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ABSTRACT

The Domain Name System (DNS) is a critical network protocol
that resolves human-readable domain names to IP addresses. Be-
cause it is an essential component necessary for the Internet to
function, DNS traffic is typically allowed to bypass firewalls and
other security services. Additionally, this protocol was not designed
for the purpose of data transfer, so is not as heavily monitored as
other protocols. These reasons make the protocol an ideal tool for
covert data exfiltration by a malicious actor. A typical company
or organization has network traffic containing tens to hundreds
of thousands of DNS queries a day. It is impossible for an analyst
to sift through such a vast dataset and investigate every domain
to ensure its legitimacy. An attacker can use this as an advantage
to hide traces of malicious activity within a small percentage of
total traffic. Recent research in this field has focused on applying
supervised machine learning (ML) or one-class classifier techniques
to build a predictive model to determine if a DNS domain query
is used for exfiltration purposes; however, these models require
labelled datasets. In the supervised approach, models require both
legitimate and malicious data samples, but it is difficult to train
these models since realistic network datasets containing known
DNS exploits are rarely made public. Instead, prior studies used
synthetic curated datasets, but this has the potential to introduce
bias. In addition, some studies have suggested that ML algorithms
do not perform as well in situations where the ratio between the
two classes of data is significant, as is the case for DNS exfiltration
datasets. In the one-class classifier approach, these models require
a dataset known to be void of exfiltration data. Our model aims to
circumvent these issues by identifying cases of DNS exfiltration
within a network, without requiring a labelled or curated dataset.
Our approach eliminates the need for a network analyst to sift
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through a high volume of DNS queries, by automatically detecting
traffic indicative of exfiltration.
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1 INTRODUCTION

The Domain Name System (DNS) is a hierarchical distributed data-
base that resolves human-readable domain names to an Internet
Protocol (IP) address. This protocol is an integral component of
the Internet, and the functional driver behind web browsing and a
large proportion of general Internet activities. Because reliability
and timeliness of this service is critical, there are limited security
restrictions on DNS (e.g., DNS traffic firewall exceptions [1]). Addi-
tionally, traffic over DNS is not monitored to the same degree as
other services that exist explicitly for data transfer (e.g. File Trans-
fer Protocol (FTP)) [2]. The lack of substantial security and minimal
monitoring of the protocol make it an ideal tool for covert data
exfiltration by a malicious actor.

Data exfiltration over DNS usually requires DNS tunneling meth-
ods as a means to establish a discrete connection between a system
within a network and an external host controlled by the malicious
actor. A tunnel is created when the malicious actor compromises a
computer within a network, and resolves the domain name to the
IP address of a machine controlled by the attacker.
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Figure 1: Using the DNS protocol for exfiltration purposes

DNS exfiltration occurs when this protocol is abused to export
data off an internal host machine. Legitimate cases of DNS exfil-
tration do exist. For example, security services such as McAfee
use the DNS protocol to offload information pertinent to their tool
[3]. However, this same method can be utilized to exfiltrate data
for malicious intent. One well known example is the case where
information on 56 million credit and debit cards was stolen from
customers of Home Depot; a similar incident occurred with Sally
Beauty [4, 5]. Overall, DNS has been increasingly used as a vector
to extract sensitive information [6].

A DNS query, called a Fully Qualified Domain Name (FQDN),
consists of substrings separated by dots, called labels. Queries can
contain up to 127 labels, where each label has at most 63 characters,
and the total length of the domain string does not exceed 253
characters. The top level domain is the part of the domain string
following the last dot (e.g. “com”, “edu”, and “gov”). The second
level domain includes the substring preceding the top level domain
(e.g. “google.com”, “mit.edu”, and “nasa.gov”). The subdomain is
the remainder of the DNS query string which precedes the second
and top level domain. Two methods of DNS lookups exist to resolve
the IP address of a FQDN: recursive and iterative. When a domain
name is queried by the DNS client, the request is first sent through
a resolver to a root server. Root servers exist throughout the world,
and each contain information on top level domains. In the recursive
method, the request is passed from the root server to the appropriate
top level domain server on behalf of the DNS client, and from there
to the domain level name server. The domain level name server
that knows the IP address for the requested domain will send this
information back to the original host. In the iterative method, the
requests pass through the same set of servers, but at each step
the name of the next server is sent back to the resolver. It is then
the responsibility of the resolver to iteratively work through this
process with each of the servers until an IP address is retrieved. For
low-throughput exfiltration, such as the Home Depot attack, the
data is exfiltrated in small chunks at a time, by encoding the data
chunks and placing them within the subdomain of a DNS query.
An example of this attack is illustrated in Figure 1.

A typical company or organization’s network can contain traf-
fic containing between tens to hundreds of thousands of unique
domains daily. Inspecting each individual domain for signs of exfil-
tration would be an impossible task for a network analyst. Therefore
a tool is needed to automatically filter out the majority of legiti-
mate traffic, and retain only the few domains that are most likely
malicious for further investigation by the network analyst.
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2 PREVIOUS WORK

Abuse of the DNS protocol first became an evident issue in the early
2000s with the introduction of the Linux based tool Nameserver
Transfer Protocol (NSTX), which made it possible for IP packets to
be tunneled within DNS queries [7]. Following this, additional tools
made their appearance [8] (e.g.: DNSCat [9], Iodine [10], TUNS [11],
Dns2TCP [12], and OzyManDNS [13]). In the two decades since
the introduction of NSTX, the transmission of data over DNS has
been studied extensively. The research conducted in this arena can
be divided into two categories: (1) traffic analysis and (2) payload
analysis [14]. Traffic analysis looks at aggregate statistics across
the data over time, such as the number of DNS requests to a do-
main/IP address or the number of received NXDomain responses
[15-17]. Payload analysis investigates the data encoded within the
subdomain of a DNS query, such as length or character frequency
analysis of the query [15, 18]. Earlier studies focused on detecting
specific tunneling tools, but more recently the focus has shifted to
the detection of any DNS tunnel, using supervised machine learn-
ing methods [19-22]. Studies focused on DNS tunneling have been
primarily concerned with the use of establishing a tunnel for com-
mand and control purposes, or for larger data exfiltration using the
TXT record of the DNS query. These methods are tuned for larger
exfiltration attempts and generic tunneling, and do not focus on
low-throughput exfiltration which is less easily detected.
Low-throughput exfiltration is an attack where data is encoded
and placed within the subdomain of DNS queries, in small chunks
intermittently over time. Researchers have investigated methods in-
volving either supervised machine learning techniques or one-class
classifiers towards detecting this type of exfiltration. Research de-
scribed in [23-24] represents recent work regarding implementation
of machine learning techniques. The issue with these supervised
machine learning methods is the lack of available labelled datasets
containing both benign and malicious DNS traffic required to train
the models. To circumvent this issue, studies have looked to synthet-
ically produce an artificial dataset for training and testing. However,
doing this can introduce inherent bias into the model, resulting in
a solution that does not transfer well to other datasets. Addition-
ally, the imbalance between the two classes of data (i.e., malicious
and benign) represented in typical network data is not ideal for
these machine learning models [25]. More recently, researchers
have looked to apply unsupervised learning methods to meet their
objectives. Two studies have considered iForest [26-27], a one-class
classifier that attempts to overcome the training dataset issues by
isolating anomalies inherent in the data, thus removing the need
to explicitly inject malicious data into the dataset. However, this
approach still requires a cleaned dataset (i.e., only “good” DNS traf-
fic), and requires training a model. In contrast to this, the benefit
to a statistical method is (1) it can be applied directly to a dataset
as-is, without the need to train a model and determine a sufficient
ratio of positive and negative data samples required for training;
and (2) the approach is more robust to changes over time, unlike
trained models that require retraining at some point to account
for different trends in an evolving data stream. One recent study
looked at implementing multidimensional data decomposition to
detect DNS tunneling and exfiltration. Such a method does not
require any prior knowledge of the labels within the dataset, and
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showed promise resulting in detection of one case of exfiltration.
However, the authors mentioned such an algorithm would require
a network security analyst to undergo significant training to gain
the expertise needed to interpret results of the model [28].

Our work looks to build on past research by incorporating many
of the features investigated to characterize domain-related traffic
over the course of a day [23-24] into our analysis. This approach is a
simple model that aims to combine both unsupervised methods (i.e.,
clustering) and statistical analysis (i.e., outlier detection) to detect
outliers within the data, without needing prior knowledge of which
domains may be benign or malicious within the dataset. Domains
flagged as exhibiting exfiltration behavior could be reviewed by
a network analyst to determine if the case represents malicious
exfiltration. If deemed benign, the domain could be whitelisted
to prevent it from showing up as an outlier on a future day. We
believe that developing a detection method capable of determining
exfiltration based on domain features, without the requirement for a
labelled dataset, yields a simple yet effective solution that translates
easily to other networks, and provides a novel contribution to the
preceding body of research in this field of study.

3 DATASET

In this experiment we used anonymized network data sampled
from a real research network at the author’s organization. The
Lincoln Research Network Operations Center (LRNOC) is a dat-
acenter at MIT Lincoln Laboratory intended to provide access to
operational, enterprise network data for research purposes [29]. A
vast amount of data consisting of more than 60 unique sources is
fed into LRNOC, including DNS logs, raw network packets, alert
sensors, and host logs. The data collected provides researchers with
a rich, realistic source to test network security algorithms, conduct
deep-dive analyses to support investigations of potential malicious
behavior, and support the research and development of tools.

Our DNS dataset was collected from LRNOC over a two-week
period in March 2017. Over this two week period, there were more
than 111,000 unique domains. Because of the sensitivity of this data,
the actual domain names will be presented in this analysis using
aliases (e.g., “malware.com” as “Domain_1234").

The DNS logs were parsed as follows. For every DNS query in the
log, we extracted the query string (e.g. maps.google.com), the source
IP, destination IP, and the query record type (e.g. AAAA). Then,
for each extracted query string, we separated it into subdomain,
domain, and top level domain. (e.g. maps.google.com would have
the subdomain “maps”, the second level domain “google”, and the
top level of “com”). The extracted data was then binned according to
each set of second level and top level domain pairs (e.g. google.com
includes subdomains such as “maps”, “docs”, and “keep”). Features
were extracted from this processed dataset.

Synthetic DNS exfiltration data was also generated, not as input
to train a model, but as a way to compare against suspected exfiltra-
tion data detected in the analysis. The data was created as follows.
Random credit card information was generated using the Python
faker package [30]. This data included fake names, expirations, and
card numbers. The generated data was then encoded using a base-64
encoding, mimicking the encoded traffic identified in the Frame-
workPOS malware attack on Home Depot. The encoded data was
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added to the subdomain of DNS queries for FrameworkPOS.com
(e.g. <encoded credit card information>.FrameworkPOS.com). The
record type was assumed to be of type A, since that is the type used
in the FrameworkPOS attack. This data was then parsed as normal,
and the given features were generated from it.

The following list gives a description of each of the features used,
chosen using a combination of the most common features from
prior works [23-24]:

1) Alpha Ratio: This is the ratio of alphabet characters (A-Z,
a-z) for all subdomains of a given domain. Website subdo-
mains tend to be composed of mostly alphabet characters,
so a large number of non-alphabet characters could indicate
exfiltration.
Average Subdomain Length: The average length of a subdo-
main of a given domain. When exfiltrating data, hackers
generally want to move data as quickly as possible across
the network, so long subdomains can indicate data leaving
the network.
3) Character Entropy: A measure of the randomness of all the
subdomains of a given domain. Since the exfiltrated data is
normally encoded, there tends to be a more random assort-
ment of characters in suspicious subdomains.
Digit Ratio: Similar to Alpha Ratio, this is the ratio of digits
(0-9) for all subdomains of a given domain. As previously
stated, website subdomains tend to be alphabet heavy, so an
influx of numbers in subdomains could indicate exfiltration.
5) Dot Ratio: The ratio of ‘’ characters for all subdomains of a
given domain. DNS queries are restricted to 64 bytes per label,
which restricts the amount of data an attacker can get out of
each query. By adding additional subdomains (separated by

¥

. characters), attackers can exfiltrate more data in a single
query.

6) Lowercase Ratio: The ratio of lowercase alphabet characters
to other characters. Website subdomains tend to be mostly
lowercase. A large ratio of uppercase characters could in-
dicate encoding within the subdomain, since some encod-
ing schemes use both upper and lowercase characters. This
might be an indication of exfiltration.

7) Query Record Type: The percentage of queries for the given
domain with the A or AAAA record type. A and AAAA
records are the most common record type, but are restrictive
about how big the query can be. Other, less common record
types may be used by an attacker to extract data more quickly
from a target. A low percentage of A or AAAA record types
for a domain might indicate exfiltration.

8) Unique Query Ratio: Ratio of unique subdomains to all sub-
domains for a given domain. Sending encoded data across
DNS would generate a lot of unique subdomains, and could
indicate exfiltration.

9) Unique Query Volume: Total number of unique subdomains
for a given domain. Some domains only have one or two
total queries in a set of data, which can make the unique
query ratio quite high for those domains, even if they are not
being used to exfiltrate data. By also using the total volume
of requests, we can augment our algorithm to down-weight
low query domains.

D
~

'S
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10) Uppercase Ratio: Similar to Lowercase Ratio. A large ratio of
uppercase characters could indicate some sort of encoding
within the subdomain, since some encoding schemes use
both upper and lowercase characters.

Table 1 summarizes the features used in the analysis.

Table 1: Features generated daily for each domain

Feature Description
1: alp_ratio # alphabets in subdomain / length of
string
2: avg_len Average length of subdomain
3: char_ent Total entropy of characters in all

subdomains

# of digits in subdomain / length of
subdomain string

# of ” characters in subdomain / length of
subdomain string

# of lowercase characters in subdomain /
length of subdomain string

% of queries with A or AAAA record types
# of unique subdomains / total # of
subdomains

# of unique subdomains

# of uppercase characters in subdomain /
length of subdomain string

4: digit_ratio
5: dot_ratio
6: lower_ratio

7: 1r_type
8: uni_ratio

9: uni_vol
10: upper_ratio

4 STATISTICAL APPROACH

The features detailed in Section 3 were extracted for each of the
domains per day, across the 14-day period. The distributions of these
features are shown in Figure 2. These distributions give insight into
the expected values for each of the features. A domain performing
exfiltration would have outlier values for one or more of these
features. Across some of these features, a large majority of the
values were equal. Therefore, in order to visualize any variability
in the feature, such points were excluded from the histogram plots
in Figure 2 but documented in the text label in the graph (e.g. for
feature 5, 77% of the “dot_ratio” values were equal to 0, as indicated
in the text on the plot; those values were omitted but the remaining
values are shown as the distribution in the figure). These features
were calculated daily for each domain that appeared in the data for
that day, and aggregated into a feature matrix for further analysis.

Principle Component Analysis (PCA) was then applied to the
feature matrix so that the features could be visualized graphically.
PCA is a dimensionality reduction technique which looks to repre-
sent the data in a smaller coordinate system while still preserving
the variability among the data points. PCA works by first finding
the axis with the highest variability between the data points, and
subsequently finding the orthogonal axis in descending order of
variability within the data. For our data, PCA was applied using
the MATLAB function, and we found that using only the first two
principal components explained 99% of the variability within the
dataset. An example of the PCA results is shown in Figure 3, where
each point represents the features for a single domain represented
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Figure 2: Feature distributions across daily aggregations of
DNS query data, for the 14-day period

in the two dimensional principle component (PC) space. An ad-
ditional observation is the tendency of the data to form denser
clusters along near vertical lines. Data points within a group of
aligned points tend to share similar values for character entropy
and average length of subdomains; therefore, these two features
are the largest contributors to this stratification behavior.

While the translation of the data into the PC space provides a way
to visualize the data and detect outliers, the relation of the principle
components to the original feature set is not necessarily intuitive.
Figure 4 strives to address this issue by providing the correlation be-
tween each of the features and the two principle components. Here,
the blue bars in the top half of the plot correspond to the absolute
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Figure 4: Correlation of each feature to the first and second
principal components

correlations between the features and principle component 1. The
orange bars in the bottom half of the plot correspond to absolute
correlations between the features and principle component 2. It
can be seen that a majority of the variance in the second principle
component is from the third feature (char_ent). This same feature
also contributes significant variance to the first principle compo-
nent, although the second feature (avg_len) is most correlated with
the first principle component. The further a domain is from the
centroid of the cloud point, the more likely the subdomain con-
sists of a longer than average string with higher entropy. However,
while these two features exhibit the highest correlation to the two
principle components, the magnitudes of the correlations for other
features seen in Figure 4 indicate non-negligible contributions from
most of the remaining features. The features with the least impact
appear to be feature 7 (rr_type), feature 9 (uni_vol), and feature 10
(upper_ratio).

The final step before investigating the behavior of the data within
the PC space across multiple days is to consider the consequence
of continually re-computing the principle components for a new
set of DNS data each day. The analysis which is presented in the
following sections assumes that the principle components from day
to day remain relatively consistent. In order to test the validity of
our assumption, we performed a comparison between the PC space

DYNAMICS 2020, December 07, 2020, Lexington, MA, USA
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Figure 5: Critical angle for the PC space from day to day over
the two week period

between each consecutive set of days during the two week period.
Krzanowski [31] outlined a procedure to determine if two sets of
principle components are similar or not. This is accomplished by
comparing the subspaces defined by the columns of the matrices
containing the coefficients of the first k principle components (i.e.,
in our case, k=2 since we are only considering the first two principal
components). A useful and detailed application of this approach is
given by Jolliffe [31]. Let L1 be the matrix where the columns are
defined by the first k set of PC coefficients for the first day’s data.
Let Ly be the matrix where the columns are defined by the first k
set of PC coeflicients for the second day’s data. Then the minimum
angle between the subspaces defined by the columns of L; and Ly

is found by:
8= cos! (\/)L_l) (1)
Where A1 corresponds to the largest eigenvalue of:
Ly'LyLy'Ly @)

In a later publication, Krzanowski [33] investigated what con-
stitutes a “small enough” angle such that the two sets of PC com-
ponents are considered similar. Here multiple simulations were
run using different population group sizes, number of variables
(p), and number of principal components (k). Our plot in Figure 5
shows angles that are well within the size considered “small”, for
p=8 and k=2 (p = 10 in our case, so we compare to p=8 which is
the closest equivalent to our scenario that is available in the tables
from Krzanowki’s study [33]). Therefore we can conclude that the
PCA axes are similar, and so our original assumption is correct.

4.1 PCA Outliers

The first step towards detecting data indicative of exfiltration is to
look at the data within the PC space. Figure 6 shows the DNS query
data for the first Tuesday in the two week span of data, plotted in
the PC coordinate system. The Mahalanobis distance was used as
a means to determine outliers within the two-dimensional space.
This metric measures the distances between points in multivariant
space, and is commonly applied in statistics to determine outliers.
In order to capture the extreme outliers in this analysis, we used a

cutoff value of 100, which is greater than the 99.9th percentile of
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Figure 6: PCA Outliers for an example day (Tuesday of the
first week of data)

the Mahalanobis distances across the data represented in Figure 6.
The blue points in the plot represent the data within the normal
region, and the red points are outliers.

The outlier domains are listed in Table 2 using aliases due to
the sensitivity of the network data. The feature values for these
points were compared to the feature distributions over the two
week period, to get a better understanding of why these domains
were flagged as outliers. We observed that for these points, the
average length of the subdomain, and likewise the entropy, were
all above the 95" percentile. This makes sense, as these were the
features that had the highest correlation with the PC space. For
the remaining features, the uni_vol was high for the first three
domains; the upper ratio was high and the rr_type was low for the
6" domain; and the rr_type was low and the uni_val was high for
the 8" domain.

These domains were evaluated to determine if any represented
exfiltration. Note we assume (but not guarantee) that the network
data is most likely clean of malicious DNS exfiltration occurrences,
and therefore the lack of true positives is not indicative that the
approach is flawed. The two most prominent outliers are domains
for general services lookups, and were similarly found to be false
positives in prior studies (e.g. in the work by Nadler et al. [26]).
Such services use the DNS protocol as a means to transfer data,
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but for valid and legitimate purposes. In addition to this specific
example day, other days in the two-week span contained outliers
that were security services lookups, using the DNS protocol to
exfiltrate legitimate data. The remaining domains listed in Table
2 were also found to be legitimate domains. For example, two of
the domains are registered to Google and we speculate that they
were created as part of a study conducted on security measures for
DNS protocol (DNSSEC). Two of the other domains are registered
to a legitimate company called Markmonitor, which manages and
monitors domain name registration. We did not find any attempts
to maliciously extract data during the two week period. However
the purpose of the tool is simply to detect exfiltration, so that a
network analyst can then determine if the extracted domain is ma-
licious or benign. Therefore, since domains performing legitimate
DNS exfiltration were detected using this method, the PCA outlier
detection is considered a successful means to extract potentially
malicious domains.

In Figure 7, known DNS exfiltration is injected into the dataset
and compared to the previously detected outliers. The injected
data does not serve to train a model, but is used to compare to the
outliers already detected. The exfiltration data was synthetically
generated to replicate the encoded data found in the attack on Home
Depot, which was accomplished through the malware Framework-
POS. The injected data (yellow circles in Figure 7) aligns well with
the suspected exfiltration domains (red circles in Figure 7), both
highlighted as outliers in the PC space. This provides additional
credibility that outlier detection within the PC space is correctly
capturing exfiltration domains within the DNS query data.

4.2 Clustering & Arc Diagram

In the previous section, immediate outliers were found simply based
on their location within the PC space compared to the majority of
the data points. A more complicated detection problem is one where
a domain may exhibit more normal behavior on most days, but then
demonstrates activity which may be indicative of exfiltration on
another day. To address this issue, this section looks to determine a

Table 2: Domains flagged as potentially performing exfiltration using PCA outlier detection

Domain Name

Significant Features

Example subdomain

Domain_5599
Domain_5598
Domain_9778
Domain_9922
Domain_46787
Domain_51620

Domain_51622

Domain_45234

Domain_52336

avg_len, char_ent, and uni_vol were
high

avg_len, char_ent, and uni_vol were
high

avg_len, char_ent, and uni_vol were
high

avg_len and char_ent were high
avg_len and char_ent were high
avg_len, char_ent, and upper_ratio
were high; rr_type was low

avg_len and char_ent were high

avg_len, char_ent, and uni_val were
high; rr_type was low

avg_len and char_ent were high

p5-zefygsmpwyesw-h7ky3fy7uaovxnpa-273138-i1-v6exp3-ds.metric
p5-zefygsmpwyesw-h7ky3fy7uaovxnpa-273138-i2-v6exp3-ds.metric
p4-hb7sgm7dysdeo-jwhwnkh3sajsc2qw-228863-i1-bogus-dnssec-vd

p5-25wy5dszgqs5q-yxznimq2jagfegg6-228335-i2-bogus-dnssec-bd
d20b1f1a666e6c4d2f7d9ab5cfae096466d93759.cloudapp-enterprise
b45d50cd3293.358778121.AT3776PZPBOVS5DULS5WDNEQTC60TFF7V54
XZD6EJUBOQAG7LVFQ.6b656015-f0f0-cfbc-4712-
01b8b8c815¢0.4c4c2d506572736f6e616c2d557365.v1
358778062.6b656015-f0f0-cfbc-4712-
01b8b8c815¢0.b45d50cd3293.4c4c2d506572736{6e616c2d557365.b0
c3aiaakis23hpnb3q4c5bimsbffntdw55kj4irtb.ktlwnu5pflxhv3smie3eqqkx5s35
qfqlrx32v3tpqi3pwaw5cvm5vs5sxx2ihge. 5cvwvwmvcéxninl3dkabpqi5zp6t3
ahlemwo22mé6qd2zxfnlgpx7i4vléwrx2oa
d2a9c7fbc3ccab34-76633a61cf4e4028bcadb8b43290649f.orf
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Figure 7: PCA Outliers for an example day (Tuesday of the
first week of data). Generated DNS exfiltration data is shown
as the yellow stars

4 T T T T
K-means

Figure 8: Results from clustering using K-means (top), DB-
SCAN (middle), and Mean Shift (bottom) algorithms

baseline for a domain’s expected location, compared to where the
domain is actually found within the PC space. To detect such an
occurrence, this section considers clustering each day’s worth of
data and evaluates which cluster a domain typically belongs to.

As mentioned previously, the data within the PC space shows a
point cloud where points tend to be more densely populated along
vertical lines. Different methods were tested to cluster the data, but
these did not adequately capture the vertically stratified behavior
of the data. The results from clustering attempts using K-means
[34], DBSCAN [35], and Mean Shift [36] algorithms are shown in
Figure 8.
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The result of the K-means algorithm is shown in the top panel
of Figure 8. For the K-means algorithm, the number of clusters are
chosen prior to implementation of the clustering method. For this
analysis, k was chosen to be 24, to match the number of vertical
groups seen in the data. Initially, centroids are assigned for each of
the k clusters. The remaining points are grouped to the clusters with
the closest centroid based on Euclidian distance. The centroids are
then recalculated for each of the clusters. This process is repeated
until the centroids converge. Since this method looks to minimize
the distance between the mean of each cluster and its members,
points within a point cloud will tend to form more circularly shaped
clusters, and will not naturally conform to the stratified behavior
exhibited by the DNS query data in the PC space.

The result of the DBSCAN algorithm is shown in the middle
panel of Figure 8. This method works by identifying two types of
points in the data: “core points” and “directly reachable” points. Core
points are points that contain a minimum number of points within
some radius €. The minimum number of points and € are inputs
to the algorithm. For this analysis, € was set to .1 and minimum
number of points to 10. A directly reachable point is a point within
€ of a core point; note that some or all of these points may be
simultaneously considered core points as well. Points that do not
fall into either of these categories are considered outliers. A cluster
is then defined by neighboring core points, and directly reachable
points. A cluster must have at least one core point, but does not
have a maximum number of core points. Therefore, in a point cloud
where points are dense enough, this algorithm will consider a large
group of points to be a single cluster, rather than identifying smaller
vertical bands as individual clusters within that group.

Finally, the result of the Meanshift algorithm is shown in the
bottom panel of Figure 8. In this method, a window surrounding
each point in the data is defined using Euclidean distance. For each
window, the weighted mean of all the points within the window
is calculated using a Kernel, such that the contribution of points
from the main point within that window decays exponentially with
distance. This calculated mean is used as the new center of the
window for step 2. Points in the vicinity, following the step just
described, may converge to the same point for step 2; therefore
after one iteration there are now less points than the total number
of datapoints. The initial step is repeated with only the newly calcu-
lated points, and this process continues until the calculated points
between steps do not change. Data points that have converged to
the same final point are deemed to be a cluster. While this method is
an improvement over the results observed from both K-means and
DBSCAN in capturing more vertically aligned clusters, the results
shown in the figure still highlight the need for an algorithm that
more finely captures the individual vertical bans of density.

In order to group points based on the vertically dense regions,
we took a different approach. We binned the values of each data
point in the first principle component, and the peaks of the binned
data were used to find the location of the denser lines within the
point cloud. This is shown in the top and middle plots of Figure
9. The edges of each group were simply defined as the midpoint
between peaks. The resulting clusters can be seen for an example
day’s data in the bottom plot of Figure 9. This technique was then
applied to each individual day within the two week period.
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Figure 9: Identifying the densely populated lines within the
data and the clustering results

With the clustering complete, our goal was to utilize the identi-
fied clusters between consecutive days to extract domains that exist
within the confines of the “normal” data, but which might actually
be an outlier based on the cluster that the domain would typically
be grouped with compared to the cluster in which it is found. An
example for this reasoning would be the case where an attacker
waits until the weekend when network security analysts are less
likely to watch the data stream to then exfiltrate the largest amount
of data. To visualize such an outlier on a given day, we employed
an arc diagram. An arc diagram is a specific type of network plot,
where the nodes of the network are aligned along a single axis [37].
In the case of the DNS data, a node represents a cluster on one
of the two days, where the size of the node is proportional to the
number of domains within that cluster. For annotation purposes,
let the node for the it cluster on day 1 be define as n%; and, let the

node for the j*" cluster on day 2 be defined as njz.. An edge between

Emily Joback et al.

Domain_4512

#25

Figure 10: Arc diagram for an example 2-day period in the
dataset

anode A and a node B means that at least one domain that existed
in cluster A on day one exists in cluster B on day two. Because our
goal is to pinpoint domains that switched cluster affiliation, the
edges are weighted by the distance between the clusters, divided
by the number of domains which also switched between the same
clusters:

abs (n? - ni)

S of domains in n’ from n! ®
J 13

The visualization was implemented in python using the open
source library NetworkX [38]. Figure 10 shows the results for the
first Saturday and Sunday in the dataset. The highlighted edge is
the one with the highest weight for the two day period.

This domain existed in cluster 3 on Saturday, and jumped to clus-
ter 25 on Sunday. This domain appeared only a handful of times on
the first day, and the subdomain was either ‘m’ (indicative of access
from a mobile device) or ‘www’. On the following day, the domain
appeared over 150 times, with multiple subdomains consisting of
long strings with an ambiguous collection of characters which did
not represent English words. The avg_len, char_ent, uni_ratio, and
uni_vol values were all high for this domain on the second day,
but were within normal ranges on the preceding day. Table 3 sum-
marizes the significant features for this domain, and provides an
example of one of the suspect subdomains. The domain is owned by
a well-known legitimate gaming site; we suspect that the suspicious
data seen within the subdomains is benign information, such as the
transfer of user data. This behavior is an example of legitimate use
of the DNS protocol. A number of applications use the protocol for
quasi-legitimate purposes; Spotify is a documented example [39].

As a final sanity check, Figure 11 shows a heatmap for the 2-
week period, where the x-axis corresponds to cluster numbers on
a given day and the y-axis the cluster numbers for the following
day. The intensity of each of the points indicates the probability
that a domain within a given cluster on the first day is found in the
same cluster the following day. The graph shows a high intensity
along the diagonal, which represents domains that stay within the
same cluster on consecutive days. This means that traffic typically
remains within a given cluster across different days, and validates
the assumption that the DNS traffic remains mostly consistent
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Table 3: Domain flagged as potentially performing exfiltration using the clustering method

Domain Significant Features

Example Subdomain

Domain_4512 avg_len, char_ent, uni_ratio, and uni_vol

c-7npsfqifvt34x24gpoutx2ehpphmfbgjtx2edpn.g00
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Figure 11: Average change in cluster assignment for do-
mains

within the PC space. This assumption is critical to the ability to
detect outliers with the method presented above.

5 PIPELINE FOR ANALYST

The different analytical techniques discussed in Section 4 can be
aggregated into a single tool for use by a network analyst. Such
a capability would function by implementing the three different
outlier detection techniques described in the preceding section,
on the previous day’s DNS data. Suspicious DNS domains flagged
by any of the three techniques would be aggregated and passed
initially through a whitelist filter to remove known benign domains
(i.e., spotify.com), before they are written to a text file or displayed
to an analyst for further review. Upon investigation of each domain,
the analyst could either (1) whitelist the domain if it is determined
to be benign, preventing it from passing through the filter at a later
time or (2) block the domain if it is determined to be malicious
exfiltration. The source IP address(es) of the query could then be
used to determine which computer on the network has been in-
fected. The supporting visualizations for each analytic, along with
the raw DNS traffic for every suspicious domain, could be included
in an additional log file to expedite the investigation process for the
analyst. Figure 12 summarizes the pipeline for such an application.

6 CONCLUSIONS AND FUTURE WORK

This analysis investigated the development of statistical methods
and unsupervised learning methods to detect DNS queries within
network data exhibiting low-throughput exfiltration. Such an ap-
proach does not require a labelled or curated dataset (as is the case

tool which is simplistic enough for a network analyst to decipher
without any special background, yet still effective.

Future work could include the development of a more robust
clustering method that is not dependent on binning the data in one
dimension within the PC space - such an approach can be sensitive
to the number of bins chosen during the processing. Additionally,
incorporating features on the domain name, instead of only the
subdomain, could provide further insight as to whether a domain is
performing malicious or benign exfiltration. Consideration of other
features (e.g. the ratio between the longest meaningful word and
the subdomain length [26]), along with a more in-depth evaluation
of current features to remove any that are redundant, will help
capture variability among data points efficiently. Finally, extending
the analysis to data encompassing a much longer period of time,
and evaluating results of using both the proposed method and an
alternative supervised approach on this dataset from, would provide
insight into the level of robustness achieved from our model as
compared to the supervised method.
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