
MIT Open Access Articles

Subcubic Equivalences Between Graph
Centrality Problems, APSP and Diameter

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Abboud, Amir, Grandoni, Fabrizio and Vassilevska Williams, Virginia. "Subcubic
Equivalences Between Graph Centrality Problems, APSP and Diameter." ACM Transactions on
Algorithms.

As Published: http://dx.doi.org/10.1145/3563393

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/146446

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146446

Subcubic Equivalences Between Graph Centrality Problems, APSP

and Diameter∗

AMIR ABBOUD, IBM Almaden Research Center, USA

FABRIZIO GRANDONI, IDSIA, USI-SUPSI, Switzerland
VIRGINIA VASSILEVSKA WILLIAMS,MIT, USA

Measuring the importance of a node in a network is a major goal in the analysis of social networks, biological systems,
transportation networks etc. Diferent centrality measures have been proposed to capture the notion of node importance.
For example, the center of a graph is a node that minimizes the maximum distance to any other node (the latter distance is
the radius of the graph). Themedian of a graph is a node that minimizes the sum of the distances to all other nodes. Informally,
the betweenness centrality of a node � measures the fraction of shortest paths that have � as an intermediate node. Finally,
the reach centrality of a node� is the smallest distance � such that any �-� shortest path passing through� has either � or �
in the ball of radius � around� .

The fastest known algorithms to compute the center and the median of a graph, and to compute the betweenness or reach
centrality even of a single node take roughly cubic time in the number � of nodes in the input graph. It is open whether these
problems admit truly subcubic algorithms, i.e. algorithms with running time �̃ (�3−�) for some constant � > 01.

We relate the complexity of the mentioned centrality problems to two classical problems for which no truly subcubic
algorithm is known, namely All Pairs Shortest Paths (APSP) and Diameter. We show that Radius, Median and Betweenness
Centrality are equivalent under subcubic reductions to APSP, i.e. that a truly subcubic algorithm for any of these problems
implies a truly subcubic algorithm for all of them. We then show that Reach Centrality is equivalent to Diameter under
subcubic reductions. The same holds for the problem of approximating Betweenness Centrality within any inite factor.
Thus the latter two centrality problems could potentially be solved in truly subcubic time, even if APSP required essentially
cubic time.

On the positive side, our reductions for Reach Centrality imply an improved �̃ (���)-time algorithm for this problem in
case of non-negative integer weights upper bounded by� , where � is fast matrix multiplication exponent.

CCS Concepts: • Theory of computation→ Graph algorithms analysis.

Additional Key Words and Phrases: ine-grained complexity, subcubic reductions, APSP, radius, median, diameter, between-
ness centrality, reach centrality

1 INTRODUCTION

Identifying the importance of nodes in networks is a major goal in the analysis of social networks (e.g., cita-
tion networks, recommendation networks, or friendship circles), biological systems (e.g., protein interaction
networks), computer networks (e.g., the Internet or peer-to-peer networks), transportation networks (e.g., pub-
lic transportation or road networks), etc. A variety of graph theoretic notions of node importance have been

∗A preliminary version of this paper appeared in SODA 2015. This version corrects some subtle technical bugs.
1The �̃ notation suppresses poly-logarithmic factors in � and� .

Authors’ addresses: Amir Abboud, IBM Almaden Research Center, USA, abboud@cs.stanford.edu; Fabrizio Grandoni, IDSIA, USI-SUPSI,
Switzerland, fabrizio@idsia.ch; Virginia Vassilevska Williams, MIT, USA, virgi@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions
from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1549-6325/2022/9-ART $15.00
https://doi.org/10.1145/3563393

ACM Trans. Algor.

https://doi.org/10.1145/3563393

2 • A. Abboud, F. Grandoni, V. Vassilevska Williams

proposed, among the most relevant ones: betweenness centrality [25], graph centrality [36], closeness centrality
[54], and reach centrality [35].
The graph centrality of a node � is the inverse of its maximum distance to any other node. The closeness

centrality of � is the inverse of the total distance of � to all the other nodes. The reach centrality of � is the
maximum distance between � and the closest endpoint of any �-� shortest path passing through � . Informally,
the betweenness centrality of� measures the fraction of shortest paths having� as an intermediate node.

In this paper we study four fundamental graph centrality computational problems associated with the men-
tioned centrality measures. Let � = (� , �) be an �-node �-edge (directed or undirected) graph, with integer
edge weights � : � → {0, . . . , �} for some � ≥ 1. Though we focus here on non-negative weights, part of our
results can be extended to the case of directed graphs with possibly negative weights and no negative cycles. Let
�� (�, �) denote the distance from node � to node � , and let us use � (�, �) instead when� is clear from the context.

• The Radius problem is to compute �∗ := min� ∗∈� max�∈� � (� ∗, �) (radius of the graph).
• The Median problem is to compute��� := min�∗∈�

∑
�∈� � (�∗, �).

• The Reach Centrality problem (for a given node �) is to compute

�� (�) = max
�,� ∈� :

� (�,�)=� (�,�)+� (�,�)

{min{� (�, �), � (�, �)}}.

• The Betweenness Centrality problem (for a given node �) is to compute the number �� (�) of shortest paths
that have � as an intermediate node2.

All of these notions are related in oneway or another to shortest paths. In particular, we can solve the irst three
problems by running an algorithm for the classical All-Pairs Shortest Paths problem (APSP) on the underlying
graph and doing a negligible amount of post-processing. The same holds for Betweenness Centrality by assuming
that shortest paths are unique by a simple algorithm. This was recently extended to the case of (possibly) non-
unique shortest paths in unweighted graphs [12]. Part of our results for Betweenness Centrality assume the
uniqueness of shortest paths. Using the best known algorithms for APSP [61], this leads to a slightly subcubic
(by an �� (1) factor) running time for the considered problems, and no faster algorithm is known.

Each of these problems however only asks for the computation of a single number. It is natural to ask, is
solving APSP necessary? Could it be that these problems admit much more eicient solutions? In particular, do
they admit a truly subcubic3 algorithm?

Besides the fundamental interest in understanding the relations between such basic computational problems
(can Radius be solved truly faster than APSP?), these questions are well motivated from a practical viewpoint. As
evidence to the necessity of faster algorithms for thementioned centrality problems, we remark that some papers
presenting algorithms for Betweenness Centrality [8] and Median [37] have received more than a thousand
citations each.

1.1 Approach

The techniques of this paper fall within the realm of ine-grained complexity (see [58] for a survey on the topic).
A reinement of NP-hardness, the ine-grained approach strives to prove, via “ine-grained” reductions, that im-
proving on a given upper bound for a computational problem � would yield breakthrough algorithms for many
other famous and well-studied problems. At high-level, the idea is to consider two problems � and � for which
the fastest known algorithms have running times � (�(�)) and � (� (�)) (here � is a size parameter such as the
number of nodes in a graph), respectively. Typically � is a problem that is widely believed to need �(�)1−� (1)
time. The approach then uses special reductions to transform an instance of � to instances of �, so that if there

2Another slightly diferent deinition of the problem is used in the literature, this is discussed later.
3We recall that a truly subcubic algorithm is an algorithm with running time �̃ (�3−�) for some constant � > 0.

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 3

were an algorithm for � with running time � (� (�)1−�) for some � > 0, then composing this algorithm with the
reduction would yield an algorithm for� running in time� (�(�)1−�) for � > 0. Since� is widely believed to not
have such an algorithm, this can be used as evidence that a� (� (�)1−�) time algorithm for problem � is unlikely
to exist (or at least very hard to ind). When �(�) = � (�) = �3, a reduction of the above kind is called a subcubic
reduction [64] from � to �. We say that two problems � and � are equivalent under subcubic reductions if there
exists a subcubic reduction from � to � and from � to �. In other terms, a truly subcubic time algorithm for one
problem implies a truly subcubic time algorithm for the other and vice versa.
In this paper we will also consider randomized reductions of the above type. In more detail, there exists a

Monte-Carlo subcubic reduction with success probability � from � to � if, given a truly subcubic algorithm for
�, we can solve � in truly subcubic time and the answer is correct with probability at least � . If � ≥ 1 − 1/�� (1) ,
the above Monte-Carlo reduction is a high probability one. Equivalence under such Monte-Carlo reductions is
deined similarly.
VassilevskaWilliams andWilliams [64] introduced this approach to the realm of graph algorithms to show the

subcubic equivalence between APSP and a list of seven other problems, including: deciding if an edge-weighted
graph has a triangle with negative total weight (Negative Triangle), deciding if a given matrix deines a metric,
and the Replacement Paths problem [33, 34, 53, 59, 62]. Other examples of this approach [1, 3, 48] include the
famous results on 3-SUM hardness starting with the work of Gajentaan and Overmars [26]. More recently, the
ine-grained approach has gained popularity. The main prototypical hard problems used are CNF-SAT, APSP and
3SUM, but also some others such as �-Clique and more. Many incredibly diverse problems are now known to
have ine-grained reductions from these prototypical hard problems. See the survey by VassilevskaWilliams [58].
In this paper we exploit both APSP and Diameter as our prototypical problem and prove a collection of sub-

cubic equivalences with the above graph centrality problems. Recall that the Diameter problem is to compute
the largest distance in the graph. There is a trivial subcubic reduction from Diameter to APSP and, although no
truly subcubic algorithm is known for Diameter, inding a reduction in the opposite direction is one of the big
open questions in this area: can we compute the largest distance faster than we can compute all the distances?

1.2 Subcubic equivalences with APSP

Our irst main result is to show that Radius, Median and Betweenness Centrality are equivalent to APSP under
subcubic reductions. Therefore, we add three relevant problems to the list of APSP-hard problems [64] and if
any of these problems can be solved in truly subcubic time then all of them can.

Theorem 1.1. Radius is equivalent to APSP under subcubic reductions.

Theorem 1.2. Median is equivalent to APSP under subcubic reductions.

Theorem 1.3. Betweenness Centrality (with unique shortest paths) is equivalent to APSP under high probability

Monte-Carlo subcubic reductions.

We remark that, in the proof of Theorem 1.3, randomization is used only to guarantee the uniqueness of
shortest paths in the reduction from APSP to Betweenness Centrality. In particular, dropping the uniqueness
requirement, the same reduction would be deterministic. However, the converse reduction would not work as
we mentioned earlier since the number of alternative shortest paths could be exponentially large.

Unfortunately, this is strong evidence that a truly subcubic algorithm for computing these centrality mea-
sures is unlikely to exist (or at least very hard to ind) since it would imply a huge and unexpected algorithmic
breakthrough.
We ind the APSP-hardness result for Radius quite interesting since, prior to our work, there was no good

reason to believe that Radius might be a truly harder problem than Diameter. Indeed, in terms of approximation
algorithms, any known algorithm to approximate the diameter can be converted to also approximate the radius

ACM Trans. Algor.

4 • A. Abboud, F. Grandoni, V. Vassilevska Williams

in undirected graphs within the same factor [4, 7, 14, 52]. Furthermore, the exact algorithms for Diameter and
Radius in graphs with small integer weights are also extremely similar [17]. The same holds for the lower bounds
on fast approximation algorithms for Radius and Diameter in sparse graphs [2, 52].

1.3 Subcubic equivalence between Reach Centrality and Diameter

Our second main result is to show that Reach Centrality and Diameter are equivalent under subcubic reductions.

Theorem 1.4. Diameter and Reach Centrality are equivalent under subcubic reductions.

On the positive side, it is within the realm of possibility that Diameter is a truly easier problem than APSP,
which would imply the same for Reach Centrality. On the negative side, Theorem 1.4 shows that inding a
subcubic algorithm for Reach Centrality is as hard as inding a subcubic algorithm for Diameter - a big open
problem.
As a consequence of the tightness of our reductions, namely not only the number of nodes but also the largest

absolute weight is roughly preserved, we also obtain a faster algorithm for Reach Centrality in directed graphs
with small integer weights.

Theorem 1.5. There exists an �̃ (���) time algorithm for Reach Centrality in directed graphs.

Above� ∈ [2, 2.373) [16, 19, 27, 28, 63] denotes fast matrix multiplication exponent. The previous best algorithm
for small integer weights, which is based on the solution of APSP, takes time �̃ (�0.752�2.529) [66].

1.4 Approximation algorithms

An approximate value of the mentioned graph centrality measures might be suiciently good in practice. This
is indeed the topic of several empirical works on Betweenness Centrality [6, 9, 29]. Furthermore, there are
practically fast shortest paths algorithms based on reach centrality [30, 31, 35]: these algorithms can be adapted to
workwith approximate values of the reach centrality as well. In this paper we formally study the approximability
of the mentioned problems.
In more detail, given a quantity � (e.g., a graph centrality measure), an �-approximation algorithm computes

a quantity � such that 1
�
� ≤ � ≤ �� for some � ≥ 1 (� is the approximation factor). A polynomial-time

approximation scheme (PTAS) for a given measure � is an algorithm that, given an input parameter � > 0,
computes a 1 + � approximate solution � in the above sense. Furthermore, the running time is polynomial for
every ixed constant � > 0. Our high-level goal is to design fast �-approximation algorithms with � as close
to 1 as possible. It is known how to solve APSP within a multiplicative error (1 + �) in time �̃ (��) for any
constant � [65]. This provides truly subcubic (1+ �) approximation algorithms for Radius and Median. However,
this approach does not help with Reach/Betweenness Centrality, since in those measures almost shortest paths
are irrelevant. Here we present some negative and (conditionally) positive results on the approximability of the
latter two problems.
We deine the Approximate Betweenness Centrality problem as the problem of computing an �-approximation

of �� (�) for some inite � > 0. The Approximate Reach Centrality problem is deined analogously. We present
reductions from Approximate Reach/Betweenness Centrality to the following Positive Betweenness Centrality

problem: determine whether there exists some shortest path using � as an intermediate node. To the best of
our knowledge, the latter problem was not studied before and it might be of independent interest. We show that
Positive Betweenness Centrality is equivalent to Diameter (under subcubic reductions), while the corresponding
All-Nodes version (where we solve the problem for all possible �) is equivalent to APSP! This explains why it has
been diicult to develop approximation algorithms for Betweenness Centrality and Reach Centrality that are at
the same time fast and provably accurate.

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 5

Reach
Centrality

Approx. Betw.
Centrality

DiameterAPSP
Negative
Triangle

Betweenness
Centrality

Radius

Median

lem. 2.2
lem. 2.3

lem. 2.4

lem.
3.1

lem. 3.3

lem. 4.1,4.4

lem. 4.10

Fig. 1. The main subcubic reductions considered in this paper. Dashed arrows correspond to trivial reductions. All the

remaining reductions are given in this paper, excluding the one from APSP to Negative Triangle which is taken from [64].

On the positive side, we show that a truly subcubic algorithm for Diameter implies a truly subcubic Monte-
Carlo PTAS for Betweenness Centrality. Analogously to the case of Reach Centrality, this gives some more hope
that a truly subcubic PTAS for Betweenness Centrality exists, however such algorithm is probably not easy to
ind. Part of the mentioned reductions are summarized in Figure 1.

1.5 SETH Hardness

We consider the problem of solving Approximate Reach/Betweenness Centrality in sparse graphs. Here we can
prove, again passing through Positive Betweenness Centrality, that� (�2−�) time algorithms do not exist unless
the Strong Exponential Time Hypothesis (SETH) fails. Our reduction can be adapted to the stronger Orthogonal
Vector Conjecture (OVC).

1.6 Related Work

APSP is among the best studied problems in Computer Science. If the edge weights are non-negative, one can
run Dijkstra’s algorithm [21] from every source node, and solve the problem in time� (�� +�2 log�) (by imple-
menting Dijkstra’s algorithm with Fibonacci heaps [24]). Johnson [43] showed how to obtain the same running
time in the case of negative weights also (but no negative cycles). Pettie [49] improved the running time to
� (�� + �2 log log�) and together with Ramachandran to� (�� log� (�,�)) [50]. If the graph is undirected and
the edge weights are integers itting in a word, one can solve the problem in time � (��) in the word-RAM
model [57]. In dense graphs the running time of these algorithms is � (�3). Slightly subcubic algorithms were
developed as well, starting with the work of Fredman [23]. Following a long sequence of improvements (among

others, [11, 38]), Williams [61] obtained an algorithm with running time �̃ (�3/2Ω (
√
log�)). Faster algorithms are

known for small integer weights bounded in absolute value by � : in undirected graphs APSP can be solved in

�̃ (���) time [56] and in directed graphs in �̃ (�2(��) 1
4−�) time [66]. The result for the directed case can be

reined to �̃ (�0.752�2.529) using fast rectangular matrix multiplication [39].
As we already mentioned, for general edge-weights the fastest known algorithms for Diameter and Radius

solve APSP (hence taking roughly cubic time). In the case of directed graphs with small integer weights bounded
by� there are faster, �̃ (���) time algorithms (see [17] and the references therein). Faster approximation algo-
rithms are known. Aingworth et al. [4] showed how to compute a (roughly) 3/2 approximation of the diameter
in time �̃ (�

√
�+�2). The same approximation factor and running time can be achieved for Radius in undirected

graphs [7]. The running time for both Radius and Diameter was reduced to �̃ (�
√
�) by Roditty and Vassilevska

Williams [52] (see also [14] for a reinement of the approximation factor). The authors also show that a 3/2 − �

approximation for Diameter running in time � (�2−�) (for any constant � > 0) would imply that the Strong

ACM Trans. Algor.

6 • A. Abboud, F. Grandoni, V. Vassilevska Williams

Exponential Time Hypothesis (SETH) of [40] fails, thus showing that improving on the 3/2-approximation fac-
tor while still using a fast algorithm would be diicult. A similar hardness result for Radius was shown in [2]
under the Hitting Set Conjecture. Under SETH, there is no better than 5/3 approximation for Diameter in time
� (�3/2−�) [5]. See also [10] for related results on Diameter and Radius. Upper and lower bounds on fast ap-
proximation algorithms to compute the Eccentricity of all nodes are given in [2, 5, 10, 14]. Some more recent
ine-grained complexity results on the fast approximability of diameter are given in [18].
The notion of betweenness centrality was introduced by Freeman in the context of social networks [25], and

since then became one of the most important graph centrality measures in the applications. For example, this
notion is used in the analysis of protein networks [20, 42], social networks [47, 51], sexual networks [45], and
terrorist networks [15, 44]. From an algorithmic point of view, betweenness centrality was used to identify a
highway-node hierarchy for routing in road networks [55]. Brandes’ algorithm [8] computes the betweenness
centrality of all nodes in time� (��+�2 log�). This result is based on a counting variant of Dijkstra’s algorithm.
We remark that [8], similarly to other papers in the area, neglects the bit complexity of the counters which store
the number of pairwise shortest paths. This is reasonable in practice since themaximum number� of alternative
shortest paths between two nodes tends to be small in many of the applications. By considering also � , the
running time grows by a factor of � (log�) = � (� log�). Indeed, in some applications one can even assume
that shortest paths are unique (as we do in some parts of this paper). The uniqueness of shortest paths is either
a consequence of tie breaking rules (Canonical-Path Betweenness Centrality problem [29]), or can be enforced by
perturbing edge weights [30]. Chan et al. [12] obtain a �̃ (�3) time algorithm for the case of non-unique shortest
paths in unweighted graphs. The running time to compute the exact betweenness centrality can be prohibitive
in practice for very large networks even assuming the uniqueness of shortest paths. For this reason, some work
was devoted to the fast approximation of the betweenness centrality of all nodes [6, 9, 29]. Those works are
based on random pivot-sampling techniques. They do not provide any theoretical bound on the approximation
factor: this is not surprising a posteriori, in view of our APSP-hardness results. In contrast, our results suggest a
candidate way to obtain a provably fast and accurate algorithm for Approximate Betweenness Centrality (for a
single node). Our approach deviates substantially from [6, 9, 29] for small values of the betweenness centrality.
The Reach Centrality notion was introduced by Gutman [35] in the framework of practically fast algorithms

to solve the Single-Source Shortest Paths problem. In particular, the values �� (�) can be used to ilter out some
nodes during an execution of Dijkstra’s algorithm. The notion of Reach Centrality is also used in other works
on the same topic [30, 31].
Eppstein and Wang [22] consider the problem of approximating the closeness centrality of all nodes. They

present a random-sampling-based� ((� +� log�) log�
�2

) time algorithm which w.h.p. computes estimates within
an additive error ��∗, where �∗ is the diameter of the graph. The same problem is investigated in [9] from an
experimental point of view. The Median problem was also studied in a distance-oracle query model [13, 32, 41].

1.7 Preliminaries and Notation

W.l.o.g. we assume that the considered graph � = (� , �) is connected, hence � ≥ � − 1. We make the usual
assumption that the nodes of the considered graph are labelled with integers between 0 and � − 1, and where
needed we implicitly assume that � is lower bounded by a suiciently large constant. For two nodes �, � ∈ � ,
by �� we indicate either an undirected edge between � and � or an edge directed from � to � . The interpretation
will be clear from the context.

For a given node� ∈ � , we let ��� (�) := max�∈� {� (�, �)} (eccentricity of�) and��� (�) := ∑
�∈� � (�, �). A

node� minimizing��� (�) and��� (�) is a center and amedian of the graph, respectively. By���,� (�)we denote
the number of shortest �-� paths that have � as an internal node. In particular ���,� (�) = ���,� (�) = ���,� (�) = 0.

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 7

Furthermore, ���,� (�) ∈ {0, 1} in the case of unique shortest paths. Notice that �� (�) = ∑
�,� ∈� ���,� (�)4. In the

literature the betweenness centrality is sometimes deined diferently as �� (�) =
∑
�,� ∈�−{� },�≠�

��,� (�)
��,�

, where

��,� is the number of distinct shortest paths from � to � , and ��,� (�) is the number of such paths that use node

� as an intermediate node. Here when ��,� = 0 (hence ��,� (�) = 0), ��,� (�)
��,�

is assumed to be 0. Notice that this is
equivalent to our deinition in the case of unique shortest paths.
We remark that, in our subcubic reductions, it would be suicient to preserve (modulo poly-logarithmic fac-

tors) the number � of nodes only. However, whenever possible, we will also try to preserve (in the same sense)
also� and � . In many cases we obtain extremely tight reductions that even allow us to obtain new faster al-
gorithms, as is the case with Reach Centrality via our tight reduction to Diameter. In some claims we assume
that a� (�,�) time,� (�,�) time, or� (�,�,�) time algorithm for some problem is given. In all those claims we
implicitly assume that those running times are polynomial functions of the input parameters lower bounded by
Ω(�). This way, one has that � (�) + � (� (�),� (�),� (�)) = �̃ (� (�,�,�)) and similarly for � (� (�),� (�))
and � (� (�), � (�)). We will use this fact multiple times along the paper. We remark that this is without loss of
generality since all the considered problems admit a polynomial-time algorithm in the mentioned parameters,
and a lower bound of Ω(�) is implied by the input size.
Throughout this paper, with high probability (w.h.p.) means with probability at least 1 − 1/�� (1) .
In some reductions involving Betweenness Centrality wewill need to enforce the uniqueness of shortest paths.

This can be enforced w.h.p. using the Isolation Lemma from [46]5.

Lemma 1.6 (Isolation Lemma [46]). Consider a set system (� ,S) over a universe� of ℎ elements. Let us assign

an integer weight � (�) ∈ {1, . . . , �} chosen uniformly and independently at random to each � ∈ � and deine the

weight of each set � ∈ S as � (�) = ∑
�∈� � (�). Then there exists a unique set of minimum weight with probability

at least 1 − ℎ/�.

Corollary 1.7. Let� = (� , �) be a directed or undirected graph with edge weights� : � → {0, . . . , �} and let
� ≥ 5 be an integer. Consider the randomweight function� ′ : � → {1, . . . , ��+��+1�} given by� ′(�) = ��+1� (�)+
� (�), where each � (�) ∈ {1, . . . , �� } is chosen independently and uniformly at random (random perturbation). Then
with probability at least 1− 1/��−4 all shortest paths induced on� by weights� ′ are unique. Furthermore any such

path is deterministically also a shortest path w.r.t. weights� .

Proof. Consider the directed case, the undirected one being analogous (with slightly better bounds). We irst
observe that deterministically any shortest path for (�,� ′) has to be a shortest path also for (�,�). Indeed, any
such shortest path of length� in (�,�) has length at most (�−1)�� +��+1� in (�,� ′), while any non-shortest
path would have length at least 1 + ��+1(� + 1) in (�,� ′).

For each pair of distinct nodes (�,�), we consider the set system (�,S��) where S�� is the set of shortest �-�
paths in (�,�) (interpreted as subsets of edges), of (common) length� . By the previous observation, any shortest
�-� path in (�,� ′)must belong toS�� . Deine � (�) =

∑
�∈� � (�) for each � ∈ S�� . The Isolation Lemma 1.6 implies

that there exists exactly one � ∈ S�� with minimum � (�) with probability at least 1 − |� |/�� ≥ 1 − 1/��−2. Since
� ′(�) = ��+1� + � (�) deterministically for each � ∈ S�� , this implies that there exists exactly one shortest path
in S�� (hence in�) according to weights� ′ with the same probability. The claim follows by applying the union
bound over the possible pairs (�,�). �

4We remark that the s-t pairs are ordered, in particular in undirected graphs shortest s-t paths are counted twice.
5In [46] the lemma is stated in a slightly less general form, but the proof extends trivially.

ACM Trans. Algor.

8 • A. Abboud, F. Grandoni, V. Vassilevska Williams

2 SUBCUBIC EQUIVALENCE WITH APSP

In this sectionwe prove the subcubic equivalence betweenAPSP and the following problems: Radius,Median and
Betweenness Centrality. As mentioned in the introduction, reducing these problems to APSP is fairly straight-
forward and here we will focus on the opposite reductions.
We exploit Negative Triangle as an intermediate sub-problem: determine whether a given undirected graph

� = (� , �), with integer edge weights� : � → {−�, . . . , �}, contains a triangle whose edges sum to a negative
number; such a triangle is called a negative triangle. The latter problem was shown to be equivalent to APSP
under subcubic reductions in [64].

Lemma 2.1. [64] Negative Triangle and APSP (in directed or undirected graphs) are equivalent under subcubic

reductions.

In order to simplify our proofs, we assume that the input instance of Negative Triangle satisies the following
properties:

(1) Path lengths are even. This can be achieved by multiplying the weights by a factor of 2.
(2) Any two nodes are connected by a path containing at most 2 edges. This can be achieved by adding a

dummy node � , and � edges of weight 2� between � and any other node. Observe that no new negative
triangle is created this way.

(3) By appending at most � + 1 leaf nodes to � with edges of cost 2� , we can assume w.l.o.g. that � is a power
of 2.

These reductions can be performed in linear time, they increase the number of nodes by� (�), the number of
edges by � (�), and the maximum absolute weight by a factor of 2. Therefore, any algorithm with (polynomial
and at least linear in�) running time �̃ (� (�,�,�)) for the modiied instance, can be used to solve the original
instance in time �̃ (� +� (� (�),� +� (�), 2�)) = �̃ (� (�,�,�)). A similar claim holds for� (�,�) and� (�,�).

Combining the reductions below with Lemma 2.1 proves Theorem 1.3.

2.1 Betweenness Centrality

We start with the reduction to Betweenness Centrality. We obtain slightly diferent results assuming that the
algorithm for Betweenness Centrality works on general instances or only under the restriction that shortest
paths are unique. Later when we talk about the case of non-unique shortest paths, we mean that the shortest
paths might not be unique.

Lemma 2.2. Given a � (�,�) time algorithm for Betweenness Centrality in directed or undirected graphs in the

case of non-unique (resp., unique) shortest paths, there exists a deterministic (resp., high probability Monte-Carlo)

�̃ (� (�,�)) time algorithm for Negative Triangle.

Proof. Let (� = (� , �),�) be the input instance of Negative Triangle (reduced as described above). Let
� = 2�+1 be the number of nodes of � , for some non-negative integer � . We initially consider the case of non-
unique shortest paths.
We start with the simpler directed case (see also Figure 2). We construct a weighted directed graph (� ′,� ′)

as follows. Graph � ′ contains four sets of nodes � , � , � , and � (layers). Each layer contains a copy of each node
� ∈ � . Let �� be the copy of � in � , and deine analogously � � , �� and �� . Let � = Θ(�) be a suiciently large
integer. For each edge �� ∈ �, we add to � ′ the edges ��� � , � � �� , and ���� , and assign to those edges weight
2�+� (��). We add to � ′ a dummy node �, and edges ��� and ��� for any � ∈ � , of weight 3� − 1 and 3� ,
respectively. We also add to � ′ two sets of nodes � = {�0, . . . , �� } and � = {�0, . . . , �� }. For any � ∈ � , we add
the following edges of weight 3� − 1 to � ′. Let �0, �1, . . . , �� be a binary representation of � (interpreted as an
integer between 0 and �−1 = 2�+1−1). For each � = 0, . . . , � , we add edges ��� � and � ��� if � � = 0, and edges ��� �

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 9

1 2

0

3

-8
4

6

4

2

3�

2�

1�

0� 0�

1�

2�

3�

0�

1�

2�

3� 3�

2�

1�

0�

�0

�1

�0

�1

�

2�-8

2�+2

2�
+4

2�
+6

2�-8

2�
+4

Fig. 2. Reduction from Negative Triangle to Betweenness Centrality (partially drawn). Full and dashed gray edges have

weight 3� −1 and 3� , respectively. The pair 0� , 0� does not contribute to �� (�) (since 0 belongs to a negative triangle) while
the pair 3� , 3� does contribute to �� (�) (since 3 does not belong to any negative triangle).

and � ��� otherwise. We also add edges � �� � and � �� � of weight 3� − 1 for � = 0, . . . , � . Observe that � = � (log�),
hence there are � (� log�) edges of the latter type.

On (� ′,� ′) we compute �� (�), and output YES to the input Negative Triangle instance if and only if �� (�) <
�. Let us prove the correctness of this reduction. The only paths passing through � are of the form �� , �, �� and
have weight 6� − 1. For � ≠ � , there must exist a node � ∈ � ∪ � such that �� ,�, �� is a path of cost 6� − 2.
Therefore, the only pairs of nodes that can contribute to �� (�) are of the form (�� , ��). The shortest path of type
�� , � � ,�� , �� has weight at most 6� − 2 if � belongs to a negative triangle, and at least 6� otherwise. Therefore
���� ,�� (�) = 1 if � does not belong to any negative triangle, and ���� ,�� (�) = 0 otherwise. The correctness follows.

In the undirected case, we use the same weighted graph (� ′,� ′) as before, but removing edge directions
(and leaving one copy of parallel edges). The rest of the reduction is as before, with the diference that now the
answer is YES if and only if �� (�) < 2� (the extra factor 2 here is due to the fact that there are potentially
2� shortest paths passing through �). Proving correctness requires a slightly more complicated case analysis.
Consider any pair �, � ∈ � − {�}. Suppose (�, �) ∉ (� × �) ∪ (� × �). Then any �-� path passing through � costs at
least 2(3� − 1) + (2� −�). On the other hand, any � ∈ � ∪� can reach any � ∈ � ∪� within distance 2(3� − 1),
and any � ∈ � ∪ � ∪ � ∪ � within distance 3� − 1 + 2(2� +�). If �, � ∈ � ∪ � ∪ � ∪ �, there exists an �-� path
of length at most 3(2� + �). It remains to consider the case that � = �� ∈ � and � = �� ∈ �. The path �� , �, ��
has cost 6� − 1. If � ≠ � , analogously to the directed case there exists � ∈ � ∪� such that �� ,�, �� is a path of
weight 6� − 2. We can conclude that, like in the directed case, the only pairs which can contribute to �� (�) are
of the form (�� , ��). The shortest path of the form �� , � � ,�� , �� has weight at most 6� −2 if � belongs to a negative
triangle, and at least 6� otherwise. Any other path avoiding � contains at least 4 edges, and therefore costs at

ACM Trans. Algor.

10 • A. Abboud, F. Grandoni, V. Vassilevska Williams

least 4(2� −�). We can conclude that ���� ,�� (�) = 1 if � is not contained in a negative triangle of (�,�), and
���� ,�� (�) = 0 otherwise. The correctness follows.

It remains to consider the case of unique shortest paths. Observe that in the above reduction shortest paths are
not necessarily unique. The latter property can however be enforced w.h.p. by modifying weights as in Corollary
1.7. Notice that this randomized reduction gives the right answer (at least) whenever shortest paths are unique,
hence this happens w.h.p. Since weights increase by a polynomial factor in �, while � and� are asymptotically
preserved, the running time is �̃ (� (�,�)) as required. �

We remark that in the reduction in Lemma 2.2 the blow up of the weights happens only when we need to
enforce the uniqueness of shortest paths. In particular, if we had a �̃ (� (�,�,�)) time algorithm for the variant
of Betweenness Centrality not requiring such uniqueness, this would imply a �̃ (� (�,�,�)) time algorithm for
Negative Triangle.

Proof of Theorem 1.3. One direction is obtained by chaining Lemmas 2.1 and 2.2. The other direction is
trivial: simply solve APSP and count (in � (�2) total time) how many pairs (�, �), �, � ∈ � − {�}, satisfy � (�, �) =
� (�, �) + � (�, �). �

2.2 Radius

Our reduction from Negative Triangle to Radius is similar to the one in Lemma 2.2). Consider the same construc-
tion when we remove the node � from the graph. The key observation is that a node �� has distance at most
6� − 2 to every node �� (including ��) if and only if � is in a negative triangle in � . Intuitively, this allows us to
show that an algorithm distinguishing between radius 6� − 2 and radius 6� − 1 can solve Negative Triangle. To
complete the reduction we need to make sure that �� is close to every node in the graph (not only nodes in part
�) and that the center can only lie in part � .

Lemma 2.3. Given a� (�,�,�) time algorithm for Radius in directed or undirected graphs, there exists a �̃ (� (�,�,�))
time algorithm for Negative Triangle.

Proof. Let (� = (� , �),�) be the considered instance of Negative Triangle (modiied as described before).
We start with the directed case (see also Figure 3). Let � = Θ(�) be a suiciently large integer. We construct a
directed weighted graph (� ′,� ′) as follows. Similarly to the proof of Lemma 2.2, graph� ′ contains four copies
� , � , � , and � of the node set � (layers). Let �� be the copy of � ∈ � in layer � . For each edge �� ∈ �, we add
to� ′ edges ��� � , � � �� , and ���� of weight � +� (��). We also add to� ′ two sets of nodes � = {�0, . . . , �� } and
� = {�0, . . . , �� }. We add edges incident to nodes � ∪� in the same way as in Lemma 2.2, using edges of cost� .
In more detail, let �0, �1, . . . , �� be the binary representation of node � : we add the edges ��� � and � ��� if � � = 0,
and the edges ��� � and � ��� otherwise. We also add edges � �� � and � �� � of weight � for all � = 0, . . . , � . Finally,
we add nodes � and �, and for any � ∈ � we add edges ��� , ��� , and �� � of weight � , and edges ��� of weight
3� − 1.
We compute the radius �∗ of (� ′,� ′), and output YES to the input instance of Negative Triangle if and only

if �∗ ≤ 3� − 1. The running time of the algorithm is �̃ (� +� (� (�),� (� +� log�),� (�))) = �̃ (� (�,�,�)). Let
us prove its correctness. We irst observe that the center � ∗ of the graph belongs to � ∪ {�} since the other nodes
cannot reach any node in � . Observe that � (�,�) = 4� − 1. On the other hand, any node �� is at distance at most
2� to nodes in � ∪� ∪ � ∪ {�} ∪ (�− {��}), at most 2� + 2� to nodes in � (using the copy � � of the root node �),
and exactly 3� − 1 to node �. Note also that, if � belongs to a negative triangle, there exists an �� -�� path of the
form �� , � � ,�� , �� with length at most 3� − 2. Otherwise one shortest �� -�� path passes trough nodes in � ∪ �

and has length 3� . We can conclude that the center of the graph belongs to � , and that the corresponding radius
is upper bounded by 3� − 1 if and only if there exists a negative triangle in (�,�).

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 11

1 2

0

3

-8
4

6

4

2

3�

2�

1�

0� 0�

1�

2�

3�

0�

1�

2�

3� 3�

2�

1�

0�

�0

�1

�0

�1

�

�

�-8

�+2

�+4�+4

�+6

�+2

�-8

�+4

Fig. 3. Reduction from Negative Triangle to Radius. Only edges in the shortest path tree from 0� are illustrated. The full

and dashed gray edges have weight � and 3� − 1, respectively.

In the undirected case we use precisely the same construction, but removing edge directions (and leaving only
one copy of parallel edges). The algorithm is analogous as well as its running time analysis. Its correctness can
also be proved analogously. In more detail, similarly to the directed case, nodes in � can reach any other node
within distance at most 3� + 3� . Since � (�, �) = 4� − 1, and � (�,�) ≥ (3� − 1) + (� −�) for � ∉ � ∪ {�}, we can
conclude that � ∗ ∈ � . Also in this case, for any node �� , its maximum distance to any other node is� (�� , �) = 3�−1
if � belongs to a negative triangle, and � (�� , ��) ≥ 3� otherwise. �

Proof of Theorem 1.1. One direction is trivial, and the other is given by Lemmas 2.1 and 2.3. �

2.3 Median

The reduction to Median is based on a rather diferent approach.

Lemma 2.4. Given a� (�,�) time algorithm forMedian in undirected or directed graphs, there exists a �̃ (� (�,�))
time algorithm for Negative Triangle.

Proof. Let (� = (� , �),�) be the given instance of Negative Triangle. First, consider the directed case (see
also Figure 4). We create a weighted directed graph (� ′,� ′). Graph � ′ contains ive copies �, �, �′,�,� ′ of � .
With the usual notation, �� is the copy of � in� and similarly for the other sets. Let� = Θ(�) be a large enough
integer. For any pair of nodes �, � , we add the edges ���� of weight� +� (��), ����′ of weight� −� (��), ����
of weight 2� −� (��), ����′ of weight 2� +� (��), and ���� of weight � +� (��). In this construction, when
�� ∉ � (including the special case � = �), we simply assume � (��) = 2� . Furthermore, we add a dummy node
� , and edges ��� and ��� of weight �/4 for any � ∈ � .

In this graph we compute the median value ��� , and output YES to the input instance of Negative Triangle
if and only if ��� < �/4 + (� − 1)�/2 + 6�� . The running time of the algorithm is �̃ (� + � (� (�),� (�))) =

ACM Trans. Algor.

12 • A. Abboud, F. Grandoni, V. Vassilevska Williams

1 2

0

3

-8
4

6

4

2

0�

1�

2�

3�

0�

1�

2�

3�

0�

1�

2�

3�

0�′

1�′

2�′

3�′

0�′

1�′

2�′

3�′

�

�-8 �+8

�+2

2�-4

2�+4

Fig. 4. Reduction from Negative Triangle to Median (partially drawn). Gray edges have weight �/4. The path 0�, 1�, 2� is

shorter than the path 0�, 2� : this corresponds to a negative triangle.

�̃ (� (�,�)). Let us show its correctness. Let � (·) denote distances in � ′. The median node has to be in � ∪ {� }
since the remaining nodes cannot reach � . Recall that, for a node� ,��� (�) := ∑

�∈� � (�, �). Note that

��� (�) ≥ �

(
�

4
+ (�

4
+�) + (�

4
+� −�) + (�

4
+ 2� −�) + (�

4
+ 2�)

)

=
29

4
�� − 2�� >

�

4
+ (� − 1)�

2
+ 6��.

In the irst inequality above we lower bounded the distances to nodes in �, �, �′, � and � ′ with �/4, �/4 + � ,
�/4 +� −� ,�/4 + 2� −� , and �/4 + 2� , resp. In the second inequality above we used the assumption that�
is suiciently larger than� . On the other hand, for any node ��,

��� (��) =

=� (��, �) +
∑
�∈�

� (��, ��) +
∑
�∈�

(� (��, ��) + � (��, ��′)) +
∑
�∈�

(� (��, ��) + � (��, ��′))

=
�

4
+ (� − 1)�

2
+
∑
�∈�

(� +� (��) +� −� (��)) +
∑
�∈�

(� (��, ��) + 2� +� (��)))

=
�

4
+ (� − 1)�

2
+ 2�� +

∑
�∈�

(� (��, ��) + 2� +� (��)))

≤�
4
+ (� − 1)�

2
+ 6��.

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 13

Therefore the median is in �. In the last inequality we upper bounded � (��, ��) with � ′(����) = 2� −� (��).
Here a strict inequality holds if there exists a third node �� such that� ′(����) +� ′(����) < � ′(����). However
this can happen only if �� ∈ �, since otherwise � ′(����) = 2�−2� ≤ � ′(����) + � ′(����). Note also that,
if either �� ∉ � or �� ∉ �, then � ′(����) + � ′(����) ≥ 2�+� ≥ � ′(����). Therefore we can conclude that
the strict inequality holds if and only if there exists a triangle {�, �,�} in � such that �+� (��) + �+� (��) <

2� −� (��), i.e. a negative triangle. The claim follows.
Consider next the undirected case. We construct the same weighted graph (� ′,� ′) as in the directed case,

but removing edge directions (and leaving one copy of parallel edges). The rest of the algorithm is as in the
directed case, and the running time remains �̃ (� (�,�)). In order to prove correctness, we need a slightly more
complicated case analysis. Like in the directed case,��� (��) ≤ �/4+ (�−1)�/2+6�� , where a strict inequality
holds if and only if � belongs to a negative triangle. For any �� ∈ �,

��� (��) ≥ (� −� +�/4) + 2�(� −�) + �(2� − 2�) + �(3� − 2�)
= (7� + 5/4)� − (6� + 1)�.

Similarly
��� (��′) ≥ (9� + 5/4)� − (7� + 1)�,

��� (��) ≥ (10� + 9/4)� − (9� + 2)�
and

��� (��′) ≥ (12� + 9/4)� − (8� + 1)�.

Furthermore,

��� (�) ≥ ��/4 + 2�(5�/4 −�) + �(9/4� − 2�) + �(9/4� −�)
= (29�/4)� − 5��.

We can conclude that the median is in �. The correctness follows. �

Proof of Theorem 1.2. One direction is trivial, and the other is given by Lemmas 2.1 and 2.4. �

Finally, we also prove a similar reduction for the following All-Nodes Median Parity problem: compute��� (�)
(mod 2) for all nodes � .

Lemma 2.5. Given a� (�,�) time algorithm for the All-Nodes Median Parity problem in a directed or undirected

graph, there exists a �̃ (� (�,�)) time algorithm for Negative Triangle.

Proof. Let (� = (� , �),�) be the considered instance of Negative Triangle. Let us start with the directed
case. Let� = Θ(�) be a suiciently large even integer. Similarly to the proofs of Lemmas 2.2 and 2.3 and with a
similar notation, we construct a four layer weighted directed graph (� ′,� ′) with layers � , � , � , and �, and edges
��� � , � ��� , and ���� of weight 2� + � (��) for any �� ∈ �. We also introduce a ifth copy � of � , and for any
�� ∈ � we add edges ���� and ���� of weight 3� and 3� − 1, respectively. We also add edges ���� of weight
3� + 3� + 2 for any � ≠ � . Finally, we add a node � , and edges ��� and ��� of weight� for all � ∈ � . Observe that
the edges of type ���� are the only edges of odd weight (by the preprocessing of the Negative Triangle instance).
In this graph we compute��� (�) (mod 2) for all � ∈ � (� ′) and we output YES to the input Negative Triangle

instance if and only if ��� (��) (mod 2) = 0 for some �� ∈ � (i.e., some ��� (��) is even). The running time is
�̃ (� (� (�),� (�))) = �̃ (� (�,�)). Let us prove correctness. Consider any �� ∈ � . Any node is reachable from
�� , hence ��� (��) is inite. Any path of type �� , �

′, �� , � ≠ � , cannot be a shortest path since it has length
6� + 3� + 2 − 1 while there exists a �� -�� path of length at most 6� + 3� avoiding �. Therefore the unique
candidate shortest path of odd weight is �� , � ′, �� of length 6� − 1. However, by the usual argument, this is not
a shortest path if � is contained in some negative triangle. The claim follows.

ACM Trans. Algor.

14 • A. Abboud, F. Grandoni, V. Vassilevska Williams

In the undirected case we can use the same graph (� ′,� ′), but removing edge directions (and leaving one
copy of parallel edges). The rest of the algorithm is the same and its analysis is analogous to the directed case.

�

Corollary 2.6. Given a truly subcubic algorithm for All-Nodes Median Parity, there exists a truly subcubic

algorithm for APSP.

3 SUBCUBIC EQUIVALENCE BETWEEN REACH CENTRALITY AND DIAMETER

In this section we show that Diameter is equivalent to Reach Centrality under subcubic reductions. We start
with the simple reductions from Diameter.

Lemma 3.1. Given a � (�,�) time algorithm for Reach Centrality in directed or undirected graphs, there is a

�̃ (� (�,�)) time algorithm for Diameter in the same graph class.

Proof. Let (� = (� , �),�) be the input instance of Diameter, and let� be the largest integer weight. Consider
irst the directed case. Let � ′ be an auxiliary graph consisting of a copy of � plus a dummy node � and edges
�� and �� for all � ∈ � . For each integer � ∈ [1, (� − 1)�], we deine an auxiliary weight function � ′(�) on
the edges of � ′ which is �/2 for the edges incident on � and identical to � on the remaining edges. Observe
that in (� ′,� ′(�)) any pair of nodes �, � ∈ � is connected by a path of length � using �. We identify the largest
value � ′ of � such that �� (�) ≥ �/2 for the Reach Centrality instance induced by (� ′,� ′(�)): this is done via
a binary search over � ∈ [1, (�− 1)�], and using the Reach Centrality algorithm given in the claim. The output
value of the diameter is � ′. For the sake of presentation, in the above reduction we tolerate fractional weights
for odd � : this can be trivially avoided by initially multiplying all weights � by a factor of 2, considering even
values of � only, and inally outputting � ′/2.

The running time of the algorithm is �̃ ((� +� (� +1, 2� +�)) log(��)) = �̃ (� (�,�)). Let (�∗, �∗) be a witness
pair for the diameter �∗. In any execution where �∗ ≥ � , there exists a shortest �∗-�∗ path using node � and
hence the answer is �� (�) ≥ �/2. In any other execution (where �∗

< �), any shortest �-� path avoiding � has
length at most �∗ ≤ � − 1 while passing through � would cost at least � (thus the answer is �� (�) = 0). The
correctness of the algorithm follows.
For the undirected case, we use the same auxiliary weighted graph, but without edge directions (and leaving

one copy of parallel edges). The algorithm is the same. The running time is �̃ ((� +� (� + 1, � +�)) log(��)) =
�̃ (� (�,�)). Similarly to the directed case, in any execution where � is upper bounded by the diameter �∗, there
exists a shortest �∗-�∗ path using node �, hence �� (�) ≥ �/2. In the remaining executions no shortest path uses
�, hence �� (�) = 0. �

Now, we present the more tricky reduction to Diameter. The following very eicient reduction completes the
equivalence between Diameter and Reach Centrality in directed graphs, and implies directly Theorem 1.5.

Lemma 3.2. Given a � (�,�,�) time algorithm for Diameter in directed graphs, there is a �̃ (� (�,�,�)) time

algorithm for Reach Centrality in directed graphs.

Proof. Let (� = (� , �),�, �) be the input instance of Reach Centrality. Observe that �� (�) is upper bounded
by one half of the diameter of � , hence in particular �� (�) ≤ (� − 1)�/2. We show how to determine whether
�� (�) ≥ � for a given integer parameter 0 ≤ � ≤ (� − 1)�/2 in �̃ (� (�,�,�)) time. The value of �� (�) can
then be determined via binary search with an extra factor of � (log(��)) = �̃ (1) in the running time.

Observe that, if the answer is YES, there must be two nodes �, � ∈ � − {�} such that some shortest �-� path
passes through �, � +� > � (�, �) ≥ � , and � +� > � (�, �) ≥ � . We construct an instance (� ′,� ′) of Diameter
as follows. We add to � ′ a copy of � . Furthermore, we add a set of nodes � that contains a node �� for each

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 15

node � ∈ � such that � +� > � (�, �) ≥ � . Symmetrically, we add a set of nodes � that contains a node �� for
each node � ∈ � such that � +� > � (�, �) ≥ � . We also add edges ��� and ��� of weight � +� − � (�, �) and
� + � − � (�, �), respectively. Note that the weight of the latter edges is in [1, �] by construction. Finally, we
add a directed path � = �0, . . . , �� , � = ⌈(2� + 2� − 2)/�⌉, whose edge weights are chosen arbitrarily in [1, �]
so that the length of � is exactly 2� + 2� − 2. For every � ∈ � , we add edges ��0 and ��� of weight zero. We also
add edges ��0 of weight 1 and ��� of weight 0 for any � ∈ �. Symmetrically, we add edges ��� of weight 1 and
��0 of weight 0 for any � ∈ �.

We compute the diameter �∗ of (� ′,� ′) and output that �� (�) ≥ � if and only if �∗ ≥ 2� +2� . The running
time of the algorithm is �̃ (� +� (� (�), � (� + �), �)) = �̃ (� (�,�,�)). Consider its correctness. The distance
between any two nodes in� ∪ � is at most 2� + 2� − 2. The distance between any node in� ∪ � and any other
node is at most 2� + 2� − 1. The distance between any node in � and any other node is at most 2� + 2� − 1.
The distance between any node in � and any node in � ∪ � ∪� is at most 2� + 2� − 1.

Consider next any pair �� ∈ � and �� ∈ �. An ��-�� path using � would cost at least 2� + 2� . A shortest ��-��
path avoiding � costs 2� + 2� − � (�, �) − � (�, �) + � (�, �) ≤ 2� + 2� , where the equality holds if and only if �
is along some shortest �-� path. Therefore �∗ ≤ 2� + 2� and the equality holds if and only if there exists a pair
(��, ��) ∈ � × � such that � (�, �) = � (�, �) + � (�, �), i.e. if and only if �� (�) ≥ � . The correctness follows. �

Proof of Theorem 1.5. It follows from Lemma 3.2 by exploiting the �̃ (���) time algorithm for Diameter in
directed graphs in [17]. �

Notice that Lemma 3.2 works only for directed graphs. In the next section we will prove the following reduc-
tion which works also for undirected graphs at a cost of not preserving asymptotically the edge weights.

Lemma 3.3. Given a� (�,�) time algorithm for Diameter in directed or undirected graphs, there is a �̃ (� (�,�))
time algorithm for Reach Centrality in the same graph class.

Theorem 1.4 directly follows.

Proof of Theorem 1.4. One direction is implied by Lemma 3.1 and the other by Lemma 3.3. �

4 APPROXIMATION OF REACH AND BETWEENNESS CENTRALITY

In this section we present our results about the approximability of Reach and Betweenness Centrality. A key
idea in our approach is to consider the following Positive Betweenness Centrality problem, which might be of
independent interest: determine whether, for a given node �, there exists some shortest path using � as an
intermediate node. We let ����� (�) denote the answer to this problem (YES or NO).
The following two lemmas show that Approximate Betweenness and Reach Centrality are at least as hard as

Positive Betweenness Centrality under subcubic reductions.

Lemma 4.1. Given a � (�,�) time algorithm for Approximate Betweenness Centrality in the case of non-unique

(resp., unique) shortest paths, there exists a deterministic (resp., high probability Monte-Carlo) �̃ (� (�,�)) time

algorithm for Positive Betweenness Centrality with non-unique (hence unique) shortest paths.

Proof. Let us initially modify the edge weights of the input Positive Betweenness Centrality instance as
follows. We irst multiply edge weights by 3�. Then we add 1 to the weights of edges incident to � (considering
both ingoing and outgoing edges for directed graphs), and we add 3 to all other edges. Let � ′ be the new edge
weights. Observe that any shortest path w.r.t. � ′ is also a shortest path w.r.t. � by an argument similar to
Corollary 1.7. In more detail, let� be the length of an �-� shortest path for some pair of distinct nodes � and
� w.r.t. � . The same path w.r.t. � ′ has length at most 3(� − 1) + 3�� , while any non-shortest �-� path w.r.t. �
would have length at least 1 + 3�(� + 1) w.r.t.� ′.

ACM Trans. Algor.

16 • A. Abboud, F. Grandoni, V. Vassilevska Williams

Let ����� ′(�) be the answer to the Positive Betweenness Centrality instance induced by the weights� ′. We
claim that ����� ′(�) = ����� (�) (i.e., the two instances are equivalent). Indeed, if ����� (�) = �� it must be
����� ′(�) = �� since, as said before, we are not creating alternative shortest paths using � with weights � ′.
Suppose instead ����� (�) = ��� . This implies that w.r.t. weights� there exists a shortest path � , say from � to
� , that goes through �, where �, �, � are all distinct. Consider the nodes right before and after � on � , call them
� and � . Here again �,�, � are all distinct. Let� be the length of the ��� path. With weights � ′ any �-� path
avoiding � would cost at least 3�� + 3, while ��� costs 3�� + 2 only. Thus all shortest �-� paths w.r.t. � ′ pass
trough �. In particular, ����� ′(�) = ��� .
If the given algorithm for Approximate Betweenness Centrality works in the case of non-unique shortest

paths or the input instance of Positive Betweenness Centrality has unique shortest paths, we simply apply that
algorithm with weights � ′ and return NO if and only if the approximate value is 0. The claim on the running
time holds trivially. Let �� ′(�) be the value of �� (�) w.r.t. weights � ′. If ����� ′(�) = �� , then �� ′(�) = 0
since the initial modiication of the weights does not create new shortest paths. Hence the approximate solution
must be 0. Otherwise by construction necessarily �� ′(�) > 0, hence the approximate value must be positive.
The correctness follows.

Otherwise, we irst randomly perturb the weights� ′ of the input Positive Betweenness Centrality instance as
in Corollary 1.7. Let� ′′ be the perturbed weights. Next assume that shortest paths are unique w.r.t. weights� ′′,
which happens w.h.p., and let �� ′′(�) be the value of �� (�) w.r.t. weights� ′′. Then we apply the approximation
algorithm for Betweenness Centrality and declare ����� ′(�) = �� if and only if the approximate value is 0.
Clearly the running time is as in the claim since� and� are preserved, while the largest edge weight is increased
by a polynomial factor in�. By the above arguments, if ����� ′(�) = �� it must be the case that�� ′′(�) = 0 since
the perturbation from Corollary 1.7 does not create alternative shortest paths using �. Hence the approximate
algorithm would return 0. Otherwise, there will be some pair (�, �) such that all shortest �-� paths w.r.t. weights
� ′ use node �, hence one such path will cause �� ′′(�) > 0. Therefore the approximation algorithm has to return
a positive value. �

Lemma 4.2. Given a � (�,�) time algorithm for Approximate Reach Centrality, there is a �̃ (� (�,�)) time algo-

rithm for Positive Betweenness Centrality with non-unique shortest paths.

Proof. By deinition �� (�) ≥ min{� (�,�), � (�, �)} = 0 and �� (�) > 0 implies ����� (�) = ��� . However,
due to 0 weights, it might still be that �� (�) = 0 and ����� (�) = ��� . To avoid this issue we build weights � ′

exactly as in the proof of Lemma 4.1. Recall that, with the same notation, ����� ′(�) = ����� (�). Furthermore,
����� ′(�) = ��� if and only if there exists some pair of nodes (�, �), with �,�, � all distinct, such that all shortest
�-� paths use node �. Let �� ′(�) denote the value of �� (�) w.r.t. weights� ′.

We apply the approximation algorithm for Reach Centrality to the resulting instance, and return ����� (�) =
�� if and only if the answer is 0. The running time satisies the claim since � and � are preserved, while
the largest edge weight is increased by a polynomial factor in �. For the correctness, observe that ����� ′(�) =
����� (�) = �� implies that �� ′(�) = 0, hence the approximation algorithm has to return 0. Otherwise, since all
weights are at least 1, the mentioned pair (�, �) guarantees that �� ′(�) ≥ 1, hence the approximation algorithm
has to return a positive value. �

4.1 Some Results on Positive Betweenness Centrality

A simple observation is that on unweighted graphs, Positive Betweenness Centrality is asking whether there is
an in-neighbor � of � and an out-neighbor � of � such that �� ∉ �, and therefore can be solved in � (�) time.
We next show that, on weighted graphs, Positive Betweenness Centrality and Diameter are equivalent under
subcubic reductions.

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 17

0

1

2

�

2 3

3

4

�

1

2

��

1�

2�

2 3

3

4

0

�̃+1-3

�̃+1-4

0

�̃+1-2

0

3�

2�

1�

0�

3�

2�

1�

0� 0�

1�

2�

3�

0�

1�

2�

3� 3�

2�

1�

0�2�-8

2�+2

2�
+4

2�
+6

2�-8

2�
+4

Fig. 5. (Left) Reduction from Diameter to Positive Betweenness Centrality in directed graphs. Gray edges have weight

�/2, where � is a guess of the diameter. (Middle) Reduction from Positive Betweenness Centrality to Diameter in directed

graphs. Here �̃ is a proper upper bound on the diameter. Notice that the preprocessing involving the dummy node � is not

illustrated in the figure. (Right) Reduction from the Negative Triangle instance of Figure 2 to All-Nodes Positive Between-

ness Centrality in directed graphs (partially drawn). Gray edges have weight 3� . One has �� (3�) > 0 and �� (0�) = 0 since
node 3 does not belong to a negative triangle while node 0 does it.

Theorem 4.3. Diameter and Positive Betweenness Centrality with non-unique shortest paths are equivalent under

subcubic reductions.

Theorem 4.3 follows directly from the next two lemmas.

Lemma 4.4. Given a � (�,�) time deterministic (resp. high probability Monte-Carlo) algorithm for Positive Be-

tweenness Centrality with non-unique shortest paths in directed or undirected graphs, there is a deterministic (resp.

high probability Monte-Carlo) �̃ (� (�,�)) time algorithm for Diameter in the same graph class.

Proof. Let us focus on the deterministic case, the other case being analogous. This proof is similar in spirit
to the proof of Lemma 3.1. Let (� = (� , �),�) be the input instance of Diameter, where� is the largest integer
weight. Consider irst the directed case (see also Figure 5). Let � be an integer in [1, (� − 1)�]. Let (� ′,� ′(�))
denote the auxiliary weighted graph consisting of a copy of (�,�) plus a dummy node � and dummy edges ��
and �� of weight6 �/2 for any � ∈ � . Observe that any pair of nodes �, � ∈ � is connected by a path of length
� using �. By performing a binary search on � and solving each time the resulting instance (� ′,� ′(�), �)
of Positive Betweenness Centrality, we determine the largest value � ′ of � such that the answer is YES (i.e.,
�� (�) > 0). The output value of the diameter is � ′.

The running time of the algorithm is �̃ ((� +� (� +1, 2� +�)) log(��)) = �̃ (� (�,�)). Let (�∗, �∗) be a witness
pair for the diameter �∗. In any execution where �∗ ≥ � , there exists a shortest �∗-�∗ path using node � and
hence the answer is YES. In any other execution (where �∗

< �), any shortest �-� path avoiding � has length at
most �∗ ≤ � − 1 while passing through � would cost at least � (thus the answer is NO). The correctness of the
algorithm follows.
For the undirected case, we use the same auxiliary weighted graph, but without edge directions (and leaving

one copy of parallel edges). The algorithm and its analysis are analogous to the directed case. �

Lemma 4.5. Given a� (�,�,�) time algorithm for Diameter in directed or undirected graphs, there is a �̃ (� (�,�,�))
time algorithm for Positive Betweenness Centrality with non-unique (hence unique) shortest paths in the same graph

class.
6Fractional weights can be avoided similarly to the proof of Lemma 3.1.

ACM Trans. Algor.

18 • A. Abboud, F. Grandoni, V. Vassilevska Williams

Proof. Let (�,�,�) be the input instance of Positive Betweenness Centrality. Observe that the answer is YES
if and only if there exists a shortest path of the form �, �, � .
Let us consider the directed case irst. By adding a dummy node � and dummy edges �� and �� of weight� for

any � ∈ � − {�}, we can assume that the diameter of� is at most �̃ = 3� (w.l.o.g., � has at least one in-neighbor
and one out-neighbor). Note that we did not introduce new paths of the form �, �, � . Furthermore, the new graph
has � + 1 nodes,� + 2� edges, and maximum weight� . Hence a �̃ (� (�,�,�)) time algorithm for the modiied
instance implies the same running time for the original one.
We construct an instance (� ′,� ′) of Diameter as follows (see also Figure 5). Initially � ′

= � . We add a copy
� of � . Let �� be the copy of � ∈ � . For every � ∈ � , we add edges ��� and ��� of weight �̃ + 1 −� (��) and
�̃ + 1 − � (��), respectively. If edges �� or �� are missing (including the case � = �), we set the weight of the
corresponding edges ��� and ���, respectively, to 0. Observe that edge weights are � (�).
In this graph we compute the diameter �∗ and output YES to the input Positive Betweenness Centrality

instance if and only if �∗ ≥ 2�̃ + 2. The running time of the algorithm is �̃ (� + � (� (�),� (�),� (�))) =

�̃ (� (�,�,�)). Consider a witness pair �∗, �∗ for the value of the diameter. Since edges of type ��� and ��� have
non-negative weight, we can assume w.l.o.g. that �∗ = �� ∈ � and �∗ = �� ∈ �. If both edges �� and �� are missing,
one has �∗

= �� (�, �) ≤ �̃ . If exactly one of the mentioned edges is missing, say �� , one has �∗
= �̃ +1−� (��) +

�� (�, �) ≤ 2�̃ + 1. Finally, if both edges are present, one has �∗
= 2(�̃ + 1) −� (��) −� (��) + �� (�, �) ≤ 2�̃ + 2,

where equality holds if and only if �, �, � is a shortest path. In particular, if there exists a shortest path of the
mentioned type, �∗

= 2�̃ + 2 and otherwise �∗ ≤ 2�̃ + 1. The correctness follows.
By simply removing edge directions (and leaving one copy of parallel edges) in the above construction, one

obtains the claim in the undirected case. �

We can exploit the above equivalence to derive (indirectly) the equivalence between Diameter and Reach
Centrality in both directed and undirected graphs (recall that we showed this equivalence only in directed graphs,
see Lemma 3.2).

Lemma 4.6. Given a � (�,�) time algorithm for Positive Betweenness Centrality with non-unique shortest paths

in directed or undirected graphs, there is a �̃ (� (�,�)) time algorithm for Reach Centrality in the same graph class.

Proof. Let (�,�,�) be the input instance of Reach Centrality.We show how to determinewhether�� (�) ≥ �

for a given parameter � in �̃ (� (�,�)) time. The value of �� (�) can then be determined via binary search with
an extra factor of � (log(��)) = �̃ (1) in the running time.
Let us consider the directed case irst. We compute the shortest path distances from and to � in � . Next

we construct an auxiliary weighted graph (� ′,� ′) as follows. We let � ′ initially contain a copy of � − {�} =

� [� − {�}], plus an isolated node �. Next, for any � ∈ � − {�}, we add an edge �� of weight � (�, �) if and only
if � (�, �) ≥ � . Symmetrically, we add an edge �� of weight � (�, �) if and only if � (�, �) ≥ � .
We solve the Positive Betweenness Centrality instance (� ′,� ′, �) and output that �� (�) ≥ � if and only if

the answer is YES. The running time of the algorithm is �̃ (� + � (�,� + 2�)) = �̃ (� (�,�)). Let us prove its
correctness. Suppose that �� (�) ≥ � and let (�, �) be a witness pair of that. Then �, �, � is a shortest �-� path in
� ′ and therefore the answer to the Positive Betweenness Centrality instance is YES. Vice versa, suppose that
the answer to the Positive Betweenness Centrality instance is YES, i.e. there exists a shortest �-� path passing
through �. This implies that there exists a shortest path of the form � ′, �, � ′. Observe that the shortest paths not
involving node � are the same in � and � ′. Therefore there exists a shortest � ′-� ′ path in � ′ passing through �.
Since by construction �� (� ′, �), �� (�, � ′) ≥ � , the pair (� ′, � ′) witnesses that �� (�) ≥ � .

The claim in the undirected case follows from the same reduction, but removing edge directions (and leaving
only one copy of parallel edges). �

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 19

Lemma 3.3 directly follows.

Proof of Lemma 3.3. It follows by chaining Lemmas 4.5 and 4.6. �

Another interesting observation about Positive Betweenness Centrality is that although solving it for a single
node � is equivalent to Diameter under subcubic reductions, the all-nodes version of the problem (where one
wants to determine whether �� (�) > 0 for all nodes �) is actually at least as hard as APSP.

Lemma 4.7. Given a � (�,�,�) time algorithm for All-Nodes Positive Betweenness Centrality with non-unique

shortest paths in directed or undirected graphs, there is a �̃ (� (�,�,�)) time algorithm for Negative Triangle.

Proof. Let (�,�) be the input instance of Negative Triangle. Consider irst the directed case (see also Figure
5). We create a directed weighted graph (� ′,� ′) as follows. Graph� ′ contains ive copies � , � , � , � and � of the
node set � . With the usual notation �� is the copy of node � ∈ � in set � . Let � = Θ(�) be a suiciently large
integer. For every edge �� ∈ � we add the edges ��� � , � � �� , ���� to � ′ and set their weight to 2�+� (��). We
also add edges ���� and ���� for every node � in � and set the weight of these edges to 3� .
The algorithm solves theAll-Nodes Positive Betweenness Centrality problem on (� ′,� ′) in time �̃ (� (�,�,�)),

and outputs YES to the input Negative Triangle instance if and only if �� (��) > 0 for some �� ∈ �. To show
correctness, observe that the only path through �� is from �� to �� and it has weight 6� , while every path of
type �� , � � ,�� , �� corresponds to a triangle {�, �,�} in � and the weight of the path equals the weight of the
triangle plus 6� . The claim follows.
The same construction, without edge directions, proves the claim for undirected graphs. �

Corollary 4.8. Given a truly subcubic algorithm for All-Nodes Approximate Reach Centrality or for All-Nodes

Approximate Betweenness Centrality with non-unique shortest paths, there exists a truly subcubic algorithm for

APSP.

Proof. In case of strictly positive weights, a truly subcubic algorithm for All-Nodes Approximate Reach Cen-
trality or for All-Nodes Approximate Betweenness Centrality with non-unique shortest paths directly implies
a truly subcubic algorithm for All-Nodes Positive Betweenness Centrality with non-unique shortest paths (the
answer for a node � is YES if and only if the associate approximate value is strictly positive). Notice that in
the reduction of Lemma 4.7 all weights are positive, hence this implies a truly subcubic algorithm for Negative
Triangle. The claim follows by the subcubic equivalence between Negative Triangle and APSP [64]. �

4.2 A PTAS for Betweenness Centrality

In this section we prove the subcubic equivalence between Approximate Betweenness Centrality and Diameter.

Theorem 4.9. Diameter and Approximate Betweenness Centrality with unique shortest paths are equivalent un-

der subcubic high probability Monte-Carlo reductions.

The main result in this section is the proof of the following Lemma.

Lemma 4.10. Given a truly subcubic algorithm for Diameter, there exists a truly subcubic high probability Monte-

Carlo PTAS for Betweenness Centrality with unique shortest paths.

We recall that a PTAS for the problem of estimating a value � is an algorithm that takes in input an instance
of the problem and a parameter � > 0, and outputs a (1 + �) approximation � or � , i.e. 1

1+�� ≤ � ≤ (1 + �)� .
Furthermore, the running time of the algorithm is polynomial whenever � is lower bounded by some constant.
The proof of Theorem 4.9 follows easily.

Proof of Theorem 4.9. Lemma 4.10 gives one direction. The other direction is obtained by chaining Lemma
4.1 and Lemma 4.4. �

ACM Trans. Algor.

20 • A. Abboud, F. Grandoni, V. Vassilevska Williams

�

1

2

1�

2�

1�

2�

� ′ � ′′

2 3

3

4
� -3 � -2

� -4 � -5

�

1

2

1�

2�

1�

2�

� ′ � ′′

2

3

4
� -2 � -2

� -4 � -4

Fig. 6. Reduction from Positive (�,�)-Betweenness Centrality to Diameter with � = � = {1, 2}. Gray edges has weight� −1.
On the let and right the reduction for the directed and undirected case, resp.

It remains to prove Lemma 4.10. Let (�,�,�) be the considered instance of Betweenness Centrality, and deine
�∗

= �� (�). Observe that, under the assumption that shortest paths are unique, ���,� (�) ∈ {0, 1} and therefore
�∗ ∈ {0, . . . , (� − 1)(� − 2)}. Given �, � ∈ � − {�} such that ���,� (�) = 1, we call (�, �) a witness pair, � a witness
source, and � a witness target (of �� (�)).
Let also ���� ∈ {0, . . . , (� − 1)(� − 2)} be a integer parameter to be ixed later. Our PTAS is based on two

diferent algorithms: one for �∗ ≤ ���� (small �∗) and the other for �∗
> ���� (large �∗).

4.2.1 An exact algorithm for small �∗. Let us start with the algorithm for small �∗. Recall that a witness pair
(�, �) satisies ���,� (�) = 1. A crucial observation is that the number of witness pairs is equal to �∗ in case of
unique shortest paths.
It is convenient to deine a generalization of Betweenness Centrality, where we consider only some pairs (�, �).

For �,� ⊆ � − {�}, we deine ���,� (�) :=
∑

(�,�) ∈�×� ���,� (�). The (�,�)-Betweenness Centrality problem is to
compute ���,� (�). The Positive (�,�)-Betweenness Centrality problem is to determine whether ���,� (�) > 0. We
use the shortcuts ���,� (�) = �� {� },� (�) and ���,� (�) = ���,{� } (�). Our irst ingredient is a reduction of Positive
(�,�)-Betweenness Centrality to Diameter.

Lemma 4.11. Given a� (�,�) time algorithm for Diameter in directed or undirected graphs, there exists a �̃ (� (�,�))
time algorithm for Positive (�,�)-Betweenness Centrality with non-unique (hence unique) shortest paths in the same

graph class.

Proof. We use a construction similar to the one in the proof of Lemma 4.5 (see also Figure 6). Let (�,�,�, �,�)
be the considered instance of Positive (�,�)-Betweenness Centrality.
We start with the directed case. Let us construct a directed weighted graph (� ′,� ′). Graph� ′ contains a copy

of � . Furthermore, it contains a copy � ′ of � and a copy � ′ of � . Let �� be the copy of node � in � , and deine
�� analogously. Let � := 2 + �, where � is the maximum distance of type �� (�, �) and �� (�, �), with � ∈ � and
� ∈ � . For each � ∈ � and � ∈ � , we add edges ��� and ��� of weight � − �� (�, �) and � − �� (�, �), respectively.
We add one dummy node � ′ (resp. � ′′) and bidirected7 edges � ′� for all � ∈ � ′ ∪� (resp., � ′′� for all � ∈ � ′ ∪�).
We also add edges � ′′� for each � ∈ � ′ (in particular these edges are not bidirected). Finally, we add a bidirected
edges � ′� ′′. All edges incident on � ′ and � ′′ have weight � − 1 (dummy edges). We compute the diameter �∗ of
(� ′,� ′), and output YES if and only if �∗

= 2� .
The running time of the algorithm is �̃ (� + � (� (�),� (�))) = �̃ (� (�,�)). Let us prove its correctness. Let

�∗, �∗ be a witness pair for the diameter. If �∗ ∈ � ∪ � ′ ∪ {� ′, � ′′}, then �∗ ≤ 2(� − 1). Hence we can assume
�∗ = �� ∈ � ′ for some � ∈ � . If �∗ ∈ � ′ ∪� ∪ {� ′, � ′′}, then �∗ ≤ 2(� − 1). So we can also assume �∗ = �� ∈ � ′.

7By a bidirected edge �� of weight �, we mean a directed edge �� and a directed edge ��, both of weight �.

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 21

Any �� -�� path using dummy edges has to use at least 2 such edges. If it uses 3 such edges, it costs at least
3(�−1) > 2� . Otherwise, it costs at least�−�� (�, �)+2(�−1) ≥ �−�+2(�−1) = 2� or 2(�−1)+�−�� (�, �) ≥
� −�+2(� −1) = 2� . Any shortest �� -�� avoiding dummy edges has cost 2� −�� (�, �) −�� (�, �) +�� (�, �) ≤ 2� ,
where the equality holds if and only if � belongs to some shortest �-� path in � . Summarizing, if there exists a
shortest �-� path passing through � (in which case the answer is YES), then the diameter is 2� . Otherwise, the
diameter is at most 2� − 1.

The construction for the undirected case is similar, where we remove edge directions (leaving one copy of
parallel edges) and the edges of type � ′′� with � ∈ � ′. By the same argument as before, we can assume that
�∗, �∗ ∈ � ′ ∪ � ′ and furthermore they do not belong simultaneously to � ′ or to � ′ (otherwise �∗ ≤ 2(� − 1)).
Thus, modulo switching the endpoints (which is w.l.o.g. in the undirected case), we can assume �∗ = �� ∈ � ′ and
�∗ = �� ∈ � ′. Then by the same argument as before one has that the diameter is 2� if there exists a shortest �-�
path passing through � (in which case the answer is YES), and otherwise the diameter is at most 2� − 1. �

We will exploit the following recursive algorithm for (�,�)-Betweenness Centrality.

Lemma 4.12. Given a� (�,�) time algorithm for Diameter in directed (resp., undirected) graphs, there is a �̃ (� ·
� (�,�)) time algorithm for (�,�)-Betweenness Centrality with unique shortest paths, where� is the number of

pairs (�, �) ∈ � ×� such that ���,� (�) = 1.

Proof. We describe a recursive algorithm with the claimed running time, given a �̃ (� (�,�)) time algorithm
for Positive (�,�)-Betweenness Centrality. The claim follows from Lemma 4.11.
The recursive algorithm works as follows. It initially solves the corresponding Positive (�,�)-Betweenness

instance. If the answer is NO, the algorithm outputs 0. If the answer is YES, we distinguish two subcases. If
|� | = |� | = 1, the algorithm outputs 1. Otherwise, the algorithm partitions arbitrarily � into two subsets �1 and
�2 which difer by at most 1 in cardinality, and it splits similarly � into �1 and �2. Then the algorithm solves
recursively the sub-problems induces by the pairs (�� ,��), �, � ∈ {1, 2}, and outputs the sum of the four obtained
values.

The correctness of the algorithm is obvious. Concerning its running time, consider the recursion tree. Let us
call a subproblem whose corresponding Positive (�,�)-Betweenness Centrality instance is a YES/NO instance
a YES/NO subproblem. Observe that, excluding the root problem, any NO subproblem must have at least one
sibling YES subproblem in the recursion tree. Furthermore, each sub-problem has at most 4 children in the
recursion tree. Therefore, if the root subproblem is a YES subproblem, the total number of subproblems is at
most 4 times the number of YES subproblems. Note also that the number of leaf YES subproblems is equal to� ,
and that each YES subproblem must have at least one leaf YES subproblem among its descendants. Finally, the
depth of the recursion tree is� (log(|� | + |� |)) = � (log�). Thus the number of subproblems is �̃ (�). The claim
on the running time follows. �

We are now ready to present our algorithm for small �∗.

Lemma 4.13. Given an instance (�,�,�) of Betweenness Centrality with unique shortest paths, a parameter ���� ,

and an algorithm for Diameter of running time � (�,�). There is an �̃ (����� (�,�)) time algorithm which either

outputs �∗
= �� (�) or answers NO in which case �∗

> ���� .

Proof. Consider the recursive algorithm from Lemma 4.12. We run that algorithm with � = � = � , however
with the following modiications. We keep track of the number� of leaf YES sub-problems found so far. If
� > ���� at any point, we halt the recursive algorithm and output NO. Otherwise, we output the value�
returned by the root call of the recursive algorithm.

ACM Trans. Algor.

22 • A. Abboud, F. Grandoni, V. Vassilevska Williams

The correctness of the algorithm follows immediately since the number of leaf YES subproblems in the original
(non-truncated) algorithm equals �∗. An easy adaptation of the running time analysis in Lemma 4.12 shows that
the running time is as in the claim (in particular the number of recursive calls is � (����)). �

4.2.2 A Monte-Carlo PTAS for large �∗. We next assume that �∗
> ���� , and we present an algorithm for this

case. In order to lighten the notation, since � is clear from the context, we next use ���,� instead of ���,� (�) and
similarly for related notation. Observe that a node� is a witness source (resp., witness target) if ���,� > 0 (resp.,
��� ,� > 0). At high level, our algorithm is based on the computation of the contribution ���,� to �� of a random
sample of candidate witness sources � . Then we exploit Chernof’s bound to prove that the approximation factor
is small w.h.p. One technical diiculty here is that some witness sources might give a very large contribution
to �� , which is problematic since we need concentrated results. In order to circumvent this problem, we irst
sample a random subset of candidate witness targets to identify the problematic witness sources (which are
considered separately).

In more detail, we sample a random subset � of ���� · � nodes, where ���� =
� log�√
����

and � is a suiciently

large constant (more precisely � = � (1/�2) is suicient). We compute all the shortest paths ending in � , and
use them to derive ���,� for all � ∈ � . We partition � into sets ������ and ������ , where � ∈ � belongs to ������ if
and only if ���,� ≥ � log�. Then we sample a random subset ������ of ���� |������ | nodes in ������ , and compute
���,� for all � ∈ ������ . Finally, we output the estimate

�̃ =
1

����
(

∑
�∈������

���,� +
∑

�∈������

���,�) .

It is easy to see that the running time of the algorithm is �̃ (���√
����

). It is also not hard to see that� [1
����

∑
�∈������ ���,�] =∑

�∈������ ���,� and � [1
����

∑
�∈������

���,�] =
∑
�∈������

���,� . Therefore, � [�̃] = �∗. The following lemma shows

that �̃ is concentrated around its mean.

Lemma 4.14. For � = � (1/�2) large enough, w.h.p. �̃ ∈ [(1 − 2�)�∗, (1 + 2�)�∗].

Proof. We start by showing that w.h.p., for any � ∈ � , if � ∈ ������ then ���,� ≥
√
����/(1 + �), and

otherwise ���,� ≤
√
����/(1 − �). Deine �′

= ���,� and � = ���,� . Note that � [�′] = � log�√
����

�. Note also that

�′
= ���,� =

∑
� ∈� ��,� , where ��,� = 0 if � ∉ � and ��,� = ���,� otherwise. Since the variables ��,� are negatively

correlated, we can apply Chernof’s bound to ���,� . In particular, conditioning implicitly on � <

√
����

1+� , one
obtains

�� [�′ ≥ � log�] = �� [�′ ≥
√
����

�
� [�′]] ≤

(
� (

√
����/�)−1

(
√
����/�)

√
����/�

) � log�√
����

�

≤
(
��/(1+�)

1 + �

)� log�

.

Above we used the fact that the function ��1−� is increasing for � ∈ [0, 1
1+�] (and strictly smaller than 1 in the

same range). Similarly, conditioning implicitly on the event that� >

√
����

1−� , one obtains � [�′] = � log�√
����

� ≥ � log�
1−�

and

�� [�′
< � log�] = �� [�′

<

√
����

�
� [�′]] ≤ �� [�′ ≤ (1 − �)� [�′]]

≤ �−
�2� [�′]

2 ≤ �
− �2� log�

2(1−�) .

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 23

Thus summarizing, for a ixed � ,

�� [� ∈ ������ |��,� <

√
����

1 + �] ≤
(
��/(1+�)

1 + �

)� log�

, and

�� [� ∈ ������ |��,� >

√
����

1 − �
] ≤ �

− �2� log�
2(1−�) .

From the union bound and assuming that the constant� = � (1/�2) is large enough, we conclude that w.h.p. for
all � ∈ ������ one has ���,� ≥

√
����/(1 + �) and for all � ∈ ������ one has ���,� ≤

√
����/(1 − �).

Next assume that the mentioned high probability event happens for all � ∈ � . Deine �∗
�����

=
∑
�∈������ ���,�

and �∗
�����

=
∑
�∈������

���,� . Clearly �∗
= �∗

�����
+�∗

�����
. Deine also �̃����� :=

1
����

∑
�∈������ ���,� and �̃����� :=

1
����

∑
�∈������

���,� , so that �̃ = �̃����� + �̃����� .
Consider any � ∈ ������ , and deine �′

= ���,� and � = ���,� . Recall that by assumption � ≥
√
����

1+� and

observe that � [�′] = ����� ≥ � log�
1+� . Then, by Chernof’s bound,

�� [|�′ − � [�′] | ≥ �� [�′]] ≤ 2�−
�2

3 � [�′] ≤ 2�−
�2

3(1+�)� log�
.

Since � [�̃�����] = 1
����

[∑�∈������ ���,�] = �∗
�����

, we can conclude that w.h.p. �̃����� ∈ [(1−�)�∗
�����

, (1+�)�∗
�����

].
Consider next �̃����� . Deine �′

= ���� �̃����� =
∑
�∈������

���,� . Observe that � [�′] = �����
∗
�����

. Further-

more �′ is the sum of independent random variables each one of value at most
√
����

1−� by the assumption on
������ . Therefore, by Chernof’s bound,

�� [�′ ≥ � [�′] + ������∗] ≤
�		

�
��∗

�∗
�����

(��∗
�∗
�����

+ 1)
��∗

�∗
�����

+1

���

(1−�)� log��∗
�����

����

.

Assuming �∗
�����

≥ �����/2 and observing that �∗ ≥ �∗
�����

, one obtains

�� [�′ ≥ � [�′] + ������∗] ≤
(

��

(1 + �)1+�

) (1−�)�� log�
2

.

Otherwise �∗
�����

< �����/2 ≤ ��∗/2 and thus

�� [�′ ≥ � [�′] + ������∗] ≤
�		

��

(1 + ��∗
�∗
�����

)
�∗
�����
�∗ +�

���

(1−�)� log��∗
����

≤
(�
3

)� (1−�)� log�
.

Similarly

�� [�′ ≤ � [�′] − ������
∗] ≤ �

− 1
2 (

��∗
�∗
�����

)2
�����∗

�����√
���� /(1−�)

= �
− (1−�)�2

2
(�∗)2

�∗
�����

� log�
���� ≤ �−

(1−�)�2
2 � log� .

ACM Trans. Algor.

24 • A. Abboud, F. Grandoni, V. Vassilevska Williams

Therefore w.h.p. �̃����� ∈ [�∗
�����

− ��∗, �∗
�����

+ ��∗]. Altogether, w.h.p. one has

(1 − 2�)�∗ ≤ (1 − �)�∗
����� + �

∗
����� − ��∗ ≤ �̃

≤ (1 + �)�∗
����� + �∗

����� + ��
∗ ≤ (1 + 2�)�∗.

�

The following lemma summarizes the above discussion.

Lemma 4.15. Given an instance (�,�,�) of Betweenness Centrality with unique shortest paths and �� (�) = �∗ ≥
���� , there is an �̃ (��

�2
√
����

) time algorithm that returns a (1 + �) approximation of �∗ w.h.p.

Proof. Consider the above algorithm. Its running time is �̃ (��
�2
√
����

) since � = � (1
�2
). By Lemma 4.14, the

estimate �̃ of �∗ that it outputs satisies the claim (modulo scaling � by a constant factor). �

Combining the algorithms for small and large �∗, we obtain Lemma 4.10.

Proof of Lemma 4.10. Let �̃ (�3−�) be the running time of the given Diameter algorithm, for some constant
� > 0. From Lemmas 4.13 and 4.15, we can use it to compute w.h.p. a (1 + �) approximation of the betweenness

centrality of a given node in time �̃ (�����3−� + �3

�2
√
����

). Choosing ���� =
�2�/3

�4/3
gives a truly subcubic running

time in �̃ (�3−�/3
�4/3

). �

4.3 Reductions based on SETH

We are able to show that, assuming the Strong Exponential Time Hypothesis (SETH) [40], a subquadratic algorithm
for Positive Betweenness Centrality does not exist even in sparse graphs. We recall that SETH claims that CNF-
SAT on � variables cannot be solved in time � ((2 − �)�) for any constant � > 0. One obtains as a corollary
a lower bound on the running time of any approximation algorithm for Betweenness/Reach Centrality by the
reductions in Lemmas 4.1 and 4.2.

Theorem 4.16. Suppose that there is an � (�2−�) time algorithm, for some constant � > 0, that solves Positive
Betweenness Centrality with non-unique shortest paths in directed or undirected graphs with edge weights in {1, 2}.
Then SETH is false.

Proof. Let � be a CNF-SAT formula on � variables. Our goal is to show that we can determine whether � is
satisiable in�∗(2(1−�)�) time8 for some constant � > 0. Using the sparsiication lemma of [40] (as, e.g., in [14]),
we can assume w.l.o.g. that � contains � (�) clauses.

Let us consider the undirected case irst (see also Figure 7). We partition the variables into two sets � and �
which difer by at most 1 in cardinality, and create a node �� (resp., ��) for each partial assignment �� of the
variables in� (resp., �� of the variables in �). We also add a node for each clause � , and add one edge of weight 1
between each clause � and any partial assignment � of � or � that does not satisfy any literal of � (including the
special case that � does not contain any variable in � or �). We also add two nodes �� and �� , and add one edge
of weight 1 between them and any node in � and �, respectively. Finally we add a node �, and add one edge of
weight 2 between � and each assignment of � and �. The algorithm returns YES (i.e., � is satisiable) if and only
if �� (�) > 0.

Let us prove correctness. The distance between any clause node � and any other node is at most 4, while any
path passing through � would cost at least 5. Hence the corresponding shortest paths do not use �. The same
claim holds for �� and �� . The distance between any two assignment of � or of � is at most 2, while passing

8The�∗ notation suppresses polynomial factors.

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 25

��� ��� ��� ���

�1 �2 �4�3

��� ��� ��� ���

��

��

�

��� ��� ��� ���

�1 �2 �4�3

��� ��� ��� ���

��

��

�

Fig. 7. Reduction from CNF-SAT to Positive Betweenness Centrality (let) and Reach Centrality (right) in undirected graphs

for the CNF-SAT formula �1∧�2∧�3∧�4 = (� ∨� ∨�)∧ (�∨�)∧ (� ∨� ∨�)∧ (� ∨�∨�). The set of variables are� = {�,� }
and � = {�,�}. Node ��� corresponds to the partial assignment (�,�) = (�, �) and similarly for the other nodes. Bold

edges have weight 2, all other edges have weight 1. The shortest paths��� , �, ��� on the let and��� , ��, �, ��, ��� on the

right witness that (�,�, �,�) = (�, �,� ,�) is a satisfying assignment.

through � would cost at least 4. Hence also the corresponding shortest paths do not use �. It remains to consider
shortest paths from some node of type �� to some node of type �� . Observe that there exists one such path
of length 2 (hence ����,�� (�) = 0) if and only if there exists a clause � that is not satisied by �� nor by �� .
Otherwise (i.e., �� and �� together satisfy �), ��, �, �� is a a shortest such path (hence �� (�) > 0). The graph
has � (2�/2�) edges, leading to a running time of the form �∗(2(1−�/2)�). The claim follows.
In the directed case we use a similar construction (with a similar notation), without nodes �� and �� , and

orienting the edges from the assignments of � to the clause nodes and to �, and from the latter nodes to the
assignments of �. The algorithm is the same. The proof of correctness is simpler: the only shortest paths that
can use � are from a node of type �� to a node of type �� . Similarly to the undirected case, �� and �� together
satisfy � if and only if ��, �, �� is a a shortest path (hence �� (�) > 0). Also in this case the running time is
�∗ (2(1−�/2)�), implying the claim. �

Corollary 4.17. Suppose that there is an� (�2−�) time algorithm for Approximate Betweenness Centrality with

non-unique shortest paths or for Approximate Reach Centrality, for some constant � > 0. Then SETH is false.

Proof. It follows by chaining Theorem 4.16 with Lemmas 4.1 and 4.2. �

For Reach Centrality we can also show an approximation lower bound for unweighted undirected graphs.

Theorem 4.18. Suppose there is a � (�2−�)-time (2 − �)-approximation algorithm for Reach Centrality in undi-

rected unweighted graphs, for some constant � > 0. Then SETH is false.

Proof. Similarly to the proof of Theorem 4.16, we can start with a CNF-SAT formula � containing � vari-
ables and� = � (�) clauses [40]. We will show how to construct an instance (�,�) of Reach Centrality on an
unweighted undirected graph � = (� , �) with |� | = � (2�/2 +�) nodes and |� | = � (2�/2�) edges, such that
�� (�) = 2 if � is satisiable and �� (�) = 1 otherwise. The generation of the graph from the formula takes

ACM Trans. Algor.

26 • A. Abboud, F. Grandoni, V. Vassilevska Williams

� (2�/2�) time and therefore if we could compute a (2− �) approximation of �� (�) in�∗ (|� |2−�) time, for some
� > 0, we would be able to solve CNF-SAT in �∗(2(1−�/2)�) time (which would refute SETH).

Similarly to the proof of Theorem 4.16, we partition the variables into two subsets � and � which difer by at
most 1 in cardinality, and create a node for each partial assignment of the variables in � and �. We also create a
node � for each clause � , and connect � to each partial assignment that does not satisfy any literal in � . We also
add nodes �� and �� , and add edges between them and any node in� and �, respectively. Finally, we add a node
�, and connect it to �� and �� (note that the inal part of the construction deviates from Theorem 4.16).

To show correctness, note that � is on the shortest path between �� and �� and therefore �� (�) ≥ 1. Further-
more, � cannot be on the shortest path between a clause node � and another node in� , and therefore �� (�)= 2
if and only if � is on the shortest path between an assignment �� of� and an assignment �� of �. But a shortest
path between �� and �� goes through � if and only if for every clause node � either ��� is not an edge or ��� is
not an edge. By deinition of these edges, this implies that for every clause � , either �� or �� satisies � (i.e. ��
and �� induce a satisfying assignment of �). The claim follows. �

As observed by one careful reviewer, the above reductions can be adapted to the Orthogonal Vector Conjecture
(OVC). In the Orthogonal Vector problems (OV) we are given a set on� binary vectors of dimension� = � (log�).
The goal is to determine whether there exists a pair of orthogonal vectors in the set. OVC states that there is no
� (�2−�) time algorithm for OV where � > 0 is a ixed constant. We remark that SETH implies OVC, i.e. OVC is
a stronger conjecture [60]. Our reductions can be adapted as follows. For each vector � we create a node �� in
the set � (resp., �� in the set �). The set � contains one node � for each dimension/entry � . We connect each
vector node �� ∈ � (resp., �� ∈ �) to each dimension node � such that the �-th entry of � is 1. Now a length 2
path between �� ∈ � and �� ∈ � through a node in � means that the vectors � and � are not orthogonal. The
rest of the construction is similar. The simple details are left to the reader.

5 CONCLUSIONS AND OPEN PROBLEMS

There are many interesting problems that we left open. The main one is probably whether Diameter and APSP
are equivalent under subcubic reductions. By our reductions, on one hand a positive answer would indicate
that truly subcubic algorithms for Reach Centrality and for Approximate Betweenness Centrality are unlikely
to exist. On the other hand, a negative answer would give truly subcubic algorithms for the latter problems as
well.

We have shown that Reach Centrality can be solved in �̃ (���) time in directed graphs, improving on the
previous best algorithm based on APSP. Similar running times are known for Diameter and Radius [17]. To the
best of our knowledge, it is open whether a �̃ (���) time algorithm exists also for Median and Betweenness
Centrality in directed graphs.
We proved that a subquadratic 2−� approximation algorithm for Reach Centrality in sparse graphs is unlikely

to exist. In [2, 52] analogous results are proved for Diameter and Radius. It would be interesting to show simi-
lar negative results for Betweenness Centrality and Median (or ind faster approximation algorithms in sparse
graphs for those problems).

ACKNOWLEDGMENTS

We thank the anonymous reviewers for helpful suggestions. The second authors is partially supported by the
SNSF Excellence Grant 200020B_182865/1 and the SNSF Grant 200021_200731 / 1. The third authors is supported
by an NSF CAREER Award, NSF Grants CCF-1528078 and CCF-1514339, a BSF Grant BSF:2012338, a Sloan Re-
search Fellowship and a Google faculty fellowship.

ACM Trans. Algor.

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 27

REFERENCES

[1] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014. IEEE Computer
Society, 434–443. https://doi.org/10.1109/FOCS.2014.53

[2] Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. 2016. Approximation and Fixed Parameter Subquadratic
Algorithms for Radius and Diameter in Sparse Graphs. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, Robert Krauthgamer (Ed.). SIAM, 377–391.
https://doi.org/10.1137/1.9781611974331.ch28

[3] Amir Abboud, Virginia Vassilevska Williams, and OrenWeimann. 2014. Consequences of Faster Alignment of Sequences. In Automata,

Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I

(Lecture Notes in Computer Science, Vol. 8572), Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.). Springer,
39–51. https://doi.org/10.1007/978-3-662-43948-7_4

[4] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and RajeevMotwani. 1999. Fast Estimation of Diameter and Shortest Paths (Without
Matrix Multiplication). SIAM J. Comput. 28, 4 (1999), 1167–1181.

[5] Arturs Backurs, Liam Roditty, Gilad Segal, Virginia VassilevskaWilliams, and Nicole Wein. 2021. Toward Tight Approximation Bounds
for Graph Diameter and Eccentricities. SIAM J. Comput. 50, 4 (2021), 1155–1199. https://doi.org/10.1137/18M1226737

[6] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. 2007. Approximating Betweenness Centrality. In Al-

gorithms and Models for the Web-Graph, 5th International Workshop, WAW 2007, San Diego, CA, USA, December 11-12, 2007,

Proceedings (Lecture Notes in Computer Science, Vol. 4863), Anthony Bonato and Fan R. K. Chung (Eds.). Springer, 124–137.
https://doi.org/10.1007/978-3-540-77004-6_10

[7] Piotr Berman and Shiva Prasad Kasiviswanathan. 2007. Faster Approximation of Distances in Graphs. InAlgorithms and Data Structures,

10th International Workshop, WADS 2007, Halifax, Canada, August 15-17, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4619),
Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh (Eds.). Springer, 541–552. https://doi.org/10.1007/978-3-540-73951-7_47

[8] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 2 (2001), 163–177.
[9] U. Brandes and C. Pich. 2007. Centrality estimation in large networks. International Journal of Bifurcation and Chaos 17, 7 (2007),

2303–2318.
[10] Massimo Cairo, Roberto Grossi, and Romeo Rizzi. 2016. New Bounds for Approximating Extremal Distances in Undirected Graphs. In

Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,

2016, Robert Krauthgamer (Ed.). SIAM, 363–376. https://doi.org/10.1137/1.9781611974331.ch27
[11] Timothy M. Chan. 2010. More Algorithms for All-Pairs Shortest Paths in Weighted Graphs. SIAM J. Comput. 39, 5 (2010), 2075–2089.
[12] Timothy M. Chan, Virginia Vassilevska Williams, and Yinzhan Xu. 2021. Algorithms, Reductions and Equivalences for Small Weight

Variants of All-Pairs Shortest Paths. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021) (Leibniz

International Proceedings in Informatics (LIPIcs), Vol. 198), Nikhil Bansal, Emanuela Merelli, and James Worrell (Eds.). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 47:1–47:21. https://doi.org/10.4230/LIPIcs.ICALP.2021.47

[13] Ching-Lueh Chang. 2013. Deterministic sublinear-time approximations for metric 1-median selection. Inf. Process. Lett. 113, 8 (2013).
[14] Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, Robert Endre Tarjan, and Virginia Vassilevska Williams.

2014. Better Approximation Algorithms for the Graph Diameter. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, Chandra Chekuri (Ed.). SIAM, 1041–1052.
https://doi.org/10.1137/1.9781611973402.78

[15] T. Cofman, S. Greenblatt, and S. Marcus. 2004. Graph-based technologies for intelligence analysis. Commun. ACM 47, 3 (2004), 45–47.
[16] D. Coppersmith and S.Winograd. 1990. Matrix multiplication via arithmetic progressions. J. Symbolic Computation 9, 3 (1990), 251–280.
[17] Marek Cygan, Harold N. Gabow, and Piotr Sankowski. 2012. Algorithmic Applications of Baur-Strassen’s Theorem: Shortest Cycles,

Diameter and Matchings. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA,

October 20-23, 2012. IEEE Computer Society, 531–540. https://doi.org/10.1109/FOCS.2012.72
[18] Mina Dalirrooyfard, Ray Li, and Virginia Vassilevska Williams. 2021. Hardness of Approximate Diameter: Now for Undirected Graphs.

In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE, 1021–1032.
https://doi.org/10.1109/FOCS52979.2021.00102

[19] A.M. Davie and A. J. Stothers. 2013. Improved bound for complexity of matrix multiplication. Proceedings of the Royal Society of

Edinburgh, Section: A Mathematics 143 (4 2013), 351–369. Issue 02. https://doi.org/10.1017/S0308210511001648
[20] A. Del Sol, H. Fujihashi, and P. O’Meara. 2005. Topology of small-world networks of protein- protein complex structures. Bioinformatics

21, 8 (2005), 1311–1315.
[21] E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer. Math. 1 (1959), 269–271.
[22] David Eppstein and Joseph Wang. 2004. Fast Approximation of Centrality. J. Graph Algorithms Appl. 8 (2004), 39–45.
[23] Michael L. Fredman. 1976. New Bounds on the Complexity of the Shortest Path Problem. SIAM J. Comput. 5, 1 (1976), 83–89.

ACM Trans. Algor.

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/1.9781611974331.ch28
https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.1137/18M1226737
https://doi.org/10.1007/978-3-540-77004-6_10
https://doi.org/10.1007/978-3-540-73951-7_47
https://doi.org/10.1137/1.9781611974331.ch27
https://doi.org/10.4230/LIPIcs.ICALP.2021.47
https://doi.org/10.1137/1.9781611973402.78
https://doi.org/10.1109/FOCS.2012.72
https://doi.org/10.1109/FOCS52979.2021.00102
https://doi.org/10.1017/S0308210511001648

28 • A. Abboud, F. Grandoni, V. Vassilevska Williams

[24] Michael L. Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. J.
ACM 34, 3 (1987), 596–615.

[25] Linton Freeman. 1977. A set of measures of centrality based upon betweenness. Sociometry 40 (1977), 35–41.
[26] A. Gajentaan and M. Overmars. 1995. On a class of O(�2) problems in computational geometry. Computational Geometry 5, 3 (1995),

165–185.
[27] François Le Gall. 2014. Powers of tensors and fast matrix multiplication. In International Symposium on Symbolic and Algebraic Com-

putation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, Katsusuke Nabeshima, Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó (Eds.).
ACM, 296–303. https://doi.org/10.1145/2608628.2608664

[28] Francois Le Gall and Florent Urrutia. 2018. Improved Rectangular Matrix Multiplication using Powers of the Coppersmith-Winograd
Tensor. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,

January 7-10, 2018, Artur Czumaj (Ed.). SIAM, 1029–1046. https://doi.org/10.1137/1.9781611975031.67
[29] Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008. Better Approximation of Betweenness Centrality. In Proceedings of the

Tenth Workshop on Algorithm Engineering and Experiments, ALENEX 2008, San Francisco, California, USA, January 19, 2008, J. Ian Munro
and Dorothea Wagner (Eds.). SIAM, 90–100. https://doi.org/10.1137/1.9781611972887.9

[30] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. 2006. Reach for A*: Eicient Point-to-Point Shortest Path Algorithms. In
Proceedings of the Eighth Workshop on Algorithm Engineering and Experiments, ALENEX 2006, Miami, Florida, USA, January 21, 2006,
Rajeev Raman and Matthias F. Stallmann (Eds.). SIAM, 129–143. https://doi.org/10.1137/1.9781611972863.13

[31] Andrew V. Goldberg, Haim Kaplan, and Renato Fonseca F. Werneck. 2007. Better LandmarksWithin Reach. In Experimental Algorithms,

6th International Workshop, WEA 2007, Rome, Italy, June 6-8, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4525), Camil
Demetrescu (Ed.). Springer, 38–51. https://doi.org/10.1007/978-3-540-72845-0_4

[32] Oded Goldreich and Dana Ron. 2008. Approximating average parameters of graphs. Random Struct. Algorithms 32, 4 (2008), 473–493.
[33] Fabrizio Grandoni and Virginia VassilevskaWilliams. 2020. Faster replacement paths and distance sensitivity oracles. ACMTransactions

on Algorithms 16, 1 (2020), 15:1–15:25.
[34] Fabrizio Grandoni and Virginia Vassilevska Williams. 2012. Improved Distance Sensitivity Oracles via Fast Single-Source Replacement

Paths. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012.
IEEE Computer Society, 748–757. https://doi.org/10.1109/FOCS.2012.17

[35] Ronald J. Gutman. 2004. Reach-Based Routing: A NewApproach to Shortest Path Algorithms Optimized for Road Networks. In Proceed-
ings of the SixthWorkshop on Algorithm Engineering and Experiments and the First Workshop on Analytic Algorithmics and Combinatorics,

New Orleans, LA, USA, January 10, 2004, Lars Arge, Giuseppe F. Italiano, and Robert Sedgewick (Eds.). SIAM, 100–111.
[36] P. Hage and F. Harary. 1995. Eccentricity and centrality in networks. Social Networks 17 (1995), 57–63.
[37] S Louis Hakimi. 1964. Optimum locations of switching centers and the absolute centers and medians of a graph. Operations research

12, 3 (1964), 450–459.
[38] Yijie Han and Tadao Takaoka. 2016. An O(�3 log log�/log2 �) time algorithm for all pairs shortest paths. J. Discrete Algorithms 38-41

(2016), 9–19. https://doi.org/10.1016/j.jda.2016.09.001
[39] Xiaohan Huang and Victor Y. Pan. 1998. Fast Rectangular Matrix Multiplication and Applications. J. Complexity 14, 2 (1998), 257–299.
[40] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which Problems Have Strongly Exponential Complexity? J. Comput.

Syst. Sci. 63, 4 (2001), 512–530.
[41] Piotr Indyk. 1999. Sublinear Time Algorithms for Metric Space Problems. In Proceedings of the Thirty-First Annual ACM Symposium

on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, Jefrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson Leighton
(Eds.). ACM, 428–434. https://doi.org/10.1145/301250.301366

[42] H. Jeong, S. Mason, A.L. Barabási, and Z. Oltvai. 2001. Lethality and centrality in protein networks. Nature 411 (2001), 41–42.
[43] Donald B. Johnson. 1977. Eicient algorithms for shortest paths in sparse networks. J. ACM 24, 1 (1977), 1–13.
[44] V. Krebs. 2002. Mapping networks of terrorist cells. Connections 24, 3 (2002), 43–52.
[45] F. Liljeros, C. Edling, L. Amaral, H. Stanley, and Y. Aberg. 2001. The web of human sexual contacts. Nature 411 (2001), 907–908.
[46] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. 1987. Matching is as easy as matrix inversion. Combinatorica 7, 1 (1987),

105–113.
[47] M. E. J. Newman andM. Girvan. 2004. Finding and evaluating community structure in networks. Physical Review E 69, 2 (2004), 26–113.
[48] Mihai Patrascu. 2010. Towards polynomial lower bounds for dynamic problems. In Proceedings of the 42nd ACM Symposium

on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, Leonard J. Schulman (Ed.). ACM, 603–610.
https://doi.org/10.1145/1806689.1806772

[49] Seth Pettie. 2004. A new approach to all-pairs shortest paths on real-weighted graphs. Theor. Comput. Sci. 312, 1 (2004), 47–74.
[50] Seth Pettie and Vijaya Ramachandran. 2005. A Shortest Path Algorithm for Real-Weighted Undirected Graphs. SIAM J. Comput. 34, 6

(2005), 1398–1431.
[51] J. W. Pinney and D. R. Westhead. 2006. Betweenness-based decomposition methods for social and biological networks. In Interdisci-

plinary Statistics and Bioinformatics. 87–90.

ACM Trans. Algor.

https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1137/1.9781611972887.9
https://doi.org/10.1137/1.9781611972863.13
https://doi.org/10.1007/978-3-540-72845-0_4
https://doi.org/10.1109/FOCS.2012.17
https://doi.org/10.1016/j.jda.2016.09.001
https://doi.org/10.1145/301250.301366
https://doi.org/10.1145/1806689.1806772

Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter • 29

[52] Liam Roditty and Virginia Vassilevska Williams. 2013. Fast approximation algorithms for the diameter and radius of sparse graphs. In
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum (Eds.). ACM, 515–524. https://doi.org/10.1145/2488608.2488673

[53] Liam Roditty and Uri Zwick. 2012. Replacement paths and k simple shortest paths in unweighted directed graphs. ACM Transactions

on Algorithms 8, 4 (2012), 33.
[54] Gert Sabidussi. 1966. The centrality index of a graph. Psychometirka 31 (1966), 581–606.
[55] Dominik Schultes and Peter Sanders. 2007. Dynamic Highway-Node Routing. In Experimental Algorithms, 6th International Workshop,

WEA 2007, Rome, Italy, June 6-8, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4525), Camil Demetrescu (Ed.). Springer,
66–79. https://doi.org/10.1007/978-3-540-72845-0_6

[56] Avi Shoshan and Uri Zwick. 1999. All Pairs Shortest Paths in Undirected Graphs with Integer Weights. In 40th Annual Sym-

posium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA. IEEE Computer Society, 605–615.
https://doi.org/10.1109/SFFCS.1999.814635

[57] Mikkel Thorup. 1997. Undirected Single Source Shortest Path in Linear Time. In 38th Annual Symposium on Foundations of Computer Sci-

ence, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997. IEEE Computer Society, 12–21. https://doi.org/10.1109/SFCS.1997.646088
[58] Virginia Vassilevska Williams. 2018. On some ine-grained questions in algorithms and complexity. Proc. of the ICM (2018).
[59] Oren Weimann and Raphael Yuster. 2013. Replacement Paths and Distance Sensitivity Oracles via Fast Matrix Multiplication. ACM

Transactions on Algorithms 9, 2 (2013), 14.
[60] Ryan Williams. 2005. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348, 2-3 (2005),

357–365. https://doi.org/10.1016/j.tcs.2005.09.023
[61] Ryan Williams. 2018. Faster all-pairs shortest paths via circuit complexity. 47, 5 (2018), 1965–1985.
[62] Virginia Vassilevska Williams. 2011. Faster Replacement Paths. In Proceedings of the Twenty-Second Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, Dana Randall (Ed.). SIAM, 1337–1346.
https://doi.org/10.1137/1.9781611973082.102

[63] Virginia Vassilevska Williams. 2012. Multiplying matrices faster than coppersmith-winograd. In Proceedings of the 44th Symposium on

Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, Howard J. Karlof and Toniann Pitassi (Eds.). ACM,
887–898. https://doi.org/10.1145/2213977.2214056

[64] Virginia Vassilevska Williams and R. Ryan Williams. 2018. Subcubic Equivalences Between Path, Matrix, and Triangle Problems. J.

ACM 65, 5 (2018), 27:1–27:38. https://doi.org/10.1145/3186893
[65] Uri Zwick. 1998. All Pairs Shortest Paths in Weighted Directed Graphs - Exact and Almost Exact Algorithms. In 39th Annual Sympo-

sium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA. IEEE Computer Society, 310–319.
https://doi.org/10.1109/SFCS.1998.743464

[66] Uri Zwick. 2002. All pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49, 3 (2002), 289–317.

ACM Trans. Algor.

https://doi.org/10.1145/2488608.2488673
https://doi.org/10.1007/978-3-540-72845-0_6
https://doi.org/10.1109/SFFCS.1999.814635
https://doi.org/10.1109/SFCS.1997.646088
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1137/1.9781611973082.102
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/3186893
https://doi.org/10.1109/SFCS.1998.743464

	Abstract
	1 Introduction
	1.1 Approach
	1.2 Subcubic equivalences with APSP
	1.3 Subcubic equivalence between Reach Centrality and Diameter
	1.4 Approximation algorithms
	1.5 SETH Hardness
	1.6 Related Work
	1.7 Preliminaries and Notation

	2 Subcubic Equivalence with APSP
	2.1 Betweenness Centrality
	2.2 Radius
	2.3 Median

	3 Subcubic Equivalence between Reach Centrality and Diameter
	4 Approximation of Reach and Betweenness Centrality
	4.1 Some Results on Positive Betweenness Centrality
	4.2 A PTAS for Betweenness Centrality
	4.3 Reductions based on SETH

	5 Conclusions and Open Problems
	Acknowledgments
	References

