Lemma.

LEMMA 4.10. ‘Given a truly subcubic algorithm for Diameter, there exists a truly subcubic high probability Monte-
Carlo PTAS for Betweenness Centrality with unique shortest paths.

We recall that a PTAS for the problem of estimating a value X is an algorithm that takes in input an instance
of the problem and a parameter ¢ > 0, and outputs a (1 + ¢) approximation x or X, i.e. ﬁX <x < (1+¢X.
Furthermore, the running time of the algorithm is polynomial whenever ¢ is lower bounded by some constant.

The proof of Theorem 4.9 follows easily.

ProoF OF THEOREM 4.9. Lemma 4.10 gives one direction. The other direction is obtained by chaining Lemma
4.1 and Lemma 4.4. O
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Fig. 6. Reduction from Positive (S, T)-Betweenness Centrality to Diameter with S = T = {1, 2}. Gray edges has weight K —1.
On the left and right the reduction for the directed and undirected case, resp.

It remains to prove Lemma 4.10. Let (G, w, b) be the considered instance of Betweenness Centrality, and define
B* = BC(b). Observe that, under the assumption that shortest paths are unique, BC,;(b) € {0,1} and therefore
B* €{0,...,(n—1)(n—-2)}. Given s,t € V — {b} such that BCs,;(b) = 1, we call (s, t) a witness pair, s a witness
source, and t a witness target (of BC(b)).

Let also Byeq € {0,...,(n — 1)(n — 2)} be a integer parameter to be fixed later. Our PTAS is based on two
different algorithms: one for B* < By,.q (small B¥) and the other for B* > B,,.4 (large B*).

4.2.1 An exact algorithm for small B*. Let us start with the algorithm for small B*. Recall that a witness pair
(s, t) satisfies BC;;(b) = 1. A crucial observation is that the number of witness pairs is equal to B* in case of
unique shortest paths.

It is convenient to define a generalization of Betweenness Centrality, where we consider only some pairs (s, t).
For S,T C V — {b}, we define BCs1(b) := X (5s)esxt BCs.r(b). The (S, T)-Betweenness Centrality problem is to
compute BCs 1(b). The Positive (S, T)-Betweenness Centrality problem is to determine whether BCs 1(b) > 0. We
use the shortcuts BC; 1(b) = BCys) r(b) and BCs,; (b) = BCs () (b). Our first ingredient is a reduction of Positive
(S, T)-Betweenness Centrality to Diameter.

LEMMA 4.11. Given aT(n, m) time algorithm for Diameter in directed or undirected graphs, there exists a O(T (n, m))
time algorithm for Positive (S, T)-Betweenness Centrality with non-unique (hence unique) shortest paths in the same
graph class.

Proor. We use a construction similar to the one in the proof of Lemma 4.5 (see also Figure 6). Let (G, w, b, S, T)
be the considered instance of Positive (S, T)-Betweenness Centrality.

We start with the directed case. Let us construct a directed weighted graph (G’, w’). Graph G’ contains a copy
of G. Furthermore, it contains a copy S’ of S and a copy T’ of T. Let vs be the copy of node v in S, and define
ot analogously. Let K := 2 + A, where A is the maximum distance of type dg (s, b) and dg (b, t), with s € S and
t € T.Foreachs € Sand t € T, we add edges sss and tt1 of weight K — dg (s, b) and K — dg (b, t), respectively.
We add one dummy node r’ (resp. r’”’) and bidirected’ edges r’v for allv € S’ UV (resp., r"’v forallo € T" U V).
We also add edges r”’v for each v € S’ (in particular these edges are not bidirected). Finally, we add a bidirected
edges r'r”’. All edges incident on r’ and r”’ have weight K — 1 (dummy edges). We compute the diameter D* of
(G’,w’), and output YES if and only if D* = 2K.

The running time of the algorithm is O(m + T(O(n), 0(m))) = O(T(n, m)). Let us prove its correctness. Let
s*,t* be a witness pair for the diameter. If s* € VU T’ U {r’,r”}, then D* < 2(K — 1). Hence we can assume
s*=ss €S forsomes € S.If t* € UV U {r/,r"”}, then D* < 2(K — 1). So we can also assume t* = tr € T'.

"By a bidirected edge uv of weight w, we mean a directed edge uv and a directed edge vu, both of weight w.
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Any ss-tr path using dummy edges has to use at least 2 such edges. If it uses 3 such edges, it costs at least
3(K—-1) > 2K. Otherwise, it costs at least K—dg (s, b)+2(K—-1) > K—A+2(K-1) = 2K or 2(K-1)+K—dg(b,t) >
K—-A+2(K-1) = 2K. Any shortest sg-t7 avoiding dummy edges has cost 2K —dg (s, b) —dg(b, t) +dg (s, t) < 2K,
where the equality holds if and only if b belongs to some shortest s-¢ path in G. Summarizing, if there exists a
shortest s-t path passing through b (in which case the answer is YES), then the diameter is 2K. Otherwise, the
diameter is at most 2K — 1.

The construction for the undirected case is similar, where we remove edge directions (leaving one copy of
parallel edges) and the edges of type r”’v with v € S’. By the same argument as before, we can assume that
s*,t* € 8" U T’ and furthermore they do not belong simultaneously to S’ or to T’ (otherwise D* < 2(K — 1)).
Thus, modulo switching the endpoints (which is w.Lo.g. in the undirected case), we can assume s* = s5 € S” and
t* = tr € T'. Then by the same argument as before one has that the diameter is 2K if there exists a shortest s-t
path passing through b (in which case the answer is YES), and otherwise the diameter is at most 2K = 1. O

We will exploit the following recursive algorithm for (S, T)-Betweenness Centrality.

LEMMA 4.12. Given a T(n, m) time algorithm for Diameter in directed (resp., undirected) graphs, there is a O(W -
T(n,m)) time algorithm for (S, T)-Betweenness Centrality with unique shortest paths, where W is the number of
pairs (s,t) € S X T such that BC;(b) = 1.

ProoF. We describe a recursive algorithm with the claimed running time, given a O(T(n, m)) time algorithm
for Positive (S, T)-Betweenness Centrality. The claim follows from Lemma 4.11.

The recursive algorithm works as follows. It initially solves the corresponding Positive (S, T)-Betweenness
instance. If the answer is NO, the algorithm outputs 0. If the answer is YES, we distinguish two subcases. If
|S| = |T| = 1, the algorithm outputs 1. Otherwise, the algorithm partitions arbitrarily S into two subsets S; and
Sz which differ by at most 1 in cardinality, and it splits similarly T into T; and T,. Then the algorithm solves
recursively the sub-problems induces by the pairs (S;, T;), i, j € {1, 2}, and outputs the sum of the four obtained
values.

The correctness of the algorithm is obvious. Concerning its running time, consider the recursion tree. Let us
call a subproblem whose corresponding Positive (S, T)-Betweenness Centrality instance is a YES/NO instance
a YES/NO subproblem. Observe that, excluding the root problem, any NO subproblem must have at least one
sibling YES subproblem in the recursion tree. Furthermore, each sub-problem has at most 4 children in the
recursion tree. Therefore, if the root subproblem is a YES subproblem, the total number of subproblems is at
most 4 times the number of YES subproblems. Note also that the number of leaf YES subproblems is equal to W,
and that each YES subproblem must have at least one leaf YES subproblem among its descendants. Finally, the
depth of the recursion tree is O(log(|S| + |T|)) = O(log n). Thus the number of subproblems is O(W). The claim
on the running time follows. m]

We are now ready to present our algorithm for small B*.

LEmMA 4.13. Given an instance (G, w, b) of Betweenness Centrality with unique shortest paths, a parameter Bp,.q,
and an algorithm for Diameter of running time T (n, m). There is an O(B,eqT(n, m)) time algorithm which either
outputs B* = BC(b) or answers NO in which case B* > Bpeq.

Proor. Consider the recursive algorithm from Lemma 4.12. We run that algorithm with S = T = V, however
with the following modifications. We keep track of the number W of leaf YES sub-problems found so far. If
W > Beq at any point, we halt the recursive algorithm and output NO. Otherwise, we output the value W
returned by the root call of the recursive algorithm.
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The correctness of the algorithm follows immediately since the number of leaf YES subproblems in the original
(non-truncated) algorithm equals B*. An easy adaptation of the running time analysis in Lemma 4.12 shows that
the running time is as in the claim (in particular the number of recursive calls is O(Bjeq))- ]

4.2.2 A Monte-Carlo PTAS for large B*. We next assume that B* > B,,.4, and we present an algorithm for this
case. In order to lighten the notation, since b is clear from the context, we next use BCs r instead of BCs 1 (b) and
similarly for related notation. Observe that a node w is a witness source (resp., witness target) if BC,,, v > 0 (resp.,
BCy 1, > 0). At high level, our algorithm is based on the computation of the contribution BC; y to BC of a random
sample of candidate witness sources s. Then we exploit Chernoff’s bound to prove that the approximation factor
is small w.h.p. One technical difficulty here is that some witness sources might give a very large contribution
to BC, which is problematic since we need concentrated results. In order to circumvent this problem, we first
sample a random subset of candidate witness targets to identify the problematic witness sources (which are

considered separately).
Clogn

e
large constant (more precisely C = O(1/¢?) is sufficient). We compute all the shortest paths ending in T, and
use them to derive BCs 1 for all s € V. We partition V into sets Sj4rge and Sgmair, Where s € V- belongs to Sygpge if
and only if BC; 7 > Clog n. Then we sample a random subset Rg,q11 Of Pmed|Ssmair| nodes in Sgpmqpr, and compute
BC;y for all s € Rgpqpr. Finally, we output the estimate

~ 1
B:pmd( Do BCir+ ) BCyy).

SESlar_qe S€Rsmall

In more detail, we sample a random subset T of p,,.q - n nodes, where ppeq = and C is a sufficiently

It is easy to see that the running time of the algorithm is O( ‘/C—ﬂ) Itis also not hard to see that E[ Z 5€Starge BCs, r] =
2i5€Starge BCs,v andE[m 2seRynay BCsv] = 2ses,,, o BCs,v- Therefore, E[B B] = B*. The followmg lemma shows
that B is concentrated around its mean.

LEMMA 4.14. For C = O(1/¢) large enough, w.h.p. B € [(1 — 2¢)B*, (1 + 2¢)B*].

ProoF. We start by showing that w.h.p,, for any s € V, if s € Sjgge then BCsy > VBea/(1 + ¢), and
otherwise BCsy < VBmea/(1 — ¢). Define B’ = BCs 1 and B = BCjy. Note that E[B’] = Clogn B Note also that

e
B’ 