
MIT Open Access Articles

The Query Complexity of Certification

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Blanc, Guy, Koch, Caleb, Lange, Jane and Tan, Li-Yang. 2022. "The Query Complexity of 
Certification."

As Published: https://doi.org/10.1145/3519935.3519993

Publisher: ACM|Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of 
Computing

Persistent URL: https://hdl.handle.net/1721.1/146447

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146447


TheQuery Complexity of Certification
Guy Blanc

Stanford University

Stanford, CA, USA

Caleb Koch

Stanford University

Stanford, CA, USA

Jane Lange

MIT

Cambridge, MA, USA

Li-Yang Tan

Stanford University

Stanford, CA, USA

ABSTRACT
We study the problem of certification: given queries to a function

𝑓 : {0, 1}𝑛 → {0, 1} with certificate complexity ≤ 𝑘 and an input

𝑥★, output a size-𝑘 certificate for 𝑓 ’s value on 𝑥★.

For monotone functions, a classic local search algorithm of An-

gluin accomplishes this task with 𝑛 queries, which we show is

optimal for local search algorithms. Our main result is a new algo-

rithm for certifying monotone functions with 𝑂 (𝑘8 log𝑛) queries,
which comes close to matching the information-theoretic lower

bound of Ω(𝑘 log𝑛). The design and analysis of our algorithm are

based on a new connection to threshold phenomena in monotone

functions.

We further prove exponential-in-𝑘 lower bounds when 𝑓 is non-

monotone, and when 𝑓 is monotone but the algorithm is only given

random examples of 𝑓 . These lower bounds show that assumptions

on the structure of 𝑓 and query access to it are both necessary for

the polynomial dependence on 𝑘 that we achieve.
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1 INTRODUCTION
Given a function 𝑓 : {0, 1}𝑛 → {0, 1} and an input 𝑥★, why does 𝑓

output 𝑓 (𝑥★) on 𝑥★? Among the many possibilities for what con-

stitutes such an “explanation", the notion of certificates is perhaps
the simplest: a set 𝑆 ⊆ [𝑛] of 𝑥★’s coordinates that determines 𝑓 ’s
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value on 𝑥★. That is, 𝑓 (𝑦) = 𝑓 (𝑥★) for all 𝑦 that agree with 𝑥★ on

the coordinates in 𝑆 .

It is natural to seek small certificates, i.e. succinct explanations:
the smaller 𝑆 is, the more inputs it covers, and the more general it is

as an explanation. This leads us to the following standard definition

from complexity theory:

Definition 1 (Certificate complexity). For a function 𝑓 :

{0, 1}𝑛 → {0, 1} and an input 𝑥★, the complexity of certifying 𝑓 ’s
value on 𝑥★ is the quantity:

𝐶 (𝑓 , 𝑥★) B min

𝑆⊆[𝑛]

{
|𝑆 | : 𝑓 (𝑦) = 𝑓 (𝑥★) for all 𝑦 s.t. 𝑦𝑆 = 𝑥★𝑆

}
.

The certificate complexity of 𝑓 is the quantity

𝐶 (𝑓 ) B max

𝑥 ∈{0,1}𝑛
{𝐶 (𝑓 , 𝑥)}.

We can now state the algorithmic problem that we study in this

work, that of efficiently finding small certificates:

Certification Problem: Given queries to a function 𝑓 :

{0, 1}𝑛 → {0, 1} with certificate complexity ≤ 𝑘 and an
input 𝑥★, output a size-𝑘 certificate for 𝑓 ’s value on 𝑥★.

Motivation. In addition to being a basic and natural problem, this

is also an abstraction of a problem of interest in explainable machine
learning, where 𝑓 represents a black box model that we seek to

explain the predictions of. Modern machine learning algorithms,

powered by large amounts of computational resources and trained

on massive datasets, produce models that perform very well, but

are so complicated that they are essentially inscrutable black boxes.

This is a concern as we increasingly delegate weighty decisions to

these models. The field of explainable machine learning seeks to

address this by developing techniques to explain the predictions of

these models [6, 14].

There are numerous notions of “explanations" in this litera-

ture [2, 13, 15, 21, 25–27]; Ribero, Singh, and Guestrin [22] were

the first to propose certificates. Their work introduced a relaxed

“approximate” notion of certificates, where the set 𝑆 of coordinates

mostly determines 𝑓 ’s value rather than fully determines it, and

“mostly" is measured with respect to a distribution over inputs.

We discuss [22], this notion of “approximate certificates", and cor-

responding approximate certification algorithms in more detail

in Section 1.2.

1.1 Our Results
1.1.1 Local Search for Monotone Functions and Its Limitations. The
certification problem can be viewed as the problem of efficiently

finding an “𝑓 -monochromatic" subcube in {0, 1}𝑛 of codimension
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≤ 𝑘 containing 𝑥★, where a subcube is 𝑓 -monochromatic if 𝑓 takes

the same value on all inputs in that subcube. From this perspective,

it is natural to proceed by local search: first query 𝑓 on 𝑥★ and

its immediate Hamming neighbors, and iteratively expand this

neighborhood until it contains an 𝑓 -monochromatic subcube of the

desired size.

Indeed, a classic algorithm due to Angluin [1] shows how such

a local search can be carried out systematically for monotone func-
tions, and solves the certification problem with just 𝑛 queries:

Angluin’s algorithm: Given queries to a monotone function 𝑓 :

{0, 1}𝑛 → {0, 1} with certificate complexity ≤ 𝑘 and an input 𝑥★,
Angluin’s algorithm makes 𝑛 queries to 𝑓 and returns a size-𝑘 certifi-
cate for 𝑓 ’s value on 𝑥★.

Angluin’s algorithm is a modification of a similar algorithm

given by Valiant [28].

We begin by observing that Angluin’s algorithm is optimal

among local search algorithms.We consider a local search algorithm

to be any algorithm whose first query is 𝑥★, and whose subsequent

queries are Hamming neighbors of some input that has been pre-

viously queried. In other words, at any point in the execution of a

local search algorithm, the set of inputs that have been queried so

far forms a connected subgraph of {0, 1}𝑛 containing 𝑥★. We show

the following lower bound:

Claim 1.1 (Lower bound against local search algorithms).

For any 𝜀 > 0 the following holds. Any local search algorithm solving
the certification problem for monotone functions 𝑓 : {0, 1}𝑛 → {0, 1}
must have query complexity Ω(𝜀𝑛), even if 𝑓 is promised to have
certificate complexity 𝑘 = 1 and even if the algorithm is only required
to return a size-Ω(𝜀𝑛) certificate with probability 𝜀.

1.1.2 Near-Optimal Certification Algorithm forMonotone Functions.
Our main result is an algorithm for certifying monotone functions

that is substantially more efficient than Angluin’s:

Theorem 1 (Efficient certification of monotone func-

tions). Given queries to a monotone function 𝑓 : {0, 1}𝑛 → {0, 1}
with certificate complexity ≤ 𝑘 and an input 𝑥★, our algorithm makes
𝑂 (𝑘8 log𝑛) queries to 𝑓 and w.h.p. returns a size-𝑘 certificate for 𝑓 ’s
value on 𝑥★.

As one would expect given Claim 1.1, our algorithm does not

proceed by local search. In fact, our algorithm takes the exact op-
posite approach. A local search algorithm for monotone functions

starts with the trivial certificate 𝑆 = {𝑖 ∈ [𝑛] : 𝑥★
𝑖

= 𝑓 (𝑥★
𝑖
)} and

trims it down in size by removing coordinates that are “irrelevant

to 𝑆". Our algorithm proceeds the opposite way: we start with the

empty set 𝑆 = ∅ and add to it coordinates that we deem “important".

We describe our approach in detail in Section 2.

We complement Theorem 1 with a lower bound showing that

the query complexity of our algorithm is near optimal, even if the

algorithm only has to return a certificate of size ℓ ≫ 𝑘 :

Claim 1.2 (Lower bound for monotone functions). For any
𝑐 < 1 and any 𝑘 ≤ ℓ ≤ 𝑛𝑐 , letA be an algorithm which, given query
access to a monotone function 𝑓 : {0, 1}𝑛 → {0, 1} with certificate
complexity ≤ 𝑘 and an input 𝑥★, returns a size-ℓ certificate for 𝑓 ’s
value on 𝑥★ w.h.p. The query complexity of A must be Ω(𝑘 log𝑛).

1.1.3 Algorithms and Lower Bounds for Other Settings. Finally, we
study the extent to which the setting of Theorem 1 can be relaxed:

what if 𝑓 is an arbitrary function, one that is not necessarily mono-

tone? What if the algorithm is only given uniformly-distributed

random examples (𝒙, 𝑓 (𝒙)) instead of query access to 𝑓 ? We obtain

fairly tight upper and lower bounds for both these settings. Table 1

summarizes these bounds and contrasts them with our results as

described in the previous subsection:

The exponential-in-𝑘 lower bounds for these alternative settings

(the last two rows of Table 1) show that some assumption on the

structure of 𝑓 , such as monotonicity, and query access to it are both

necessary for the polynomial dependence on 𝑘 that we achieve

in Theorem 1. As in Claim 1.2, these lower bounds hold even if the

algorithm is only required to return a size-ℓ certificate where ℓ can

be significantly larger than 𝑘 ; we defer the precise statements to

the body of the paper.

1.2 Prior Work on “Approximate" and Exact
Certificates

We discuss two works from the explainable machine learning liter-

ature, [22] and [3], that are direct precursors to ours.

[22]. Ribero, Singh, and Guestrin were the first to propose certifi-

cates as explanations for black box machine learning models. They

introduced a relaxed notion of certificates that allows for errors
1
:

Definition 2 (Approximate certificates [22]). For a function
𝑓 : {0, 1}𝑛 → {0, 1}, an input 𝑥★, a distribution D over {0, 1}𝑛 , and
𝜀 > 0, we say that a set 𝑆 ⊆ [𝑛] is an 𝜀-error certificate for 𝑓 ’s value
on 𝑥★ with respect to D if Pr

𝒚∼D
[ 𝑓 (𝒚) ≠ 𝑓 (𝑥★) | 𝒚𝑆 = 𝑥★𝑆 ] ≤ 𝜀.

[22]’s work was empirical in nature: their paper demonstrated,

through experiments and a user study, the effectiveness of succinct

certificates as explanations. Their work also gave heuristics for

finding succinct approximate certificates, but these heuristics do

not come with provable performance guarantees.

[22]’s work has been influential in explainable machine learn-

ing. For more, see the discussion of their work in the book [18,

Chapter §5.9], and the open source library [12] for implementation

details of their heuristics.

[3]. Motivated by [22], [3] gave an algorithm for finding succinct

approximate certificates that comes with performance guarantees

with respect to the uniform distribution:

Theorem 2 ([3]’s approximate certification algorithm; in-

formal). Let U denote the uniform distribution over {0, 1}𝑛 and
𝜀 > 0. Given query access to 𝑓 : {0, 1}𝑛 → {0, 1} with “𝜀-error
certificate complexity" ≤ 𝑘 and an input 𝑥★, [3]’s algorithm makes
poly(𝑘, 1/𝜀, 𝑛) queries to 𝑓 and returns a set of coordinates 𝑆 (𝑥★).

With probability ≥ 1 − 𝜀 over 𝒙★ ∼ U, the set 𝑆 (𝒙★) is an 𝜀-
error certificate for 𝑓 ’s value on 𝒙★ with respect toU and |𝑆 (𝒙★) | ≤
poly(𝑘, 1/𝜀).

1
They termed such explanations anchors, which has since become standard in the

explainable machine learning literature. We stick with the term certificates in our

description of their results.
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Table 1: Bounds on the query complexity of certification.

Algorithm is given: Upper bound Lower bound

Queries to monotone 𝑓 ,

and proceeds by local search

Angluin’s algorithm: 𝑛 queries Claim 1.1: Ω(𝑛) queries

Queries to monotone 𝑓 Theorem 1: 𝑂 (𝑘8 log𝑛) queries Claim 1.2: Ω(𝑘 log𝑛) queries

Queries to arbitrary 𝑓

Random examples of monotone 𝑓

Claim 8.1: 𝑂 (2𝑘𝑘 log𝑛) examples

Claim 8.3: Ω(2𝑘 + 𝑘 log𝑛) queries

Claim 8.6: Ω(2𝑘 + 𝑘 log𝑛) examples

Comparing Theorem 2 to our algorithm in Theorem 1, we see

that Theorem 2 applies to all functions whereas Theorem 1 only

applies to monotone ones. On the other hand, there are two sources

of errors in Theorem 2, neither of which are present in Theorem 1:

the guarantees of [3]’s algorithm only hold for most 𝑥★ and not

for all of them, and the certificates returned are 𝜀-error certificates

and not actual certificates. Even if one is willing to tolerate both

sources of errors, the fact that they are measured with respect to

the uniform distribution remains a significant shortcoming—this

was identified in [3] as the main limitation of their result.

A primary motivation for our work was to develop certifica-

tion algorithms that, like [3]’s, come with provable performance

guarantees, but where these guarantees hold in the much more

challenging errorless setting.

Other related work on finding certificates. There has been signifi-

cant work on finding prime implicants in the ML and AI literature

(see e.g. [5, 7–9] and the references therein), including for mono-

tone functions [17, 24]. In our terminology, a prime implicant is a

1-certificate which is minimal under set inclusion (relatedly a mini-

mal 0-certificate is a prime implicant for ¬𝑓 ). These algorithms for

computing prime implicants all have worst-case query complexity

and runtime that is at least linear in 𝑛. In contrast, our algorithm

has only a logarithmic dependence on 𝑛 and always returns a prime

implicant.

2 OVERVIEW OF OUR ALGORITHM AND ITS
ANALYSIS

Before describing our algorithm, we first give an overview of An-

gluin’s and [3]’s algorithms, in tandem with a discussion of how

these algorithms led to ours and how ours differs from them. Through-

out this section, let 𝑓 : {0, 1}𝑛 → {0, 1} be a monotone function and

suppose without loss of generality that 𝑓 (𝑥★) = 1 for the input 𝑥★

that we seek to certify.

Angluin’s algorithm. By the monotonicity of 𝑓 , the set 𝑆𝑥★ B
{𝑖 ∈ [𝑛] : 𝑥★

𝑖
= 1} is certainly a certificate for 𝑓 ’s value at 𝑥★.

The assumption that 𝑓 has certificate complexity ≤ 𝑘 implies the

existence of at least one subset 𝑇 ⊆ 𝑆𝑥★ of size ≤ 𝑘 that remains a

certificate for 𝑓 ’s value at 𝑥★. The goal of Angluin’s algorithm is to

find one of them.

Definition 3 (Irrelevant coordinate of a certificate). For
a function 𝑓 , an input 𝑥★, a certificate 𝑆 ⊆ [𝑛] for 𝑓 ’s value at 𝑥★,

and a coordinate 𝑖 ∈ 𝑆 , we say that 𝑖 is irrelevant to 𝑆 if 𝑆 \{𝑖} remains
a certificate for 𝑓 ’s value at 𝑥★, and otherwise say that it is relevant.

Angluin’s algorithm starts with 𝑆𝑥★ and trims it down in size,

removing irrelevant coordinates one by one, all the while main-

taining the invariant that the current set remains a certificate. A

naive implementation of this plan results in a query complexity of

Θ( |𝑆𝑥★ |2). A simple but key observation yields an improved query

complexity of 𝑂 ( |𝑆𝑥★ |) ≤ 𝑂 (𝑛): if 𝑖 is relevant for a certificate 𝑆 , it
remains relevant for any certificate 𝑆 ′ ⊆ 𝑆 . Therefore, each coor-

dinate 𝑖 ∈ 𝑆𝑥★ is processed at exactly once throughout the entire

execution of the algorithm. (For completeness, we give a formal

description of Angluin’s algorithm and its analysis in Appendix A.)

[3]’s approximate certification algorithm. [3]’s algorithm, as well

as ours, takes an approach that is the opposite of Angluin’s, and

indeed, the opposite of all local search algorithms. Instead of starting

with 𝑆𝑥★ and removing irrelevant coordinates, we start with the

empty set and add to it coordinates that we deem “important". The

notion of influence from the analysis of boolean functions provides

a way to quantify the importance of coordinates:

Definition 4 (Influence). For a function 𝑓 : {0, 1}𝑛 → {0, 1}
and a coordinate 𝑖 ∈ [𝑛], the influence of 𝑖 on 𝑓 is the quantity
Inf𝑖 (𝑓 ) B Pr

uniform 𝒙
[𝑓 (𝒙) ≠ 𝑓 (𝒙⊕𝑖 )], where 𝒙⊕𝑖 denotes 𝒙 with its

𝑖-th coordinate flipped.

[3]’s algorithm is simple: using queries to 𝑓 , determine the coor-

dinate 𝑖 with (approximately) the largest influence
2
on 𝑓 ; restrict

the 𝑖-th coordinate of 𝑓 according to 𝑥★
𝑖
and recurse. [3] proved that

for most 𝑥★’s, running this recursion to a certain depth suffices to

guarantee a low-error certificate for 𝑓 ’s value on 𝑥★, where “most"

and “low-error" are both with respect to the uniform distribution.

2.1 The Three Components of Our Algorithm
The difference between our setting and [3]’s is akin to the difference

between exact and uniform-distribution learning: exact learning is

more challenging than distribution-independent learning, which

is in turn more challenging than uniform-distribution learning.

[3]’s algorithm can be seen to fail badly in the setting of zero-

error certificates: there are monotone functions 𝑓 with certificate

complexity 𝑘 ≪ 𝑛 such that their recursion has to be run to the

2
This is slightly imprecise, since [3] actually uses a notion of “noisy influence" which

generalizes Definition 4. We do not need this generalization in this work.

625



STOC ’22, June 20–24, 2022, Rome, Italy Guy Blanc, Caleb Koch, Jane Lange, and Li-Yang Tan

maximum depth of 𝑛 (corresponding to the trivial certificate 𝑆 =

[𝑛]) in order to return a zero-error certificate.

Our algorithm is more involved than [3]’s and has three main

components:

(1) Finding a small certificate. This component is independent of

the input 𝑥★ that we seek to certify. We design an algorithm

that finds an arbitrary poly(𝑘)-size certificate for a mono-

tone 𝑓—by arbitrary, we mean that this can be a certificate

for 𝑓 ’s value on any input, not necessarily a specific one.

In other words, this is a set 𝑆 ⊆ [𝑛] and a bit 𝑏 ∈ {0, 1}
such that 𝑓 with all the coordinates 𝑖 ∈ 𝑆 restricted to 𝑏 is a

constant function.

(2) Finding a small certificate for 𝑥★. We then show how the

algorithm above can be called 𝑂 (𝑘) times to find a poly(𝑘)-
size certificate for 𝑓 ’s value on 𝑥★. The fact that 𝑂 (𝑘) calls
suffice follows from a basic result in query complexity, that

every 1-certificate and 0-certificate of a function share at

least one variable. (We defer the definitions of these terms

to the body of the paper.)

(3) Trimming the certificate. Finally, we use Angluin’s algorithm
to trim the size of this certificate from poly(𝑘) down to ≤ 𝑘 .

Crucially, we enter this trimming process with a certificate

whose size is already bounded by ≤ poly(𝑘), in contrast to

Angluin’s algorithm which starts with the certificate 𝑆𝑥★ ,

the size of which can be as large as 𝑛. The number of queries

that we require for this step is therefore only ≤ poly(𝑘),
independent of 𝑛.

2.1.1 Killing a monotone function. We elaborate on the first com-

ponent; the other two are fairly straightforward. It will be useful

for us to view this as the task of “killing" a monotone function

efficiently: using as few queries to 𝑓 as possible, find an assign-

ment to a small set of coordinates that kills 𝑓 , meaning that the

corresponding restriction of 𝑓 is a constant function.

Our algorithm for this step is most easily understood from the

perspective of threshold phenomena in monotone functions—this

connection is the key new ingredient in our work. A wealth of

techniques has been developed for the study of this topic, which is

central to the theory of random graphs and percolation theory. We

will only need a few of the fundamentals.

Every monotone function 𝑓 : {0, 1}𝑛 → {0, 1} can be associated

with a function Φ𝑓 : [0, 1] ↦→ [0, 1],
Φ𝑓 (𝑝) B E

𝒙∼{0,1}𝑛𝑝
[𝑓 (𝒙)],

where {0, 1}𝑛𝑝 denotes the 𝑝-biased product distribution over {0, 1}𝑛 .
If 𝑓 is non-constant, this is a strictly increasing function of 𝑝 , going

from 0 to 1 as 𝑝 goes from 0 to 1.

Definition 5 (Critical probability). Let 𝑓 : {0, 1}𝑛 → {0, 1}
be a non-constant monotone function. The critical probability of 𝑓 is
the unique value 𝑝 (𝑓 ) ∈ (0, 1) for which Φ𝑓 (𝑝 (𝑓 )) = 1

2
.

We use the critical probability of 𝑓 as a proxy for how close to

constant it is, i.e. how “dead" the function is. If 𝑓 ’s critical proba-

bility is ≥ 1

2
, our algorithm kills it to the constant-0 function by

driving its critical probability towards 1; otherwise, we kill it to

the constant-1 function by driving its critical probability towards

0. Our algorithm for doing so is similar in spirit to [3]’s algorithm,

with the crucial difference being that ours “continually adapts" to

the critical probability of 𝑓 and its subfunctions:

(1) Estimate the critical probability 𝑝 (𝑓 ) of 𝑓 .
(2) Determine the coordinate 𝑖 with approximately the largest

𝑝 (𝑓 )-biased influence on 𝑓 . The 𝑝-biased influence of a co-

ordinate is the generalization of Definition 4 to 𝑝-biased

product distributions over {0, 1}𝑛 .
(3) Recurse on the subfunction 𝑓𝑥𝑖=𝑏 , the restriction of 𝑓 to

𝑥𝑖 = 𝑏, where 𝑏 = 0 if 𝑝 (𝑓 ) ≥ 1

2
and 𝑏 = 1 otherwise.

Our analysis of this process relies on two basic results from

the study of graph properties and percolation. We first use the

O’Donnell–Saks–Schramm–Servedio inequality [20] to show that

restricting 𝑓 by the coordinate with the largest 𝑝 (𝑓 )-biased influ-

ence changes its 𝑝 (𝑓 )-biased expectation substantially:���� E
𝑝 (𝑓 )-biased 𝒙

[𝑓 (𝒙)] − E
𝑝 (𝑓 )-biased 𝒙

[𝑓𝑥𝑖=𝑏 (𝒙)]
���� ≥ Ω

(
1

𝑘2

)
.

We then show, via the Russo–Margulis lemma [16, 23], that the

above implies that the critical probability of 𝑓 changes substantially:

|𝑝 (𝑓 ) − 𝑝 (𝑓𝑥𝑖=𝑏 ) | ≥ Ω

(
1

𝑘3

)
. (1)

It follows that our algorithm kills 𝑓 within 𝑂 (𝑘3) recursive calls.
Figure 1 on page 9 illustrates our proof strategy.

A slight optimization. The query complexity of this algorithm

can be bounded by 𝑂 (𝑘8 log𝑘 log𝑛). To shave off a factor of log𝑘 ,

we consider an optimization where we estimate the critical proba-

bility of 𝑓 just once, at the very beginning of the algorithm, rather

than in each recursive call. Throughout the recursive process, we

assume conservatively that each restriction only changes the criti-

cal probability by the minimum amount guaranteed by Equation (1).

A simple adjustment of our analysis accounts for this modification

(i.e. for the possibility that the true critical probability drifts away

from what we assume it to be as we recurse).

3 DISCUSSION AND FUTUREWORK
Concrete directions for future work include closing the remain-

ing gap between our upper and lower bounds of 𝑂 (𝑘8 log𝑛) and
Ω(𝑘 log𝑛), as well as identifying other natural classes of functions

that admit efficient certification algorithms.

More broadly, a novel aspect of our techniques is the use of

concepts and results from the study of threshold phenomena: 𝑝-

biased analysis, the critical probability of monotone functions, the

Russo–Margulis lemma, etc. While the certification problem was

the focus of this work, we speculate that there are further applica-

tions of this toolkit in learning theory, where monotonicity of the

target function is a common assumption. For example, while the

variance of function is often used as progress measure in learning

theory, our work suggests that for monotone target functions, its

critical probability could be a more useful notion. Can our idea of

“continually adapting" to the critical probability be used to design

new learning algorithms?

Finally, circling back to the motivation for the certification prob-

lem, we mention that there is a growing flurry of work in explain-

able machine learning, the vast majority of which is empirical in

nature; see slide 7 of [11] for some staggering numbers. Hallmarks
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of problems in this area—query access to a black box 𝑓 (“post-hoc

explanations"); the focus on 𝑓 ’s values at and near a specific input

𝑥★ (“local explanations"); various notions of influence of variables

(“feature attribution"); etc.—strongly suggest the potential for con-

nections to areas of theoretical computer science such as query

complexity, the analysis of boolean functions, learning theory, and

sublinear algorithms. Our work fleshes out a few of these connec-

tions, but we believe that there are more near at hand.

4 PRELIMINARIES
We use boldface often denote random variables (e.g. 𝒙 ∼ {0, 1}𝑛)
and we write “w.h.p." to mean with probability ≥ 1− 1/poly(𝑛). We

write 𝑎 = 𝑏 ± 𝜀 as shorthand for 𝑎 ∈ [𝑏 − 𝜀, 𝑏 + 𝜀].

Boolean function complexity. In addition to certificate complex-

ity (Definition 1), we will need a few other standard notions and

facts from boolean function complexity. For an in-depth treatment

(including proofs of the facts below), see [4, 10].

For a function 𝑓 : {0, 1}𝑛 → {0, 1} and an input 𝑥 ∈ {0, 1}𝑛 , the
sensitivity of 𝑓 at 𝑥 is the quantity

Sens𝑓 (𝑥) = |{𝑖 ∈ [𝑛] : 𝑓 (𝑥) ≠ 𝑓 (𝑥⊕𝑖 )}|,

where 𝑥⊕𝑖 denotes 𝑓 with its 𝑖-th coordinate flipped.

Proposition 4.1 (Sensitivity and certificate complexity).

For all functions 𝑓 : {0, 1}𝑛 → {0, 1} and inputs 𝑥 ∈ {0, 1}𝑛 , we have
Sens𝑓 (𝑥) ≤ 𝐶𝑓 (𝑥).

For a function 𝑓 : {0, 1}𝑛 → {0, 1}, we write 𝐷 (𝑓 ) to denote its

decision tree complexity, the depth of the shallowest decision tree

that computes 𝑓 .

Fact 4.2 (Decision tree complexity and certificate complex-

ity). For all functions 𝑓 : {0, 1}𝑛 → {0, 1}, we have 𝐷 (𝑓 ) ≤ 𝐶 (𝑓 )2.

We also will occasionally distinguish between 0-certificates and

1-certificates.

Definition 6 (0, 1-certificate complexity). For a function
𝑓 : {0, 1}𝑛 → {0, 1} and input 𝑥 ∈ {0, 1}𝑛 , a certificate 𝑆 ⊆ [𝑛]
of 𝑥 is a 0-certificate if 𝑓 (𝑥) = 0 and 1-certificate if 𝑓 (𝑥) = 1. The
0-certificate complexity and 1-certificate complexity of 𝑓 are defined
as

𝐶0 (𝑓 ) B max

𝑥 ∈𝑓 −1 (0)
{𝐶𝑓 (𝑥)} and 𝐶1 (𝑓 ) B max

𝑥 ∈𝑓 −1 (1)
{𝐶𝑓 (𝑥)}

respectively.

𝑝-biased analysis. We write {0, 1}𝑛𝑝 to denote the 𝑝-biased prod-

uct distribution on 𝑛 bit strings (that is, each bit is 1 with prob-

ability 𝑝) and Pr𝑝 to denote the 𝑝-biased probability measure on

strings. When sampling from {0, 1}𝑛𝑝 , we will often just write the

subscript 𝑝 . In particular, E𝑝 [𝑓 ] denotes the expectation of 𝑓 with

respect to 𝒙 ∼ {0, 1}𝑛𝑝 and similarly Var𝑝 [𝑓 ] = E𝑝 [𝑓 2] −E𝑝 [𝑓 ]2 =
E𝑝 [𝑓 ] (1 −E𝑝 [𝑓 ]) is the 𝑝-biased variance of 𝑓 .

We’ll use two common notions of influence.

Definition 7 (𝑝-biased flip influence; generalization ofDef-

inition 4). Let 𝑓 : {0, 1}𝑛 → {0, 1} be a function, 𝑝 ∈ [0, 1], and
𝑖 ∈ [𝑛]. The 𝑝-biased flip influence of 𝑖 on 𝑓 is the quantity:

Inf
⊕
𝑖,𝑝 [𝑓 ] B Pr𝑝 [𝑓 (𝒙) ≠ 𝑓 (𝒙⊕𝑖 )] .

Definition 8 (𝑝-biased rerandomized influence). Let 𝑓 :

{0, 1}𝑛 → {0, 1} be a function, 𝑝 ∈ [0, 1], and 𝑖 ∈ [𝑛]. The 𝑝-biased
rerandomized influence of 𝑖 on 𝑓 is the quantity:

Inf
∼
𝑖,𝑝 [𝑓 ] B 2 Pr𝑝 [𝑓 (𝒙) ≠ 𝑓 (𝒙∼𝑖 )]

where 𝒙∼𝑖 is the string 𝒙 with its 𝑖-th coordinate rerandomized ac-
cording to {0, 1}𝑝 .

For each notion of influence, the total influence is the sum of the

influences of all the coordinates. We write Inf
⊕
𝑝 [𝑓 ] and Inf∼𝑝 [𝑓 ] for

the total flip and rerandomized influence, respectively.

We record a few basic properties of 𝑝-biased influence. For a

proof of these properties, see the appendix of the full version of the

paper.

Proposition 4.3. For any boolean function 𝑓 : {0, 1}𝑛 → {0, 1}
and 𝑖 ∈ [𝑛],

1. Inf⊕𝑝 [𝑓 ] = E𝑝 [Sens𝑓 (𝒙)].
2. Inf⊕

𝑖,𝑝
[𝑓 ] = Pr𝑝 [𝑓𝑥𝑖=1 (𝒙) ≠ 𝑓𝑥𝑖=0 (𝒙)].

3. Inf∼𝑖,𝑝 [𝑓 ] = 4𝑝 (1 − 𝑝)Inf⊕
𝑖,𝑝
[𝑓 ].

4. Inf∼𝑝 [𝑓 ] ≥ Var𝑝 [𝑓 ].
If 𝑓 is monotone,

5. E𝑝 [𝑓 ] = E𝑝 [𝑓𝑥𝑖=0] + 𝑝 · Inf⊕𝑖,𝑝 [𝑓 ] = E𝑝 [𝑓𝑥𝑖=1] − (1 − 𝑝) ·
Inf
⊕
𝑖,𝑝
[𝑓 ].

5 FIRST COMPONENT OF THEOREM 1:
FINDING AN ARBITRARY CERTIFICATE

In this section, we show how to find an arbitrary size-poly(𝑘)
certificate of a monotone function in 𝑂 (𝑘7 log𝑛) queries where
𝑘 is the certificate complexity of the function. We first state the

algorithm below then show each step can be implemented in a

query efficient manner and with high probability of success. In

particular, we’ll give a 𝑂 (𝑘7 log𝑘 log𝑛) query upper bound and

then we’ll show how a simple modification of the algorithm can

obtain a 𝑂 (𝑘7 log𝑛) upper bound.

Algorithm 1 Finding a certificate of a monotone function

Given: Query access to a monotone function 𝑓 : {0, 1}𝑛 → {0, 1}
and parameter 𝑘 .

Initialize 𝑆 ← ∅
while 𝑓 is nonconstant do

Find an 𝜀-approximate critical probability 𝑝 of 𝑓 , where 𝜀 =

𝑂 (1/𝑘3)
Estimate Inf

∼
𝑖,𝑝 [𝑓 ] to additive accuracy ±𝑂 (1/𝑘2) for all 𝑖

Add coordinate 𝑖 to 𝑆 where Inf
∼
𝑖,𝑝 [𝑓 ] is the largest influence

estimate

𝑓 ← 𝑓𝑥𝑖=𝑏 where 𝑏 = 0 if 𝑝 ≥ 1/2 and 1 otherwise

end while
return the certificate 𝑆

Theorem 3. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a monotone function with
𝐶 (𝑓 ) ≤ 𝑘 . There is an implementation of Algorithm 1 that w.h.p.
makes 𝑂 (𝑘7 log𝑘 log𝑛) queries to 𝑓 and returns a certificate of size
𝑂 (𝑘3).
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5.1 Structural Properties of Φ𝑓

As discussed in Section 2, the function Φ𝑓 : [0, 1] → [0, 1],
Φ𝑓 (𝑝) B E𝑝 [𝑓 (𝒙)]

will be central to our analysis. In this sectionwe record and establish

a few structural properties of Φ𝑓 that will be useful for the proof

of Theorem 3.

The first is the Russo–Margulis lemma [16, 23] which states that

the derivative of Φ𝑓 (𝑝) is exactly the total flip influence of 𝑓 under

the 𝑝-biased distribution.

Lemma 5.1 (Russo–Margulis). Let 𝑓 be a monotone function,
then

𝑑

𝑑𝑝
Φ𝑓 (𝑝) = Inf

⊕
𝑝 [𝑓 ] .

For a Fourier-analytic proof of the Russo–Margulis lemma, see [19].

For the sake of completeness, we give a self-contained combinato-

rial proof in the appendix of the full version.

We leverage three important corollaries of the Russo–Margulis

lemma in our analysis. Applying the lemma twice, to Φ𝑓 (𝑝) and
Inf
⊕
𝑖,𝑝
[𝑓 ], we can upper bound the Lipschitz constants of these

quantities by 𝑘 when viewed as functions of 𝑝 . We then apply

it again to lower bound the derivative of Φ𝑓 (𝑝) near the critical
probability 𝑝 (𝑓 ) of 𝑓 , to show that that any 𝑝 for which Φ𝑓 (𝑝) is
close to 1/2 must be close to 𝑝 (𝑓 ).

Corollary 5.2 (Lipschitz constant of Φ𝑓 ). Let 𝑓 : {0, 1}𝑛 →
{0, 1} be a monotone function with 𝐶 (𝑓 ) ≤ 𝑘 , then for all 𝑞 ≠ 𝑟 we
have

Φ𝑓 (𝑞) − Φ𝑓 (𝑟 )
𝑞 − 𝑟 ≤ 𝑘.

Proof. By the mean value theorem, the slope of the tangent line

(Φ𝑓 (𝑞) −Φ𝑓 (𝑟 ))/(𝑞 − 𝑟 ) is the derivative of Φ𝑓 (𝑝) at some point 𝑝

in between 𝑞 and 𝑟 . Applying the Russo–Margulis lemma, we have

that

Φ𝑓 (𝑞) − Φ𝑓 (𝑟 )
𝑞 − 𝑟 =

𝑑

𝑑𝑝
Φ𝑓 (𝑝)

����
𝑝=𝑝

= Inf
⊕
𝑝
[𝑓 ] .

By Propositions 4.3.1 and 4.1,

Inf
⊕
𝑝
[𝑓 ] = E𝑝 [Sens𝑓 (𝒙)] ≤ E𝑝 [𝐶𝑓 (𝒙)] ≤ 𝐶 (𝑓 )

and the proof is complete. □

Corollary 5.3 (Lipschitz constant of Inf
⊕
𝑖,𝑝

). Let 𝑓 : {0, 1}𝑛 →
{0, 1} be a monotone function with 𝐶 (𝑓 ) ≤ 𝑘 . Then for all 𝑞 ≠ 𝑟 and
𝑖 ∈ [𝑛] we have ����� Inf⊕𝑖,𝑞 [𝑓 ] − Inf⊕𝑖,𝑟 [𝑓 ]𝑞 − 𝑟

����� ≤ 𝑘.

Proof. When 𝑓 is monotone, Proposition 4.3.2 can be written

as Pr𝑝 [𝑓𝑥𝑖=1 (𝒙) ≠ 𝑓𝑥𝑖=0 (𝒙)] = Φ𝑓𝑥𝑖=1
(𝑝) − Φ𝑓𝑥𝑖=0

(𝑝). Hence,
𝑑

𝑑𝑝
Inf
⊕
𝑝
[𝑓 ] = 𝑑

𝑑𝑝

[
Φ𝑓𝑥𝑖=1

(𝑝) − Φ𝑓𝑥𝑖=0
(𝑝)

]
= Inf

⊕
𝑝 [𝑓𝑥𝑖=1] − Inf⊕𝑝 [𝑓𝑥𝑖=0]

by the Russo–Margulis lemma. Since 0 ≤ Inf
⊕
𝑝 [𝑓𝑥𝑖=𝑏 ] ≤ 𝐶 (𝑓𝑥𝑖=𝑏 ) ≤

𝐶 (𝑓 ) for 𝑏 ∈ {0, 1}, the result then follows from the application of

the mean value theorem as in the proof of Corollary 5.2. □

Corollary 5.4. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a monotone function
and let 𝑝 ∈ [0, 1] be any point satisfying Φ𝑓 (𝑝) = 1/2 ± 𝜀. Then

𝑝 = 𝑝 (𝑓 ) ± 4𝜀

1 − 4𝜀2
.

Proof. Suppose without loss of generality that 𝑝 ≤ 𝑝 (𝑓 ) (the
case where 𝑝 > 𝑝 (𝑓 ) is symmetric). Again applying the mean

value theorem, there is some 𝑝 ∈ [𝑝, 𝑝 (𝑓 )] satisfying Inf
⊕
𝑝
[𝑓 ] =

(Φ𝑓 (𝑝 (𝑓 )) − Φ𝑓 (𝑝))/(𝑝 (𝑓 ) − 𝑝). Then, we have

𝜀

𝑝 (𝑓 ) − 𝑝 ≥
Φ𝑓 (𝑝 (𝑓 )) − Φ𝑓 (𝑝)

𝑝 (𝑓 ) − 𝑝
= Inf

⊕
𝑝
[𝑓 ] ≥ Var𝑝 [𝑓 ] (Proposition 4.3.4)

≥ Var𝑝 [𝑓 ] = Φ𝑓 (𝑝) (1 − Φ𝑓 (𝑝)) (monotonicity)

≥
(
1

2

+ 𝜀
) (

1

2

− 𝜀
)
=

1

4

− 𝜀2

which gives the desired inequality. □

The next lemma quantifies the change in the critical probability

of 𝑓 when we restrict one of its coordinates. In particular, we use

the Lipschitz constant for Φ𝑓 (𝑝) to show this change is large when

the restricted coordinate is influential.

Lemma 5.5. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a monotone function with
𝐶 (𝑓 ) ≤ 𝑘 . Then for all 𝑖 ∈ [𝑛], we have

𝑝 (𝑓𝑥𝑖=0) − 𝑝 (𝑓 ) ≥
𝑝 (𝑓 ) · Inf⊕

𝑖,𝑝 (𝑓 ) [𝑓 ]

𝑘

and analogously,

𝑝 (𝑓 ) − 𝑝 (𝑓𝑥𝑖=1) ≥
(1 − 𝑝 (𝑓 )) · Inf⊕

𝑖,𝑝
[𝑓 ]

𝑘
.

Proof. We prove the lower bound on 𝑝 (𝑓𝑥𝑖=0) −𝑝 (𝑓 ). The proof
for 𝑝 (𝑓 ) − 𝑝 (𝑓𝑥𝑖=1) is symmetric. First, rewriting Proposition 4.3.5

in the Φ𝑓 notation we have

Φ𝑓𝑥𝑖=0
(𝑝) = Φ𝑓 (𝑝) − 𝑝 · Inf⊕𝑖,𝑝 [𝑓 ] . (2)

Therefore,

𝑘 ≥
Φ𝑓𝑥𝑖=0

(𝑝 (𝑓𝑥𝑖=0)) − Φ𝑓𝑥𝑖=0
(𝑝 (𝑓 ))

𝑝 (𝑓𝑥𝑖=0) − 𝑝 (𝑓 )
(Corollary 5.2)

=

Φ𝑓𝑥𝑖=0
(𝑝 (𝑓𝑥𝑖=0)) −

(
Φ𝑓 (𝑝 (𝑓 )) − 𝑝 (𝑓 ) · Inf⊕𝑖,𝑝 (𝑓 ) [𝑓 ]

)
𝑝 (𝑓𝑥𝑖=0) − 𝑝 (𝑓 )

(Equation (2))

=

𝑝 (𝑓 ) · Inf⊕
𝑖,𝑝 (𝑓 ) [𝑓 ]

𝑝 (𝑓𝑥𝑖=0) − 𝑝 (𝑓 )
which completes the proof. □

Finally, we need an inequality of O’Donnell, Saks, Schramm,

and Servedio [20] which says that 𝑓 has an influential 𝑝-biased

coordinate when the 𝑝-biased variance of 𝑓 is large.

Theorem 4 (OSSS ineqality). For all functions 𝑓 : {0, 1}𝑛 →
{0, 1} and 𝑝 ∈ [0, 1],

max

𝑖∈[𝑛]

{
Inf
∼
𝑖,𝑝 [𝑓 ]

}
≥

Var𝑝 [𝑓 ]
𝐷 (𝑓 ) ,
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where 𝐷 (𝑓 ) denotes the decision tree complexity of 𝑓 .

5.2 Algorithmic Lemmas
We will need a few lemmas to bound the query complexity of Algo-

rithm 1. First we show that we can find an approximation of the

critical probability of 𝑓 by finding a value 𝑝 for whichΦ𝑓 (𝑝) is close
to 1/2. Next we show that we can efficiently estimate rerandomized
influence to an additive accuracy. Finally, we show that if all of

the influences are estimated under the 𝑝-biased distribution for 𝑝

close to 𝑝 (𝑓 ), the critical probability of 𝑓 , then the most influential

coordinate under the 𝑝-biased distribution must also be influential

under the 𝑝 (𝑓 )-biased distribution.

Lemma 5.6 (Finding an approximate expectation of 𝑓 ). Given
queries to a monotone 𝑓 : {0, 1}𝑛 → {0, 1} with 𝐶 (𝑓 ) ≤ 𝑘 , for any
𝜀 > 0 we can find some 𝑝 ∈ [0, 1] satisfying Φ𝑓 (𝑝) = 1/2 ± 𝜀 w.h.p.
using 𝑂 (log(𝑘/𝜀) log(𝑛)/𝜀2) many queries.

Proof. Since Φ𝑓 has Lipschitz constant ≤ 𝑘 (Corollary 5.2),

any value 𝑝 that is within an additive ±𝜀/3𝑘 of the true critical

probability 𝑝 (𝑓 ) of 𝑓 is an 𝜀/3-critical probability of 𝑓 . That is,

𝑝 = 𝑝 (𝑓 ) ± 𝜀

3𝑘
=⇒ Φ𝑓 (𝑝) =

1

2

± 𝜀

3

.

We split the [0, 1] into 3𝑘/𝜀 intervals each of length 𝜀/3𝑘 . As
observed above, the interval containing the critical probability will

satisfy Φ𝑓 (𝑝) = 1

2
± 𝜀

3
for all 𝑝 in that interval. By the Chernoff

bound, for any value 𝑝 ∈ [0, 1] we can estimate Φ𝑓 (𝑝) = E𝑝 [𝑓 ] to
accuracy ±𝜀/3 and confidence 1 − 𝛿 using 𝑂 (log(1/𝛿)/𝜀2) queries.

Performing binary search over the 3𝑘/𝜀 intervals, with𝑂 (log(𝑘/𝜀))
estimations of Φ𝑓 (𝑝) we are guaranteed to find a 𝑝 such that our

estimate of Φ𝑓 (𝑝) is 1

2
± 𝜀

3
± 𝜀

3
= 1

2
± 2𝜀

3
; this implies that its true

value is Φ𝑓 (𝑝) = 1

2
± 2𝜀

3
± 𝜀

3
= 1

2
±𝜀, i.e. 𝑝 is indeed an 𝜀-approximate

critical probability. Choosing 𝛿 = 1/poly(𝑛) and noting that this

is small enough to union bound over the 𝑂 (log(𝑘/𝜀)) many esti-

mations (with much room to spare), we get that the overall query

complexity is

𝑂 (log(𝑘/𝜀)) ·𝑂 (log(𝑛)/𝜀2) = 𝑂 (log(𝑘/𝜀) log(𝑛)/𝜀2) . □

Lemma 5.7 (Finding an approximate critical probability).

Given queries to a monotone 𝑓 : {0, 1}𝑛 → {0, 1} with 𝐶 (𝑓 ) ≤ 𝑘 for
any 0 < 𝜀 < 1, we can find 𝑝 ∈ [0, 1] satisfying 𝑝 = 𝑝 (𝑓 ) ± 𝜀 w.h.p.
using 𝑂 (log(𝑘/𝜀) log(𝑛)/𝜀2) queries.

Proof. We show that any 𝑝 ∈ [0, 1] satisfyingΦ𝑓 (𝑝) = 1/2±𝜀/8
satisfies the constraints of the lemma statement. The result then

follows from Lemma 5.6 which says that we can compute such a 𝑝

w.h.p. using 𝑂 (log(𝑘/𝜀) log𝑛/𝜀2) queries.
Let 𝑝 ∈ [0, 1] satisfy E𝑝 [𝑓 ] = 1/2 ± 𝜀/8. Then we have

𝑝 = 𝑝 (𝑓 ) ± 4(𝜀/8)
1 − 4(𝜀/8)2

(Corollary 5.4)

= 𝑝 (𝑓 ) ± 𝜀

2 − 𝜀2/8
= 𝑝 (𝑓 ) ± 𝜀. (𝜀2/8 < 1)

□

Lemma 5.8 (Estimating influences). Given queries to a mono-
tone 𝑓 : {0, 1}𝑛 → {0, 1}, some 𝑝 ∈ [0, 1], and 𝜀 > 0, we can
approximate Inf∼𝑖,𝑝 [𝑓 ] to accuracy ±𝜀 for all 𝑖 ∈ [𝑛] w.h.p. using
𝑂 (log𝑛/𝜀2) many queries.

Proof. Rewriting Proposition 4.3.5 using Inf
∼
𝑖,𝑝 [𝑓 ] = 4𝑝 (1 −

𝑝)Inf⊕
𝑖,𝑝
[𝑓 ] we have

Inf
∼
𝑖,𝑝 [𝑓 ] = 4(1 − 𝑝)

(
E𝑝 [𝑓 ] −E𝑝 [𝑓𝑥𝑖=0]

)
= 4𝑝

(
E𝑝 [𝑓𝑥𝑖=1] −E𝑝 [𝑓 ]

)
(3)

We showwith a single random sample 𝑺 ⊆ {0, 1}𝑛 of size𝑂 (log𝑛/𝜀2)
we can estimate Inf

∼
𝑖,𝑝 [𝑓 ] to accuracy 𝜀 for all 𝑖 ∈ [𝑛] by estimating

E𝑝 [𝑓 ] and either E𝑝 [𝑓𝑥𝑖=1] or E𝑝 [𝑓𝑥𝑖=0]. We write E𝑺 [𝑓 ] for the
𝑝-biased expectation of 𝑓 estimated from the set 𝑺 . For each 𝑖 ∈ [𝑛]
and 𝑏 ∈ {0, 1}, we define 𝑺𝑏 = {𝑥−𝑖 ∈ {0, 1}𝑛−1 : 𝑥 ∈ 𝑺 and 𝑥𝑖 = 𝑏}
where 𝑥−𝑖 denotes the string 𝑥 with the 𝑖th coordinate removed.

Since |𝑺 | = |𝑺1 | + |𝑺0 | we must have |𝑺𝑏 | ≥ |𝑺 |/2 for some 𝑏 ∈ {0, 1}.
We then estimate E𝑝 [𝑓𝑥𝑖=𝑏 ] for this value of 𝑏 and use the appro-

priate identity from eq. (3) to estimate the 𝑖th influence. Note that

we can perform this estimate of E𝑝 [𝑓𝑥𝑖=𝑏 ] because the strings in
𝑺𝑏 are distributed according to {0, 1}𝑛−1𝑝 and we already know the

values of 𝑓𝑥𝑖=𝑏 for all strings in 𝑺𝑏 (since the query values of 𝑓

on 𝑺 are known). Thus by a Chernoff bound we can estimate both

E𝑝 [𝑓𝑥𝑖=𝑏 ] and E𝑝 [𝑓 ] to accuracy ±𝜀/8 and confidence 1 − 𝛿 using

𝑂 (log(1/𝛿)/𝜀2) random samples. These estimates then ensure that

our estimate of Inf
∼
𝑖,𝑝 [𝑓 ] has accuracy ±𝜀. For example, if 𝑏 = 0,

our estimates E𝑺 [𝑓 ] and E𝑺0 [𝑓𝑥𝑖=0] satisfy

Inf

∼
𝑖,𝑝 [𝑓 ] = 4(1 − 𝑝)

(
E𝑺 [𝑓 ] −E𝑺0 [𝑓𝑥𝑖=0]

)
= 4(1 − 𝑝)

(
(E𝑝 [𝑓 ] ± 𝜀/8) − (E𝑝 [𝑓𝑥𝑖=0] ± 𝜀/8)

)
= Inf

∼
𝑖,𝑝 [𝑓 ] ± (1 − 𝑝)𝜀 = Inf

∼
𝑖,𝑝 [𝑓 ] ± 𝜀

where Inf

∼
𝑖,𝑝 [𝑓 ] denotes the influence estimate. We choose 𝛿 =

1/poly(𝑛) small enough to union bound over all 𝑖 ∈ [𝑛] which
makes the total number of random samples/queries 𝑂 (log𝑛/𝜀2) as
desired. □

Lemma 5.9. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a monotone function with
𝐶 (𝑓 ) ≤ 𝑘 . Let 𝑝 = 𝑝 (𝑓 ) ± 𝜀 for some 0 < 𝜀 < 1/𝑘2 and suppose
Inf

∼
𝑖,𝑝 [𝑓 ] = Inf

∼
𝑖,𝑝
[𝑓 ] ± 𝑘𝜀 for all 𝑖 ∈ [𝑛]. Then

Inf
⊕
𝑖,𝑝 (𝑓 ) [𝑓 ] ≥

1

8𝑘2
− 3𝑘𝜀

where 𝑖 = argmax𝑖∈[𝑛] Inf
∼
𝑖,𝑝 [𝑓 ].

Proof. Recall that Var𝑝 [𝑓 ] = Φ𝑓 (𝑝) (1−Φ𝑓 (𝑝)) and for our esti-
mate 𝑝 = 𝑝 (𝑓 ) ± 𝜀 we have Φ𝑓 (𝑝) = 1/2±𝑘𝜀 since Φ𝑓 has Lipschitz

constant ≤ 𝑘 (Corollary 5.2). Thus by monotonicity Var𝑝 [𝑓 ] ≥
(1/2 − 𝑘𝜀) (1/2 + 𝑘𝜀) ≥ 1/8 (using the assumption that 𝜀 < 1/𝑘2).
The OSSS inequality, Theorem 4, then states

max

𝑖∈[𝑛]

{
Inf
∼
𝑖,𝑝
[𝑓 ]

}
≥

Var𝑝 [𝑓 ]
𝐷 (𝑓 ) ≥

1

8𝐷 (𝑓 ) .
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Furthermore, we can lower bound 1/8𝐷 (𝑓 ) ≥ 1/8𝑘2 using Fact 4.2.

Since our estimate Inf

∼
𝑖,𝑝 [𝑓 ] has accuracy ±𝑘𝜀 the maximum influ-

ence estimate satisfies

max

𝑖
Inf

∼
𝑖,𝑝 [𝑓 ] ≥ max

𝑖
Inf
∼
𝑖,𝑝
[𝑓 ] − 𝑘𝜀 ≥ 1

8𝑘2
− 𝑘𝜀.

Hence, the true influence at this maximal 𝑖 satisfies Inf∼
𝑖,𝑝
[𝑓 ] ≥

(1/8𝑘2 − 𝑘𝜀) − 𝑘𝜀 = 1/8𝑘2 − 2𝑘𝜀. Finally, to translate this bound to

a lower bound on Inf
⊕
𝑖,𝑝 (𝑓 ) [𝑓 ] we switch to flip influence and apply

our Lipschitz bound on Inf
⊕
𝑖,𝑝

. In other words,

Inf
⊕
𝑖,𝑝 (𝑓 ) [𝑓 ] ≥ Inf

⊕
𝑖,𝑝
[𝑓 ] − |𝑝 (𝑓 ) − 𝑝 | · 𝑘 (Corollary 5.3)

≥ Inf
⊕
𝑖,𝑝
[𝑓 ] − 𝑘𝜀

≥ Inf
∼
𝑖,𝑝
[𝑓 ] − 𝑘𝜀

≥ 1

8𝑘2
− 3𝑘𝜀. □

5.3 Proof of Theorem 3
For our proof, we first show that accurate estimates of the critical

probability of 𝑓 and the influences will ensure quick progress to-

wards termination. Then we analyze the query complexity required

to estimate these quantities to the specified accuracy with high

confidence. This proof can be read in conjunction with Figure 1

which illustrates the main idea.

Proof of correctness. Our measure of progress is the critical prob-

ability of 𝑓 . At a high level we show that if we find an 𝑂 (1/𝑘3)-
approximate critical probability and estimate influences to accuracy

𝑂 (1/𝑘2) at each step of the algorithm, then the critical probability

of 𝑓 is guaranteed to increase or decrease by Ω(1/𝑘3). Since the
function is constant when the critical probability is 0 or 1, we know

that the algorithm must terminate after 𝑂 (𝑘3) steps.
To be more specific, let 𝑓 be a nonconstant function obtained at

some point in the algorithm with 𝐶 (𝑓 ) ≤ 𝑘 . Let 0 < 𝜀 < 1/𝑘2 be
arbitrary and let 𝑝 = 𝑝 (𝑓 ) ± 𝜀 be an approximate critical probability

and suppose each Inf
∼
𝑖,𝑝 [𝑓 ] is estimated to accuracy ±𝑘𝜀. Then, we

can write

𝑝 (𝑓𝑥𝑖=0) − 𝑝 (𝑓 ) ≥
𝑝 (𝑓 ) · Inf⊕

𝑖,𝑝 (𝑓 ) [𝑓 ]

𝑘
(Lemma 5.5)

≥ 𝑝 (𝑓 ) ·
(
1

8𝑘3
− 3𝜀

)
(Lemma 5.9)

and likewise

𝑝 (𝑓 ) − 𝑝 (𝑓𝑥𝑖=1) ≥ (1 − 𝑝 (𝑓 )) ·
(
1

8𝑘3
− 3𝜀

)
.

In the final step of the algorithm’s loop 𝑓 is restricted to 𝑥𝑖 = 0 if

𝑝 ≥ 1/2 in which case we have 𝑝 (𝑓 ) ≥ 1/2 − 𝜀 and thus 𝑝 (𝑓𝑥𝑖=0) −
𝑝 (𝑓 ) ≥ (1/2 − 𝜀) (1/8𝑘3 − 3𝜀). Note importantly that if 𝑝 ≥ 1/2
the next estimate will also be greater than 1/2 and so on, ensuring

that the final certificate will be a 0-certificate. We can then choose

𝜀 = 𝑂 (1/𝑘3) small enough to ensure 𝑝 (𝑓𝑥𝑖=0) − 𝑝 (𝑓 ) ≥ Ω(1/𝑘3)
and likewise in the case that 𝑝 < 1/2.

In both cases, one step of the main loop makes at least Ω(1/𝑘3)
progress towards termination and so the loop iterates 𝑂 (𝑘3) times.

Hence, the final certificate has at most𝑂 (𝑘3) coordinates since each
iteration of the loop adds one coordinate.

Query complexity. Lemma 5.6 shows we can compute a𝑂 (1/𝑘3)-
approximate critical probability using𝑂 (𝑘4 log𝑘 log𝑛) queries.More-

over, computing a 𝑂 (1/𝑘2)-approximation of influence requires

𝑂 (𝑘4 log𝑛) queries by Lemma 5.8. Note also thatwe can test whether

𝑓 is constant with ≤ 2 queries using monotonicity (𝑓 is constant

if and only if 𝑓 (0𝑛) = 𝑓 (1𝑛)). Thus, one iteration of the main loop

makes 𝑂 (𝑘4 log𝑘 log𝑛) queries to 𝑓 . Since the main loop executes

𝑂 (𝑘3) times, the total number of queries is at most𝑂 (𝑘7 log𝑘 log𝑛).

5.4 Reducing the Query Complexity via Fewer
Critical Probability Estimates

We can reduce the query complexity of Algorithm 1 by a log𝑘

factor if we instead estimate the critical probability of 𝑓 once at the

beginning of the algorithm then deterministically update it by the

error term we calculated as 𝜀 in the proof above. At a high level, the

idea is that the analysis for Theorem 3 shows that restricting 𝑓 by

an influential coordinate will shift its critical probability by at least

Ω(1/𝑘3). Hence, in the worst case, the algorithmmakes the smallest

amount of progress, approximately 1/𝑘3, in each step. We can thus

manually shift our critical probability estimate after each iteration

by the minimal amount of progress we expect instead of using

additional queries to 𝑓 to determine the new critical probability.

In the lemma below we assume that the critical probability of

𝑓 is initially ≥ 1/2 − 𝜀, and hence 𝑓 is simplified by repeatedly

restricting 0-coordinates. The proof shows these restrictions force

its critical probability to approach 1. The alternate case where the

initial critical probability is less than 1/2 + 𝜀 is analogous. In this

case, one can show via symmetric arguments that the estimate

𝑝𝑡 = 1/2 − (𝑡 − 1)𝜀 satisfies 𝑝 (𝑓𝑡 ) ≤ 𝑝𝑡 for all 𝑡 .

Lemma 5.10. Fix an error term 0 < 𝜀 ≤ 1/40𝑘3 and suppose
𝑝 (𝑓 ) ≥ 1/2 − 𝜀. Consider a variant of Algorithm 1 where at the 𝑡 th

step we estimate the critical probability as 𝑝𝑡 = 1/2 + (𝑡 − 1)𝜀 and we
always set 𝑓 ← 𝑓𝑥𝑖=0. Let 𝑓𝑡 : {0, 1}𝑛−𝑡 → {0, 1} denote the function
at the 𝑡 th step. Then 𝑝 (𝑓𝑡 ) ≥ 𝑝𝑡 for all 𝑡 for which 𝑓𝑡 is nonconstant.

Proof. The proof is by induction on 𝑡 . The statement holds for

𝑡 = 0 by assumption. Otherwise assume that 𝑝 (𝑓𝑡 ) ≥ 𝑝𝑡 . Then

we show 𝑝 (𝑓𝑡+1) ≥ 𝑝𝑡+1. If 𝑝 (𝑓𝑡 ) > 𝑝𝑡+1 then there’s nothing

left to show since Φ𝑓𝑡 (𝑝 (𝑓𝑡 )) ≤ Φ𝑓𝑡+1 (𝑝 (𝑓𝑡+1)) always holds by
Proposition 4.3.5 and hence 𝑝 (𝑓𝑡 ) ≤ 𝑝 (𝑓𝑡+1). Otherwise, assume

𝑝 (𝑓𝑡 ) ≤ 𝑝𝑡+1. In particular, 𝑝𝑡 ≤ 𝑝 (𝑓𝑡 ) ≤ 𝑝𝑡+1 = 𝑝𝑡 + 𝜀 which

shows that 𝑝𝑡 = 𝑝 (𝑓𝑡 ) ± 𝜀. The influence estimates have accuracy

±𝑘𝜀 which then allows us to apply Lemmas 5.5 and 5.9 as in the

proof of Theorem 3 above, to conclude

𝑝 (𝑓𝑡+1) − 𝑝 (𝑓𝑡 ) ≥ 𝑝 (𝑓𝑡 ) ·
(
1

8𝑘3
− 3𝜀

)
≥

(
1

2

− 𝜀
) (

1

8𝑘3
− 3𝜀

)
.

Choosing 𝜀 ≤ 1/40𝑘3 then ensures 𝑝 (𝑓𝑡+1) − 𝑝 (𝑓𝑡 ) ≥ 𝜀 which

completes the induction since 𝑝 (𝑓𝑡 ) + 𝜀 ≥ 𝑝𝑡 + 𝜀 = 𝑝𝑡+1. □

Equipped with Lemma 5.10, we can give a slight improvement

on the query complexity of Theorem 3.

Theorem 5. Given a monotone function 𝑓 : {0, 1}𝑛 → {0, 1} with
𝐶 (𝑓 ) ≤ 𝑘 , there is an algorithm which w.h.p. returns a certificate of
size 𝑂 (𝑘3) and makes 𝑂 (𝑘7 log𝑛) queries to 𝑓 .
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0 𝑝 (𝑓 ) 𝑝 (𝑓𝑥𝑖=0) 1

0

1

2

1

Ω (1/𝑘3)

Ω (1/𝑘2)

Φ𝑓 (𝑝)
Φ𝑓𝑥𝑖=0

(𝑝)

Figure 1: Illustration of the key atomic step in the proof of Theorem 3. Let 𝑝 (𝑓 ) denote the critical probability of 𝑓 . The OSSS
inequality implies the existence of a coordinate 𝑖 ∈ [𝑛] such that Φ𝑓 (𝑝 (𝑓 )) − Φ𝑓𝑥𝑖=0

(𝑝 (𝑓 )) ≥ Ω(𝑘−2), and we bound, using the
Russo–Margulis lemma, the Lipschitz constant of Φ𝑓𝑥𝑖=0

by ≤ 𝑘 . We therefore conclude that the critical probabilities of 𝑓 and
𝑓𝑥𝑖=0 differ by Ω(𝑘−3).

Proof. We modify Algorithm 1 to estimate the critical proba-

bility of 𝑓 once at the start and then increment/decrement it by

𝜀 = 1/(40𝑘3) after each iteration. Then the algorithm terminates

after at most 𝑂 (𝑘3) iterations of the main loop by Lemma 5.10.

We use Lemma 5.7 to estimate the critical probability of 𝑓 initially

which requires 𝑂 (𝑘6 log𝑘 log𝑛) queries for our choice of 𝜀. Since
this estimate 𝑝 satisfies 𝑝 = 𝑝 (𝑓 ) ± 𝜀 if 𝑝 ≥ 1/2 then 𝑝 (𝑓 ) ≥ 1/2− 𝜀
ensures the desired precondition for Lemma 5.10 and otherwise

𝑝 (𝑓 ) ≤ 1/2 + 𝜀 and the symmetric case applies.

Each step of the algorithm’s loop requires 𝑂 (𝑘4 log𝑛) queries
to estimate the influences to accuracy 𝑘𝜀 = 1/40𝑘2 by Lemma 5.8.

Hence the algorithm makes 𝑂 (𝑘7 log𝑛) queries overall. □

6 COMPLETING THE PROOF OF THEOREM 1
In this section we show how to find a certificate for a given input

using Algorithm 1 as a subroutine. The algorithm itself is fairly

straightforward. For a monotone function 𝑓 and an input 𝑥★, we

find an arbitrary certificate of 𝑓 using Algorithm 1 and then restrict

𝑓 on the coordinates in the certificate to the values specified by 𝑥★.

Then we recurse on the subfunction and repeat until the function

is constant.

We prove the following guarantee on Algorithm 2.

Theorem 6. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a monotone function with
𝐶 (𝑓 ) ≤ 𝑘 , then Algorithm 2 iterates 𝑂 (𝑘) times and w.h.p. outputs a
certificate of size 𝑂 (𝑘4).

Algorithm 2 Finding a certificate for a given input

Given: A monotone function 𝑓 : {0, 1}𝑛 → {0, 1} and input 𝑥★.

1: Initialize 𝑆 ← ∅
2: while 𝑓 is nonconstant do
3: 𝑠 ← the output of Algorithm 1 on 𝑓

4: 𝑆 ← 𝑆 ∪ 𝑠 ⊲ Update certificate 𝑆 with coordinates from 𝑠

5: 𝑓 ← 𝑓𝑥𝑖=𝑥★𝑖 ,𝑖∈𝑠 ⊲ restrict 𝑓 according to 𝑠

6: end while
7: return the certificate 𝑆 .

Combining this theoremwith Theorem 5, we get that a certificate

for an input to a monotone function can be found using at most

𝑂 (𝑘8 log𝑛) queries to 𝑓 .

Corollary 6.1. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a monotone function
with 𝐶 (𝑓 ) ≤ 𝑘 . Then, a certificate of size 𝑂 (𝑘4) can be computed
w.h.p. for any input 𝑥★ using 𝑂 (𝑘8 log𝑛) queries to 𝑓 .

The progress measure in our analysis of Algorithm 2 is 𝐶0 (𝑓 ) +
𝐶1 (𝑓 ), the sum of the 0-certificate complexity and 1-certificate

complexity of 𝑓 . In particular, each iteration of the main loop is

guaranteed to decrease this quantity by at least 1 which gives an up-

per bound on 2𝐶 (𝑓 ) on the total number of iterations. For the proof,

we use the fact that, for any Boolean function, every 0-certificate

must intersect every 1-certificate (since otherwise there would be

one input string having both a 0-certificate and a 1-certificate).
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Fact 6.2. Let 𝑆0 be a 0-certificate for a Boolean function 𝑓 :

{0, 1}𝑛 → {0, 1} and let 𝑆1 be a 1-certificate. Then 𝑆0 ∩ 𝑆1 ≠ ∅.

Proof of Theorem 6. Let 𝑓 be a nonconstant function during

the execution of the algorithm. We’ll show that 𝐶0 (𝑓 ) + 𝐶1 (𝑓 )
decreases by at least 1 after each iteration of the main loop. Let 𝑠

denote the certificate that Algorithm 1 returns and suppose without

loss of generality that 𝑠 is a 1-certificate (the argument is symmetric

for a 0-certificate). Then we’ll show that𝐶0 (𝑓𝑠 ) ≤ 𝐶0 (𝑓 ) − 1 where
𝑓𝑠 is the restriction according to 𝑠 and 𝑥★: 𝑓𝑠 = 𝑓𝑥𝑖=𝑥★𝑖 ,𝑖∈𝑠 . Consider

any 𝑥 ∈ 𝑓 −1𝑠 (0). Let 𝑥 ′ ∈ {0, 1}𝑛 be the string formed by inserting

𝑥★ |𝑠 into the string 𝑥 so that 𝑓 (𝑥 ′) = 𝑓𝑠 (𝑥) and 𝑥 ′ |𝑠 = 𝑥★ |𝑠 . Let
𝑠0 be a 0-certificate of 𝑓 on 𝑥 ′ with |𝑠0 | ≤ 𝐶0 (𝑓 ). Then 𝑠0 \ 𝑠 is a
0-certificate of 𝑓𝑠 on 𝑥 . We can bound the size of this 0-certificate:

|𝑠0 \ 𝑠 | ≤ |𝑠0 | − 1 (𝑠0 ∩ 𝑠 ≠ ∅ by Fact 6.2)

≤ 𝐶0 (𝑓 ) − 1.

Since 𝑥 is any arbitrary 0-input to 𝑓𝑠 , we have that𝐶0 (𝑓𝑠 ) ≤ 𝐶0 (𝑓 )−
1 as desired.

Since 𝑓 must be constant when either 𝐶0 (𝑓 ) or 𝐶1 (𝑓 ) is 0, the
algorithm must terminate after at most 𝐶0 (𝑓 ) + 𝐶1 (𝑓 ) ≤ 2𝐶 (𝑓 )
iterations. Each iteration adds at most 𝑂 (𝑘3) coordinates to the

certificate 𝑆 and hence |𝑆 | is 𝑂 (𝑘4) at the end of the algorithm. □

6.1 Trimming the Certificate Using Angluin’s
Algorithm

Algorithm 2 returns a certificate of size 𝑂 (𝑘4). In this section, we

show how to reduce that certificate to size ≤ 𝑘 using 𝑂 (𝑘4) addi-
tional queries.

Claim 6.3. Let 𝑆 be a certificate for an input 𝑥★ of a monotone
function 𝑓 : {0, 1}𝑛 → {0, 1}. If |𝑆 | > 𝐶 (𝑓 ) then a certificate 𝑆 ′ ⊆ 𝑆

with |𝑆 ′ | ≤ 𝐶 (𝑓 ) can be computed from 𝑆 using 𝑂 ( |𝑆 |) queries to 𝑓 .

The proof of this claim is implicit in [1, Theorem 1]. We give

a self-contained exposition of the proof adapted to our setting in

Appendix A.

We apply Claim 6.3 as a postprocessing step after executing

Algorithm 2. Since this postprocessing step only requires an ad-

ditional 𝑂 (𝑘4) queries to 𝑓 the overall number of queries is still

upper bounded by 𝑂 (𝑘8 log𝑛), the query bound on Algorithm 2.

Thus, the combination of Corollary 6.1 with Claim 6.3 establishes

Theorem 1.

7 LOWER BOUNDS: PROOFS OF CLAIM 1.1
AND CLAIM 1.2

Our lower bounds in this section and the next will rely on the easy

direction of Yao’s lemma:

Lemma 7.1 ([29]). For any 𝑞 ∈ N, let R𝑞 and D𝑞 be the set of all
𝑞-query randomized and deterministic algorithms respectively, and let
𝐼 be the set of all possible pairs 𝑓 : {0, 1}𝑛 → {0, 1} and 𝑥★ ∈ {0, 1}𝑛
(i.e. instances of the certification problem).

For any distribution 𝜇 supported on 𝐼 ,

min

𝑅∈R𝑞
max

(𝑓 ,𝑥★) ∈𝐼
[error𝑅 (𝑓 , 𝑥★)] ≥ min

𝐷∈D𝑞

E
(𝒇 ,𝒙★)∼𝜇

[error𝐷 (𝒇 , 𝒙★)]

where error𝑅 (𝑓 , 𝑥★) is the probability that 𝑅 does not successfully
return a certificate for 𝑓 ’s value on 𝑥★, and error𝐷 (𝑓 , 𝑥★) =
1[𝐷 does not successfully return a certificate for 𝑓 ’s value on 𝑥★].

7.1 Proof of Claim 1.1
Claim 1.1 is a special case of the following claim:

Claim 7.2. Let 𝑛, 𝑞, ℓ ∈ N and A be a 𝑞-query randomized local
search algorithm. There is a monotone 𝑓 : {0, 1}𝑛 → {0, 1} with
𝐶 (𝑓 ) = 1 and input 𝑥★ ∈ {0, 1}𝑛 on which A successfully returns a
size-ℓ certificate for 𝑥 with probability ≤ (ℓ + 𝑞 − 1)/𝑛.

We use Yao’s lemma with the distribution 𝜇 where:

(1) 𝒙 is a constant, supported entirely on 𝑥★ = [1, . . . , 1], and
(2) 𝒇 is a random dictator: we select 𝒊 ∈ [𝑛] uniformly at random

and set 𝒇 (𝑥) = 𝑥 𝒊 .

We will assume that A is deterministic and prove that the prob-

ability, over the randomness of 𝒇 , thatA successfully finds a size-ℓ

certificate 𝒇 ’s value on 𝑥★ is at most (ℓ + 𝑞 − 1)/𝑛).

Proposition 7.3. LetA be any deterministic 𝑞-query local search
algorithm. For any 𝑓 : {0, 1}𝑛 → {0, 1}, let 𝑥 (1) , . . . , 𝑥 (𝑞) be A’s
queries when it is asked to certify 𝑓 ’s value on 𝑥★ = [1, . . . , 1]. The
number of coordinates 𝑖 on which 𝑥 ( 𝑗)

𝑖
= 0 for some 𝑗 ∈ [𝑞] is at most

𝑞 − 1.

Proof. By induction on 𝑗 . For 𝑗 = 1, a local search algorithm’s

first query must be 𝑥 (1) = 𝑥★ = [1, . . . , 1] which has no coordinates
set to 0. For 𝑗 > 1, we know that 𝑥 ( 𝑗) is Hamming adjacent to some

𝑥 ( 𝑗
′)
where 𝑗 ′ < 𝑗 . Thus, 𝑥 ( 𝑗) can have at most one coordinate

𝑖 on which 𝑥
( 𝑗)
𝑖

= 0 but 𝑥
( 𝑗 ′)
𝑖

= 1. The desired result holds by

induction. □

Proposition 7.4. LetA be any deterministic 𝑞-query local search
algorithm and 𝒇 : {0, 1}𝑛 → {0, 1} be a uniformly random dictator.
The probability, over the randomness of 𝒇 , that 𝒇 ’s value is 0 on least
one of A’s queries is at most (𝑞 − 1)/𝑛.

Proof. For each 𝑗 ∈ [𝑞], let 𝑥 ( 𝑗) be A’s 𝑗 th query when 𝒇 ’s
value on its first 𝑗 − 1 queries are all 1. Note that 𝒇 ’s value is 0 on
at least one of A’s queries iff 𝒇 (𝑥 ( 𝑗) ) = 0 for some 𝑗 ∈ [𝑞]. Hence

Pr

𝒇

[
𝒇 ’s value is 0 on at least one of A’s queries

]
= Pr

𝒇

[
𝒇 (𝑥 ( 𝑗) ) = 0 for some 𝑗 ∈ [𝑞]

]
= Pr

𝒊∈[𝑛]

[
𝑥
( 𝑗)
𝒊 = 0 for some 𝑗 ∈ [𝑞]

]
(Definition of 𝒇 )

≤ 𝑞 − 1
𝑛

. (Proposition 7.3)

□

We upper bound the probability any set 𝑆 of size ℓ is a certificate

for 𝒇 ’s value on 𝑥★ = [1, . . . , 1].

Proposition 7.5. Fix any set 𝑆 ⊆ [𝑛] of size ℓ . The probability,
over the randomness of 𝒇 , that 𝑆 is a certificate for 𝒇 ’s value on
𝑥★ = [1, . . . , 1] is at most ℓ/𝑛.
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Proof. Recall that 𝒇 (𝑥) = 𝑥 𝒊 for uniformly random 𝒊 ∈ [𝑛].
Therefore 𝑆 is a certificate for 𝒇 ’s value on 𝑥★ iff 𝒊 ∈ 𝑆 , which

happens with probability |𝑆 |/𝑛 = ℓ/𝑛. □

With Propositions 7.4 and 7.5, we can now complete the proof

of Claim 7.2:

Proof of Claim 7.2. As A is a deterministic algorithm, when

𝒇 ’s values onA’s queries are all 1, there is a single set of coordinates

𝑆 output by A. Then,

Pr

𝒇

[
A returns a size-ℓ certificate for 𝒇 ’s value on 𝑥★

]
= Pr

𝒇

[
A returns a size-ℓ certificate for 𝒇 ’s value on 𝑥★ &

𝒇 ’s values on all queries are 1

]
+

Pr

𝒇

[
A returns a size-ℓ certificate for 𝒇 ’s value on 𝑥★ &

𝒇 ’s value on some query is 0

]
≤ Pr

𝒇

[
𝑆 is a certificate for 𝒇 ’s value on 𝑥★

]
+

Pr

𝒇

[
𝒇 ’s value is 0 on at least one of A’s queries

]
≤ ℓ
𝑛
+ 𝑞 − 1

𝑛
. (Propositions 7.4 and 7.5)

□

7.2 Proof of Claim 1.2
The proof is simple and is essentially an instantiation of the follow-

ing elementary fact: if a problem 𝑃 has ≥ 𝑀 possible outputs, and

the input to 𝑃 can be accessed only via queries with binary answers,

then log𝑀 is a lower bound on the query complexity of solving 𝑃 .

In our context of certification, since there are

(𝑛
𝑘

)
many sets of size 𝑘 ,

this fact suggests that if every such set is a possible certificate, then

log

( (𝑛
𝑘

) )
≈ 𝑘 log𝑛 would be a lower bound on query complexity.

Indeed this is what we show, and the argument extends easily to

certification algorithms that are allowed to return a certificate of

size ℓ ≥ 𝑘 :

Claim 7.6. Let 𝑘, ℓ, 𝑛, 𝑞 ∈ N and A be a 𝑞-query randomized
algorithm. There is some monotone function 𝑓 : {0, 1}𝑛 → {0, 1} with
𝐶 (𝑓 ) ≤ 𝑘 and input 𝑥★ ∈ {0, 1}𝑛 on which A successfully returns
a size-ℓ certificate for 𝑥★ with probability at most 2𝑞 ·

(ℓ
𝑘

)
/
(𝑛
𝑘

)
≤

2
𝑞 ·

(
ℓ𝑒
𝑛

)𝑘
.

Claim 1.2 follows as an immediate consequence of Claim 7.6: if

𝑘 ≤ ℓ ≤ 𝑛𝑐 for any 𝑐 < 1, then 𝑞 ≥ Ω(𝑘 log𝑛) queries are necessary
even to succeed with probability 0.1.

Proof. We will once again use Yao’s lemma. Consider the dis-

tribution 𝜇 where:

(1) 𝒙 is constant, supported entirely on 𝑥★ = [1, . . . , 1], and
(2) 𝒇 is drawn uniformly at random from the set of monotone

conjunctions of 𝑘 variables.

We observe that if 𝑓 is the monotone conjunction of the variables

some set𝑇 , then a set 𝑆 certifies 𝑓 ’s value on 𝑥★ iff 𝑆 ⊇ 𝑇 . Therefore,

for any fixed set 𝑆 of size at most ℓ ,

Pr

𝒇

[
𝑆 certifies 𝒇 ’s value on 𝑥★

]
= Pr

𝒇

[
𝒇 is a conjunction of 𝑘 variables within 𝑆

]
=

( |𝑆 |
𝑘

)(𝑛
𝑘

) ≤ (ℓ
𝑘

)(𝑛
𝑘

) .
Since any deterministic 𝑞-query algorithm A can take on at most

2
𝑞
many output values, we have by a union bound that

Pr

𝒇

[
A finds a size-ℓ certificate for 𝒇 ’s value on 𝑥★

]
≤ 2

𝑞 ·
(ℓ
𝑘

)(𝑛
𝑘

) ≤ 2
𝑞 · (ℓ𝑒/𝑘)

𝑘

(𝑛/𝑘)𝑘
= 2

𝑞 ·
(
ℓ𝑒

𝑛

)𝑘
.

Claim 7.6 follows from the above and an application of Yao’s lemma.

□

8 ALGORITHMS AND LOWER BOUNDS FOR
OTHER SETTINGS

8.1 An Algorithm for Certifying Arbitrary
Functions with Random Examples

Claim 8.1. For any 𝑘,𝑚, 𝑛 ∈ N, there is an algorithm which,
given access to uniform random samples (𝒙, 𝑓 (𝒙)) of a function 𝑓 :

{0, 1}𝑛 → {0, 1} with certificate complexity ≤ 𝑘 , an input 𝑥★ ∈
{0, 1}𝑛 , and 𝑓 ’s value on 𝑥★, uses𝑚 random samples and returns a
size-𝑘 certificate for 𝑓 ’s value on 𝑥★ with probability at least

1 − (1 − 2−𝑘 )𝑚 ·
(
𝑛

𝑘

)
.

In particular, the algorithm succeeds with high probability if

𝑚 = Θ(2𝑘𝑘 log𝑛).
Our proof of Claim 8.1 uses the following easy fact:

Proposition 8.2. For every non-constant 𝑓 : {0, 1}𝑛 → {0, 1}
with certificate complexity ≤ 𝑘 and every 𝑏 ∈ {0, 1},

Pr

𝒙∼{0,1}𝑛
[𝑓 (𝒙) = 𝑏] ≥ 2

−𝑘 .

Proof. Without loss of generality, we only prove that the prob-

ability 𝑓 (𝒙) = 1 is at least 2
−𝑘

. As 𝑓 is non-constant, there is some

input 𝑦 on which 𝑓 (𝑦) = 1. Since 𝑓 has certificate complexity ≤ 𝑘 ,

there is some set 𝑆 of size ≤ 𝑘 where 𝑓 (𝑥) = 1 whenever 𝑥𝑆 = 𝑦𝑆 .

Finally,

Pr

𝒙∼{0,1}𝑛
[𝑓 (𝒙) = 1] ≥ Pr

𝒙∼{0,1}𝑛
[𝒙𝑆 = 𝑦𝑆 ] ≥ 2

−𝑘 . □

Proof of Claim 8.1. We say that a set 𝑆 ⊆ [𝑛] is eliminated by
a sample (𝑥, 𝑓 (𝑥)) if 𝑥𝑆 = 𝑥★

𝑆
and 𝑓 (𝑥) ≠ 𝑓 (𝑥★). The algorithm is

simple: it iterates over all

(𝑛
𝑘

)
candidate size-𝑘 certificates (i.e. all

size-𝑘 sets), keeping only those not eliminated by any of the 𝑚

sample points, and returns an arbitrary one. Any actual certificate

for 𝑓 ’s value on 𝑥★ will not be eliminated by the above procedure.

Therefore, if all non-certificates are eliminated, the output of this

algorithm will be correct.

Fix any size-𝑘 set 𝑆 that is not a certificate for 𝑓 ’s value on 𝑥★,

and consider 𝑓𝑥★
𝑆
, the subfunction of 𝑓 obtained by restricting the
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coordinates in 𝑆 according to 𝑥★. Since 𝑓 has certificate ≤ 𝑘 , all its

subfunctions, including 𝑓𝑥★
𝑆
, also have certificate complexity ≤ 𝑘 .

Furthermore, since 𝑆 is not a certificate for 𝑓 ’s value on 𝑥★, we

have that 𝑓𝑥★
𝑆
is non-constant. Hence, by Proposition 8.2,

Pr

𝒙∼{0,1}𝑛
[𝑓𝑥★

𝑆
(𝒙) ≠ 𝑓 (𝑥★)] ≥ 2

−𝑘 .

Therefore, the probability a random sample (𝒙, 𝑓 (𝒙)) eliminates 𝑆

is at least 2
−𝑘

. Since the samples are independent, the probability

𝑆 is not eliminated after𝑚 samples is at most (1 − 2−𝑘 )𝑚 . Union

bounding over all

(𝑛
𝑘

)
possible non-certificates 𝑆 of size 𝑘 gives the

desired result. □

8.2 Lower Bound on the Query Complexity of
Certifying an Arbitrary Function

Claim 8.3. Let 𝑘, 𝑛, 𝑞, ℓ ∈ N and A be a 𝑞-query randomized
algorithm. There is some 𝑓 : {0, 1}𝑛 → {0, 1} with 𝐶 (𝑓 ) = 𝑘 and
input 𝑥★ ∈ {0, 1}𝑛 on whichA successfully returns a size-ℓ certificate
for 𝑥★ with probability at most 𝑞 · 2−𝑘 + (𝑘ℓ)/𝑛.

Claim 8.3 implies that as long as 𝑘 ≤ ℓ satisfy 𝑘ℓ ≤ 0.01𝑛, then

𝑞 ≥ Ω(2𝑘 ) queries are necessary even to succeed with probabil-

ity 0.1. Combining this with the 𝑞 ≥ Ω(𝑘 log𝑛) lower bound we

showed in Claim 1.2 yields the 𝑞 ≥ Ω(2𝑘 + 𝑘 log𝑛) lower bound
stated in Table 1.

We apply Yao’s lemma with the distribution 𝜇 where:

(1) 𝒙 is constant, supported entirely on 𝑥★ = [1, . . . , 1],
(2) 𝒇 is the indicator function of a uniformly random subcube of

codimension 𝑘 . More formally, we select 𝑘 uniformly random

unique coordinates 𝒊1, 𝒊2, . . . , 𝒊𝑘 ∈ [𝑛] and 𝑘 uniform random

bits 𝒃1, 𝒃2, . . . , 𝒃𝑘 ∼ {0, 1}, and let:

𝒇 (𝑥) =
{
1 if 𝑥 𝒊 𝑗 = 𝒃 𝑗 for all 𝑗 ∈ [𝑘]
0 otherwise.

By Yao’s lemma, in order to prove Claim 8.3, we need only show

that every 𝑞-query deterministic strategy successfully finds a size-ℓ

certificate for 𝑥★ with probability at most
𝑞

2
𝑘 + 𝑘ℓ

𝑛 (over the random-

ness of 𝒇 ). The proof of Claim 8.3 is similiar in spirit to Claim 7.2,

and will follow from Propositions 8.4 and 8.5:

Proposition 8.4. Let A be a 𝑞-query deterministic algorithm.
The probability, over the randomness of 𝒇 , that 𝒇 ’s value is 1 on at
least one of A’s queries is at most 𝑞 · 2−𝑘 .

Proof. SinceA is a deterministic algorithm, the queries it makes

are a deterministic function of the previous query outputs. For each

𝑗 ∈ [𝑞], let 𝑥 ( 𝑗) be A’s 𝑗 th query when 𝒇 ’s value on its first 𝑗 − 1
queries are all 0. Note that 𝒇 ’s value is 1 on at least one of A’s

queries iff there is some 𝑗 ∈ [𝑞] for which 𝒇 (𝑥 ( 𝑗) ) = 1. Hence

Pr

𝒇

[
𝒇 ’s value is 1 on at least one of A’s queries

]
= Pr

𝒇

[
𝒇 (𝑥 ( 𝑗) ) = 1 for some 𝑗 ∈ [𝑞]

]
≤

∑︁
𝑗 ∈[𝑞 ]

Pr

𝒇

[
𝒇 (𝑥 ( 𝑗) ) = 1

]
(Union bound)

=
𝑞

2
𝑘
. (Definition of 𝒇 )

□

Proposition 8.5. Fix a set 𝑆 ⊆ [𝑛] of size ℓ . The probability,
over the randomness of 𝒇 , that 𝑆 is a certificate for 𝒇 ’s value on
𝑥★ = [1, . . . , 1] is at most (𝑘ℓ)/𝑛.

Proof. Recall that 𝒇 is a function of 𝑘 random coordinates

𝒊1, . . . , 𝒊𝑘 ∼ [𝑛]. In order for 𝑆 to be a certificate for 𝒇 ’s value

on 𝑥★, it has to contain at least one 𝒊 𝑗 . Hence,

Pr

𝒇

[
𝑆 is a certificate for 𝒇 ’s value on 𝑥★

]
≤ Pr

𝒇

[
𝒊 𝑗 ∈ 𝑆 for some 𝑗 ∈ [𝑘]

]
≤

∑︁
𝑗 ∈[𝑘 ]

Pr

𝒇

[
𝒊 𝑗 ∈ 𝑆

]
(Union bound)

≤ 𝑘 · ℓ
𝑛
. □

Proof of Claim 8.3. Let 𝑆 be the set of coordinates output by

A when 𝒇 ’s values on its queries are all 0. Then,

Pr

𝒇

[
A returns a size-ℓ certificate for 𝒇 ’s value on 𝑥★

]
= Pr

𝒇

[
A returns a size-ℓ certificate for 𝒇 ’s value on 𝑥★ &

𝒇 ’s values on all queries are 0

]
+

Pr

𝒇

[
A returns a size-ℓ certificate for 𝒇 ’s value on 𝑥★ &

𝒇 ’s value on some query is 1

]
≤ Pr

𝒇

[
𝑆 is a certificate for 𝒇 ’s value on 𝑥★

]
+

Pr

𝒇

[
𝒇 ’s value is 1 on at least one of A’s queries

]
≤𝑘ℓ
𝑛
+ 𝑞

2
𝑘
. (Propositions 8.4 and 8.5)

□

8.3 Lower Bound on the Sample Complexity of
Certifying a Monotone Function

Claim 8.6. For 𝑘 ≤ ℓ ≤ 𝑐𝑛 where 𝑐 is a sufficiently small constant.
Suppose A is an algorithm which satisfies the following: given 𝑞

uniform random examples (𝒙, 𝑓 (𝒙)) labeled by a monotone function
𝑓 : {0, 1}𝑛 → {0, 1} with 𝐶 (𝑓 ) ≤ 𝑘 and an input 𝑥★ ∈ {0, 1}𝑛 , we
have thatA returns a size-ℓ certificate for 𝑓 ’s value on 𝑥★ w.h.p. Then
𝑞 = Ω(2𝑘 ).

Combining Claim 8.6 with the 𝑞 ≥ Ω(𝑘 log𝑛) lower bound we

showed in Claim 7.6 yields the 𝑞 ≥ Ω(2𝑘 + 𝑘 log𝑛) lower bound
stated in Table 1.

Proof. We will again apply Yao’s lemma with 𝒇 being a mono-

tone conjunction of 𝑘 random variables and 𝒙 supported entirely

on 𝑥★ = [1, . . . , 1]. (This is the same distribution as in the proof

of Claim 7.6.) Let𝑸 be 𝑞 independent and uniform random elements

𝒙 (1) , . . . , 𝒙 (𝑞) ∼ {0, 1}𝑛 , and A be a deterministic algorithm.

By a union bound,

Pr

𝑸,𝒇

[
∃ 𝑗 ∈ [𝑞] such that 𝒇 (𝒙 ( 𝑗) ) = 1

]
≤ 𝑞

2
𝑘
,
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and so if 𝑞 ≤ 𝑐2𝑘 for a sufficiently small constant 𝑐 , it then follows

by Markov’s inequality that:

Pr

𝑸

[
Pr

𝒇

[
∃ 𝑗 ∈ [𝑞] such that 𝒇 (𝒙 ( 𝑗) ) = 1

]
≥ 0.01

]
≤ 0.01. (4)

Fix a 𝑄 = {𝑥 (1) , . . . , 𝑥 (𝑞) } for which
Pr

𝒇

[
𝒇 (𝑥 ( 𝑗) ) = 0 for all 𝑗 ∈ [𝑞]

]
≥ 0.99. (5)

Since A is deterministic, it has to return the same size-ℓ set, call it

𝑆 , for all 𝑓 ’s that satisfy 𝑓 (𝑥 (𝑖) ) = 0 for all 𝑗 ∈ [𝑞]. This set 𝑆 is a

certificate for 𝒇 ’s value on 𝑥★ = [1, . . . , 1] iff 𝒇 is the conjunction

of 𝑘 variables 𝑻 where 𝑻 ⊆ 𝑆 , the probability of which is:

Pr[𝑻 ⊆ 𝑆] =
(ℓ
𝑘

)(𝑛
𝑘

) ≤
(
𝑒ℓ
𝑘

)𝑘(
𝑛
𝑘

)𝑘 =

(
𝑒ℓ

𝑛

)𝑘
≤ 0.01, (6)

where the final inequality holds as long as ℓ ≤ 𝑐𝑛 for a sufficiently

small constant 𝑐 . Equations (4) to (6) imply that A succeeds with

probability at most 0.1 over the randomness of 𝒇 , and the claim

follows by Yao’s lemma. □
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A ANGLUIN’S ALGORITHM
In this section we give an overview of Angluin’s algorithm adapted

to our setting and a proof of correctness.

Algorithm 3 Reducing a certificate

Given: A monotone function 𝑓 : {0, 1}𝑛 → {0, 1}, a 𝑏-certificate 𝑆
for 𝑏 ∈ {0, 1}, and input 𝑥★.

1: SEEN← ∅
2: Initialize 𝑧𝑆 ∈ {0, 1}𝑛 to be equal to 𝑥★ on coordinates in 𝑆 and

1 − 𝑏 everywhere else

3: while |𝑆 | ≤ 𝐶 (𝑓 ) do
4: Pick some 𝑖 ∈ 𝑆 \ SEEN
5: If 𝑓 (𝑧⊕𝑖

𝑆
) ≠ 𝑓 (𝑧𝑆 ) then add 𝑖 to SEEN, otherwise remove 𝑖

from 𝑆 and update 𝑧𝑆
6: end while
7: return 𝑆 .

Proof of Claim 6.3. Algorithm 3 gives a sketch of the proce-

dure. Suppose without loss of generality that 𝑓 (𝑥★) = 1 and so 𝑆 is

a 1-certificate. We can continuously attempt to remove coordinates

from 𝑆 one at a time until |𝑆 | ≤ 𝐶 (𝑓 ). For a 1-certificate 𝑆 , write
𝑧𝑆 ∈ {0, 1}𝑛 for the string which has a 1 at each coordinate in 𝑆

and 0s everywhere else. Note that 𝑧𝑆 ≤ 𝑥★, 𝑓 (𝑧𝑆 ) = 1, and also

𝑧𝑆 ≤ 𝑦 for all 𝑦 satisfying 𝑦 |𝑆 = 𝑧𝑆 |𝑆 . For 𝑖 ∈ 𝑆 , we check if 𝑖 is an

irrelevant coordinate (Definition 3) by checking if flipping the 𝑖th

coordinate in 𝑧𝑆 flips the output of the function. That is, we check

if 𝑖 is sensitive on 𝑧𝑆 . If 𝑖 is not sensitive, we remove 𝑖 from 𝑆 and

recurse on 𝑆 \ {𝑖}. Otherwise, we leave 𝑖 in 𝑆 and do not check it

again. We proceed in this fashion until |𝑆 | ≤ 𝐶 (𝑓 ). Since we only
check coordinates in 𝑆 and check each such coordinate at most

once we make ≤ 2|𝑆 | queries to 𝑓 .

To establish correctness, suppose this procedure returns 𝑆 ′. Since
we only remove non-sensitive coordinates from 𝑆 we have 𝑓 (𝑧𝑆′) =
1. For any𝑦 satisfying𝑦 |𝑆′ = 𝑧𝑆′ |𝑆′ we know that𝑦 ≥ 𝑧𝑆′ and hence

𝑓 (𝑦) = 1 by monotonicity. It follows that 𝑆 ′ is a 1-certificate for
𝑧𝑆′ and likewise for 𝑥★ as 𝑆 ′ ⊆ 𝑆 . Note also that if 𝑖 is in 𝑆 and 𝑖 is

sensitive for 𝑧𝑆 then 𝑖 remains sensitive for all 𝑧𝑆′ with 𝑖 ∈ 𝑆 ′ ⊆ 𝑆 .

In particular, 𝑧𝑆′ ≤ 𝑧𝑆 and 𝑧⊕𝑖
𝑆′ ≤ 𝑧⊕𝑖

𝑆
which shows 0 = 𝑓 (𝑧⊕𝑖

𝑆
) ≥

𝑓 (𝑧⊕𝑖
𝑆′ ) by monotonicity. Thus, any sensitive coordinate can be left

in the certificate without having to check again. Moreover, since

Sens𝑓 (𝑧𝑆 ) ≤ 𝐶 (𝑓 ) we know that the number of sensitive indices

we keep in the certificate 𝑆 is at most 𝐶 (𝑓 ) which ensures that if

|𝑆 | > 𝐶 (𝑓 ) there will always be some non-sensitive index that we

can remove from 𝑆 . □
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