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Philosophy.

Abstract

Three topics in nonlinear cable dynamics are studied in detail, because of their importance
in offshore applications. The first topic is the motion of a cable in water when buoys are
attached along its length. The second topic is the effect of the geometric nonlinearity on the
dynamic behaviour of the cable, in the presence of fluid drag. The third topic is the effect of
zero total tension due to large dynamic tension amplification. Particular attention is paid to
the third topic, because of its importance on towing in rough seas, and on the dynamic
response of mooring cables in extreme storms.

The nonlinear equations are first simplified to allow the development of efficient numerical
schemes, and then comparisons are made with existing experimental data. A spectral
method based on Chebyshev polynomials is used, employing the collocation method
spatially and Newmark’s method for time integation. The agreement with experimental data
is found to be good overall, while the most important parameters affecting the dynamic
cable response are identified.

Thesis Supervisor: Professor Michael S. Triantafyllou
Title: Associate Professor of Ocean Engineering
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Introduction

The recent move by the offshore industry towards deeper water, made mooring
systems very attractive, and created an interest in studying such systems. Semi-

submersibles, for example, are nomally positioned with a multi-leg mooring system.

Two typical offshore applications, deeper water moorings and open sea towing,
suffer from very large cable dynamic tension amplification in rough seas, necessitating a
detailed analysis. This in turn requires a complete understanding of the effect of the
nonlinearities involved. Also the dynamic analysis of the cable-buoy systems is necessary

to ensure safe operation in deeper water.

Researchers have studied the nonlinear dynamics of a mooring line in various
coordinate systems [9], [16] and [6]. Recently, Bliek derived the cable dynamic equations
by considering the kinematics and dynamics of a mooring line in three dimensions [4].
Shin has extended the dynamic equations derived by Bliek, using a coordinate system

which is based on the moving configuration (dynamic reference) of a mooring line [23].

In this thesis, great attention is paid to the time domain simulation methods for the
analysis of nonlinear cable dynamics. The time domain simulation method employed here

is based on the collocation method spatially and Newmark’s method for time integration.

We focus on three important topics in nonlinear cable dynamics. The first topic is the
motion of a cable in water when buoys are attached along its length. The second topic is the
combined effect of the geometric nonlinearity, having a large dynamic tension, and
nonlinear drag force. The third topic is the effect of zero total tension due to large dynamic

tension amplification.

In chapter 1, we derive the fully nonlinear two dimensional dynamic equations,

expressed in terms of the displacements p and q, relative to the static configuration of cable.
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In chapter 2, these nonlinear equations are simplified, in order to use efficient
nonlinear numerical schemes. An order of magnitude analysis is performed to justify the

simplification of the equations.

As a first step in the time domain analysis of cable dynamics, the taut string is studied
in chapter 3 in detail, subject to nonlinear drag forces and a string-obstacle interaction,
because its simplicity allows a clearer understanding of the effect of the nonlinearities
involved. The taut string serves also to check the numerical schemes used in this thesis.
Researchers in fields such as mathematics, physics and acoustics have treated the taut string
problem as a basic example of wave propagation and fundamental vibration theory. [27],

[14], [19], [7], [8], [13] and [4], etc.

In chapter 4, a cable subjected to nonlinear drag forces is studied. Time domain
simulations are carried out by expanding the cable motions in a set of Chebyshev
polynomials. Due to the presence of space-varying terms in the governing equations of the
cable, the collocation method is used, because it is superior to Galerkin’s method as a
spatial integration scheme [22]. Migliore and McReynolds studied the dynamic effects of
paying out and reeling in a cable system using the orthogonal collocation method [21] and

[20].

A time domain simulation of a cable subject to nonlinear drag forces has been done
by Bliek [4] and Burgess [5]. Bliek used the natural modes of the cable as the set of
orthogonal functions, and Burgess used sine functions. Burgess found sine functions have
computational advantages over the natural modes of the cable. Both used Galerkin’s
method, rather than the collocation method used in this thesis. The author has used the
equivalent linearization method to treat the nonlinear drag forces by employing frequency
domain techniques and an iterative procedure, so that the linear term has the same overall

effect as the term it replaces [23].

In chapter 5, the nonlinear static and linearized dynamic equations of a cable with
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intermediate buoys are derived. Small motions of a mooring line with buoys attached on it
around a mean position, are then simulated. The analysis of a mooring line with attached

buoys is necessary to assess the safety of the cable-buoy system in deeper water.

The cable-buoy system appears to be very useful in solving the problems associated
with the large self-weight of a mooring line in deep water. By adding appropriate buoys to
the mooring line, it is possible to reduce the top tensile force and, therefore, to decrease the
diameter of the cable. So far, most analyses are restricted to a cable without buoys and only

a few papers refer to the mooring line with buoys.

The fully nonlinear two-dimensional governing equations were derived in Chapter 2,
and the simplification of the nonlinear equations was carried out in Chapter 3, in order to

use efficient nonlinear numerical schemes.

In chapter 6, we study the combined effects of the geometric nonlinearity, large
dynamic tension and nonlinear drag forces on the cable dynamic response, with the

limitation that the total tension remains positive at all times.

In chapter 7, we develop a model for a slack-and-snapping cable, which clips off
large negative dynamic tensions. The theoretical predictions are then compared with

experimental results from [11] and [10].

Negative overall tensions, caused by large dynamic tension build-up, force a cable to
go completely slack. Immediately after the cable goes slack, it is forced to go taut in a rapid
motion (snapping of cable). Until now, few papers on extreme tensions of a cable have

been presented because of the numerical difficulties involved [11] and [18].

Chapters 3 through 7 contain the numerical applications and comparisons with

experimental data and some conclusions are drawn from these comparisons.



-15-

Chapter 1

Nonlinear Dynamic Equations

1.1 Introduction

Researchers have studied the nonlinear dynamics of a mooring line in various

coordinate systems [9], [16] and [6].

Recently, Bliek derived the cable dynamic equations by considering the kinematics
and dynamics of a mooring line in three dimensions [4]. Shin has extended the dynamic
equations derived by Bliek, using a coordinate system which is based on the moving

configuration (dynamic reference) of a mooring line [23].

In this chapter we deal with the dynamics of a mooring line with coplanar static
configuration, when we can study the in-plane dynamics separately, because the out-of-

plane motion is uncoupled from the in-plane motions [24].

In the next chapter, a simplification of the two-dimensional nonlinear hydrodynamic

force is investigated.

1.2 Decomposion of (Relative) Velocity and Drag Force

We employ two different coodinate systems ; one based on the static configuration of
a mooring line (static reference system), and the other based on the moving configuration
(dynamic reference system). The former will be denoted by (p,q), the latter by (x,y). See
Figure (1-1). We project the drag forces and velocities along both coodinate systems, and

relations between the corresponding components are derived.

¢ Two Coordinate Systems



Figure 1-1: Coordinate Systems for Velocities and Drag Forces

(p,q) : coordinate system fixed on the static configuration

unit vectors (t',1,)

(x,y) : coordinate system fixed on the dynamic configuration

unit vectors (t',1)

o Relations between Unit Vectors

r= t,cosd, +,sind,

n= -t sing, + n, cos¢,

(1.1)
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Cable

d aq .
v, = a-fcosd)l +a—?smq)l

. d
v, = —% sin¢, + a—? cos 9,

9, : static component of the angle ¢

¢, : dynamic component of the angle ¢

v, : tangential component of cable velocity

v,, : normal component of cable velocity

¢ Relative Velocity

¢ Damping Force

op

e

ot

” cos¢, + % sin¢, —Ucos (¢, +¢,)

Current

Ucos (¢,+4,)

(1.2)

~Usin (¢,+¢,)

sin¢, + aa—? cos¢, —=[-Ucos (¢, +d,)] (1.3)
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Note that by relative velocity we mean the relative velocity between the cable and the

fluid particles.

Drag Force = - f (Relative Velocity)

1.3 Nonlinear Dynamic Equations

(1.4)

The dynamic equations, obtained from the equilibrium of forces acting on a mooring

line in a moving coordinate system (x,y), including the nonlinear hydrodynamic forces, are

as follows [Bliek 84] :

M @‘2] = ?L

- w,sin¢+F
ot "ot oSInQ+Ey

mléjﬂ“’vlégl =Tei—’9-wocosq)-l—Fnl -m.?_v.'.'
ot ot os ot

with :

(1.5)
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F,;=0.5np, CpDy(Ucosd—v,)IUcos¢-v,I(1+e/2)

F,,=0.5p,, Cp,Dy(-Usind—v,) -Usin¢—v,1(1+e/2)

dp aq

v,=—cos¢, +—sin¢
Yo a

op.. 0
vn=—a—lt)smq)l+-a-([1cosq)l

where :

m = Mass per unit unstretched length
T, = Effective tension

e = Strain
The compatibility equations for the mooring lines must be satisfied. :

v _29, _d
os 0Js " ot

(1.6)

aV a¢ a
I, 90, — (14e) 90
35 T3e - )3

Finally, a constit:tive equation for the cable must be added :
de
T,=f(e,=,s 1.7
e =S 5 ) (1.7)

Equations (1.5), (1.6) and (1.7) constitute a complete set of the nonlinear two-

dimensional dynamic equations (5 equations with 5 unknowns).
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1.4 Reformulation of Equations of Motion

Using relations (1.1) and (1.2), we can reformulate the governing equations (1.5).

The following two equations are obtained using (1.1).

ty direction :
0
m [aa—‘?-v“%]cosq)1 - m[-% + vt%?]sin 9,
oT

= -é—ecosq)1 ~ wgsingcos ¢, + F,,(1+e)cos ¢, — T, ?- sin ¢,
s s

ov
+ wycos¢sin¢, — F,; (1+e)sin¢, + m.—a-—n sin¢, (1.8)
t

ng direction :

m[%f—vn%%]simb, + m[% +v, %%]cosq),
oT, . o : 30
= —a—s-sm ¢, — wysin¢sin¢, + F,,(1+¢)sin¢, + T, 5 cosd,

ov
— wocosdcos 9, + F,, (1+e)cos ¢, — m,-stﬂ cos ¢,

The above equations (1.8) can be rewritten, using relations (1.2) with ¢ = ¢y + ¢}, as:
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m"iz—g———comb1 - wysing, — Te%QsinQ)l
S

o2 0ds

+ F, (1+e)cos ¢, — F,; (1+€)sin¢,

9%p , 9999 op99 :
[(p aqa] n2¢, — (afatl 2?)suxq),cosq),
oT,
m?%——-é?smq), - wcosd, — ca‘: cos¢,
+ F,(1+e)sin ¢, + F,; (1+€)cos ¢,
d
m,[ (ap ?;: ¢)sm¢lcos¢l—(ap;? aq)coschl

These governing equations, expressed in terms of p and q, are based on coordinates

fixed on static configuration of the able (quasi-static reference).

(1.9)

We need the following static equations and the decomposition T, = T +T}, in order

to obtain the governing equations in final form.
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dT,

t, d—: = wysin ¢, — Fy (1+¢)
dd,
n, : To'd_s wocos P, — F o (1+€;) (1.10)
dx

Fren (1+¢,) cos ¢,
d
di (1+€y) sin,

(Refer to [Bliek 84)).

Inserting static equations (1.10) into (1.9), we obtain the reformulation of (1.5).

92p OT, do
ma—ts = 35-cos ¢, - Tod—osm ¢,

+ [ F,cos¢, ~ F ;sin¢, ] (1+€) — F;(1+e)

_(?;I: +aq ¢' (_p_atl 9%q ) sing,cos ¢, ]
dT 00 do 8¢
+_(.1.59 (cos¢,-1)-T, 5 —sin¢, - T = —sin¢, ~ a_‘sm¢, (1.11)
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qu dTo
at~

0o, do,
+ Toa—°°5¢1 +T, -d—cos 0,

+ [ F,sin¢, + F jcosd, ] (1+e) — F ((1+€)

3%  9qo0 opd0, 2
m[ p a? ) sin ¢,cos ¢, + ( ‘:at‘ q)
oT do, a9,

+ = sing, — To——-( cos¢, - 1) + Tla—cos¢,
s

1.5 Reformulation of Compatibility Equations

0s%¢,]

Similarly, we can reformulate compatibility equations (1.6) using relations (1.1) and

(1.2)

Using (1.1),
1%

v, av, . )
—cos¢, — ¢,v,co8¢, — —sin¢, — ¢,v,sinQ,
ds s

= %-:—COS q)l - (1+e)¢t5in ¢1

(1.12)



N,
vy . ) ov,
— sing, — §,v,sin¢, + — cos ¢, + ¢,v,cos ¢,
os os
oe .
= Lsing, - (1+e)pcost,
ot
Using (1.2),
_a_(?iB)-¢.aﬂ+?g-a.ﬁ=a_§cos¢]—(lw)?ﬂsin(b | (1.13)
ds ot ‘9t ot Js ot ot !

Il dp _dp od, _oe 1 99,
as(gt) O T 3 ot +°)_{C°S¢‘

After manipulating some terms and using ¢ =¢+¢;, we obtain the following

simpler equations.
9 ©p __aﬂd_¢2.._ 1 1
™ (gt) > ds [(1+e)cos ¢,] (1.14)
op 49
2 &)+ P22 (+osing]

Since the two operatos 9 and 9 are commutative, it follows that

ds ot



d
0 [QE—q_?B

ot os ds

dq

d do,. 9 .
5[—"‘1’—(1?] -'é-t[(l“’c)smq)l]

S

Finally, we can make the above equations (1.15) independent of time.

op 4,

— —q— = (1+€e)cos ¢, +C,(s)

os ds

oq , dd, .
3% + Py = (1+e)sin§, +C,(s)

where C;(s) and C,(s) are integration constants and are independent of time t.

In order to determine Cy(s) and C,(s), we use initial conditions.

If¢;=0,p=0andq=0attime t=0,

C=CO

Under the initial condition (1.17),

=% [(1+€)cos §,]

(1.15)

(1.16)

(1.17)



Therefore we can derive C,(s) and C,(s) from (1.18)

In terms of p and g, the compatibility equations can be cast in the following simple

form.

o_ 30

aq . 44,
—_— = O =
e + Pis 0 +Cy(s)

Ci(s)=—(1+ey)
C(s)=0

aq
95

—q&= (1+e)cos ¢, — (1+¢;)

+ p-d— (1+e)sin¢,

(1.18)

(1.19)

(1.20)
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1.6 Summary of Fully Nonlinear Two-Dimensional Governing Equations

d dé
mgtzg—g-coscbl - To-a—osmtbl

+ [ F,cos¢, — F ;sin¢, 1 (1+e) — Fo(1+€,)

82p aq ¢1
8 a

op9%,

m,[ ( ot ot

2
n%¢, —( —%)sind),cosm]

¢1 ¢o ¢1

dT,

92q dT o0 do,
a—g = Egsm P, + To—a—lcos o, + T,—a—-cos 0,

+[F;sin¢, + F ;cos¢, ] (1+e) — F ,(1+€)

m[(a?'p actl ¢')sm¢,cos¢,+(ai’ 411 9’

) cos?¢,]

d
+9 Gin o, - qu)—o( cos¢, — 1) + TI%cos 6
s ds s

op _ dd, _ _
= qis--(l+e)cos¢, (14ep)

dq . 4%,
aq + p—d— (1+e)sin¢,

(1.21)

(1.22)

(1.23)

(1.24)



Chapter 2

Simplification of Nonlinear Dynamic Equations

2.1 Introduction

In chapter 1, we derived the fully nonlinear dynamic equations, which are expressed
in terms of the displacements p and q, based on the static configuration of cable. These
nonlinear equations may be simplified, in order to use efficiently nonlinear numerical
schemes, but care should be taken not to oversimplify and hence ommit important nonlinear

mechanisms.

The author has used the equivalent linearization method to treat thé nonlinear drag
forces by employing frequency domain techniques and an iterative procedure, so that the
linear term has the same overall effect as the term it replaces [Shin 85]. This procedure is
employed often to simplify complex nonlinear equations without losing their particular

properties [2].

2.2 Assumptions

In order to simplify the nonlinear equations of motion, we make the following

assumptions.

¢ In case of harmonic excitation we assume that each dynamic quantity is also
harmonic (just for estimating the order of magnitude of the nonlinear terms).
We write it in the form of a complex amplitude times a complex exponential,
but we mean always the real part of it.

p=pyei™ q=g, ™
0 =0, €™ Ty =Ty, €™ 2.1

o T, may be large. We can distinguish two cases :
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T
When —£ > 1 we may use a linear approach.
la

T
When —£ <1 we must use a nonlinear approach. 2.2)

1a

T
with O(2)=1, T,= pretension
P

In this chapter we are interested in the latter case.

e ¢; remains small ; for example,

¢‘"‘"‘=0(10—2) with O (9, ~ 1 (2.3)

¢0mu

Assumption (2.3) leads to the following relations.

O(sing, )= 0(¢,) 2.4)

o
O(cos¢,—1)=0(——2-'-)

After higher order terms have been ommitted, we can write the following

approximate relations.
sing, = ¢, (2.5)
o
cosdp, —1=——
o, 3

Equations (1.21) and (1.22) are considered term by term, in order to eliminate those

terms which are not important.
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2.3 Simplification of the Equation of Motion in the Tangential Direction

All of terms in equation (1.21) are compared to each other. In case of harmonic

excitation, assumptions (2.1) and (2.3) are applicable.

m.-a-zt—fsin 29,
A=—T _——— =[¢],]
m2P |
or?

mlgqagjl sin2¢, a

B=_02 a[2p =[2¢]
Pa

ot?

_ t _r a2
m—
ot?

d
m 9 aq)’sinq)lcosq),

m%z-[g-sin ¢,cosd,

moP
ot?

Considering the following relation,

oT oT o
'af“sq" =’aTl[ 1-2+0@)]
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After neglecting t}_xe higher order terms [¢132] - A B, C E and J - we get the

following equation.
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a dT, do, .
82: 5 =Ty Gs sm¢, +[Fycos¢, —Fysin¢g, 1(1+e)
F d%q_.
-Fy(1+ey)+ m.¥51n¢,cos o, (2.6)
dT, 00 dd, .
+-d—( cos¢,—1) - 'I‘(,-a-s—'sm(bl T,Tsosm(b,

Also, using assumption (2.2), we can eliminate G and H.

BT d
gzl]; % -T d¢ sing, +[ Fycosd, —F, sind, (1 +e)
-F,(1+e )+m22-qsin¢cos¢ —T-digsinq) 2.7)
10 0 32 1 1 I'gs 1 .

In order to further simplify equation, we apply assumptions (2.5) to (2.7) again.

o%p oT, _ do,
8?2) asl ~Togs ds Slnq)l + [ Fycos¢, —Fy,sin¢, (1 +¢)

2
~Fy(146,)+ m.g—g(bl ., 2.8)
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2.4 Simplification of the Equation of Motion in the Normal Direction
All of the terms in equation (1.22), are similarly compared to each other. In case of

harmonic excitation, assumptions (2.1) and (2.3) are employed.

m.g—z’t;-sin 9,cos ¢,

- - —: .]
a [q.¢|
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Tlﬁ)cos 9,
g = .._.d_s__ = [ ....g ]
daT, T,

3

daT,
—Isin ¢,

aT,

os

h=

=[¢),]

T, dq)o( cosPy—1)
aT] Th
s

63, ]

99,

T,—cos ¢,

J=—5r'-[¢1.]

os

Neglecting [¢u] and considering O( ) < 1, we can eliminate b and i.

Using relations (2.5), the following simplified equation is obtained :

2 dT, d
(m+m_)aat§1=ds°¢,+T024;’+T,dt°+[1=m¢,+1=dn](1+e§
-Fno(l+eo)+m[azp, aPaq"]af__cpl a¢,

s

(2.9)
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2.5 A Simplified Version of the Compatibility Relations

We can estimate the order of magnitude of each term in the compatibility relations
(1.23) and (1.24). In order to avoid eliminating terms which are small, but which
nonetheless represent important nonlinear effects, and to retain consistently terms of similar
order of magnitude, we make use of the large physical quantity, E (Young’s Modulus) as

shown in the sequel. We can rewrite the compatibility equations as follows ;

%%—q%-( 1+e )(cosd, — 1) +e, : (2.10)
do,
8 +pd— (1+¢ )sing, (2.11)

2
Using relations (2.5), and including terms like cd%' and e¢,,

we obtain the compatibility relations in the form :

dp _ oy :
5I.’.-qd =(l+e)(-7) +e (2.12)
3q+p3¢2 (1+€)0, (2.13)

Since the linear tension-extension relation is,

T
e =ot

EA (2.14)
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we must multiply by EA each term in the compatibility relations, to estimate their

order of magnitude, when expressed as forces :

2
Agp EAg % EA(l+e)(—q—;'-)+EAe, (2.15)
gq+EAp—¢9 EA( 1+¢)0, (2.16)

oT
Comparing each term in (2.15) and (2.16) with a—‘, as found in
s

sections (2.3) and (2.4), we find that there is no trivial term in the equation above.

2.6 Nonlinear Terms in the Governing Equations

We distinguish between linear governing equations and simplified nonlinear
governing equations. From equations (2.8), (2.9), (2.15) and (2.16), we identify the
following nonlinear terms.

m,%zt—gq), and T,ﬂ’qa, in (2.8)

9% iy ong T,%

in (2.9
os n (29)

d*p
Misa® Mg 3

¢2
(l+e )(—5‘) in (2.15)

ed, in (2.16)
nonlinear drag terms in (2.8) and (2.9)
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An iterative method, together with an equivalent linearization procedure, can give

good results as found in the case of studying nonlinear drag forces [25].

The displacement p in the tangential direction is much smaller than the displacement

q in the normal direction. This means that

d
m.&% and m.ap o in (2.9) can be neglected.
ot? ot ot
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2.7'Summar_v of Nonlinear Governing Equations after Higher Order Terms are

Omitted
o%p OT, _ do
a?; a—;“Tod—o‘bl +[Fy—Fg0,1(1+e)
0%q
or?
dT,
(m+m, )af——tp % -a%+[Fm¢,+Fdn](l+c\ (2.18)
aT, 09,
-Fo(l+ey)+—0, +T,—
os os
EAgp EAq2 % =EA( l+e )(~ b ) +EAe, (2.19)
S
aq do,
+EAp—==EA(1+¢)0, (2.20)

as
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Chapter 3

Nonlinear Dynamics of a String

3.1 Introduction

As a first step in the time domain analysis of cable dynamics, the taut string will be
studied in detail, subject to nonlinear drag forces and a string-obstacle interaction, because
its simplicity allows a clearer understanding of the nonlinearities involved. The taut string

will serve also to check the numerical schemes used in this thesis.

Many researchers in fields such as mathematics, physics and acoustics have studied
the taut string problem as a basic example for describing wave propagation and

fundamental vibration theory [27], [14], [19], [7], [8], [13] and [4], etc.

3.2 Dynamic Equations

3.2.1 Linearized Dynamic Equations of a Taut String in Air

We assume that the dynamic tension T, caused by a small disturbance around the

static configuration of a taut string, is very small with respect to the static tension T,

From dynamic equilibrium conditions and the assumption of small displacements, we
obtain linearized equations for the taut string in air as follows (refer to equations (2.17)

through (2.20))
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d’q i d’q (3.1)
or? 1+e, os?

where  m : mass per unit length
p : axial displacement
q : transverse displacement
T, : static tension
€( : static strain
s : Lagrangian coordinate
E : Young’s modulus

Ao : Cross-sectional Area

The two equations (3.1) are uncoupled from each other and hence Elasticity is not
important quantitatively for the transverse motion of a taut string. However, Young’s

modulus E should be finite in order to have any vibrations at all.

3.2.2 Dynamic Equations of a Taut String in Water

The motions of a string in water differ basically from those of a string in air, due to
the presence of large hydrodynamic forces. In this thesis, a Morison type of loading is used
to model the hydrodynamic forces. The mass of the string is augmented by an added mass,
which represents a weighted integral of the kinetic energy in its surrounding water.

Because the added mass of a flexible body in unsteady shear flow is difficult to obtain, we
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employ the approximation of using at each section the added mass per unit length of a rigid
cylinder with the same cross-section and two-dimensional flow conditions. The drag force
is assumed to be a quadratic function of the relative velocity between the string and the
ambient fluid. The linearized dynamic equations with one additional nonlinear term, the

drag force, are written as follows :

2 T 2
Mm% . "o %, g

— 3.2
ot 1+¢; ds? " G-

o%p _ EA, o’p
ot® 0s2?

+ F,

with

oq dq
F =-05p,Cd D, | —=-U_ |(=-U
pw n OIa[ ql(al q)

_ dp dp
F, = -0.5p, Cd,D, |§-Up|(.5;-up)

M=m+a

where  a:added mass per unit length

Dy : unstreched diameter of the string
F,, : transverse component of the drag force

F, : axial component of the drag force



P

Cdn

: transverse component of the velocity of the ambient water

: axial component of the velocity of the ambient water

: transverse component of the velocity of the string

: axial component of the velocity of the string

water density

: transverse drag coefficient

C,, : frictional drag coefficient
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3.2.3 Nondimensionalized Dynamic Equations

'ihe linearized dynamic equations which include the nonlinear drag forces, are

nondimensionalized by introducing the following nondimensionalized variables :

aqu aqu aql , aql ,
99 _ o9 _ A _yr(Q-y 3.3
or? 2 Cd, | v e | (at’ q) (3.3)
azpl azp' apl , ap’ ,
=9P _cq |2 -y -
ot 9s? % Iat" p | (a 7~ Up)
where
SI = .i t' = t
2 I2 \(m+a )( 1+eg) / T,
” t (m+a)
t" = k =
I2V(m+a))/EA, 0.5p,,Dy
K = kt’ K’ = kt”
t t
' = g /= 2
=y P7g
’ U ’ U
U,/ = f"l U, = K,’;

The nondimensionalized equations (3.3) have the form of the classical wave

equations with the addition of nonlinear drag forces.
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3.3 Classical Wave Equation with Inhomogeneous Boundary Conditions

The classical wave equation with inhomogeneous boundary conditions in the
transverse direction can be transformed into an equation with homogeneous boundary
conditions by introducing a quasi-static solution. After dropping primes, the governing

equation in the transverse direction is :

2

QU
O

0

g (3.4)
t2

(8]

Qv

S

Initial conditions are :

q(s,0) = f(s)

%%(5,0) = g(s)

Inhomogeneous boundary conditions are (see Fig. 3-1) :

q-1,t)=0

q(1,t) =h(t)

where  f(s) : initial position
g(s) : initial velocity

h(t) : a nondimensionalized excitation

The quasi-static solution is assumed to be in the form

v(s,1) =S_”2_l h(t) (3.5)
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- _'//’T q(S,t) 1 h(t)

s=1

Figure 3-1: a Taut String with Nondimensionalized Variables

After a transformation, we obtain the following equation which is inhomogeneous.

ot o2 2 di

0°w _ o’w  s+1d%h (3.6)
with  w(s,t) = g(s,t) = v(s,t)

where the initial conditions are

w(s,0) = F(s) = £(s) - 5;_‘ h(0)

ow _ _ s+ldh
3{(8.0) = g(s) TE(O)

and the boundary conditions (homogeneous) are :
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w(-1,t) = 0

w(l,t) =0

3.4 Classical Wave Equation with Forcing Function

In equations (3.3) and (3.4), nonlinear drag forces or inhomogeneous boundary
conditions are represented by a forcing term H(s,t). Without loss of generality, we can set

up the initial conditions in equation (3.6) as follows :

s+1

f(s) = —2—h(0) (3.7
_ s+ldh
g6) = -0

Finally, we obtain a linearized equation with a forcing term and homogeneous

conditions :

Pw _ P
| o2  os?

+ H(s,t) (3.8)

w(s,0) =0
—(s,0)=0

w(=1t)=0
w(l,)=0
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with

2
H(s,t) = _stidh _ Cd, |

et 3w+s+1dh aw+s+ldh_
t

St a Vel (5t )

3.5 Application of a Spectral Method to the Classical Wave Equation

An approximate solution of the govemning equation (3.8) of a taut string in the

transverse direction is sought in the form of a truncated series.

N
WG = 3 2,0 b(6) (3.9)

where

a, : expansion coefficients of w(s,t)

b, : time independent orthogonal functions

For this expansion, we use Chebyshev polynomials T, (s) which are orthogonal to
each other in the interval —1< s< 1, based on the Galerkin approximation [22], [12],
[15] and [Hamming ].

In the Galerkin method, for by(s) to satisfy all boundary conditions and contain

Chebyshev polynomials T, (s), we set up linearly independent functions b, (s) as follows :
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b =T — T,(s) m even 3.10
m(S) m(S) T(n) © 0 odd (3.10)

m= 2,34, ---,N

Therefore, the series can be written as :

N
wr(s,t) = ) a (1) b, (s) , (3.11)

m=2

Using the orthogonality of the Chebyshev polynomials T, (s) with a Galerkin

approximation, ordinary - differential equations of the expansion coefficients a(t) are

obtained.
da () 1 N - B,(t) B,
d[2 - -—11.P=n+23§n=¢ven p(p -° )ap(t) ¥ Cn * Cn (—1)
+ H,®)
n=2012 ---,N
where :

B/(t) = Ea + p(m)P

B)() = xPB + g (3.12)
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¥

w N )
=—]_, + 3 H(
*= e ,Z’o (

N
B=2M_ 1+ lypH®

0s? n=0
£ = - (N+0.5)
N2+N
_ 0.5(-1)N
k N2+N

H_(t) : Chebyshev Series Coefficient of H(s,t)

=J2, n=1
C {l, otherwise

As the time integration scheme of (3.12), we use the Newmark method which is

unconditionally stable [1].

d2 N B, (t+At
—%(t +At) = 1 Y p(p? - n?) a(t+At) + 1(t+AD
dt Ca p=n+2iprn=even n
B,(t+At)
+ C (-1)* + H_(t+At) (3.13)

n

The left side of equation (3.13) can be calculated from results of the previous time

step.



d’a, _ 1 ] da() 1 da ()
-dT(t+At) = - [a (t+At)—a (D] A a (-2(—1 1) S

with a= (3.14)

EN

Therefore, the only unknown a_(t+At) in both equations (3.13) and (3.14) can be
determined by time domain simulation.
3.6 String-Object Interaction

We consider an elastic foundation to model an object obstructing the motion of the

string, excited at one end as shown in (Fig. 3-2).

=1 h(t)

Figure 3-2: String Hitting an Elastic Foundation

The effect of the object can be modelled through an equivalent spring-damper

system, i.e. an elastic foundation with an appropriate damper. The continuous distribution
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of a spring-damper system can describe properly the effects of the object on the motion of a

taut string by adjusting the values of the constants k and c.

In a time domain analysis, these interactions can be included in the forcing term
H(s,t) of the classical wave equation (3.8) and this can change the values of a and B in the

equation (3.12).

3.7 Results and Comparisons of a Time Domain Analysis of the Taut String

We calculate three different solutions of a taut string from equations (3.13), (A.15)

and (A.16) and compare those results.

d%a, 1 N B, (t+At)

—(t+A) = — 2_n?)a (t+At) + —

d ( ) Cn p=n+2§n-even p(p ) p( ) Cn
B,(t+At)

(-1)* + H (t+At) from (3.13)

ux,t) = Z wz_( e [ coswt — cos—t] sm?x
with C, = 2f"fx) sin2x dx from (A.15)
1o l
d2
'5% = (224,00 + C,oom from (A.16)

The principal nondimensionalized parameters of the string and the excitation used for

comparisons of Fig. (3-4) to Fig. (3-10) are shown in Table 3-I (see Fig. 3-3).

Fig. (3-4) shows the comparison between the transverse displacements of the middle



Table 3-1: Nondimensionalized Parameters of the String
used in Figures 3-4 to 3-10

length =2

first natural frequency = /2
frequency of excitation = nt/4
amplitude of excitation = 1
excitation function = cos(nt/4)
initial velocity along the string =0

initial position of the string = (s+1)/2

where s is a nondimensionalized Lagrangian coordinate : (-1 < s < 1)

of the string subjected to a nonlinear drag force, relative to the displacements of an
undamped string As we expected, the asymmetry and irregularity in the curve of the
transverse displacement of an undamped spring, are eliminated in the case of a damped

string due to the significant damping action of the fluid drag.

In Figures (3-5), (3-6) and (3-7) we show the sensitivity of the solution to the number
of time steps per period for the case of undamped vibration, with the excitation frequency

equal to half the first natural frequency.

When the number of orthogonal functions is 20 and the number of time steps is 20,
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h(t)=1 cosnt/4

=1

Figure 3-3: Initial position of the string and Excitation imposed at the end

Fig. 3-5 shows disagreement between the exact solution obtained from equation (A.15) in
the form of a sine series, and solutions obtained from equations (3.13) and (A.16) using
Chebyshev polynomials and sine functions, respectively. Note that the two solutions from
equations (3.13) and (A.15) are very close to each other in all cases considered in this
chapter (Fig. 3-10). When the number of time steps per period increases to 40, there is little
difference relative to the case of using 20 time steps (Fig. 3-6). When we select 100 for the
number of time steps per period, Fig. 3-7 showed very good agreement between the

numerical solutions and the exact solution.

Next, we investigated the sensitivity of the solution to the number of orthogonal
functions used, as shown in Figures (3-6), (3-8), (3-9) and (3-10). With a constant number
of time steps per period equal to 40, we changed the number of orthogonal functions. As
seen in Figures (3-6), (3-8) and (3-9), the effect of the number of orthogonal functions used
on the transverse displacements is very small. As Figures (3-10) and (3-5) show, when the
number of time steps per period was reduced to 20, the sensitivity to the number of

orthogonal functions was found to be very small also.
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Therefore, we can conclude that the effect of the number of time steps per period is
more important than the effect of the number of orthogonal functions on the dynamic
response of the string for the particular frequency considered. It means that the better way
to obtain accurate predictions is to increase the number of time steps per period, rather than

the number of orthogonal functions.

In Table 3-II, the principal nondimensionalized parameters of the string and the

excitation used for string-object problem, are shown.

Fig. (3-11) shows the transverse displacement at the middle of the string subjected to

a nonlinear drag force.

Fig. (3-12) and Fig. (3-13) show the time history of the transverse displacements
along the string subjected to nonlinear drag force. Due to the nonlinear drag force, we can
find the phase difference between the displacements at the middle and at the top of the
string. Figures (3-14) to (3-16) show the transverse displacements of the string when hitting
the object, modelled as an elastic foundation with spring constant k and damping coefficient

c, as shown in Fig. (3-2).

For lower values of the spring constant, k=15, and the damping coefficient, c=10, the
string penetrated the object, which was relatively soft (Figures 3-14 and 3-15), while, for
the higher values of k=1000 and c=1000, the string did not penetrate the object and
bounced back. In the latter case, the object models better a rigid bottom (Fig. 3-16).

In the numerical calculations, the discontinuity due to such a spring-damper system
may cause divergence. So, for large values of k and c, the variable time step interval
method is recommended in order to get good convergence characteristics as shown in Fig.

(3-16).
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Table 3-II: Nondimensionalized Parameters of the String
used in Figures 3-11 to 3-16

length =2

first natural frequency = 1/2

frequency of excitation = nt/2

amplitude of excitation = 1 string diameter

excitation function = 1D cos(nt/4)

initial velocity along the string =0

initial position of the string = (s+1)/2

where

s is a nondimensionalized Lagrangian coordinate : (=1 < s < 1)

D is the string diameter
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TRANS. MOTION OF STRING (1/40*T,N=20)
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-------- EXACT
— — SINE

Figure 3-6: Nondimensionalized Transverse Displacement at the Middle
of an Undamped String [Period/40 and 20 terms ; n/4 (vad/sec))

240



HZEOXHMOYHOTOHYO: BZP DO

-50-

TRANS.MOTION OF STRING (1/100*T,N=20)

1.4 + t t t f } i t }
1.27 T
1.01 +
0.8 / r
0.61 +
+
-1.4 t } } 1 t t { t }
0 50 100 150 200 250 300 350 400 450 500
TIME STEPS
CHEBY
"""" EXACT

Figure 3-7: Nondimensionalized Transverse Displacement at the Middle
of an Undamped String [Period/100 and 20 terms ; ©t/4 (rad/sec)]
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NORMAL DISPLACEMENT AT MIDPOINT WITH DAMPING AND
FIRST EIGENVALUE (ABS. AMPLITUDE = 1 DIA.)
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Figure 3-11: Transverse Displacement at the Middle of an Damped String
[Excitation ; n/2 (rad/sec) and 1 Diameter]
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Chapter 4

Cable Subjected To Nonlinear Drag Forces

4.1 Introduction

In this chapter, we study a cable subjected to nonlinear drag forces. Time domain
simulations are carried out by expanding the cable motions in a set of Chebyshev
polynomials, as in the analysis of a string of Chapter 2. Due to nonconstant terms in the
governing equations of the cable, the collocation method is superior to Galerkin’s method

for a spatial integration scheme [12] and [22].

A time domain simulation of a cable subject to nonlinear drag forces has been done
by Bliek [4] and Burgess [5]. Bliek used the natural modes of the cable as the set of
orthogonal functions, and Burgess used sine functions. Burgess found in his thesis some
advantages of the sine functions over the natural modes of the cable. Both used Galerkin’s

method, rather than the collocation method used in this thesis.

Migliore and McReynolds studied the dynamic effects of paying out and reeling in

the cable system using the orthogonal collocation method [20] and [21].

4.2 Linearized Governing Equations with Nonlinear Drag Force Terms

The 2-dimensional, linearized equations of motion of a cable, whose static
configuration is 2-dimensional, expressed along the local tangential and normal directions

[23], are



with
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op 0T, do,

= - F

T R
92q _ dT, 00, b
ﬁf__‘bds l+T(,g+T,-_-+Fnd

B _ 0 _ T

% Tds  EA

9q

do,
N + p-a? = ¢, (1+ep)

¢=0,+0,

F‘d=%pw Can Do (Using +V,) [ Using + V, | (14+3) sing,

+ -;-n Pw Cp Do (Ucos¢ -V, [Ucos¢ -V, | (1+-§-) cos ¢,

-
i
31

4.1)

4.2)
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Fro =5 Py Can Do (Usind +V, ) | Usind + V, | (143) cose,

+ %n pu Ca Dy (Ucosd = V,) [ Ucos¢ - V, 1 (143) siné,

ns

<
n

aq _.
%—?cosd)l + a—?smq)l

V, = -%sinq?l + %cosq),

M=m+m,

where
m : mass per unit length of the cable

m, : added mass per unit length of the cable
E : Young’s modulus of the cable
A : cross-sectional area of the cable

Dy : unstreched diameter of the cable
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p : tangential displacement
q : normal displacement
T, : dynamic tension
T, : static tension
¢, : dynamic angle
o : static angle
e : total strain (e = ¢ + €()
€ : static strain
e; : dynamic strain
U : velocity of current parallel to the x-axis

Cjy : tangential drag coefficient

Cj, : frictional drag coefficient

F4 : tangential dynamic drag force
F, 4 : normal dynamic drag force
F, : tangentional static drag force
Fq : normal static drag force

Py : Water density

Boundary conditions and initial conditions are as follows (see Fig. 4-1) :

¢ Boundary conditions :

pO,t)=0

p(Lt) = h(t) cos(Pp0p - 6)



§'=-1

Figure 4-1: Static configuration and Largrangian Coordinates

qO,t)=0
q(9) = -h(t) sin(@gyp - 6)

where
h(t) : arbitrary excitation function of time t

imposed at the top of the cable

Oorop * Static angle at the top of the cable

0 : angle of direction of the excitation

4.3)




¢ Initial conditions :

p(s,0) = f£,(s)

q(s,0) = f,(s)

)
-a%(s,O) =1£(s)

0
3?(8,0) = f,(s)

where f(s), fy(s), f3(s) and fy(s) are arbitrary functions of the lagrangian

coordinate s.

4.3 Nondimensionalized equations

4.4)

By introducing nondimensionalized variables, the governing equations (4.1) are

transformed into the following nondimensionalized equations :

op’ T, oT T, do, 1
- - &+ — Fa
o2 mDyL/2 9 mD, ds mD,
-1<s' <1
’ T d T 0 dT,
a_zq_=_"&T’+___.° _(b'.+_l ——0¢l+—1 Fg
o2 MDD, ds MD,L/2 9s MD, ds MD,



i

B 1+eo L2 35’

with

where

L : total length of the cable

Tp

Also, the boundary conditions and initial conditions are nondimensionalized (see Fig.

4-1).

¢ Boundary Condition :

1 D aq'+

: pretension at the top of the cable

4.5)



P'(-1,H=0

(1Y) = (‘) 1 cos (Gpep — 6) (4.6)
0

q’(_1$t) =0

()

0

q'(1,t) = — = sin (g, — 6

¢ Inital conditions :

p'(s',O) = f](sl)

q'(s",0) = f(s") 4.7

9 (,0) = £)
ot

a_(s 0) = £(s)

4.4 Application of the Collocaticn Method to Cable Dynamics

4.4.1 Residual Equations

The residual equations resulting from the trial solutions, i. e., expansion along the set

of orthogonal functions, can be expressed, using Chebyshev pol}"nomials T,(s"), as:
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2 T ¢+ T, d
Rl(s"t) = ap - P a_'l_:_ + _0_?94)] - __I—Fld
o2 mDyL/2 gs mD, ds mD,
’ azq’ Tp d¢0 ’ TO aq)l
R,(s',t) = - O _0 1!
0 = 5 T MDL2ds | MDyL2 35
1 dT 1
-— "¢, - —F
MD, ds ® MD, ™ (438)
D,EA gy D,EAd
Ry(s) = T — O, 20 Do
T,L/2 o5’ T, ds
, 1 Dpaq D, d¢,
R(s') = ¢ — — —rt = —_p
BN =0 " T TRy Trey s
where
_ N+l
p'ist) = Zo Pa(1) T,(s")
s N+l
Qe = Y q,0) T6) (4.9)
n=0
., N+l
T = Y () Ty(s)
n=0
, N+l
o,s"p) = ; a,(t) T,(s")
n

There are (N+2) unknown expansion coefficients for each of the expansions (4.9)

and, in total, 4(N+2) unknowns must be determined.
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In order to set up 4(N+2) equations we choose N collocation points along the cable
excluding both end boundary points (Fig. 4-2). At each collocation point, 4 residual
equations (4.8) are forced to be zero and, at the two boundary points, the boundary

conditions are required to be satisfied instead of R (s’,t) and R,(s’,t).

moving boundary point
=1

-1 !

Sl’

fixed boundary point

Figure 4-2: Collocation Points
In summary,
¢ 4N equations at the collocation points

R(S,.) =0 (4.10)

where j=1,2,3,4
k=1,23,..,N

8 equations at the two boundary points
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at s =-—1 ats=1
R,(-1, =0 Ry(1,)=0
R,(-1,0)=0 R,(1,H)=0 @.11)
p-1,=0 P = (‘) 22 £05 (9o — 8)
0
q-1,0=0 q'(,n = h(‘) ~20 $in (Op ~ 6)

0

Thus 4(N+2) equations are formulated in (4.10) and (4.11) and, therefore, 4(N+2)

unknown coefficients in (4.9) can be determined as solutions of (4.10) and (4.11).

Solutions of 4(N+2) simultaneous equations can be calculated numerically through
matrix manipulations. Then the Newmark method becomes an appropriate tool as a time

integration scheme.

4.5 Numerical Applications

In order to compare our numerical predictions with the existing data, we employed
the inclined cable used in Bliek’s thesis [4]. Also, this cable is used in Chapters 5 and 6.

The principal parameters of the inclined cable are found in Table 4-1.

Fig. (4-3) shows the static configuration of the inclined cable in Table 4-3. We
calculated the natural frquencies of this cable, using the computer code "CAEIG.EIG"
which was developed in the Design Laboratory, Ocean Engineering, MIT.

First Natural Frequency =0.9001219 rad/sec
Second Nariral Frequency = 1.193369 rad/sec



P P DRI T T

T, = 1332000N
m = 48.7kg/m
m, = 63kg/m
Wyaer= 414.98 N/m
EA = 1.3x10°
L= 67.6656m

D, = 00889m

depth=  427.7m

Table 4-1: Cable used in Figures 4-3 to 4-10
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The dynamic responses of the cable to excitation at the top, in the normal direction,

of amplitude equal to 10 cable diameters, and frequency equal to its first natural frequency

(0.9 rad/sec) are shown in Figures (4-4) to (4-10).

Without the effect of the nonlinear drag force , the cable is subject to undamped free
vibrations and resonance phenomena should be observed at its natural frequency. Figures
(4-4), (4-5) and (4-6) show indeed the resonance phenomena ét the first natural frequency
as expected. As time goes on, the amplitude of normal displacement at intermediate points
(s =-1,-0.5, 0, 0.5, 1) of the cable increases without bound. Comparison between dynamic
tensions at several points along the cable, showed that the dynamic tension is uniform along

the cable (Fig. 4-4).

When the cable is subjected to nonlinear drag forces, we obtain evéntually a steady-
state response (Fig. 4-8). Figure (4-7) shows a comparison of the dynamic tensions at
several points of the inclined cable subjected to nonlinear drag forces. In Fig. (4-7), we find
high frequency fluctuations arou;ld the peaks of the dynamic tension at the bottom and the
top. This results from the strong singularity of the initial velocity, which was imposed at
the top in the form of a cosine function starting at time zero. Such a discontinuity, due to
initial conditions, can be alleviated by introducing a time window function, which produces
a gradual increase from zero to the desired value in velocity within a few periods. The
effect of the time window function is discussed, in detail, in the next chapter. In Figure
(4-10), the comparison between our numeric predictions and Bliek’s results show good
agreement. The effect of an artificial small intermediate buoy on the dynamic tension in

Figure (4-10) is shown in the next chapter.
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normal excitation ; dynamic tension OF CABLE ; NO DAMPING
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Figure 4-4: Dynamic Tensions of GUYSTA without damping in normal excitation
of amplitude equal to 10 diameters at the first natural frequency
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Figure 4-9: Tangential Displacement of GUYSTA with damping in normal excitation
of amplitude equal to 10 diameters at the first natural frequency
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COMPARISON BETWEEN COLLOCATION AND MODAL METHOD

YNAMIC TENSILE FORCE AT TOP OF CABLE WITH DAMPING ; NORMAL EXCITAT
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Chapter §

Cable with Intermediate Attached Buoys
For Offshore Applications

5.1 Introduction

Attaching buoys along the length of the cable appears to be very useful in solving the
problems associated with the heavy weight of a mooring line used in deep water. By adding
buoys in appropriate points along the mooring line, it is possible to reduce the top tensile

force and, therefore, to decrease the diameter of the cable.

So far, most analyses are restricted to a cable without buoys and only a few papers

refer to the mooring line with buoys [3].

In this chapter, the nonlinear static and dynamic equations of a cable with
intermediate buoys are derived, and small motions of the mooring line around its static
configuration are simulated. The analysis of the mooring line with buoys is necessary to

assess the safety of the cable-buoy system in deeper water.

5.2 Statics

We assume that each buoy is connected to the cable by a hinge at the attachment
point. At each attachment point, we should consider equilibrium of the forces due to the

buoy and the forces from the adjacent cable elements (Fig. 5-1).

Except at the end points, the following static equations must be satisfied along the

mooring line :
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To%=(w0—Bo)cos¢0+Fno( 1 +f-9)
ds 2
Mo _ (wy- By ) sindy—Fg (1+2) (5.1)
ds 2
dx

-£=cos¢0-(l+eo)

dy _ .
a')sj=5m¢o'(1+°o)

where
w( : weight per unit length of the cable

B, : Buoyancy force per unit length of the cable
€ : static strain

F

w0 - Normal static drag force per unit iength of the cable

F,, : Tangential static frictional force per unit length of the cable

s : Lagrangian coordinate

Also, the following relations must be satisfied at each attachment point.

Ty *cosdyt - Ty "cosdy + Fg cosy =0
T, *singy* - Ty “sindq + Fg siny =0 (5.2)
FR cosy = DXbS

FR sin\|! = Bb - Wb + Dybs

In addition to (5.2), the continuity condition at an attachment point requires the

following equalities in displacements.




Figure 5-1: Static Forces at an Attachment Point

¢ : static angle of the cable

T, : static tension of the cable

Fg : resultant force of the buoy

v : angle of the resultant force Fy
U : current velocity

By, : buoyancy of the buoy

W), : weight of the buoy

D

xbs - X-component of the static drag force of the buoy

Dybs : y-component of the static drag force of the buoy




xt=x (5.3)

Finally static continuity conditions at an attachment point are as follows :

T "costg™ = T *cosdg* + Dy
Ty "singy” = Ty *sindg* + By, - Wy, + Dy (5.4)
xt=x

yr=y

5.3 Dynamics

We assume that each submerged intermediate buoy is fixed on the cable, and we do
not allow buoy rotation about the aitachment point. The hydrodynamic forces on the buoy
are described by a Morison type loading, based on the relative motions between the buoy

and the surrounding fluid.

In order to simplify the dynamic problem, the incident current velocity is assumed to

be parallel to the x-axis.

5.3.1 Drag Forces on a Submerged Buoy

The drag forces on a submerged buoy are described as follows : (see Fig. 5-2)




D, =%pwc,p§.1>§(ﬁ-7)|'ﬁ-V| (5.5)

The total drag force is decomposed into two components :

D,, = Dycosy

P C. ZDZ(U-V)|U-V]cosy , (5.6)

w £p4

N

D, = Dgsiny

1 :
= 5pwc,pgl)ﬁ(u—vnU-V|smy

with

x? y

where
D,;, : x-component of the total drag force of the buoy

Dyb : y-component of the total drag force of the buoy

U : current velocity assumed to be parallel to the x-axis
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V : Velocity of the buoy
Py, : Water density

Csp : damping coefficient of a sphere

Dy, : diameter of the buoy

U-v
—£ e — ———=m DT°
y U Total Drag Force

Figure 5-2: Total Drag Force on a Buoy

Therefore the drag forces on a buoy are obtained from (5.6) as :

Dypa = Db - Dxbs
Dypg =Dy (5.7)




with

5.3.2 Dynamic Equations of a Submerged Intermediate Buoy

From the dynamic equilibrium condition at an attachment point, we obtain the

following equations :

myX = -apX + T*cos¢* - T-cos¢™ + D,y

myy = -a,y + T*sing* - T'sing™ + By - Wy, + Dyp, , (5.8)

xt =x"
yr=y

where
T : total tension of the cable

¢ : Total angle of the cable
my, : mass of the buoy

ay, : added mass of the buoy

5.3.3 Linearized Dynamic Equations of a Submerged Intermediate Buoy

After neglecting higher order terms in-(5.8) and subtracting the static relations (5.2),

we obtain the linearized dynamic equations at an attachment point.
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(my + a, )X = Tytcoso* - Tgtdg*sing,* - Ty.cosdy™ + Tydysind, + D,y

(my +a, ) = Ty*sing* + Tyt tcosd,t -Ty.sind, - Tq¢4cost, + Dypa

xt=x (5.9)
yr=y
with
X = p cosd, - g sind,, (5.10)

y = p sin¢, + q cosd,

The above continuity conditions (5.9) and (5.10) at an attachment point are expressed

in the following matrix form :

(P ( 0 Y [cost —sint 0 o YY)
q+ |+ 0 = | sint cost 0 0 q
Ty | |DxpaC0s®g+Dypysindy Mcost —Msint cost -Tysint| | T,
o Dyy4€0s@; Dypysiny Msint M,cosT ging TpcostT o

d a
" T T T T
L A N J \ 7 N s
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T=0¢;- % (5.11)

M, =m, +a,

In the case of a cable consisting of several segments with different propreties from

each other (D, # D,, etc.), the nondimensionalized variables of each segment are also

different.

( -, N / D D N ,.._ N
P 0 —lcost —Isint 0 0 P
D, ( D, D, D,
.q.-l- Dl . D] Ei—
= 1+ 0 =| —sin1 —CO0S1 0 0 —
D, D, D, D,
T D, .cos¢. D, sind’ DM DM ' T, T;
..T_" "de % + yde % : ’1]‘ bcost ——®sint cost -—Csint 4

P P p P T, T, T,
o Dyys€0s9; D,pysindy DMsint DM,cosT gsint TycosT o
d d

Ll wm J s onoon o w )L

with
t=6;-4; (5.12)
M,=m, +a,

Then the above matrix can be nondimensionalized by using different reference

variables (Fig. 5-3).

where



T=¢;- 0] (5.11)

M, =m, +a,

In the case of a cable consisting of several segments with different propreties from

each other (D, # D,, etc.), the nondimensionalized variables of each segment are also

different.
as N\ / N ,n N
( O+ 4 D D -
L 0 —cost  ~—sint 0 0 P
D, D, D, D,
., D D o
A 0 _Lsint —cost 0 0 L
D, D, D, D,
T, D, 4cos0; D, sindy M DM T, T,
Tf de % + yde % ~bcosT ———2sinT cosT ——osint L
P P P TP TP TP TP
o D, €05 &g _Dyysin ;g D,M,;sint D;M,cosT gjnt Tpcost i
d
+
WIS IR T R R N
with
T=0;— 00 (5.12)
M, =m, +a,

Then the above matrix can be nondimensionalized by using different reference

variables (Fig. 5-3).

where



Figure 5-3: Dynamic Variables in a Mult-segmented Cable

D, : diameter of a left segment

D, : diameter of a right segment

The final continuity condition (5.12) should be assigned as a boundary condition at

each attachment point of the cable with submerged intermediate buoys.

In the development of a computer code to simulate the effects of an intermediate

buoy, the above condition (5.12) implies complex manipulations of the matrices involved.

5.4 Numerical Application

For the numerical application, we used the same cable as in Chapter 4 and its

principal parameters are found in Table 4-1.

In order to establish the validity of our theory, first, we put a very small artificial

buoy (diameter=0.0000001 m) in the middle of the inclined cable and we investigate its
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effects. We expect that the very small buoy shouid have very little effect on the dynamic
tensions of the cable. This is in fact the case, as comparison wih a cable without the buoy
shows in (Figures 4-7, 4-8 and 4-9) and (Figures 5-11, 5-12 and 5-13) and our numerical
scheme proved to be efficient in solving the cable-buoy system. Also the comparison
between our predictions and Bliek’s results, mentioned in Chapter 4, show good agreement

except for some small, high frequency fluctuations (Figures 5-14 and 5-15).

To investigate the effect of the discontinuity of the initial velocity, imposed as a
cosine function at the top of the inclined cable, we introduced the following time window

function.

time

sqW = 1 = € window (5.13)

where
time : the elapsed time

window : the time window constant

We changed the value of *window’ and checked the dynamic tensions at the middle,
at the top and the bottom of the inclined cable and the coherence of the phase between the
dynamic tensions and their corresponding expansion coefficients. In Figures 5-16 to 5-20,
we did not include the window function, that is, sqw=1.0 and window=0.0. When we used
window=0.5 in equation (5.13), we found that the high frequency fluctuations in the
dynamic tensions at the bottom and the top and their corresponding expansion coefficients
became small, due to the gradual change in the initial velocity (Figures 5-22 to 5-24). For
larger values of the window, such as 1.5, the high frequency fluctuations were reduced
significantly (Figures 5-26 to 5-28). Through this investigation, it was found that it is of
great profit to use the time window function to avoid the strong singularity of thé imposed

initial velocity.



NUMBER OF SEGMENTS = 2
TOTAL LENGTH OF THE CABLE = 0.104e+04M

SEGMENT NUMBER 1
COORDINATES = 0. M - 518.0000 M

LENGTH SEGMENT = 518.0000 M
MASS PER UNIT LENGTH = 48.70000 KG/M
ADDED MASS PER UNIT LENGTH = 6.300000C KG/M
WEIGHT PER UNIT LENGTH = 414.9800 N/M
DIAMETER = 0.8890000e-01 M

EA = 0.1300000e+10 N

BREAKING TENSTON 4950000. N

SEGMENT NUMBER 2
COORDINATES = 518.0000 M - 1036.000 M

LENGTB SEGMENT = 518.0000 M
MASS PER UNIT LENGTH - 48.70000 KG/M
ADDED MASS PER UNIT LENGTH = 6.300000 KG/M
WEIGHT PER UNIT LENGTH = 414.9800 N/M
DIAMETER = 0.8890000e-01 M

EA = 0.1300000e+10 N

BREAKING TENSION 4950000. N

BUOY NUMBER 1
AFTER WHICB SEGMENT, PLACED= 1

MASS = 0.1000000e-05 KG
ADDED MASS = 21934.70 KG
BUOYANCY FORCE = 429919.0 N
VISCOUS DRAG FORCE = 0. N

IAMETER = 4.339900 M

SION(+) AT TBE CONNECTING POINT = 1257887. N

TENSION(~) AT TBE CONNECTING POINT = 1434776. N
ANGLE (+) AT THE CONNECTING POINT = 15.63373 DEGREES
ANGLE (~) AT THE CONNECTING POINT = 32.40527 DEGREES
DIFFEREN TENSION(+) AT TEE POINT = 112.4879 N/M
DIFFEREN TENSION(-) AT THE POINT - 222.3896 N/M
DIFFERENTI ANGLE(+) AT THE POINT = 0.1818585e-01 DEGREES/M
DIFFERENTI ANGLE(-) AT THE POINT = 0.139910%9e-01 DEGREES/M

NUMBER OF DISCRETIZATION POINTS = 101

TENSION AT THE TOP = 1332000.000(N)

DEPTH = 426.700 (M)

CURRENT VELOCITY AT THE SURFACE = 0. (M/S)
NORMAL DRAGCOEFFICIENT = 1.20000

TANGENTIAL DRAG COEFFICIENT = 0.05000

ERROR IN DEPTH = 0.

NUMBER OF ITERATIONS = 7
LINE CAN LAY ON THE BOTTOM

SUMMARY OF STATIC RESOULTS

Table 5-1: Characteristics of the neutral buoy and the segments of the cable
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Static Configuration - GUYSTA with 1 Neutral Buoy
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Figure 5-4: Static configuration of the inclined cable with a neutral buoy
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Dynamic Tension at Top Point : with 1 Buoy
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Figure 5-5: Dynamic tension at the top of the cable with a neutral intermediate buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function)

Dynamic Tension &t Bottom : with 1 Buoy
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Figure 5-6: Dynamic tension at the bottom of the cable with a buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function]
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Normacl and Tangential Displacement at Attachment (left) ; 1 Buey
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Figure 5-7: Displacement at the attachment of the cable with a buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function, Left side]
Norma‘I:and Tangential Displacement at Attachment (right) ; 1 Buoy
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Figure 5-8: Displacement at the attachment of the cable with a buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function, Right side]
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Dynamic Tension at Attachment Point : with 1 Buoy
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Figure 5-9: Dynamic tension at the attachment of the cable with a buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function]

Nom;al and Tangential Displacement at Attachment ; with 1 Buoy
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Figure 5-10: Displacement at the attachment of the cable with a buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function]
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Figure 5-11: Dynamuc tensions of a cable with a very small buoy
with damping in normal excitation
of ampiitude equal to 10 diameters at the first natural frequency
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Figure 5-14: Comparison between the dynamic tensions of a cable
with a very small buoy and a cable without buoy
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COMPARISON BETWEEN COLLOCATION AND MODAL METHOD

YNAMIC TENSILE FORCE AT TOP OF CABLE WITH DAMPING ; NORMAL EXCITAT
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Figure 5-15: Comparison of dynamic tensions at the top of the inclined cable
between with a very small buoy and without buoy and Bliek’s results
at excitation of amplitude equal to 10 dia. and its first natural frequency
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at Top : 1 Small Buoy - Buoy Drag
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Figure 5-16: Dynamic tension at the top of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function]

3EDynamlc Tension at Bottom : 1 Small Buoy and Buoy Drag
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Figure 5-17: Dynamic tension at the bottom of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function]
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Dyn:?Etnlc Tenslon at Attachment Point : 1 small Buoy and Buoy Drag
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Figure 5-18: Dynamic tension at the attachment of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function]

Dynamic Tension : 1 Very Small Buoy and Buoy Drag
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Figure 5-19: Dynamic tensions at several points of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function]
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Expanglon Coefficlents tn(t) of Nondimensionalized Dynamic Tension
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Figure 5-20: First expansion coefficient of nondimensionalized dynamic tension

at the lower segment of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function]
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Figure 5-21: First expansion coefficient of nondimensionalized dynamic tension
at the upper segment of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, No window function]
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at Top : 1 Small Buoy - Buoy Drag
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Figure 5-22: Dynamic tension at the top of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, Window = 0.5]
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Figure 5-23: Dynamic tension at the bottom of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, Window = 0.5]
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Expgraglon Coefiicients tn(t) of Nondimensionalized Dynamic Tension
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Figure 5-24: First expansion coefficient of nondimensionalized dynamic tension
at the lower segment of the cable with a very small buoy
[106 Dia. 0.9rad/sec, Normal excitation, Window = 0.5]
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Figure 5-25: First expansion coefficient of nondimensionalized dynamic tension
at the upper segment of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, Window = 0.5]
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at Top : 1 Small Buoy - Buoy Drag
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Figure 5-26: Dynamic tension at the top of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, Window = 1.5]
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Figure 5-27: Dynamic tension at the bottom of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, Window = 1.5}
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Expgaglon Coefficlents tn(t) cf Nondimensionalized Dynamic Tension
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Figure 5-28: First expansion coefficient of nondimensionalized dynamic tension
at the lower segment of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, Window = 1.5]
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Figure 5-29: First expansion coefficient of nondimensionalized dynamic tension
at the upper segment of the cable with a very small buoy
[10 Dia. 0.9rad/sec, Normal excitation, Window = 1.5]
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Chapter 6

Combined Effects of the Geometric Nonlinearity, Large Tensile

Forces and Nonlinear Drag Forces

6.1 Introduction

The fully nonlinear two-dimensional governing equations were derived in Chapter 2,
and the simplification of the nonlinear equations was carried out in Chapter 3, in order to

use efficient nonlinear numerical schemes.

Bliek, in his thesis, has already pointed out the asymmetry of the time history of

displacements due to the geometric nonlinearity [4].

In this chapter, we will study the combined effects of the geometric nonlinearity,
large tensile forces, and nonlinear drag forces on the cable dynamic response, with the

limitation that the total tension remaines at all times positive.

6.2 Nonlinear Governing Equations

The simplified nonlinear governing equations and compatibility relations derived in
Chapter 2, are used, which include two important nonlinear mechanisms - geometric

nonlinearity and large tensile forces.
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For the numerical scheme, we employ an expansion of the response in terms of
Chebyshev polynomials ; a collocation method spatially and Newmark’s method for time

integration, as already derived in Chapters 3 and 4.

Through the expansion of the residual equations resulting from the trial solutions,
4(N+2) simultaneous equations at the N collocation points and the 2 boundary ends are

solved (refer o Section 4.4)

6.3 Numerical Application

The inclined cable, used in Chapters 3, 4 and 5, is also used in order to determine the
effects on the dynamic response. The principal parameters of the inclined cable is found in

Table 4-1.

The excitation is applied at the top point of the inclined cable, in the form of an
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imposed motion, whose amplitude is equal to 10 cable diameters and its frequency is equal

to the first natural frequency of the cable.

Figures (6-1), (6-2) and (6-3) show the dynamic response of the cable subjected to
only the nonlinear drag forces and, in a few periods, the dynamic responses reach steady
state. In Fig. (6-3), the high frequency fluctuations result from the strong singularity of the

initial velocity, as mentioned earlier in chapter 5.

Figues (6-4), (6-5) and (6-6) show the dynamic response of the cable with geometric
nonlinearity and large tensile forces, as well as nonlinear drag forces. The combined effects
of both geometric nonlinearity and large tensile forces on the dynamic tension are observed,

making small peaks between large peaks of the dynamic tension in Figures (6-4) and (6-6).

Through comparison between the dynamic response of the cable with only nonlinear
drag forces and that of the cable with the combined effects of geometric nonlinearity and
large tensile forces in Figures (6-7), (6-8), and (6-9), we found that, in steady state, the
combined effects increase the maximum dynamic tension (Figures 6-7 and 6-9) and reduce
the magnitude of the minimum of the dynamic tension at the middle of the cable (Fig. 6-7).
In table 6-, the increase in the maximum dynamic tension at the middle of the cable was 45

% and, the increase at the top 51 %.

This means that, for this particular excitation, we should include the geometric
nonlinearity and large tensile forces in order to estimate accurately extreme tensions. For
higher frequencies and larger amplitudes of excitation, the contribution to the dynamic
tension from large tensile forces, and the geometric nonlinearity is expected to increase.
This has serious effects on the fatigue life of the cable, necessiiating the use of the present

approach if reliable results are to be obtained.

The decrease in the magnitude of the minimum minimum dynamic tension in the

middle of the cable is found to be equal to 36 % (Table 6-I). This decrease, together with
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Table 6- : Comparison of the dynamic response of GUYSTA
with only nonlinear drag forces, with respect to the case of including
both geometric nonlinearity and large tensile forces,
as well as nonlinear drag forces

combined nonlinear
Item effects drag forces only difference(%)

Maximum
dynamic
tension

in the middle 14138.6 N 9744.02 N +45 %

Maximum
normal
displacement
in the middle 4.282 (m/dia) 4.10 (m/dia) +4.44 %

Maximum
dynamic
tension

at the top 12499.5 N 8266.13 N +51.21 %

Table 6-1: Comparison of the maximum dynamic response of GUYSTA
with only nonlinear drag forces, with respect to the case of including
both geometric nonlinearity and large tensile forces,
as well as nonlinear drag forces

the increase of the maximum dynamic tension (Table 6-), cause the average tension to

become higher.

The same phenomena - increase of the maximum and reduction of the magnitude of
the minimum - are obtained for both the tangential and normal displacements (Fig. 6-8 and

Tables 6- and 6-I).



-123-

Table 6-1 : Comparison of the dynamic response of GUYSTA
with only nonlinear drag forces, with respect to the case of including

both geometric nonlinearity and large tensile forces,
as well as nonlinear drag forces

Item

combined
effects

nonlinear
drag forces only

difference(%)

Minimum
dynamic
tension

in the middle

-6260.96 N

-9779.85 N

-36 %

Minimum
normal
displacement
in the middle

-3.917 (m/dia)

-4.095 (m/dia)

-4.36 %

Minimum
dynamic
tension

at the top

-8820.14 N

-8262.12 N

+6.7 %

Table 6-I1: Comparison of minimum dynamic responses of GUYSTA
with only nonlinear drag forces with respect to the case of

both geometric nonlinearity and large tensile forces,

as well as nonlinear drag forces




Dynamic Tension (N)

-124-

DynamsiEcATension at Mid. of GUYSTA : 10 dia., 0.9 rad/sec (No Geomet)
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Figure 6-1: Dynamic tension at the middle of GUYSTA,
subjected to only nonlinear drag forces [10 diameters, 0.9rad/sec]
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Nom;al Displacement at the middie of GUYSTA : 10 D, 0.9rad/sec
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Figure 6-2: Normal displacement at the middle of GUYSTA,
subjected to only nonlinear drag forces [10 diameters, 0.9rad/sec]
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D;Engmic Tension at Top of GUYSTA : 10 diameters, 0.9 rad/sec
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Figure 6-3: Dynamic tension at the top of GUYSTA,
subjected to only nonlinear drag forces [10 diameters, 0.9rad/sec]
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Dynamgc Tension at Mid. of GUYSTA : 10 dia., 0.9 rad/sec (Geomet Non)
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Figure 6-4: Dynamic tension at the middle of GUYSTA,
subjected to geometric nonlinearity and large tensile forces
as well as nonlinear drag forces [10 diameters, 0.9rad/sec]
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Noimal Displacement at mid. of GUYSTA : 10 D, 0.9rad/sec (Geomet Non)
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Figure 6-5: Normal displacement at the middle of GUYSTA,
subjected to geometric nonlinearity and large tensile forces
as well as nonlinear drag forces [10 diameters, 0.9rad/sec]
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Dynarglé: Tension at Top of GUYSTA : 10 dia., 0.9 rad/sec (Geomet Non)
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Figure 6-6: Dynamic tension at the top of GUYSTA,
subjected to geometric nonlinearity and large tensile forces
as well as nonlinear drag forces [10 diameters, 0.9rad/sec]
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Compaaigon of Dynamic Tension at Mid. of GUYSTA : 10 dia., 0.9 rad/sec
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Figure 6-7: Comparison between dynamic tensions at the middle of a cable
subjected to nonlinear drag forces and a cable subjected to geometric
nonlinearity and large tensile forces, as well as nonlinear drag forces

[10 diameters, 0.9rad/sec]
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Comparlson of Normal Displacement at mid. of GUYSTA : 10 D, 0.9rad/sec
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Figure 6-8: Comparison between normal displacements at the middle of a cable
subjected to nonlinear drag forces and a cable subjected to geometric
nonlinearity and large tensile forces, as well as nonlinear drag forces

[10 diameters, 0.9rad/sec]
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Compasrlson of Dynamic Tension at Top of GUYSTA : 10 dia., 0.9 rad/sec
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Figure 6-9: Comparison between dynamic tensions at the top of a cable
subjected to nonlinear drag forces and a cable subjected to geometric
nonlinearity and large tensile forces, as well as nonlinear drag forces

[10 diameters, 0.9rad/sec]
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Chapter 7

Extreme Tensions in a Snapping Cable

7.1 Introduction

Two offshore applications, deeper water moorings and open sea towing, share a
common problem, that of large cable dynamic tension amplification in rough seas. The
problem is particularly severe for snapping cables, thus necessitating a detailed analysis.

(25}, [S] and [11].

Negative overall tensions, caused by large dynamic tension build-up, force the cable
to go completely slack. Immediately after the cable goes slack, it is forced te go taut in a
rapid motion (snapping of cable). Until now, few papers on extreme tensions of a cable

have been presented because of the numerical difficulties involved [11] [17] and [18].

In this chapter we develop a model for a slack-and-snapping cable, which clips off
large negative dynamic tensions. The theoretical predictions are then compared with

experimental results [11] and [10].

7.2 Behaviour of a Cable subject to Negative Tension

Large dynamic tension build-up in rough seas may cause the total tension to become
negative in certain parts of the mooring line. This cannot be sustained by a cable or chain,
due to their low bending stiffness, so it is worth c)iploring what.actually happens in a cable

under such circumstances.

We start by considering a string (i.e. a cable with zero curvature). The appearance of
even a small negative overall tension sets in action a buckling mechanism very quickly,

causing the cable to deform in a buckling mode of growing amplitude. This continues until
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the increased length causes a positive total tension, when the cable reverts to its normal
dynamic behaviour. As a result of this rapid buckling, no large negative tensions can be

achieved.

In a cable with finite curvature, on top of the formation of a buckling mode, a
different mechanism is set in action : the free-falling of the cable opposed only by the
action of the drag force. Since the transition to negative tension is gradual, the cable, under
the influence of its own weight, has acquired a certain falling velocity (as the drag force
would allow) by the time the cable goes slack. It is reasonable to assume that, for
moderately large frequencies, the effect of buckling is restricted to preventing the tension
from becoming negative, while kinematically (i.e. in forming the growing tuckling mode)

and dynamically contributes very little.

In order to get a model of such a slack and then snapping cable, we reformulate the
governing equations as follows. As soon as the total tension in an element of the cable
reaches a negative value, it is assumed that the buckling mechanism keeps the tension at
near zero levels until a positive value is regained, while its dynamic behaviour is governed

by the balance of inertia and drag forces.

The following illustrations (Figure 7-1) outline the model used to establish that the
tension in the cable remains nonnegative. These illustrations show consecutive total
tensions during a short time interval at a certain position Sp-
We can obtain the following relations (7.1), when the sum of the static and dynamic

tension is negative :
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positive total tension

along its length

att=t; + At

att=t; + 2At zero total tension

Figure 7-1: Variation of Total Tension during Consecutive Time Steps



oT, ( dT, JdT,
= or — S ———
ds ds os
e=0 (or e;=-¢;) (7.1)

where

T,

e - total tension (T, =Ty+T, )

T : static tension

T, : dynamic tension

¢ : total strain (e = epte; )
€ : static strain

€; : dynamic strain

s : Lagrangian coordinate of cable

Here we should make the following distinction : The dynamic tension is related to the
dynamic strain, and hence to the cable displacements, provided the total tension is positive.
In the absence of bending stiffness, no negative tension can be .sustaincd. Hence, when we
calculate a negative dynamic tension that causes the total tension to become negative, it is
not a real tension, but a mathematical artifact, that helps us decide whether to use the
conventional cable equations, or equations (7.1). In the case of equations (7‘1).“ is clear
that the real dynamic tension is simply equal to -T;,, and under no circumstances it will

become any smaller.
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We expect that these equations, which force the clipping-off of the negative dynamic
tension, produce spatial discontinuities and, as a result, introduce artificially high frequency
excitation, causing numerical convergence problems. In a horizontal cable with small sag,
however, as in the case of a towing system, we find out that the dynamic tension is almost
uniformly distributed along the cable for frequencies which are not high enough to cause

elastic waves [5].

This allows us to simplify the formulation and construct a relatively simple model for
a horizontal cable, by assuming that the dynamic tension varies only in time and not along

the cable length.

7.3 Clipping-Off Model

By introducing the quasi-static strain assumption, we obtain the following governing

equations, which also include a clipping-off model.

Geverning Equations :
do do,
(m+a)_=(To+ l)(aq dso -;'pw an D aq| I-Todso
with
L
T,(t)——-[p(L) j %d +2jo<g_‘sl)2ds1 if T,+T, 20

Clipping - Off (if T, + T; <0, where T;(t) calculated as in equation (7.2) above) :

(7.2)
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ofq_ 1 aq ¢o
(m+a )w = ipr | I ds
and set T, =-T,

where

E : Young’s modulus

m : mass per unit length of cable

a : added mass per unit length of cable

D : diameter of cable

A : cross-sectional area of cable

L : unstretched length of cable

s : Lagrangian coordinate of cable

q : displacement of cable in the normal direction

p(L) : tangential component of the excitation amplitude
Cyn : tangential drag coefficient

pw : Water density

(7.3)
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7.4 Effects of Small Cable Bending Stiffness on its Dynamic Behaviour

If the dynamic tension becomes negative and of amplitude equal to, or larger than the
value of the static tension, forcing the total tension to become nonpositive, the small
bending stiffness of the cable, which can be neglected under less extreme conditions, may
become important due to the lack of any other restoring mechanisms. For short span
cables, the bending stiffness may cause differences between experimental data and our
numerical results. This is due to the delayed onset of zero tension (since the bending
stiffness is capable of supporting small negative tensions), relative to our numerical model
predictions (Fig. 7-10). In fact, under conditions described in the sequel, a clipped-off total
tension at a certain time interval, implies large tension amplification at subsequent times.
Our model, therefore, predicts such tension amplification earlier than experimental results
from short span cables indicate. Fig. (7-10) shows such a deviation between our results and

experimental data from a short cable, 10 m in length.

7.5 Qualitative Analysis of Extreme Tensions in a Snapping Cable

The following figure (7-2) serves to demonstrate the difference between the titne
history of the normal velocity at a certain point of the cable as predicted by our clipping-off
model, relative to the normal velocity without clippping-off. We denote by u. the former
(clipping), and by up, the latter (non-clipping). We use, for demonstration purposes, the

mid-length point of the cable.

As the total tension becomes zero, the major part of thg cable span falls under the
influence of its own weight, opposed only by drag. Eventually, it acquires a steady velocity
u.", which we will call the free-falling velocity. In fact the transition to zero total tension is
smooth, so the cable has acquired a steady velocity almost by the time the cable .has slack.

We distinguish two separate cases, one when lu "l is larger than I(up )i and one when
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normal velocity

Figure 7-2: Normal velocity at the middle of the cable in the clipping-off region

----- the cable with the clip-off model ; lu.*1 < I(upc) i
——-— the cable with the clip-off model ; lu;"1 > I(up)gmin!

the cable without the clip-off model

Iuc"'l is smaller than I(u,.),;,, because they have distinctly different effect on the dynamic

tension.
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Figure 7-3: Dynamic configuration in slack condition
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Figure 7-4: Dynamic configuration in snap condition
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|>Iucl

¢ If we consider the cable to be in slack conditon (Fig. 7-3), &(t) is
negative and the normal displacement is negative along most of the
cable length. In the following relation, therefore,

d
T =228~ [ g ds] (7.4)

the first term is negative and the second (if we account for the minus
sign) positive. Since lup | > lu ! and hence Iq, ! > Iq.! (Fig. 7-6), we
derive the following inequality (for negative q,, q.).

-J qm%ds > quc—%ds

As a result, the dynamic tension is (see Fig. 7-5),

IT) el <ITy d : (7.5)

1.nc

Since the restoring force To+ T is smaller than T0+T1 ne the
rebound of the normal dlsplacement g, from the minimum happens
later, so q,. > q,. at the rebound of the normal displacement q,, (see Fig.
7-6).

¢ Subsequently, the cable will be taut again (Fig. 7-4). Because the
clipping cable remains longer in slack condition, as relation (7.5)
indicates, the restoring force remains smaller, and hence the rebound in
q. is slower. This, however, causes a rapid built-up in dynamic tension,
once §(t) becomes positive as equation (7.4) indicates : for positive &(t)
and q(s,t), smaller q imply a larger tension T,. This triggers an eventual
increase in q (Fig. 7-8), which limits finally T; The tension, however,
in the clipping case will overshoot above the non-clipping tension (Fig.
7-7).

The large value in the peak of the dynamic tension, relative to the non-
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clipping case, and the clipping off in the velocity (due to the free falling
velocity) are the causes for the asymmetric form of the time history of
the normal displacement at the middle of the cable (Figures 7-18 and
7-21).
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Figure 7-5: Dynamic Tension in the clipping-off area
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- Figure 7-6: Normal displacement in the clipping-off area

¢ In summary, we point out the following results from having I(u, )0 >
Iuc'I
2. (T} Imax > (T} nedmax
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b. Asymmetry of normal displacement in the time history

|

Time

Figure 7-7: Dynamic Tension when I(u > "l

nc)min

Figure 7-8: Normal displacement when I(upo)pin! > lu. !
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*
2. 1 (U )min | < o "l

e All the phenomena described above are reversed and, similarly, the
conclusions are reversed.

In summary (Fig. 7-9) :
a. (Tl.c)max < (Tl .nc)max

b. The normal displacement retains its symmetric time history
form

Dynamic Tension

Figure 7-9: Dynamic Tension when I(u

™
nc)min| < h.lc |

From the considerations above, we can deduce the following rule :

By increasing the free-fall velocity of the cable, we can reduce the peak
dynamic tension during snapping. This increase in Iuc'l can be obtained in
several ways, as explained in the sequel.

7.5.1 Principal Parameters to Increase the Free-Falling Velocity luc'l

The balance of weight and drag forces during free-falling provides for wires :

1 2T 32 (p
‘ipwcddu 4d (pc pw)g
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From the above balance, we obtain the formula of the free-falling velocity uc'

ut= «,/% (&_1) dg (7.6)

From this expression, we conclude that in order to increase the free-falling velocity

u.* we should increase the diameter of the cable d, increase P or decrease the drag

C

coefficient Cd-

7.5.2 Other Ways to Reduce the Peak Tension in a Snapping Hawser

It is suggested that inserting a certain length of chain near the middle of a snapping
hawser is benificial for reducing maximum dynamic tensions, because the chain has, as a
rule, larger density than commonly used wire, and its ratio of volume to projected area is
better than in a cable. Hence, use of chain shots not only deepens the catenary, but alters the

free-falling velocity of the line as well, and hence reduces tensions as indicated above.

The suggestion for placing the chain near the middle is based on kinematic

considerations, since this is the region which has the maximum kinematic freedom.

Important Parameters for Tension Amplification : MST and TRI

We identify two parameters which cause tension amplification, based on our analysis above

1. The ratio of the cable free-falling velocity uc' to the predicted minimum
velocity in a non-clipping condition, (U,.)min

MST = i (7.7)

»
uc
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o If MST > 1, the tension will be amplified during cable snapping, so
measures to increase the free-falling velocity should be taken.

¢ If MST < 1, we can expect that the tension during snapping will be not
be amplified, and in fact it may be smaller than in a non-snapping
cable.

2. The ratio of the predicted dynamic tension to the static tension Tj. As a
measure of this ratio we can use the quantity :

EA
TRI:—L-{Z.o’To

Where &, = amplitude of imposed end motion.

This ratio represents exactly the ratio of dynamic to static tension for high
frequencies, when the response is predominantly elastic.

¢ If TRI > 1, a snap is expected and depending on the value of the first
parameter, defined above, large dynamic tensions may occur.

In order to reduce EA/L, we recommend inserting a synthetic line,
which has a lower value of Young’s modulus E. Or, alternatively, we
recommend inserting a piece of chain, whose weight can increase the
static tension. Similar results can be achieved by using a weight in the
middle (sinker), whose properties, however, (mass, free-falling
velocity) may alter the dynamics substantially, so a separate analysis is
needed.

(7.8)
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7.6 Applications and Comparisons with Experimental Data

7.6.1 NSFI Experiment

The principal parameters of the horizontal cable used in the experiment of the Ship
Research Institute of Norway are found in Table (7-IV). The comparisons between
experimental data and numerical predictions of the cable show good agreement at lower
frequencies, while the effect of the bending stiffness is apparent at higher frequencies,
causing the theoretical dynamic tensions to be higher than the experimentally measured

tensions.

For higher frequencies, and after clipping-off sets in, numerically difficulties arise in
the form of high frequency oscillations, that eventually lead to divergence (Fig. 7-13).
Also, smaller time steps must be used to ensure numerical accuracy. Let us consider the
particular case of excitation at a frequency of 1.5hz and with an amplitude equal to 5 cable
diameters. The sensitivity of the magnitude of the total tension to the number of time steps

per period is shown in (Table 7-I). Convergence has been achieved after using 200 steps or

more.
Table 7-1 : Sensitivity of the maximum total tension
to the number of time steps per period [Chebyshev terms=11, Cd=1.5]
Item steps=100 steps=200 steps=300
maximum
total :
tension 287.793 N 242.261 N 242.828 N

Table 7-I: Sensitivity of the maximum total tension
to the number of time steps per period [C4=1.5, Chebyshev terms=11] -
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Next, we checked the sensitivity of the total tension on the number of Chebyshev
polynomials, using 200 time steps per period (Table 7-II). The difference between using 7
Chebyshev polynomials, and using 11 Chebyshev polynomials (which is the standard for
our calculations) was 3.5%. This means we can safely reduce somewhat the number of

polynomials without significant effect on the accuracy.

Table 7-11 : Sensitivity of the maximum total tension
to the number of Chebyshev polynomials [time steps=200, Cd=1.5]

Item terms="7 terms=11
maximum
total
tension 250.923 N 242261 N

Table 7-II: Sensitivity of the maximum total tension
to the number of Chebyshev polynomials [Cy=1.5, time steps per period=200]

Finally we checked the effect of the drag coefficient C4 (Table 7-III). It is found that

no tension clipping occurs for C4=1.0, while clipping is found for C4=1.5.

This sensitivity investigation was repeated for an excitation at 1.8hz and with
amplitude of 5 diameters : 500 time steps per period were required for sufficient accuracy.
For higher frequencies even smaller steps were required, while eventually instability set in,

establishing a limitation for the applicability of the present numerical code.
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Table 7-1II : Effect of the drag coefficient
on the extreme total tension [time steps=200, Chebyshev terms=11]
Item Cg=1.0 C4=1.5
maximum
total
tension 220.354 N 242261 N
minimum
total
tension 1.854 N ON

Table 7-III: Effect of the drag coefficient on the maximum total tension
[time steps per period=200, Chebyshev terms=11]
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To = 88N

M= 0.666 kg/m

w = 505N/m

EA = 7,854,000N
L= 109774m
D= 00lm

CDn = 1.5

Table 7-1V: Cable used in the experiment
of the Ship Research Institute of Norway [11].
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Norway_1.5hz_5d.dat : Clipping-Off Model
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Figure 7-13: Time history of predicted dynamic tension ; 1.5hz_5d_1.0Cd
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7.6.2 MIT Experiment

The principal parameters of the cable used in the MIT experiment are found in Table

(7-X1I).
Cable with a Spring Attached at one End

A spring was connected to one end of the cable to reduce significantly the effective value of
EA. Mounting the spring in the model scales accurately the elastic stiffness of the cable
relative to the full scale mooring line. The equivalent EA for the combined system of the
cable and the spring is calculated using the following formula [24].

1 1.1

EA), KL EA a2

where : EA =3423688 N
k = 8240 N/m
L=67.67Tm from Table (7-XII)
(EA)eq = 479468 N

Tables (7-V) and (7-VI) provide a comparison between our predictions and
experimental results. The difference between our numeric results and the experimental data
was 11.8%, on the average, for a low frequency excitation at 0.1hz and for a high frequency

excitation at 1hz.

The time history of the dynamic tension of the combined cable-spring system is
shown in Figures (7-14) and (7-16). Also Figure (7-17) shows the asymmetry of the normal
displacemnt due to the clipping-off model.
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Table 7-V : Comparison of the Dynamic Tension
of the cable with a spring [0.1hz, 25d]

Item experiment numeric difference(%)
maximum
dynamic
tension 210N 184 N 124 %

Table 7-V: Comparison of the dynamic tension of the cable
with a spring [0.1hz, 25d]

ﬁble 7-VI : Comparison of the Dynamic Tension
of the cable with a spring [1hz, 25d]

Itern experiment numeric difference(%)
maximum
dynamic
tension 1356 N 1510N 11.2 %

Table 7-VI: Comparison of the dynamic tension of the cable
with a spring [1hz, 25d]

Cable without a Spring

Several comparisons were also made at low and high frequencies for the cable
without the spring. Differences were found between numerical predictions and the

experimental data as follows (Table 7-VII).
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Table 7-VII : Comparison of Dynamic Tensions

in the cable without spring

between the predicted results and MIT experimental data

Item 0.1 hz, 25d 1hz, 12.5d
Experiment 300N 2000N
Numeric 204 N 2731 N
difference(%) 32 % 33 %

Table 7-VII: Comparison between numerical results and experimental data
for the dynamic tension in the cable without spring

For horizontal excitation at frequency 0.1hz and with amplitude equal to 25 cable
diameters, the difference was 32%. To account for this difference we tried to investigate
the effect of the principal parameters. We started by varying the drag coefficient C, (Table
7-VII). |

Table 7-VIII : Effect of the drag coefficient
on the dynamic tension and comparison with experimental data
Item C4=0S5 Cy=10 Cy=12
Experiment 2000 N 2000 N 2000 N
Numeric 2596 N 2731 N 2765 N
difference(%) 29.8 % 36.5 % 383%

Table 7-VIII: Effect of the drag coefficient on the dynamic tension
and comparison with experimental data
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We found that the cable was not sensitive to the value of C, (Fig. 7-19). Also we
found that the free-falling velocity of the cable was a function of the square root of the C,
in agreement with equation (7.6) for a wire (See Fig. 7-21). Figure (7-20) showed the
asymmetry of the normal displacement at the middle due to clipping-off.

Table 7-VII : Comparison of the Methodologies used
in M.S. Triantafyllou’s Analysis and in Author’s Analysis
M. T. Author
clipping clipping
constant static quantities variable static quantities
constant dynamic strain constant Gynamic strain
Galerkin’ method collocation method

Table 7-IX: Comparison of the methodologies used in M. S. Triantafyllou’s
Analysis and in author’s Analysis

Here, we compare our predictions with M.S. Triantafyllou’s result [26]. Differences

between two numerical analyses are found in Table 7-VIII.

The comparison between our predictions, M.S. Triantafyllou’s results and
experimental data for the particular case derived in Table 7-VII, is shown in Tables 7-IX

and 7-X.

From the comparisons above, we conclude that experimental results represent
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Table 7-IX :
Comparison of Dynamic Tensions
of the cable without spring (Static Tension = 577.9 N)
between M.S. Triantafyllou’s result, author’s prediction
and MIT experiment data [0.1hz 25d]

experiment M.T. author

300N 230N 204 N

Table 7-X: Comparison between M.S. Triantafyllou’s result, Author’s prediction
and experimental data [0.1hz, 25d]

Table 7-X :
Comparison of Dynamic Tensions
of the cable without spring (Static Tension = 577.9 N)
between M.S. Triantafyllou’s result, author’s prediction
and MIT experiment data [1hz 12.5d]

experiment M. T. author

2000 N 2913 N 2731 N

Table 7-XI: Comparison between M.S. Triantafyllou’s result, Author’s prediction
and experimental data [1hz, 12.5d]

adequately the qualitative behaviour of a full scale cable only if they are long enough and of

sufficient diameter, so that the dynamic tension is not overly amplified.
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T, = 577.899N
M= 0.5046 kg/m

w. 3.62 N/m

water—

Wi = 42294 N/m

arr

EA = 3423688 N

.
"

67.6656 m
l; = 3.3833m
l, = 63.6057 m
I3 = 4.0599 m
D= 0.009525m
1.0

0
w)
5

i

Table 7-XII: Cable used in MIT experiment [10].




Dynamic Tension (N)

Normal Displacement at Mid (m/dia)

-162-

3goynamlc Tenslon of a cable with spring [25 dla., 0.1 hz]
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Figure 7-15: Time history of predicted dynamic tension ;
cable with spring [0.1hz, 25d]

1 glaormal Displacement at the Middle of a Cable with Spring
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Figure 7-16: Time history of predicted normal displacement at the middle ;
cable with spring [0.1hz, 25d]
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Dynamic Tension of a cable with spring [25 4, 1 hz]
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Figure 7-17: Time history of predicted dynamic tension ;
cable with spring [1hz, 25d]
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Figure 7-18: Time history of predicted normal displacement at the middle ;
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Nozrrggl Velocity at the Middie of a Cable with Spring [1hz, 25d]
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Figure 7-19: Time history of predicted normal velocity at the middle ;
cable with spring [1hz, 25d]

4 g&l,'nandoj hz_12.5d.dat : Drag Coefficients (0.5, 1.0, 1.2)
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Figure 7-20: Effect of the drag coefficient on predicted dynamic tensions
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Fg&nandoj hz_12.5d.dat : Drag Coefficients (0.5, 1.0, 1.2)
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Figure 7-21: Effect of the drag coefficient on predicted normal displacement at the middle

gernando_1 hz_12.5d.dat : Drag Coefficients (0.5, 1.0, 1.2)
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Figure 7-22: Effect of the drag coefficient on predicted normal velocity at the middle
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Conclusion

In chapter 1, we derived the fully nonlinear two-dimensional dynamic equations of a
mooring line; in chapter 2, we simplified the equations, while retaining all the important
nonlinear terms, so as to implement efficient numerical schemes. In order to do this, we
first used the relations between the two different coordinate systems, employed in deriving
the fully nonlinear dynamic equations - one is fixed on the static configuration of the cable,
and the other is fixed on its dynamic configuration. This transformation allows the
identification of nonlinear terms, which have not been found in previous derivations (See
section 1.6). Subsequently, a comparison using order of magitude arguments, enabled us to

simplify the fully nonlinear equations.

In chapter 3, we dealt with the problem of a taut string, as a first step in developing
our numerical schemes and checking their validity. Because of the geometric simplicity of
the string with respect to a cable, we used Galerkin’s method spatially instead of the
collocation method, and Newmark’s method for the time integration, employing Chebyshev
polynomials in expanding the dynamic responses of the string. The comparison between
our predicted results and analytical results using sine series, showed very good agreement

(Fig. 3.7).

For the problem of a string hitting against an object, we found that there is a basic
difficulty in obtaining fast convergence, and we used a variable size time integration step. A
parametric variation of the values of the spring constant k and damping coefficient ¢, which
are used to model the given object, produced several interesting dynamic responses of the
sring. Large values of k and c simulated the dynamic responses of the string, hitting a very
hard soil (Fig. 3.17). This formulation of the string-obstacle problem may be cxtgndcd and

then used to study the dynamic behaviour of a cable which lies partly on the sea bottom.
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Through systematic numerical applications and comparisons with experimental data,

we investigated basic nonlinear mechanism of cable dynamic response (chapters 4 through

7.

The dynamic response of a cable excited at its first natural frequency, 0.9
rad/sec,with an amplitude equal to 10 cable diameters, shows that the fluid drag force
serves as a damper preventing the amplitude of vibration from growing without bound
(Figures 4.4 through 4.9), as expected from classical vibration theory (Chapter 4). At the
same time, fluid drag forces the cable to use the elastic stiffness more ;han the catenary
stiffness, this altering fundamentally the character of cable response, rélativc to a cable
vibrating in air.

From the investigation into the combined effects of geometric nonlinearity, large
tensile forces and nonlinear drag forces, we found that the maximum value of the dynamic
tension response increased by about 50 % for the particular case studied (Table 6-1) and the
magnitude of minimum dynamic tension response decreased slightly or remained constant.

This, in turn, causes the average tension in the cable to increase.

In chapter 5, the study of a cable with buoys attached along its length, which is
proposed for deeper water mooring applications, allowed us to quantify the dynamic effect
of the buoys on the cable responses. In one case, the increase in maximum dynamic tension
was more than 300 % (Figures 5.18 and 5.9). Attention shoud be paid, therefore, when
designing a cable-buoy system for a particular offshore purpose, otherwise the dynamic
performance may deteriorate significantly. Our numerical scheme may serve as a first tool

for the preliminary design of such a system.

In chapter 7, we studied the effect of zero total tension on the dynamic behaviour of a
cable. This is the first step in our effort to model properly and understand the principal

mechanisms of a snapping cable.
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We found that the values of two important nondimensionalized parameters MST and
TRI, determine whether snapping will occur, and if it occurs, whether large tension
amplification shoud be expected. If snapping occurs, the free falling velocity of the cable
(approximated by formula 7.6 - for wires) is the determining factor for tension
amplification. The prediction of extreme tensions for the cable used in experiments
conducted by the Ship Research Institute of Norway, showed good agreement up to a
certain frequency, while comparison with experimental data conducted by MIT, showed a
difference of about 30 % for a very stiff cable, and good agreement for a softer cable, when
the elastic stiffness dominates the response of the cable. A systematic effort to interpret the
differences provided plausible explanations, and the agreement we obtained overall is

encouraging, given the complexity of the problem.
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Appendix A

Classical Wave Equation

1. Eigenvalue Problem

¢ Governing Equation :

2
o _9 g<x<l)
oz  ox?
¢ Boundary Conditions :
uO,t)=0
u(,)=0

@ Initial Conditions :

u(x,0)

&(x)
u(x,0) = y(x)

e Eigenvalues :

=
A !
¢ Eigenfunctions :
X, = sin%x

¢ General Solution :

(A.1)

(A.2)

A.3)
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> . NT; nn . DT
B = —x [C —t +D_sin—t
u(x,t) ,,lemlx[“cosl ,,mI]

(A.4)

where  ¢(x) = i C, sin-n-;fx

n=1

y(x) = 2: n_ITt D, sin?x
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2. Forced Motion

¢ Governing Equation :

olu d4u
? = ﬁ + Q(x,t) (A-S)

e We expand Q(x,t) in terms of eigenfunctions (A.3)

Q) = 3 [Qu sinTx] (A.6)
n=1
with Q. (1) = -2- Il Qx,t) sin "Ly dx (A.7)
I Jdo l
e Solution :
uxd) = 3 (g, sin"x] (A8)
n=1

with
1 . DT . o, COSDT
q,1) = - jo Q,(t) smT(t t)dt’ + an_.._l__t

. A9)
+p Sinnn

n I t

where a, and b,, are determined from the initial conditions

3. Forced Vibrations
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¢ Governing Equation :

ou J%u
32 = FY + Q(x,t)

with  Q(x,t) = f(x)coswt
* Expansion Coefficients Q(t) of Q(x,!) :

!
QM = %coswt J o0 sinx ax

e Solution :

nw
sin

u(x,t) = —coswt Z wz—(mtll)z -I—x

+ Z(AncosTt-i-b sm—t) sm%x

with C, = %j; £0:) sinTx dx

e When initial conditions are as follows :

u(x,0)=0

u(x,0) =0

The above unknown coefficients are obtained as :

_ & b,=0
wi—(nn/l)2 "

An=

(A.10)

(A.11)

(A.12)

(A13)

(A.14)
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e Exact Series Solution :

[ coswt — cos—t] smﬂx

C,
ulxt) = -Z A=/ 7 j

with C, = 2['f(x) sinZx dx (A4.15)
lJo 1

4. ime Differential Equation Governing the Expansion Coefficients q,(1) of
u(x,t) -

¢ From equations (A.5), (A.6), (A.8) and (A.10), we obtain the following
differential equation.

2
%_g“. = -(_)2 q,(t) + C coswt (A.16)

¢ By using the Newmark method as the time integration scheme, we can
calculate q,(t) numerically in the same way as employed for equations
(3.13) and (3.14) in section 3.5.
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